
 

Observability of Coulomb-assisted quantum vacuum birefringence
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We consider the scattering of an x-ray free-electron laser (XFEL) beam on the superposition of a strong
magnetic fieldBext with the Coulomb field Eext of a nucleus with charge number Z. In contrast to Delbrück
scattering (Coulomb field only), the magnetic field Bext introduces an asymmetry (i.e., polarization
dependence) and renders the effective interaction volume quite large, while the nuclear Coulomb field
facilitates a significant momentum transfer Δk. For a field strength of Bext ¼ 106 T (corresponding to an
intensity of order 1022 W=cm2) and an XFEL frequency of 24 keV, we find a differential cross section
dσ=dΩ ∼ 10−25 Z2=ðΔkÞ2 in forward direction for one nucleus. Thus, this effect might be observable in the
near future at facilities such as the Helmholtz International Beamline for Extreme Fields at the European
XFEL.

DOI: 10.1103/PhysRevD.104.L011902

I. INTRODUCTION

According to classical electrodynamics, electromagnetic
waves in vacuum obey the superposition principle and thus
do not influence each other. Quantum electrodynamics
(QED), on the other hand, predicts that they do interact via
their coupling to the fermionic degrees of freedom [1–3].
As a result, the quantum vacuum behaves as a polarizable
medium, entailing phenomena such as refraction and
birefringence.
The difficulties of observing these effects can be under-

stood by recalling the characteristic scales of QED. First,
the electron mass m ≈ 0.51 MeV=c2 sets an energy scale
where the associated length scale ƛ ¼ ℏ=ðmcÞ ≈ 386 fm is
the Compton length. Second, the elementary charge q can
be used to construct the Schwinger critical field [4,5],

Ecrit ¼
m2c3

ℏq
≈ 1.3 × 1018

V
m
; ð1Þ

where the corresponding magnetic field Bcrit ¼ Ecrit=c is
given by Bcrit ≈ 4.4 × 109 T. It is extremely hard to reach
such field strengths in the laboratory, but even stronger
fields exist in extra-terrestrial environments, cf. [6–9].

As an exception, the Coulomb field of a nucleus with
charge Zq exceeds the field strength (1) very close to the
nucleus, i.e., on a distance of order Oð ffiffiffiffi

Z
p

ƛÞ. Such a high
field strength helps to observe the interaction of electro-
magnetic fields and the scattering of photons at the nuclear
Coulomb field, which can be understood as quantum
vacuum refraction (usually referred to as Delbrück scatter-
ing [10–12]), has been observed in several experiments,
see, e.g., [13–28]. In order to probe the high field in the
close vicinity of the nucleus, these photons had an energy
of the order of the electron mass or above. As another
example, the interaction of the Coulomb fields of two
nuclei almost colliding with each other at ultrahigh energies
and the resulting emission of a pair of photons has also
been observed [29–32].
In contrast, neither the interaction of electromagnetic

fields (as predicted by QED) in a regime well below the
QED scales mc2, Ecrit and Bcrit, nor quantum vacuum
birefringence have been experimentally verified yet.
Prominent proposals for ongoing and planned experiments
include the interaction of an optical (or near-optical) laser
with a (quasi)static magnetic field of a few Tesla, see, e.g.,
[33–41], the interaction of x-ray free electron laser (XFEL)
beams among each other or with optical lasers, see, e.g.,
[42–47], or the interaction of several optical lasers, see,
e.g., [48–58].
Here, we consider a mixed setup where an XFEL beam is

scattered at the combination of a strong magnetic field Bext
superimposed by the Coulomb field Eext of a nucleus
(as schematically depicted in Fig. 1), see also [59]. This
scenario offers several advantages: The nuclear Coulomb
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field facilitates a significant momentum transfer Δk while
we still obtain a birefringent signal (where the polarization
of the XFEL photon flips). As an important difference to
the aforementioned scenarios involving nuclear fields, we
obtain a very large interaction volume (which may even
contain many nuclei) whose length and timescales are set
by the momentum transfer Δk and thus well above the
Compton length ƛ. Hence, all involved field strengths are
subcritical, i.e., well below (1).

II. EULER-HEISENBERG LAGRANGIAN

Since we are considering slowly varying electric E and
magnetic B fields well below Ecrit and Bcrit, we may start
with the lowest-order Euler-Heisenberg Lagrangian
(ℏ ¼ c ¼ ϵ0 ¼ μ0 ¼ 1)

L ¼ 1

2
ðE2 −B2Þ þ ξ½ðE2 −B2Þ2 þ 7ðE ·BÞ2�; ð2Þ

with a nonlinearity set by the parameter

ξ ¼ q4

360π2m4
¼ 2α2QED

45m4
¼ αQED

90πE2
crit

; ð3Þ

where αQED ≈ 1=137 is the fine-structure constant [2], see
also [60–70]. This is a great advantage because we do not
have to construct the electron propagator whose explicit
form is known in special cases only [71], e.g., in an
electromagnetic plane-wave background which facilitates
Volkov solutions [72,73], see also [74–77].
In the weak-field limit considered here, we neglect

quadratic terms Oðξ2Þ. Furthermore, we assume that the
magnetic field Bext is (approximately) constant. In addition
to this magnetic field Bext and the static Coulomb field Eext
of the nucleus, we have the space-time dependent XFEL
fields E and B. Inserting this split E ¼ Eext þE and B ¼
Bext þB into (2), we obtain the effective Lagrangian for
the XFEL fields (cf. [58])

LXFEL ¼ 1

2
½E · ð1þ δϵÞ · E −B · ð1 − δμÞ · B�

þE · δΨ ·B; ð4Þ

with the symmetric permittivity/permeability tensors
δϵij ¼ 8ξEi

extE
j
ext þ 14ξBi

extB
j
ext þ 4ξδijðE2

ext − B2
extÞ and

δμij ¼ 8ξBi
extB

j
ext þ 14ξEi

extE
j
ext − 4ξδijðE2

ext −B2
extÞ plus

the symmetry-breaking contribution

δΨij ¼ −8ξEi
extB

j
ext þ 14ξBi

extE
j
ext

þ 14ξδijðEext ·BextÞ; ð5Þ

which describe the polarizability of the QED vacuum. Note
that the latter tensor is not symmetric δΨij ≠ δΨji.
The equations of motion stemming from (4) can be cast

into the same form as the macroscopic Maxwell equations
in a medium ∇ · D ¼ 0, ∇ · B ¼ 0, ∇ ×E ¼ −∂tB, and∇ ×H ¼ ∂tD, provided that we introduce the electric
D ¼ ð1þ δϵÞ ·Eþ δΨ · B and magnetic displacement
fields H ¼ ð1 − δμÞ · B − δΨT · E.

III. SCATTERING THEORY

Now we may calculate the scattering of the XFEL beam
with standard approaches, see, e.g., [78]. Combining the
above Maxwell equations to

□D ¼ ∇ × ½∇ × ðD −EÞ� þ ∂t½∇ × ðH −BÞ� ¼ Jeff ; ð6Þ

where the effective source term Jeff on the right-hand side is
small, allows us to employ the Born approximation. To this
end, we split the XFEL field D into an ingoing plane wave
Din plus a small scattering contribution Dout induced by
vacuum polarizability δϵ, δμ, and δΨ. Assuming a sta-
tionary time dependence e−iωt for the XFEL field (δϵ, δμ,
and δΨ are static), we find

□Dout
ω ¼ −ð∇2 þ ω2ÞDout

ω ¼ Jeffω

¼ ∇ × ½∇ × ðδϵ ·Ein
ω þ δΨ ·Bin

ωÞ�
þ iω∇ × ðδμ · Bin

ω þ δΨT · Ein
ωÞ; ð7Þ

where we may approximate Ein
ω ≈Din

ω and Bin
ω ≈Hin

ω on the
right-hand side within the Born approximation. As usual,
solving this Helmholtz differential equation for Dout

ω with
the standard Greens function and considering the behavior
at large spatial distances, we find the differential cross
section dσ=dΩ ¼ jAj2 with the scattering amplitude [78]

A ¼ 1

4πjDin
ω j

eout ·
Z

d3r expf−ikout · rgJeffω ; ð8Þ

where kout is the wave number and eout the polarization unit
vector of the scattered (outgoing) XFEL radiation. The
effective source term Jeffω contains contributions from δϵ,
δμ, and δΨ which add up to give the full amplitude

A ¼ ω2

4π

Z
d3r expfiΔk · rg½eout · δϵ · ein

þ eout · δΨ · ðnin × einÞ þ ein · δΨ · ðnout × eoutÞ
þ ðnout × eoutÞ · δμ · ðnin × einÞ�: ð9Þ

FIG. 1. Exemplary Feynman diagram of the considered process
(wavy/straight lines represent photons/electrons).
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Here nin and nout are the initial and final propagation
directions (kin ¼ ωnin and kout ¼ ωnout), respectively,
while ein and eout denote their polarizations. As usual in
scattering theory, the oscillating phase is governed by the
momentum transfer Δk ¼ kin − kout.
In the following, we only consider the terms stemming

from the combined impact of the magnetic field Bext and
the nuclear Coulomb field Eext. Keeping only those cross
terms, just the symmetry-breaking contribution δΨ in (5)
survives, i.e., we focus on the second line of Eq. (9).
Since Bext is (nearly) constant, the spatial integral yields

the Fourier transform of the nuclear Coulomb field
EextðrÞ ¼ erQ=ð4πr2Þ with the charge Q ¼ Zq:

Z
d3reiΔk·r

Q
4πr2

er ¼ iQ
Δk

ðΔkÞ2 : ð10Þ

An important point here is that the 1=r2 scaling from the
Coulomb field cancels the r2 volume factor in the d3r
integration. As a consequence, the spatial integration is cut
off by the momentum transfer Δk resulting in a very large
interaction volume—which may even span many XFEL
wavelengths for small scattering angles jnin − noutj ≪ 1,
i.e., in forward direction. Of course, at some point the
approximation of a constant Bext breaks down.

IV. FORWARD SCATTERING

The large interaction volume mentioned above goes
along with a peak in forward direction, i.e., for small
Δk, where the signal is enhanced as ∼1=jΔkj. Since the
prefactor is quite small, let us focus on this leading-order
contribution ∼1=jΔkj. Thus, we approximate nin≈nout→n
in order to simplify the expressions. In this limit, the
isotropic contribution 14ξδijðEext · BextÞ in (5) cancels and
we are left with the anisotropic terms. For the birefringent
signal, where ein and eout are orthogonal, we may approxi-
mate eout ≈�n × ein and ein≈ ∓ n × eout which simplifies
the integrand in (9) to �½eout · δΨ · eout − ein · δΨ · ein�.
Altogether, we get the birefringent amplitude

A⊥
δΨ ¼ �6iξ

Q
ðΔkÞ2

ω2

4π
½ðeout ·BextÞðeout · ΔkÞ

−ðein · BextÞðein · ΔkÞ�: ð11Þ

Thus, one way to obtain a maximum birefringent signal
would be to align the momentum transfer Δk with Bext as
well as either ein or eout, for example.
In this case, we find the amplitude (up to a sign)

A⊥
δΨ ¼ 6iξBext

Q
jΔkj

ω2

4π
¼ i

α2QED
15π

qBext

m2

ω2

m2

Z
jΔkj : ð12Þ

Apart from a numerical prefactor, this amplitude scales
with the ratios of the optical laser field strength Bext over

the critical field strength Bcrit ≈ 4.4 × 109 T and the square
of the XFEL frequency ω in comparison to the electron
mass m.

V. DETECTABILITY

Since the amplitude (12) is proportional to Bext and ω2,
it is desirable to have a strong magnetic field and a large
XFEL frequency [79]. Ultrahigh field strengths Bext¼106 T
can be reached in the focus of an ultrastrong optical or near
optical laser with an intensity of order 1022 W=cm2 in a
colliding-beam setup. Then, inserting an XFEL frequency
of ω¼ 24 keV, which is still within the range of the
European XFEL [45,81,82], we obtain an amplitude of
around A⊥

δΨ ≈ 5 × 10−13Z=jΔkj which yields the birefrin-
gent differential cross section in forward direction

dσ⊥δΨ
dΩ

¼ jA⊥
δΨj2 ∼ 10−25

Z2

ðΔkÞ2 : ð13Þ

For a lower frequency of ω¼ 1 keV, the amplitude would
be reduced toA⊥

δΨ ≈ 10−15Z=jΔkj corresponding to a cross
section of 10−30Z2=ðΔkÞ2.
The suppression in (13) by more than 20 orders of

magnitude is roughly comparable to other proposals for
vacuum birefringence experiments, see, e.g., [42,45]. Yet,
this suppression does not imply that the effect is beyond
reach. In order to demonstrate that, let us discuss two main
enhancement factors. The first enhancement factor is a
large number Oð1011Þ of polarized XFEL photons, analo-
gous to other vacuum birefringence proposals, see, e.g.,
[42,45]. In addition, a large number N of nuclei represents
another enhancement factor of our setup. Note that the peak
∝ 1=ðΔkÞ2 in the forward direction, after integrating over
the solid angle dΩ, does only yield a weak (i.e., loga-
rithmic) enhancement. In addition, as explained after (10),
this 1=ðΔkÞ2 behavior is only valid up to minimum values
of jΔkj set by the size of the laser focus. For even smaller
jΔkj, one would have to include the Fourier transform of
the dependence of BextðrÞ or Bextðt; rÞ as an effective form
factor.
As one possible scenario (see Fig. 2), one may consider a

cubic cluster with an edge length of 100 nm with typical
solid-state density made of carbon, for example. Then,
applying a prepulse with a high intensity a bit below
Oð1022 W=cm2Þ, one may blow out almost all electrons,
leaving behind N ¼ Oð108Þ ionized nuclei. Shortly after-
wards, before the Coulomb explosion of the remaining
nuclei, one would have them interact with the XFEL
superimposed by the main pulse (in the form of a colliding
beam setup, for example). To exploit the peak in the
forward direction, let us assume a small momentum transfer
Δk in the eV regime (corresponding to scattering angles ϑ
of order millirad). In this case, the amplitudes from the
N ¼ Oð108Þ nuclei would have basically the same phase
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and thus add up coherently [83], effectively acting as one
giant nucleus with charge Zeff ¼ NZ. For much larger Δk,
one would have to include the spatial distribution of the
nuclei in analogy to (10).
For smaller clusters (e.g., 50 nm), the electrons would

already be blown out before the laser pulse reaches its peak

(see the Supplemental Material [80]). Thus, in this second
scenario, one could avoid the “prepulse—main pulse”
sequence and use one and the same laser pulse for
ionization and vacuum polarization. However, in this case
(without a colliding beam) one should also take into
account the electric field component of the optical laser.
This electric field of the laser would then generate addi-
tional contributions in δϵ and δμ after combining it with the
nuclear Coulomb field. Inserting those additional contri-
butions in δϵ and δμ into the full amplitude (9), we find that
they exactly cancel the terms from δΨ if the optical laser
and the XFEL propagate in the same direction. This
cancellation does also occur in the case without the nuclear
Coulomb field and demonstrates an important difference
between a propagating plane wave (crossed fields) and a
pure magnetic field. To avoid this cancellation and obtain a
birefringent signal, the XFEL should propagate at a finite
angle (e.g., perpendicular) to the propagation direction as
well as the magnetic field component of the optical laser. In
the perpendicular case, one obtains the same result (12) as
for a pure magnetic field, i.e., the electric field of the optical
laser does not play a role.
As a third scenario, one could envisage an optical laser

focus (expelling the electrons) copropagating with the
XFEL pulse through a less dense medium, in analogy to
laser wakefield acceleration [84]. In the usual setup, the
optical laser would copropagate with the created fully
blown-out plasma cavity and thus also with the XFEL.
However, this would again lead to the cancellation problem
discussed above. To overcome this problem, one could use
an optical laser with a propagation direction different from
that of the XFEL, whose focus is copropagating with the
XFEL pulse.
This can be achieved by laser pulse-front conditioning

(which, at the required high intensities, can be accomplished
by particular arrangements of optical gratings and cylindri-
cal mirrors [85–88]). Inserting typical numbers such as a
density of order 1019 cm−3, the numberN of ions within the
interaction region, i.e., the laser focus with a 2.5 μm spot
size, traveling over a distance of order millimeter, would be
about 2 to 3 orders of magnitude larger N ¼ Oð6 × 1010Þ
compared to the first scenario. However, presumably not all
of these ions would contribute coherently to the scattering
amplitude in view of the larger spatial extent (again
compared to the first and second scenario). As an advantage,
some of the background processes (see the Supplemental
Material [80]) due to the residual electrons and the residual
radiation are minimized in the third scenario. In summary,
the three scenarios offer different advantages and draw-
backs, which should be compared carefully for designing an
experimental realization.
Finally, the measurement of the birefringent signal,

i.e., the detection of the XFEL photons with flipped
polarization could be achieved in complete analogy to
other vacuum birefringence proposals, see, e.g., [42,45,89].

FIG. 2. In an exemplary 3D particle-in-cell (PIC) simulation
(PIConGPU), a cubic carbon cluster target with 100 nm side
length and an (initial) electron density ne of 5 × 1022 cm−3 (i.e.,
ne ¼ 290nc) was irradiated by a short pulse laser with 800 nm
wavelength, 30 fs width, 1.946 × 1021 W=cm2 intensity (i.e.,
a0 ¼ 30), incident from the left. In order to assess the number of
electrons and ions a transversely oriented XFEL probe beam
would observe, we integrated their respective densities
perpendicular to the plane shown in the lower panels in a
200 nm × 200 nm square area. The resulting normalized tem-
poral evolution is plotted in the top: electrons blue, ions orange
and the laser electric field is shown in green for reference. The
vertical gray dashed lines indicate the times for which the lower
panels show the electron density and laser electric field. From top
left to bottom right these are −117, −80, −43,þ32, andþ101 fs.
We see that the electron number in the interaction volume drops
by 5 orders of magnitude while the ion number only decreases
moderately (due to the Coulomb explosion). The simulation box
has periodic boundaries in the dimensions transverse to the laser;
the black scale bar in the bottom right is 500 nm long.
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VI. CONCLUSIONS

As an example for the QED vacuum nonlinearity, we
calculate the scattering of XFEL photons at the combined
field of a nucleus plus an external magnetic field (e.g.,
generated by an optical laser focus), see Fig. 1. In contrast
to previous work involving nuclear fields, such as Delbrück
scattering, this scenario yields a large interaction volume,
which goes along with a peak of the differential cross
section in forward direction dσ=dΩ ∼ 1=ðΔkÞ2.
As another distinction, the scales relevant to our scenario

are well below the characteristic scales of QED mentioned
in the Introduction, i.e., the critical field strength (1) and the
electron mass m. Thus, our scenario is within the realm of
applicability of the Euler-Heisenberg Lagrangian (2) and
the picture of a classical electromagnetic field—especially
for the coherent superposition of the signal from many
nuclei—instead of the particle (photon) picture often
associated with Delbrück scattering.
In addition to the normal polarization conserving scat-

tering (see the Supplemental Material [80]), we obtain a
birefringent signal (12) whose amplitude A⊥

δΨ is just a little
bit smaller.
This vacuum birefringence as a fundamental prediction

of QED provides a clear signature of the quantum vacuum
polarizability and has not been experimentally verified yet.
Together with the anisotropy induced by the magnetic field
and the aforementioned peak in forward direction, this
birefringence may be used to distinguish the process
considered here from other background processes dis-
cussed in the Supplemental Material [80].

Using a large number of XFEL photons [81,82] and a
large number of nuclei, we show that it might be possible to
overcome the suppression of the signal (12) by more than
20 orders of magnitude such that this effect might be
observable in the near future at facilities such as the
Helmholtz International Beamline for Extreme Fields
(HIBEF) at the European XFEL [90]. Since the detection
of quantum vacuum birefringence (along the lines of
[42,45]) has been proposed by the HIBEF consortium as
a flagship experiment—where the major requirements of
our proposal (including an optical laser focus reaching an
intensity of order 1022 W=cm2, temporally matching a
polarized XFEL pulse with 1011 photons, and the high-
precision x-ray polarimetry, cf. [89]) largely coincide with
those of [42,45]—there is already continuous experimental
progress towards reaching these goals.
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