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We find a plethora of new analytic black holes and globally regular horizonless spacetimes in three
dimensions. The solutions involve a single real scalar field ϕ which always admits a magneticlike
expression proportional to the angular coordinate. The new metrics, which satisfy gttgrr ¼ −1 and
represent continuous generalizations of the Bañados-Teitelboim-Zanelli (BTZ) one, solve the equations of
Einstein gravity corrected by a new family of densities (controlled by unconstrained couplings) constructed
from positive powers of ð∂ϕÞ2 and certain linear combinations of Rab∂aϕ∂bϕ and ð∂ϕÞ2R. Some of the
solutions obtained describe black holes with one or several horizons. A set of them possesses curvature
singularities, while others have conical or BTZ-like ones. Interestingly, in some cases the black holes have
no singularity at all, being completely regular. Some of the latter are achieved without any kind of fine-
tuning or constraint between the action parameters and/or the physical charges of the solution. An
additional class of solutions describes globally regular and horizonless geometries.
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I. INTRODUCTION

Since the seminal discovery of the Bañados-Teitelboim-
Zanelli (BTZ) solution [1,2], the catalog of three-
dimensional black holes has grown in different directions.
On the one hand, higher-curvature modifications of
Einstein’s theory such as new massive gravity [3] and its
extensions [4–6] allow for new solutions which differ from
the BTZ one e.g., in being locally inequivalent fromAdS3, in
possessing asymptotically flat, dS3 or Lifshitz asymptotes, or
in including curvature (rather than conical or BTZ-like)
singularities [7–18]. Including extra fields also allows for
progress, and additional solutions are known for Einstein-
Maxwell [19–26] as well as for Einstein-Maxwell-dilaton
[27–30] and Maxwell-Brans-Dicke type [31,32] theories.
These typically include logarithmic profiles for some of
the fields and curvature singularities. Black hole solutions
for minimally and nonminimally coupled scalars have also
been constructed [33–39], including some which exploit
well-defined limits of Lovelock theories to three dimensions
[40–43]. These typically contain curvature singularities and
sometimes globally regular scalars. A final class involves
coupling Einstein gravity to nonlinear electrodynamics
[44–48]. For these, examples of regular black holes have
been presented for special choices of the modified Maxwell
Lagrangian [49–51].
In this paper we extend the above catalog with a new

family of three-dimensional modifications of Einstein
gravity involving a nonminimally coupled scalar which

admit a large family of analytic generalizations of the BTZ
metric describing black holes and globally regular hori-
zonless spacetimes. The new black holes display one or
several horizons and include curvature, conical, BTZ-like
or no singularity at all depending on the case.
The latter class is particularly interesting. Indeed, the

resolution of black hole singularities is an expected
property of UV-complete theories of gravity. However,
despite numerous efforts at characterizing regular black
holes [52–80], the success in the construction of actual
solutions for explicit models which do not rely on the
introduction of ad hoc matter nor require an important
degree of fine-tuning in the Lagrangian has been moderate
at most.
Our regular black holes come in two different groups.

For both, the action takes a simple polynomial form, the
couplings are completely unconstrained and so is the mass
of the solutions. Naturally, as corresponds to regular black
holes, the curvature invariants are finite everywhere. Now,
for the first type of solutions, corresponding to metric
factors fðrÞ≡ −gtt ¼ g−1rr which satisfy fðr ¼ 0Þ ¼ 1,
there is a single constraint which fixes the “magnetic
charge” associated to the scalar field in terms of the action
couplings—see Eqs. (13) and (14) below for an explicit
example. For the second type, on the other hand, the metric

functions behave as f!r→0
Oðr2sÞ with s ≥ 1, and the

solutions arise without imposing any constraint whatsoever
between the action parameters and/or physical charges of
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the solution—see e.g., Eqs. (16) and (17) for an explicit
case.
Our construction here relies on a set of ideas that have

been successfully applied to the construction of black hole
solutions in higher dimensions [81–99]. The theories
involved possess particularly simple static black hole
solutions, characterized by a single function which, in
some cases, satisfies an algebraic equation. While the
approach was first developed for purely gravitational
theories, certain additional fields turn out to fit naturally
within the framework. In four dimensions, the natural
choice is a “magnetic ansatz” for a Maxwell field, which
automatically satisfies the equations of motion of general
nonminimally coupled higher-curvature theories and at the
same time has a nontrivial effect on the metric—yet simple
enough to allow for fully analytic solutions [96,97]. In three
dimensions, the analogous magnetic role is played by
∂aϕ—where ϕ is a real scalar—which is related to the
Maxwell field strength via a duality transformation. Hence,
we construct our actions considering Lagrangians of the
form L½gab; Rab; ∂aϕ�, asking them to allow for single-
function metrics, gttgrr ¼ −1, and assuming a simple
magnetic ansatz for ϕ, proportional to the angular coor-
dinate. This selects a rather broad class of theories which
we denote three-dimensional “electromagnetic quasitopo-
logical” (EM-QT) gravities, following the analogy with
higher dimensions [100].
The structure of the paper is as follows. In Sec. II we

present our new class of modifications of Einstein gravity
as well as the general result for the metric function for a
static and spherically symmetric ansatz. In Sec. III we
comment on the electromagnetic dual frame of our new
theories, which involves a Maxwell field rather than a
scalar and present the general solution for the correspond-
ing electric potential. In Sec. IV we analyze the different
types of spacetimes described by the general solution,
emphasizing their horizon and singularity structure. In
Sec. V we show how to generalize our solutions to rotating
ones. We conclude in Sec. VI with some final comments
and future directions. In the Supplemental Material [103]
we present the full nonlinear equations of motion of the
new theory as well as an equivalent on-shell approach
which allows for a simpler extraction of the metric function
equation.

II. ELECTROMAGNETIC QUASITOPOLOGICAL
GRAVITIES IN THREE DIMENSIONS

Inspired by their higher-dimensional counterparts
[96,97], we define “electromagnetic generalized quasito-
pological gravities” (EM-GQT) in three dimensions by the
condition that a general Lagrangian

ffiffiffiffiffijgjp
L½gab; Rab; ∂aϕ�

becomes a total derivative when evaluated on the ansatz
[104]:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dφ2; ϕ ¼ pφ; ð1Þ

where p is an arbitrary dimensionless constant. Theories
satisfying such a property allow for solutions of the form
Eq. (1), where the equation of fðrÞ can be integrated once
yielding a differential equation of order 2 (at most). In some
cases, the integrated equation satisfied by fðrÞ is in fact
algebraic. In that case, which is the one of interest in the
present paper, the theories are called electromagnetic
quasitopological (EM-QT). We find that the following
family of densities belongs to the three-dimensional
EM-QT class [108]:

IEMQT ¼ 1

16πG

Z
d3x

ffiffiffiffiffi
jgj

p �
Rþ 2

L2
−Q

�
; ð2Þ

where

Q≡X
n¼1

αnL2ðn−1Þð∂ϕÞ2n −X
m¼0

βmL2ðmþ1Þð∂ϕÞ2m

· ½ð3þ 2mÞRbc∂bϕ∂cϕ − ð∂ϕÞ2R�; ð3Þ

and where we used the notation ð∂ϕÞ2 ≡ ðgab∂aϕ∂bϕÞ. In
this expression, the αn, βm are arbitrary dimensionless
constants. Observe thatQ contains terms which are at most
linear in Ricci curvatures. We have found no evidence for
the existence of additional EM-QT densities when higher
powers of Rab are included.
As anticipated, and explained in more detail in the

Supplemental Material [103], the full nonlinear equations
of (2) evaluated for an ansatz of the form (1) turn out to
reduce to a single independent equation for the metric
function fðrÞ, which can be integrated once and solved.
The result reads

fðrÞ ¼
�
r2

L2
− μ − α1p2 logðr=LÞ þ

X
n¼2

αnp2nL2ðn−1Þ

2ðn − 1Þr2ðn−1Þ
�

·

�
1þ

X
m¼0

βmp2ðmþ1Þð2mþ 1ÞL2ðmþ1Þ

r2ðmþ1Þ

�−1
: ð4Þ

Here, μ is an integration constant related to the mass of
the solutions, which is given by M ¼ μþ β0p2þ
α1p2 logðr0=LÞ, where r0 is a cutoff radius. Indeed, the
total mass is divergent for r0 → ∞ whenever α1 ≠ 0, just
like in the charged BTZ solution [21]. We emphasize that
Eq. (4) is the only static and spherically symmetric solution
of Eq. (2). If one considers a more general ansatz, the
equations of motion automatically impose the gttgrr ¼ −1
condition—see the Supplemental Material [103].
Naturally, if we set all the αn and the βm to zero, we are

left with the usual static BTZ metric with mass μ. Similarly,
when only α1 is active, the metric takes the same form as for
the charged BTZ black hole [19,21], a fact which follows
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from the electromagnetic-dual description of our EM-QT
action, on which we comment next. Since the couplings αn
and βm can be tuned at will, our solutions represent
continuous multiparametric generalizations of the BTZ
metric.

III. DUAL FRAME

General three-dimensional theories of the form
L½gab; Rab; ∂aϕ� are dual to theories with an electromag-
netic field, Ldual½gab; Rab; Fab�, where Fab ≡ 2∂ ½aAb�. In
particular, the dual field strength is defined by

Fab ¼ −
1

2
ϵabc

∂L
∂ð∂cϕÞ

; ð5Þ

and note that, in this way, the Bianchi identity of F is
equivalent to the equation of motion of ϕ.
In order to obtain the dual Lagrangian, Ldual≡

L − Fab∂cϕϵ
abc, one needs to invert the above relation

to get ∂ϕðFÞ. Unfortunately, this cannot be done explicitly
for the theories we are considering here. Nevertheless, we
can perform a perturbative expansion in powers of L, in
which case the dual action reads (for α1 ≠ 0)

Ldual ¼ Rþ 2

L2
−

1

2α1
F2

þ L2

�
−

α2
4α41

ðF2Þ2 þ 3
β0
α21

Fa
cFabRhcbi

�
þOðL4Þ;

ð6Þ

where we denoted F2 ≡ FabFab and Rhcbi is the traceless
part of the Ricci tensor. We stress that the dual Lagrangian
has an infinite number of terms even when the original
action only has a finite number of them (except when the
only nonvanishing coupling is α1).
Observe that the leading term is the usual Maxwell piece,

which explains the match with the charged BTZ metric
when only α1 is active. Indeed, solutions of LEMQT are also
solutions of Ldual. In the dual frame, the original “mag-
netically charged” solutions become “electrically charged,”
with a field strength F ¼ −ð∂AtðrÞ=∂rÞdt ∧ dr, where
AtðrÞ is the electrostatic potential. Remarkably, this quan-
tity can be obtained exactly and it reads

AtðrÞ ¼ −α1p logðr=LÞ þ
X
n¼2

nαnp
2ðn − 1Þ

�
Lp
r

�
2ðn−1Þ

þ f0ðrÞL
X
m¼0

βmðmþ 1Þ
�
Lp
r

�
2mþ1

; ð7Þ

where fðrÞ is given by Eq. (4). Hence, we can think of our
new solutions as “magnetic” or “electric” depending on
which frame we consider. For the former, the action is

simple, taking the form (2) and the extra field is a scalar
whose equation is solved by ϕ ¼ pφ. For the latter, the
action can only be accessed perturbatively and the auxiliary
field is a standard 1-form whose equation is solved by AtðrÞ
as given in Eq. (7). Given the trivial behavior of ϕ in the
magnetic frame, from now on we will exclusively analyze
the metric behavior—which is the same in both frames—
leaving a more exhaustive analysis of the behavior of AtðrÞ
and the electric frame for future work.

IV. BLACK HOLES

Depending on the values of the αn and the βm, Eq. (4)
describes different kinds of solutions, which we study in the
following subsections. Let us start with some general
comments. First, the number of horizons depends on the
number of positive roots of the equation,

r2

L2
− μ − α1p2 log

�
r
L

�
þ
X
n¼2

αnp2nL2ðn−1Þ

2ðn − 1Þr2ðn−1Þ ¼ 0; ð8Þ

which in turn depends on the values and signs of the αn.
Turning off all the αn, the solution describes a black hole
with a single horizon of radius r ¼ L

ffiffiffi
μ

p
whenever μ > 0,

analogously to the neutral BTZ case.
In the next-to-simplest case, corresponding to α2 ≠ 0 and

α1 ¼ αn≥3 ¼ 0, at least one horizon exists as long as
2p4α2=μ2 ≤ 1 and μ > 0. In addition, if α2 > 0, the
solution possesses two horizons, except for the case
α2 ¼ μ2=ð2p4Þ, which corresponds to an extremal black
hole. When they exist, the outer and inner horizons
correspond, respectively, to

r� ¼ L
ffiffiffi
μ

pffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2p4α2
μ2

svuut : ð9Þ

If we turn on α1 and turn off the rest of αn, the numerator
in the metric function is identical to the whole fðrÞ
corresponding to the charged BTZ metric with the iden-
tification Q2 ≡ 2α1p2. In that case, the horizons structure
was studied in detail in [21]. Whenever μ > 1 the metric
describes a black hole with two horizons. For 0 < μ < 1,
we have black holes for 2α1p2 ≤ Q2

1 and for 2α1p2 ≥ Q2
2

where Q1;2 are the roots of the equation μ ¼ ðQ=2Þ2½1−
logðQ=2Þ2�. Whenever the inequalities are saturated, the
black holes are extremal. Interestingly, even for negative
values of μ black holes exist as long as 2α1p2 ≥ Q2

2

is sufficiently large, in particular, as long as −jμj ≥
ðQ=2Þ2½1 − logðQ=2Þ2� holds.
As more αn are turned on, the number of horizons can

increase and the analysis becomes more involved—see e.g.,
Fig. 1 for a couple of examples with three horizons.
As r → 0, the spacetime described by Eq. (4) can look

very different, depending on the value of the combination
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mmax þ 2 − nmax, where we define nmax and mmax as the
largest values of n andm corresponding to nonvanishing αn
and βm. In particular, the metric function goes as

f ∼r→0r2ðmmaxþ2−nmaxÞ—where, for convenience, if all the
βm are zero, we define mmax ≡ −1 and β−1 ≡ −1. The
case nmax ¼ 1 is slightly different and reads instead

f ∼r→0r2ðmmaxþ1Þ log r. We study the different situations in
the following subsections.

A. Black holes with curvature singularities

An important set of solutions corresponds to black holes
possessing a curvature singularity at r ¼ 0, hidden behind

one or several horizons. This situation occurs whenever
fðrÞ contains at least a real zero, and either nmax > mmax þ
2 or nmax ¼ 1, mmax ¼ −1 hold. We plot examples of
configurations of these kinds in Fig. 1. Curvature invariants
diverge at the origin in these cases. For instance, the Ricci
scalar behaves as

R ¼r→0 −
cnmax;mmax

αnmax
L2ðnmax−mmax−2Þ

βmmax
r2ðnmax−mmax−1Þ ; ð10Þ

where cnmax;mmax
≡ ð2nmax − 2mmax − 5Þðnmax −mmax −

2Þpð2nmax−2mmax−2Þ=½ð1þ 2mmaxÞðnmax − 1Þ� is a positive
constant for all nmax and mmax.
Slightly special are the cases corresponding to nmax ¼ 1,

mmax ¼ 0 and nmax ¼ 2, mmax ¼ 0 (with a nonvanishing
α1). For those, the Ricci scalar diverges logarithmically as
r → 0 even though fðrÞ tends there, respectively, to zero
and to a constant. The dotted lines in Fig. 1 correspond to
these two cases.

B. Black holes with BTZ-like and conical singularities

The usual static BTZ black hole is locally equivalent to
pure AdS3 [1,2]. All curvature invariants are constant and
the spacetime is therefore very different at the origin from
the one of the black holes considered in the previous
subsection. For the BTZ, the spacetime contains a “sort of”
conical singularity for general values of μ different from −1
(which precisely corresponds to pure AdS3), hidden behind
a horizon whenever μ > 0 and naked whenever μ < 0 (the
μ ¼ 0 case describes the so-called “black hole vacuum”
[2]). Indeed, when the mass parameter is negative and
different from minus one, the ðr;φÞ components of the
metric have the same signature, dr2=jμj þ r2dφ2, which
corresponds to a standard conical singularity with deficit
angle 2πð1 − ffiffiffiffiffiffijμjp Þ. On the other hand, when the mass
parameter is positive, we have instead −dr2=jμj þ r2dφ2,
which has a singularity in the causal structure at r ¼ 0
which resembles the one of a Taub-NUT space [2]—in
particular, the spacetime is no longer Hausdorff.
Both kinds of singularities—conical and BTZ-like—

appear for some of the new black holes considered here.
The situation described takes place for nmax ¼ mmax þ 2
(with nmax ≥ 3 if α1 ≠ 0). In that case, the metric function
and the curvature invariants tend to constant values at
r ¼ 0. For instance, if the only active couplings are αj and
βj−2, the metric function tends to the constant value,

f ¼r→0 αjp2

2ðj − 1Þð2j − 3Þβj−2
; ð11Þ

whereas the Ricci scalar vanishes as ∼r2. Then, whenever
the quotient αj=βj−2 is positive, we have a conical
singularity, and whenever it is negative, we have a

FIG. 1. Top: we plot fðrÞ for four black hole solutions with
curvature singularities at the origin possessing one, three, two and
one (degenerate) horizons respectively (blue curves from bottom
to top). The curves are obtained for L ¼ 1, μ ¼ 1, p ¼ 2=3 in the
cases: α2 ¼ −1=2; α2 ¼ 1=2, α3 ¼ −1=50; α2 ¼ 1=2; and α2 ¼
81=32 respectively (unspecified coupling values equal zero).
Bottom: we plot fðrÞ for three black hole solutions possessing
two, three and one horizon (thick blue curves moving from upper-
left corner towards lower-right corner). The curves are obtained
for the same values of L, μ, p in the cases: α1 ¼ 2=3; α1 ¼ 2=3,
α2 ¼ 1=2, α3 ¼ −1=50, β0 ¼ 1=2; and α1 ¼ 2=3, α3 ¼ −1=50.
The dotted lines correspond to solutions for which the Ricci
scalar diverges logarithmically at the origin, as shown in the inset.
These correspond to α1 ¼ 2=3, β0 ¼ 1=2; and α1 ¼ 2=3,
α2 ¼ 1=2, β0 ¼ 1=2. The red line corresponds to the usual
BTZ black hole in both plots.
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BTZ-like one. The analysis is similar as more couplings are
turned on. We plot examples of both kinds of solutions in
the upper plot of Fig. 2.

C. Singularity-free black holes

Whenever the metric function tends to 1 at r ¼ 0,

fðrÞ ¼r→0
1; ð12Þ

the angular defect present at r ¼ 0 disappears and the
metric becomes regular there—as mentioned earlier, this is
precisely what happens with the BTZ metric for the special
value μ ¼ −1, for which it reduces to pure AdS3.
Our new solutions include nontrivial profiles for which

this happens. When the spacetime contains at least one
horizon, those describe singularity-free black holes. We
plot examples of this kind in the middle plot of Fig. 2. For
instance, if the only active couplings are αj and βj−2,
the regularity condition (12) becomes βj−2 ¼ αjp2=
½2ðj − 1Þð2j − 3Þ�. The simplest example corresponds to
the case α1;n≥3 ¼ βn≥1 ¼ 0, p2 ¼ 2β0=α2. Then, the EM-
QT action becomes Eq. (2) where now

Q
L2

¼ α2ð∂ϕÞ4 − β0½3Rbc∂bϕ∂cϕ − ð∂ϕÞ2R�; ð13Þ

and the solution reads

fðrÞ ¼
½r2L2 − μþ 2β2

0
L2

α2r2
�

½1þ 2β2
0
L2

α2r2
�

; ϕ ¼ φ

ffiffiffiffiffiffiffi
2β0
α2

s
: ð14Þ

For the above metric, the Ricci scalar tends to the constant
value R ¼ 3ð1þ μÞα2=ðL2β20Þ at the origin. As explained at
the beginning of this section—see Eq. (9)—this metric can
describe up to two horizons depending on the values
of 2p4α2=μ2 ¼ 8β20=ðα2μ2Þ.
As a matter of fact, there are additional ways to achieve

singularity-free black holes within the present setup which
do not require imposing any constraint at all. The idea is to
consider metrics for which fðrÞ vanishes as some positive
power of r near the origin,

fðrÞ ¼r→0Oðr2sÞ; s ≥ 1; ð15Þ

with the curvature invariants tending to constant values
there (being also finite everywhere else). This happens
whenevermmax > nmax − 2 if nmax ≥ 2; whenever some βm
is active and all the αn are zero; and whenever mmax ≥ 1 if
nmax ¼ 1. For those, the point r ¼ 0 becomes a sort of new
asymptotic region. The Ricci scalar behaves there as R ∼
Oðr2ðmmax−nmaxþ1ÞÞ for nmax ≥ 1 and as R ∼Oðr2mÞ if all the
αn are turned off. We present examples of this kind in the
bottom plot of Fig. 2. There are of course infinitely many
possibilities, but let us mention explicitly the simplest one.
This corresponds to setting αn≥1 ¼ 0 and βn≥1 ¼ 0. Then,
the EM-QT Lagrangian is given by Eq. (2) where now

FIG. 2. We plot fðrÞ and the Ricci scalar (inset) in various cases
(we set L ¼ 1, μ ¼ 1=2, p ¼ 3=8). Top: three black holes with a
conical singularity at the origin with one (extremal), two and two
horizons respectively, as well as two black holes with BTZ-like
singularities with one horizon (blue curves from top to bottom:
β0 ¼ 1=4, α2 ¼ 512=81ξ with ξ ¼ 1; 2=3; 1=3;−1=3;−2=3).
Middle: two black holes with two horizons (thick orange curves),
an extremal black hole (dashed) and two regular horizonless
solutions (green curves): α2 ¼ 512ξ=81 and β0 ¼ 4ξ=9 for (lower
to upper): ξ ¼ 1=3; ξ ¼ 2=3; ξ ¼ 1; ξ ¼ 4=3; ξ ¼ 2. Bottom:
three regular black holes with two, one and one horizon
respectively and one horizonless solution whose metric functions
vanish as even powers at the origin (orange curves: α2 ¼ 54=10,
β0 ¼ 8=27, β1 ¼ 1=6; β0 ¼ 8=27; and β0 ¼ −8=27,
β1 ¼ −1=12, β2 ¼ 1=20; and green: μ ¼ −1=2, β0 ¼ 8=27).
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Q ¼ −β0L2½3Rbc∂bϕ∂cϕ − ð∂ϕÞ2R�; ð16Þ
and the solution reads

fðrÞ ¼ ½r2L2 − μ�
½1þ β0L2p2

r2 �
; ϕ ¼ pφ; ð17Þ

where all the constants μ, p, β0 and L2 are free parameters
(the only conditions being μ > 0, β0 ≥ 0, which ensure that
a horizon exists and that there are no poles in the
denominator). As expected, curvature invariants are finite
everywhere for this solution—see the inset in the bottom
plot of Fig. 2.
In contrast with most previous attempts at achieving

regular black holes, these solutions do not require any sort
of (i) complicated functional dependences of the action
fields; (ii) fine-tuning of action parameters or constraint
between those and the physical charges; (iii) addition of
specially selected matter. For the Lagrangian density in
Eq. (2) with Q given by Eq. (16), black holes simply turn
out to be singularity-free—and analogously in the rest of
the cases described.

D. Regular horizonless solutions

Solutions behaving as Eq. (12) or as Eq. (15) with finite-
everywhere curvature invariants do not necessarily include
horizons [109]. When they do not, we are left instead with
globally regular and horizonless spacetimes. For example,
the solutions in Eqs. (14) and (17) with μ ≤ 0 describe
configuration of this kind. Examples of regular horizonless
solutions are shown in green in the bottom and middle plots
of Fig. 2.

V. ADDING ROTATION

The static solutions described by (1) can be easily
generalized into rotating ones by performing a boost in
the t and φ coordinates,

t → γt − Lωφ; φ → γφ − ωt=L: ð18Þ
The “trick” is that this change of variables is only defined
locally, so that the global structure of the resulting space-
times is different from their static counterparts—see e.g.,
[24,111]. Assuming that γ2 − ω2 ¼ 1—so that for ω ¼ 0
the metric reduces to the static one—we get

ds2 ¼ −
r2f
ρ2

dt2 þ dr2

f
þ ρ2½dφþ Nφdt�2; ð19Þ

ϕ ¼ p

�
γφ −

ωt
L

�
; ð20Þ

where

ρ2 ≡ r2 − ω2½L2f − r2�; ð21Þ

Nφ ≡ γω½L2f − r2�
Lρ2

: ð22Þ

The rotating solution typically has the same horizons as the
static one plus an additional one at r ¼ 0 if fðrÞ tends to a
nonvanishing constant there.

VI. FINAL COMMENTS

In this paper we have put forward a new family of three-
dimensional gravity theories involving a nonminimally
coupled scalar field. These electromagnetic quasitopolog-
ical theories possess static solutions—easily generalizable
to rotating ones, as shown in Sec. V—characterized by a
single function fðrÞ whose general form appears in Eq. (4)
above. These describe different kinds of solutions depend-
ing on the values of the various couplings and parameters.
In particular, we have argued that black holes with different
numbers of horizons and conical, BTZ-like or curvature
singularities appear in some cases. In others, singularities
are absent from the geometry and the solutions describe
singularity-free black holes or globally regular solutions.
This is achieved in two ways, characterized by the behavior
of fðrÞ near the origin—see Eqs. (12) and (15) respectively
and orange curves in the middle and bottom plots of Fig. 2.
Interestingly, for the second type of solutions, this behavior
is encountered without imposing any kind of constraint
between the action parameters and/or physical charges.
There are many venues we consider worth exploring

regarding the solutions presented here. On the one hand, it
would be interesting to study their geodesic structure and
Penrose diagrams. A related issue is a more detailed
characterization of the structure and nature of the horizons
and singularities described by the solutions—the tools
developed in [112,113] could be useful for this. It would
also be interesting to explore the thermodynamic properties
of the solutions, as well as possible holographic applications.
On a different front, it would be interesting to determine

whether additional EM-QT theories exist in three dimensions
and to study the case of EM-GQT theories, for which the
requirement that the equation of fðrÞ is algebraic is relaxed.
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