
 

Winding number dependence of quantum vortex energies at one-loop
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We compute the one-loop vacuum polarization energies of Abrikosov-Nielsen-Olesen vortices with
topological charge n in scalar electrodynamics, for the Bogomolny-Prasad-Sommerfeld case of equal
gauge and scalar masses. This calculation allows us to investigate the relationship between the winding
number and the quantum-corrected vortex energy, which in turn determines the stability of higher winding
configurations against decay into configurations with unit winding. While the classical energy is
proportional to n, we find that the vacuum polarization energy is negative and approximately proportional
to n − 1 with a small constant offset.
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I. INTRODUCTION

In scalar electrodynamics with spontaneous symmetry
breaking, the Abrikosov-Nielsen-Olesen (ANO) vortex
[1–3] is an axially symmetric configuration with a topo-
logical soliton structure in the transverse plane. In the
regular gauge, the fields vanish at the center, and the
winding number n counts the mapping of the phase of
the complex scalar field at spatial infinity onto the unit
circle. This winding number, which we take to be positive
throughout, corresponds to a quantized magnetic flux
running along the string.
From the perspective of particle physics, we can view

this solution as the analog in two space dimensions of a
’t Hooft-Polyakov magnetic monopole [4,5]. So-called
cosmic string solutions can also emerge from a U(1)
subgroup of the SU(2) weak interactions [6–11]. Here
the scalar field is the scalar Higgs doublet, while the gauge
fields are the massive vector bosons W� and Z0. In
condensed matter physics, these vortices represent the
penetration of magnetic flux through a superconductor
with the scalar field being the condensate order parameter.
The ANOmodel is characterized by the ratio of the charged
scalar mass to the effective mass acquired by the gauge
field through spontaneous symmetry breaking. The inver-
ses of these masses correspond to the superconducting
coherence length and the London penetration depth,
respectively, where the former reflects the attractive

self-interaction of the condensate of Cooper pairs, while
the latter corresponds to the exponential Meissner suppres-
sion of electromagnetic fields in the condensate, leading to
superconductivity [12].
The Bogomolny-Prasad-Sommerfeld (BPS) [13,14]

case, in which the masses of the gauge and scalar fields
are equal, is of particular interest because the classical mass
is proportional to the winding number. As a result, the
quantum correction to the classical energy, however small,
determines whether higher winding number configurations
are energetically stable against decay into vortices with unit
winding. Our investigation provides the first nontrivial
calculation of vacuum polarization energy (VPE) quantum
corrections for a topological soliton with varying winding
numbers in four spacetime dimensions.
In the scattering theory formalism, topological effects are

captured in the behavior of the phase shift in the presence of
zero-mode and threshold bound states, as expressed by
Levinson’s theorem and its generalizations to situations
with topological boundary conditions [15–18]. Since
Levinson’s theorem compares the phase shift at threshold
to the phase shift at infinite wave number, it captures the
effects of the soliton’s global topology at short distance. For
gauge theory solitons in three space dimensions, such as the
ANO vortex and ’t Hooft-Polyakov monopole, one encoun-
ters a generalization of this behavior; making the gauge
field go to zero at large distances, as is required for the
scattering theory assumption of asymptotically free inter-
actions, necessarily introduces singularities in the gauge
field at the origin. These singularities disappear in gauge-
invariant quantities, however, so that the soliton has finite
energy density everywhere.
These singularities require the subtraction of quantities

that formally vanish in the scattering theory calculation but,
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in practice, cancel quadratically divergent contributions in
intermediate results [19]. This subtraction enforces the
cancellation of the superficial quadratic divergence of the
gauge vacuum polarization, leaving only the logarithmic
divergence, which is then accounted for through standard
renormalization. This subtlety was first addressed in
Ref. [20] using an ad hoc subtraction, while the more
recent work in Ref. [19] provides a simpler and more
systematic algorithm for ensuring gauge invariance, which
also leads to more reliable numerical results. A key test of
the validity of this approach is that it renders the result
insensitive to the choice of a minimal radius in the
scattering calculation; one cannot numerically extend all
the way to the origin because the gauge fields diverge there,
but the subtracted quantities remain well behaved in that
limit, reflecting the absence of singularities in measurable
quantities.
In the case of string solutions like the ANO vortex these

subtleties can be further obfuscated by the slow conver-
gence of the sum over partial waves. As a result, with
insufficient numerical computation unrenormalized quan-
tities can appear finite [21], meaning that the effects of
renormalization will make them appear to diverge, when
the true calculation shows the opposite behavior. In this
work, we use the technical formulation established in
Ref. [19] combined with the “fake boson” formalism
[22] to precisely subtract Born approximations to the
scattering data that can then be added back in as renor-
malized Feynman diagrams, implementing an on-shell
renormalization scheme.

II. ANO VORTICES

The classical vortices are constructed from the
Lagrangian of scalar electrodynamics

L ¼ −
1

4
FμνFμν þ jDμΦj2 − λ

4
ðjΦj2 − v2Þ2; ð1Þ

where Fμν ¼ ∂μAμ − ∂νAμ and DμΦ ¼ ð∂μ − ieAμÞΦ.
The vortex profiles in the singular gauge are

ΦS ¼ vhðρÞ and AS ¼ nvφ̂
gðρÞ
ρ

; ð2Þ

where ρ ¼ evr is dimensionless, while r is the physical
coordinate. The winding number n is the essential topo-
logical quantity. In the BPS case with λ ¼ 2e2, the energy
functional is minimized when the profile functions obey the
first-order differential equations,

g0 ¼ ρ

n
ðh2 − 1Þ and h0 ¼ n

ρ
gh; ð3Þ

and the boundary conditions,

hð0Þ ¼ 1 − gð0Þ ¼ 0 and

lim
ρ→∞

hðρÞ ¼ 1 − lim
ρ→∞

gðρÞ ¼ 1: ð4Þ

Numerical solutions are displayed in Fig. 1. The resulting
energy is then proportional to the winding number,
Ecl ¼ 2πnv2.

III. QUANTUM THEORY

To quantize the theory we introduce fluctuations about
the vortex via

Φ ¼ ΦS þ η and Aμ ¼ Aμ
S þ aμ ð5Þ

and extract the harmonic terms in the fluctuations η and aμ.
The gauge is fixed by adding an Rξ type Lagrangian that
cancels the η∂μaμ and η�∂μaμ terms,

Lgf ¼ −
1

2
½∂μaμ þ ieðΦSη

� −Φ�
SηÞ�2: ð6Þ

We still have to account for ghost contribution to the VPE
associated with this gauge fixing, Lgf ¼ − 1

2
G2. The

infinitesimal gauge transformations read

Aμ → Aμ þ ∂χ; ΦS þ η→ΦS þ ηþ ieχðΦS þ ηÞ ð7Þ

so that η → ηþ ieχðΦS þ ηÞ. Then

∂G
∂χ

����
χ¼0

¼ ∂μ∂μ þ e2ð2jΦSj2 þΦSη
� þΦ�

SηÞ: ð8Þ

This induces the ghost Lagrangian [23,24]

Lgh ¼ c̄ð∂μ∂μ þ 2e2jΦSj2Þcþ nonharmonic terms: ð9Þ

The corresponding VPE is that of a Klein-Gordon field
with mass

ffiffiffi
2

p
ev in the background potential 2v2ðh2 − 1Þ,

which must be subtracted with a factor of negative two from
the VPE obtained for the gauge and scalar fields. Since
D0ΦS ¼ 0 and D3ΦS ¼ 0, the temporal and longitudinal
components a0 and a3 fully decouple, contributing
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FIG. 1. Classical profile functions of the vortex profile func-
tions for the BPS case.
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−
1

2
½∂μa0∂μa0 þ ∂μa3∂μa3� þ jΦSj2½a0a0 þ a3a3�

to the Lagrangian. These fluctuations are subject solely to
the background potential 2ðjΦSj2 − v2Þ, which is exactly
the same as that of the ghosts. As a result, the nontransverse
and ghost contributions to the VPE cancel each other. Of
course, this just reflects the fact that the free electromag-
netic field only has two degrees of freedom.
After canceling the nontransverse gauge fluctuations

against the ghost contribution, we end up with the truncated
Lagrangian

Lð2Þ ¼ 1

2

X
n¼1;2

ð∂μanÞð∂μanÞ − e2jΦSj2
X
n¼1;2

a2n

þ j_ηj2 − j∂3ηj2 þ
X
n¼1;2

ðDnηÞ�ðDnηÞ

− e2½3jΦSj2 − v2�jηj2
þ 2ie

X
n¼1;2

an½η�ðDnΦSÞ − ηðDnΦSÞ��: ð10Þ

Essentially we have simplified the quantum gauge theory to
that of four real scalar fields: a1, a2, ReðηÞ, and ImðηÞ.

IV. VACUUM POLARIZATION ENERGY

To compute the VPE, we will employ spectral methods
[25] based on the scattering theory for quantum fluctuations
about the potential induced by the vortex. To formulate the
scattering problem, we employ a partial wave decompo-
sition using the complex combinations

aþ ¼
ffiffiffi
2

p
ie−iωt

X
l

alðρÞeilφ and η ¼ e−iωt
X
l

ηlðρÞeilφ

ð11Þ

and similarly for a− and η�, leading to a 4 × 4 scattering
problem for the radial functions. For profile functions
obeying Eq. (3), this problem decouples into two 2 × 2
systems, with the one for a− and η� being the same as that
of aþ and η. Hence, it suffices to compute the VPE of the
latter and double it. The scattering problem is set up in
terms of the Jost solution F l by introducing

�
ηð1Þl ηð2Þl

að1Þlþ1 að2Þlþ1

�
¼ F l ·Hl;

Hl ¼
�
Hð1Þ

l ðqρÞ 0

0 Hð1Þ
lþ1ðqρÞ

�
; ð12Þ

where the superscripts on the left-hand side refer to the two
possible scattering channels when imposing the boundary
condition limρ→∞F l ¼ 1. The Hankel functions Hð1Þ

parameterize outgoing cylindrical waves. In matrix form,
the scattering differential equations for (dimensionless)
imaginary momentum t ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − 2e2v2

p
=ðevÞ2 read

∂2

∂ρ2F l ¼ −
∂
∂ρF l − 2

� ∂
∂ρF l

�
· Zl þ

1

ρ2
½Ll;F l�

þ Vl · F l: ð13Þ

The angular momenta enter via the logarithmic derivative
matrix for the analytically continued Hankel functions,

Zl ¼

0
B@

jlj
ρ − t

Kjljþ1ðtρÞ
KjljðtρÞ 0

0
jlþ1j
ρ − t

Kjlþ1jþ1ðtρÞ
Kjlþ1jðtρÞ

1
CA ð14Þ

and

Ll ¼
�
l2 0

0 ðlþ 1Þ2
�
; ð15Þ

and the potential matrix is

Vl¼
�
3ðh2ðρÞ−1Þþ n2g2ðρÞ−2nlgðρÞ

ρ2

ffiffiffi
2

p
dðρÞffiffiffi

2
p

dðρÞ 2ðh2ðρÞ−1Þ

�
: ð16Þ

We then use Eq. (13) to compute the Jost function, which is
given by νlðtÞ ¼ limρ→0 ln det½F l�.
The standard procedure to determine the Born approx-

imations, which are needed to regularize the ultraviolet
divergences, fails when gð0Þ ≠ 0. To perform the Born
subtractions without the singular terms, we introduce

V̄ ¼
�
3ðh2ðρÞ − 1Þ ffiffiffi

2
p

dðρÞffiffiffi
2

p
dðρÞ 2ðh2ðρÞ − 1Þ

�
ð17Þ

and iterate

∂2

∂ρ2 F̄ l ¼ −
∂
∂ρ F̄ l − 2

� ∂
∂ρ F̄ l

�
· Zl þ

1

ρ2
½Ll; F̄ l�

þ V̄ · F̄ l; ð18Þ

according to the expansion F̄ l ¼ 1þ F̄ ð1Þ
l þ F̄ ð2Þ

l þ � � �,
where the superscript refers to the order of V̄. From the
derivation in Ref. [19] we expect that

½νðtÞ�V ¼ lim
L→∞

ρmin→0

�XL
l¼−L

½νlðtÞ − ν̄ð1Þl ðtÞ − ν̄ð2Þl ðtÞ�ρmin

− n2
Z

∞

ρmin

dρ
ρ
g2ðρÞ

�
ð19Þ

approaches n2

12t2
R∞
0

dρ
ρ ðdgðρÞdρ Þ2 as t → ∞.
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The subtraction of the integral in Eq. (19) cancels the
superficial quadratic divergence in the VPE. By this sub-
traction we restore gauge invariance. The full computation
of the VPE requires us to multiply the subtracted Jost
function by t, capturing the effect of the translation-invariant
direction, and integrate [26]. The right-hand side of Eq. (19)
then leads to the logarithmic divergence associated with
gauge field renormalization. This divergence is most con-
veniently treated within the fake boson formalism [22],
which takes advantage of the fact that the second-order Born
term for a scalar field also induces a logarithmic divergence.
To be precise, we consider scattering of a boson about the

potential Vf ¼ 3e2v2ðtanh2ðκevrÞ − 1Þ, for which ν̄ð2Þl ðtÞ is
the second-order contribution to the Jost function on the
imaginary momentum axis. We take κ as a free parameter to
later test our numerical simulation since the final result for
VPE should not depend on a particular choice. This
subtraction is calibrated by defining

cB ¼ −
e2

6

R∞
0 rdrFμνFμνR

∞
0 rdrV2

f

¼ −
n2

3

R∞
0 ρdρðg0ðρÞρ Þ2R

∞
0 ρdρ½3ðtanh2ðκρÞ − 1Þ�2 ; ð20Þ

so that the scattering contribution to the VPE is

Escat
VPE ¼ 1

2π

Z
∞ffiffi
2

p tdt½½νðtÞ�V − cBν̄ð2ÞðtÞ�: ð21Þ

To identify the subtraction in Eq. (21) in terms of
Feynman diagrams [27,28], we consider the Lagrangian
with four real fields ϕt ¼ ðη1; η2; a1; a2Þ,

L ¼ 1

2
ð∂μϕ

tÞð∂μϕÞ − 1

2
ϕtM2ϕ − ϕtVϕ; ð22Þ

where M ¼ ffiffiffi
2

p
ev is the mass of both the gauge and scalar

field fluctuations. The Cartesian components of the gauge
fields have been defined above, and η ¼ ðη1 þ iη2Þ=

ffiffiffi
2

p
.

The potential matrix is given by V ¼ V0 þ V1 þ V2

with

V0 ¼

0
BBBBB@

3λ
4
ðΦ2

S − v2Þ 0
ffiffiffi
2

p
e2x̂ · ASΦS

ffiffiffi
2

p
e2ŷ · ASΦS

0 3λ
4
ðΦ2

S − v2Þ −
ffiffiffi
2

p
ex̂ · ∇ΦS −

ffiffiffi
2

p
eŷ · ∇ΦSffiffiffi

2
p

e2x̂ · ASΦS −
ffiffiffi
2

p
ex̂ · ∇ΦS e2ðΦ2

S − v2Þ 0ffiffiffi
2

p
e2ŷ · ASΦS −

ffiffiffi
2

p
eŷ · ∇ΦS 0 e2ðΦ2

S − v2Þ

1
CCCCCA
; ð23Þ

and

V1 ¼ e

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

1
CCCAAS · ∇ ð24Þ

and

V2 ¼
e2

2

0
BBB@

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1
CCCAAS · AS: ð25Þ

Here we have separated out V1 and V2 since they relate to
the singular terms in the scattering problem, while V0 is the
4 × 4 representation of V̄. The renormalization program via
Feynman diagrams in dimensional regularization is carried
out with the full potential matrix V, while the subtractions

should only involve V0 supplemented by the wave-function
renormalization of the gauge boson, which in turn is
simplified by the fake boson trick.
To form the diagrammatic expansion, we Taylor expand

the effective action i
2
Tr½∂2 þM2 þ 2V� for the four real

scalar fields. The contribution linear in V0 is the scalar

tadpole and corresponds to the subtraction of ν̄ð1Þl in
Eq. (19). This tadpole diagram is fully canceled by a
counterterm proportional to

R
d4xðjΦj2 − v2Þ. The terms

quadratic in V0 correspond to ν̄ð2Þl in Eq. (19) and are
logarithmically divergent. These divergences are canceled
by counterterms proportional to

R
d4xðjΦj2 − v2Þ2 andR

d4xjDμΦj2. The contributions linear in V2 and quadratic
in V1 combine such that the individual quadratic diver-
gences cancel, and the subleading logarithmic divergence
matches that of the right-hand side of Eq. (19). The
logarithmic divergences from V0⊗V2 and V0⊗V1⊗V1

cancel, as do those from V2 ⊗ V2, V2 ⊗ V1 ⊗ V1, and
V1 ⊗ V1 ⊗ V1 ⊗ V1, so the subtractions discussed after
Eq. (25) are sufficient to regularize the theory.
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We must specify the on-shell renormalization condition
to fix the finite parts of the counterterms. For example, the
Feynman diagram from two insertions of ðΦ2

S − v2Þ and the
corresponding counterterm combine to a four-dimensional
momentum space integral of the form

Z
d4k
ð2πÞ4 ṽHðkÞṽHð−kÞGVðk2Þ

with

GVðk2Þ ¼
Z

1

0

dx ln

�
1 − xð1 − xÞ k2

M2

	
þ cV:

Here ṽHðkÞ is the Fourier transform of Φ2
S − v2, and cV is

the finite part of the counterterm coefficient. The on-shell
renormalization condition then adjusts cV such that
GVðM2Þ ¼ 0. That is, there is no quantum correction to
the location and residue of the pole due to the fluctuations.
There are analogous conditions for the countertermsR
d4xjDμΦj2 and

R
d4xFμνFμν. It is worth noting that

the BPS relation of equal mass is maintained at one-loop
order, so that these four renormalization conditions are
satisfied with only three counterterms. Collecting these
terms, the finite counterterm contribution to the VPE is

Eð0Þ
CT

e2v2
¼
Z

∞

0

ρdρ

�
n2

144

�
16

π
−3

ffiffiffi
3

p �
g02

ρ2

þ
�

1

2
ffiffiffi
3

p −
1

π

��
h02þn2

ρ2
h2g2−

13

8
ð1−h2Þ2

	�
: ð26Þ

The Feynman diagram contribution arising from two
insertions of V0 is straightforward. We define Bessel-
Fourier transforms

IAðkÞ ¼
Z

∞

0

drhðρÞgðρÞJ1ðkrÞ

IHðkÞ ¼ k
Z

∞

0

rdr½1 − hðρÞ�J0ðkrÞ

ṽðkÞ ¼
Z

∞

0

rdr½h2ðρÞ − 1�J0ðkrÞ; ð27Þ

where ρ ¼ evr, and obtain

EV0

e2v2
¼

Z
∞

0

kdk
2π

�
n2I2AðkÞ þ I2HðkÞ þ

13e2v2

8
ṽ2ðkÞ

	

×
Z

1

0

dx ln

�
1þ xð1 − xÞ k2

M2

	
: ð28Þ

Finally, recall that we did not subtract the singular Born
terms in Eq. (21) but rather the fake boson analog. Hence,
we require the Feynman diagram energy

Efb ¼
cB
16π

Z
∞

0

kdkṼ2
fðkÞ ln

�
1þ xð1 − xÞ k2

M2

	

with ṼfðkÞ ¼ 3
R∞
0 rdr½tanh2ðκρÞ − 1�J0ðkrÞ, correspond-

ing to the fake boson potential. Then Eð0Þ
FD ¼ EV0

þ Efb

completes our expression for the VPE per unit length of the
vortex,

EVPE ¼ Escat
VPE þ Eð0Þ

FD þ Eð0Þ
CT: ð29Þ

V. NUMERICAL RESULTS FOR THE VPE

The numerical treatment is hampered by slow conver-
gence due to the logarithmic behavior of the subtracted Jost
solution around the center of the vortex and of ½νðtÞ�V at
small t. The detailed solutions to these problems will be
presented elsewhere [29]. One must also use a sum up to a
large number of partial waves L together with an asymp-
totic extrapolation to obtain accurate results for the sum
over partial waves [19].
The results for the VPE and the various contributions that

make it up are displayed in Table I. In units of ðevÞ2 this
energy per unit length decreases by about 0.13 per winding
number n, with the n ¼ 1 VPE only slightly less than zero.
A two-parameter fit yields EVPEðnÞ ≈ ð0.127–0.131nÞe2v2
and thus EVPEðnÞ–nEVPEð1Þ ≈ 0.127ð1 − nÞ. Since the
coefficient of the winding number is negative, the quantum
corrections stabilize the BPS-ANO vortex with a higher
winding number and thus turn the system into a type I
superconductor.
Because the biggest contribution comes from the

(subtracted) scattering part, a calculation based only on
the leading Feynman diagrams would not be adequate.
Nevertheless, we also observe that the finite contribution
due to on-shell renormalization, Eq. (27), is significant
for n > 1.

VI. CONCLUSIONS

We have computed the one-loop quantum corrections to
the energy per unit length of ANO vortices in scalar

TABLE I. Various contributions to and the total VPE for
different winding numbers n. The fake boson potential is Vf ¼
3½tanh2ðκρÞ − 1� with κ ¼ 1, 0.9, 0.8, 0.7 for n ¼ 1, 2, 3, 4,
respectively. The third line contains the sum of the corresponding
entries of the first two lines. All data are in units of ev.

n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Eð0Þ
FD

0.0424 0.0315 0.0317 0.0335

Eð0Þ
CT

0.0024 0.0243 0.0523 0.0836

0.0448 0.0558 0.0840 0.1171
Escat
VPE −0.0500 −0.1896 −0.3492 −0.5167

EVPE −0.0052 −0.1338 −0.2651 −0.3996
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electrodynamics with spontaneous symmetry breaking in
theBPS case,where themasses of the scalar and gauge fields
are equal. These corrections arise from the polarization of
the spectrum of quantum fluctuations in the classical
vortex background. This VPE is small because the small
coupling approximation applies to electrodynamics with
e2 ¼ 4π=137 ≈ 0.09, but it becomes decisive for observ-
ables that vanish classically, such as the binding energies of
vortices with higher winding numbers in the BPS case.
After clarifying a number of technical and numerical

subtleties, we found that the dominant contribution to VPE
of vortices stems from the full one-loop contribution, which
cannot be computed from the lowest-order Feynman
diagrams. On top of an infinite sum of Feynman diagrams,
this contribution contains truly nonperturbative effects,
such as bound state energies that are encoded within the
exact Jost function. Our numerical simulations for vortices
with a winding number up to four suggest that the quantum
energy weakly binds higher winding number BPS vortices.
We have also seen that the VPE for the unit winding
number vortex is very small, so that at first glance it appears
to be compatible with zero in the range of numerical errors.
The potentially most important source for such errors is the
small radius behavior in channels that contain zero angular
momentum components. However, our error analysis

suggests that any improvement of the data is likely to
push that VPE further away from zero by a few percent of
the total VPE for all n [29].
To our knowledge this is the first study of a static soliton

VPE in a renormalizable model in four spacetime dimen-
sions that allows for a comparison of nontrivial winding
numbers. Standard examples in one space dimension [30]
include the kink soliton, which has only a single nontrivial
winding number, the sine-Gordon soliton, which has
classically degenerate solutions bound by breather fluctua-
tions, and the ϕ6 model soliton, which is destabilized by
quantum corrections [31]. The Skyrme model [32] in three
space dimensions indeed has static solitons with different
winding numbers, for which one can estimate quantum
corrections [33], but unfortunately that model is not
renormalizable. It would be interesting, but more techni-
cally challenging, to extend this calculation to the case of a
full ’t Hooft-Polyakov monopole in three dimensions.
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