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In this paper, we establish a fully string-theoretic framework for calculating one-loop Higgs masses directly
from first principles in perturbative closed-string theories. Our framework makes no assumptions other than
world sheet modular invariance and is therefore applicable to all closed strings, regardless of the specific
string construction utilized. This framework can also be employed even when spacetime supersymmetry is
broken (and even when this breaking occurs at the Planck scale), and can be utilized for all scalar Higgs fields,
regardless of the particular gauge symmetries they break. This therefore includes the Higgs field responsible
for electroweak symmetry breaking in the Standard Model. Notably, using our framework, we demonstrate
that a gravitational modular anomaly generically relates the Higgs mass to the one-loop cosmological
constant, thereby yielding a string-theoretic connection between the two fundamental quantities which are
known to suffer from hierarchy problems in the absence of spacetime supersymmetry. We also discuss a
number of crucial issues involving the use and interpretation of regulators in UV/IR-mixed theories such as
string theory, and the manner in which one can extract an effective field theory (EFT) description from such
theories. Finally, we analyze the running of the Higgs mass within such an EFT description, and uncover the
existence of a “dual IR” region which emerges at high energies as the consequence of an intriguing scale-
inversion duality symmetry. We also identify a generic stringy effective potential for the Higgs fields in such
theories. Our results can therefore serve as the launching point for a rigorous investigation of gauge hierarchy
problems in string theory.
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I. INTRODUCTION

Extracting phenomenological predictions from string
theory is a subtle task. Chief among the complications is
the question of finding a suitable vacuum. Without solving
this problem, one is limited to making generic statements
that might hold across broad classes of string theories.
But even within the context of specific string models with
certain favorable characteristics, most attempts at extracting
the corresponding phenomenological predictions follow
a common path. First, one tallies the massless states that
arise in such models. Then, one constructs a field-theoretic
Lagrangian which describes the dynamics of these states.
Finally, one proceeds to analyze this Lagrangian using all
of the regular tools of quantum field theory without further
regard for the origins of these states within string theory.

Although such a treatment may be sufficient for certain
purposes, calculations performed in this manner have a
serious shortcoming: by disregarding the infinite towers
of string states that necessarily accompany these low-lying
modes within the full string theory, such calculations
implicitly disregard many of the underlying string sym-
metries that ultimately endow string theory with a plethora
of remarkable properties that transcend our field-theoretic
expectations. At first glance, it may seem that these extra
towers of states cannot play an important role for low-
energy physics because these states typically have masses
which are set by the string scale (generically assumed near
the Planck scale) or by the scales associated with the
compactification geometry. For this reason it would seem
that these heavy states can legitimately be integrated out of
the theory, thereby justifying a treatment based on a
Lagrangian description of the low-lying modes alone,
along with possible higher-order operators suppressed by
powers of these heavier scales. However, it is difficult to
justify integrating out infinite towers of states, much less
towers whose state degeneracies at each mass level grow
exponentially with mass. Yet this is precisely the situation
we face in string theory. Indeed, these infinite towers of
states particularly affect those operators (such as those
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associated with the Higgs mass and the cosmological
constant) which have positive dimension and are therefore
sensitive to all mass scales in the theory.
Many of the string symmetries that rely on these infinite

towers of states go beyond what can be incorporated within
the framework of an effective field theory (EFT). For
example, strong/weak coupling duality relations intrinsi-
cally rely on the presence of the full towers of string states,
both perturbative and nonperturbative. But there also exist
stringy symmetries that operate purely within the pertur-
bative weak-coupling regime. A prime example of this is
T-duality, under which the physics of closed strings
compactified on small compactification volumes is indis-
tinguishable from the physics associated with strings
compactified on large compactification volumes. This sort
of equivalence between ultraviolet (UV) and infrared (IR)
physics cannot be incorporated within an EFT-based
approach in which we integrate out heavy states while
treating light states as dynamical.
Both strong/weak coupling duality and T-duality are

spacetime symmetries. As such, like all spacetime physics,
they are merely the consequences of an underlying string
theory. But closed-string theories have another symmetry
of this sort which is even more fundamental and which
must be imposed for consistency directly on the world
sheet. This is world sheet modular invariance, which will be
the focus of this paper. World sheet modular invariance is
crucial since it lies at the heart of many of the finiteness
properties for which string theory is famous. Moreover,
since modular invariance is an exact symmetry of all
perturbative closed-string vacua, it provides tight con-
straints on the spectrum of string states at all mass scales
as well as on their interactions. Indeed, this symmetry is the
ultimate “UV-IR mixer,” operating over all scales and
enforcing a delicate balancing between low-scale and
high-scale physics. There is no sense in which its breaking
can be confined to low energies, and likewise there is no
sense in which it can be broken by a small amount. As an
exact symmetry governing string dynamics, world sheet
modular invariance is preserved even as the theory passes
through phase transitions such as the Standard Model
electroweak or QCD phase transitions, as might occur
under cosmological evolution. Indeed, any shifts in the
low-energy degrees of freedom induced by such phase
transitions are automatically accompanied by correspond-
ing shifts in the high-scale theory such that modular
invariance is maintained and finiteness is preserved. Yet
this entire structure is missed if we integrate out the heavy
states and concentrate on the light states alone.
While certain phenomenological questions are not

likely to depend on such symmetries, this need not always
be the case. For example, these symmetries are likely to be
critical for addressing fundamental questions connected
with finiteness and/or the stability of (or even the co-
existence of) different scales under radiative corrections.

Chief among these questions are hierarchy problems, which
provide clues as to the UV theory and its potential
connections to IR physics. Indeed, two of the most pressing
mysteries in physics are the hierarchy problems associated
with the cosmological constant and with the masses of
scalar fields such as the Higgs field. However, integrating
out the heavy string states eliminates all of the stringy
physics that may provide alternative ways of addressing
such problems. The lesson, then, is clear: If we are to take
string theory literally as a theory of physics, then we should
perform our calculations within the full framework of string
theory, incorporating all of the relevant symmetries and
infinite towers of states that string theory provides.
With this goal in mind, we begin this paper by establish-

ing a fully string-theoretic framework for calculating
one-loop Higgs masses directly from first principles in
perturbative closed-string theories. This is the subject of
Sec. II. Our framework will make no assumptions other
than world sheet modular invariance and will therefore be
applicable to all closed strings, regardless of the specific
string construction utilized. Our results will thus have a
generality that extends beyond individual string models. As
we shall see, this framework operates independently of
spacetime supersymmetry, and can be employed even when
spacetime supersymmetry is broken (or even when the
string model has no spacetime supersymmetry to begin
with at any scale). Likewise, our framework can be utilized
for all scalar Higgs fields, regardless of the particular gauge
symmetries they break. This therefore includes the Higgs
field responsible for electroweak symmetry breaking in the
Standard Model.
One of the central results emerging from our framework

is a relationship between the Higgs mass and the one-loop
cosmological constant. This connection arises as the result of
a gravitational modular anomaly, and is thus generic for all
closed-string theories. This then provides a string-theoretic
connection between the two fundamental quantitieswhich are
known to suffer from hierarchy problems in the absence of
spacetime supersymmetry. From the perspective of ordinary
quantum field theory, such a relation between the Higgs mass
and the cosmological constant would be entirely unexpected.
Indeed, quantum field theories are insensitive to the zero of
energy. String theory, by contrast, unifies gauge theories with
gravity. Thus, it is only within a string context that such a
relation could ever arise. As we shall see, this relationship
does not require supersymmetry in any form. It holds to
one-loop order, but its direct emergence as the result of a
fundamental string symmetry leads us to believe that it
actually extends more generally. We stress that it is not the
purpose of this paper to actually solve either of thesehierarchy
problems (although we shall return to this issue briefly in
Sec. VI). However, we now see that these two hierarchies are
connected in a deep way within a string context.
As we shall find, the Higgs mass receives contributions

from all of the states throughout the string spectrum which
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couple to the Higgs in specified ways. This includes the
physical (level-matched) string states as well as the
unphysical (non-level-matched) string states. Depending
on the string model in question, we shall also find that our
expression for the total Higgs mass can be divergent;
ultimately this will depend on the charges carried by the
massless states. Accordingly, we shall then proceed to
develop a set of regulators which can tame the Higgs-mass
divergences while at the same time allowing us to express
the Higgs mass as a weighted supertrace over only the
physical string states. Developing these regulators is the
subject of Sec. III. To do this, we shall begin by reviewing
prior results in the mathematics literature which will form
the basis for our work. Building on these results, we will
then proceed to develop a set of regulators which are
completely general, which preserve modular invariance,
and which can be used in a wide variety of contexts even
beyond their role in regulating the Higgs mass.
In Sec. IV, we shall then use these modular-invariant

regulators in order to recast our results for the Higgs mass
in a form that is closer to what we might expect in field
theory. This will also allow us to develop an understanding
of how the Higgs mass “runs” in string theory and to
develop a physical “renormalization” prescription that can
operate at all scales. Toward this end, we begin in Sec. IVA
with a general discussion of how (and to what extent) one
can meaningfully extract an effective field theory from
UV/IR-mixed theories such as modular-invariant string
theories. This issue is surprisingly subtle, since modular
invariance relates UV and IR divergences to each other
while at the same time softening both. For example, we
shall demonstrate that while the Higgs mass is quadratically
divergent in field theory, modular invariance renders the
Higgs mass at most logarithmically divergent in string
theory. We shall then apply our regulators from Sec. III to
our Higgs-mass results in Sec. II and thereby demonstrate
how the Higgs mass “runs” as a function of an energy
scale μ. The results of our analysis are highlighted in Fig. 3,
which not only exhibits features which might be expected
in an ordinary effective field theory but also includes
features which clearly transcend traditional quantum
field-theoretic expectations. The latter include the existence
of a “dual” infrared region at high energy scales as well as
an invariance under an intriguing “scale-duality” trans-
formation μ → M2

s=μ, where Ms denotes the string scale.
This scale-inversion duality symmetry in turn implies the
existence of a fundamental limit on the extent to which a
modular-invariant theory such as string theory can exhibit
UV-like behavior.
All of our results in Secs. II–IVare formulated in a fashion

that assumes that our modular-invariant string theories can
be described through charge lattices. However, it turns out
that our results can be recast in a completely general fashion
that does not require the existence of a charge lattice. This is
the subject of Sec. V. Moreover, we shall find that this

reformulation has an added benefit, allowing us to extract a
modular-invariant stringy effective potential for the Higgs
from which the Higgs mass can be obtained through a
modular-covariant double derivative with respect to fluctua-
tions of the Higgs field. This potential therefore sits at the
core of our string-theoretic calculations and allows us to
understand not only the behavior of the Higgs mass but also
the overall stability of the string theory in a very compact
form. Indeed, in some regions this potential exhibits explic-
itly string-theoretic behavior. However, in other regions, this
potential—despite its string-theoretic origins—exhibits a
number of features which are reminiscent of the traditional
Coleman-Weinberg Higgs potential.
Finally, in Sec. VI, we provide an overall discussion of

our results and outline some possibilities for future
research. We also provide an additional bird’s-eye perspec-
tive on the manner in which modular invariance induces
UV/IR mixing and the reason why the passage from a full
string-theoretic result to an EFT description necessarily
breaks the modular symmetry. We will also discuss some of
the possible implications of our results for addressing
the hierarchy problems associated with the cosmological
constant and the Higgs mass. This paper also has two
appendices which provide the details of calculations whose
results are quoted in Secs. IV E 1 and IV E 2 respectively.
Our overarching goal in this paper is to provide a fully

string-theoretic framework for the calculation of the Higgs
mass—a framework in which modular invariance is baked
into the formalism from the very beginning. Our results can
therefore potentially serve as the launching point for a
rigorous investigation of the gauge hierarchy problem in
string theory. However, our methods are quite general and
can easily be adapted to other quantities of phenomeno-
logical interest, including not only the masses of all
particles in the theory but also the gauge couplings, quartic
couplings, and indeed the couplings associated with all
allowed interactions.
As already noted, much of the inspiration for this work

stems from our conviction that it is not an accident or
phenomenological irrelevancy that string theories contain
not only low-lying modes but also infinite towers of
massive states. Together, all of these states conspire to
enforce many of the unique symmetries for which string
theory is famous, and thus their effects are an intrinsic part
of the predictions of string theory. In this spirit, one might
even view our work as a continuation of the line originally
begun in the classic 1987 paper of Kaplunovsky [1] which
established a framework for calculating string threshold
corrections in which the contributions of the infinite towers
of string states were included. Indeed, as discussed in
Sec. IV C, some of our results for the Higgs mass even
resemble results obtained in Ref. [1] for threshold correc-
tions. One chief difference in our work, however, is our
insistence on maintaining modular invariance at all steps in
the calculation, including the regulators, especially when
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seeking to understand the behavior of dimensionful oper-
ators. It is this extra ingredient which is critical for ensuring
consistency with the underlying string symmetries, and
which allows us to probe the unique effects of such
symmetries (such as those induced by UV/IR mixing) in
a rigorous manner.

II. MODULAR INVARIANCE AND THE HIGGS
MASS: A GENERAL FRAMEWORK

In this section we develop a framework for calculating
the Higgs mass in any four-dimensional modular-invariant
string theory. Our framework incorporates modular invari-
ance in a fundamental way, and ultimately leads to a
completely general expression for one-loop Higgs mass.
Our results can therefore easily be applied to any four-
dimensional closed-string model. Throughout most of this
paper, our analysis will focus on heterotic-string models
and will proceed under the assumption that the string model
in question can be described through a corresponding
charge lattice. As we shall see, the existence of a charge
lattice provides a very direct way of performing our
calculations and illustrating our main points. However,
as we shall discuss in Sec. V, our results are ultimately more
general than this, and apply even for closed-string models
that transcend a specific charge-lattice construction.

A. Preliminaries: String partition functions,
charge lattices, and modular invariance

We begin by reviewing basic facts about string partition
functions, charge lattices, and modular invariance, esta-
blishing our notation and normalizations along the way.
The one-loop partition function for any closed heterotic
string in four spacetime dimensions is a statistics-weighted
trace over the Fock space of closed-string states, and thus
takes the general form

Zðτ; τ̄Þ≡ τ−12
1

η̄12η24
X
m;n

ð−1ÞFq̄mqn: ð2:1Þ

Here τ is the one-loop (torus) modular parameter, τ2 ≡ Imτ,
q≡ expð2πiτÞ, F is the spacetime fermion number, and
the Dedekind eta-function is ηðτÞ≡ q1=24

Q∞
n¼1ð1 − qnÞ.

In this expression, the η̄ and η functions represent the
contributions from the string oscillator states [which
include appropriate right- and left-moving vacuum energies
ð−1=2;−1Þ respectively], while the ðm; nÞ sum tallies the
contributions from the Kaluza-Klein (KK) and winding
excitations of the heterotic-string world sheet fields—
excitations which result from the compactification of the
heterotic string to four dimensions from its critical space-
time dimensions (¼ 10 for the right movers and 26 for the
left movers), with ðm; nÞ representing the corresponding
right- and left-moving world sheet energies. These
KK/winding contributions can be written in terms of the

charge vectors Q≡ fQR;QLg of a (10,22)-dimensional
Lorentzian charge lattice—or equivalently the KK/winding
momenta fpR;pLg of a corresponding momentum lattice of
the same dimensionality—via

m ¼ Q2
R

2
¼ α0p2

R

2
; n ¼ Q2

L

2
¼ α0p2

L

2
; ð2:2Þ

where α0 ≡ 1=M2
s with Ms denoting the string scale. Thus

the partition function in Eq. (2.1) can be written as a sum
over charge vectors QL, QR:

Zðτ; τ̄Þ ¼ τ−12
1

η̄12η24
X
QL;QR

ð−1ÞFq̄Q2
R=2qQ

2
L=2: ð2:3Þ

In general, the spacetime mass M of the resulting string
state is given byα0M2¼2ðmþnÞþ2ðΔLþΔRÞþ2ðaLþaRÞ
where ΔR;L are the contributions from the oscillator ex-
citations and ðaR; aLÞ ¼ ð−1=2;−1Þ are the corresponding
vacuum energies. Identifying individual left- and right-
moving contributions to M2 through the convention

M2 ¼ 1

2
ðM2

L þM2
RÞ ð2:4Þ

then yields α0M2
R ¼ 4ðmþ ΔR þ aRÞ and α0M2

L ¼
4ðnþ ΔL þ aLÞ. Writing these masses in terms of the lattice
charge vectors then yields

α0

2
M2

R ¼ Q2
R þ 2ΔR þ 2aR;

α0

2
M2

L ¼ Q2
L þ 2ΔL þ 2aL: ð2:5Þ

States are level-matched (physical) if M2
R ¼ M2

L and un-
physical otherwise. Indeed, with these conventions, gauge
bosons in the left-moving non-Cartan algebra are massless,
with Q2

L ¼ 2 and ΔL ¼ 0, while those in the left-moving
Cartan algebra are massless, with Q2

L ¼ 0 and ΔL ¼ 1.
(Indeed, such results apply to all left-moving simply laced
gauge groups with level-one affine realizations; more com-
plicated situations, such as necessarily arise for the right-
moving gauge groups, are discussed inRef. [2].) Note that the
CPT conjugate of any statewith charge vector fQR;QLg has
chargevector−fQR;QLg. ThusCPT invariance requires that
all states in the string spectrum come in�fQR;QLg pairs. By
contrast, since the right-moving gauge group is necessarily
nonchiral as a result of superconformality constraints, the
chiral conjugate of any statewith chargevectorfQR;QLg has
charge vector fQR;−QLg.
One important general property of the partition functions

in Eq. (2.1)—and indeed the partition functions of all
closed strings in any spacetime dimension—is that they
must be modular invariant, i.e., invariant under all trans-
formations of the form τ → ðaτ þ bÞ=ðcτ þ dÞ where
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a; b; c; d ∈ Z and ad − bc ¼ 1 (with the same transforma-
tion for τ̄). Modular invariance is thus an exact symmetry
underpinning all heterotic strings, and in this paper we shall
be exploring its consequences for the masses of the Higgs
fields in such theories. For these purposes, it will be
important to understand the manner in which these partition
functions achieve their modular invariance. In general, the
partition functions for heterotic strings in four dimensions
can be rewritten in the form

Zðτ; τ̄Þ≡ τ−12
1

η̄12η24
X
{̄;i

N{̄ig{ðτÞfiðτÞ ð2:6Þ

where each ð{̄; iÞ term represents the contribution from a
different sector of the theory and where the left-moving
holomorphic fi functions (and the corresponding right-
moving antiholomorphic g{̄ functions) transform covariantly
under modular transformations according to relations of
the form

f

�
aτ þ b
cτ þ d

�
∼ ðcτ þ dÞkfðτÞ ð2:7Þ

where k is the so-called modular weight of the fi functions
(with an analogous weight k̄ for the g{̄ functions) and
where the ∼ notation allows for the possibility of overall
τ-independent phases which will play no future role in our
arguments. We likewise have

η

�
aτ þ b
cτ þ d

�
∼ ðcτ þ dÞ1=2ηðτÞ: ð2:8Þ

Thus, since τ2 → τ2=jcτ þ dj2 as τ → ðaτ þ bÞ=ðcτ þ dÞ,
we immediately see that modular invariance of the entire
partition function in Eq. (2.6) requires not only that the N{̄i
coefficients in Eq. (2.6) be chosen correctly but also that
k ¼ 11 and k̄ ¼ 5. In general, for strings realizable through
free-field constructions, these fi and g{̄ functions produce the
lattice sum in Eq. (2.3) because they can be written in the
factorized forms

fi ∼
Y22
l¼1

ϑ

"
αðiÞl

βðiÞl

#
; g{̄ ∼

Y10
l¼1

ϑ

"
αð{̄Þl

βð{̄Þl

#
; ð2:9Þ

where each ϑ-function factor is the trace over the lth
direction Ql of the charge lattice:

ϑlðτÞ≡ ϑ

�
αl

βl

�
ðτÞ≡ X

Ql∈Zþαl

e2πiβlQlqQ
2
l=2: ð2:10Þ

Indeed, the ϑl functions transform under modular trans-
formations as in Eq. (2.7), with modular weight 1=2. The
modular invariance of the underlying string theory then
ensures that there exists a special (10,22)-dimensional

“spin-statistics vector” S such that we may identify the
spacetime fermion number F within Eq. (2.1) as F ¼ 2Q · S
(mod 2) for any state with charge Q, where the dot notation
“·” signifies the Lorentzian (left-moving minus right-mov-
ing) dot product. Modular invariance also implies that the
shifted charges Q − S associated with the allowed string
states together form a Lorentzian lattice which is both odd
and self-dual. It is with this understanding that we refer to the
charges Q themselves as populating a “lattice.” Indeed, it is
the self-duality property of the shifted charge lattice fQ −
Sg which guarantees that the fi and g{̄ functions in Eq. (2.7)
transform covariantly under the modular group, as in
Eq. (2.7).
For later purposes, we simply observe that the general

structure given in Eq. (2.6) is typical of the modular-
invariant quantities that arise as heterotic-string Fock-space
traces. Indeed, a general quantity of the form

τκ2
1

η̄12η24
X
{̄;i

N{̄ig{ðτÞfiðτÞ ð2:11Þ

cannot be modular invariant unless the N{̄i are chosen
correctly and the corresponding fi and g{̄ functions trans-
form as in Eq. (2.7) with

k − 12 ¼ k̄ − 6 ¼ κ: ð2:12Þ

While κ ¼ −1 for the partition functions of four-
dimensional heterotic strings, as described above, we shall
see that other important Fock-space traces can have different
values of κ. For example, the partition functions of heterotic
strings in D spacetime dimensions have κ ¼ 1 −D=2,
with corresponding changes to the dimensionalities of their
associated charge lattices.

B. Higgsing and charge-lattice deformations

In general, different string models exhibit different
spectra and thus have different charge lattices. However,
Higgsing a theory changes its spectrum in certain dramatic
ways, such as by giving mass to formerly massless gauge
bosons and thereby breaking the associated gauge sym-
metries. Thus, in string theory, Higgsing can ultimately be
viewed as a process of transforming the charge lattice from
one configuration to another.
Of course, modular invariance must be maintained

throughout the Higgsing process. Indeed, it is only in this
way that we can regard the Higgsing process as a fully string-
theoretic operation that shifts the string vacuum state within
the space of self-consistent string vacua. However, modular
invariance then implies that the charge-lattice transformations
induced by Higgsing are not arbitrary. Instead, they must
preserve those charge-lattice properties, as described above,
which guarantee the modular invariance of the theory.
This in turn tells us that the process of Higgsing is likely

to be far more complicated in string theory than it is in
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ordinary quantum field theory. In general, the charge
lattice receives contributions from all sectors of the theory,
and modular transformations mix these different contri-
butions in highly nontrivial ways. Thus the process of
Higgsing a given gauge symmetry within a given sector of
a string model generally involves not only the physics
associated with that gauge symmetry but also the physics
of all of the other sectors of the theory as well, both
twisted and untwisted, and the properties of the other
gauge symmetries, including gravity, that might also be
present in the string model—even if these other gauge
symmetries are apparently completely disjoint from the
symmetry being Higgsed. We shall see explicit examples
of this below. Moreover, in string theory the dynamics
of the Higgs vacuum expectation value (VEV)—and
indeed the dynamics of all string moduli—is generally
governed by an effective potential which is nothing but the
vacuum energy of the theory, expressed as a function of
this VEV. Thus the overall dynamics associated with
Higgsing can be rather subtle: the Higgs VEV determines
the deformations of the charge lattice, and these defor-
mations alter the vacuum energy which in turn determines
the VEV.
In this paper, our goal is to calculate the mass of the

physical Higgs scalar field that emerges in the Higgsed
phase (i.e., after the theory has already been Higgsed). We
shall therefore assume that our theory contains a scalar
Higgs field which has already settled into the new mini-
mum of its potential. This will allow us to sidestep the
(rather complex) model-dependent issue concerning the
manner in which the Higgsing itself occurs, and instead
focus on the perturbations of the field around this new
minimum. In this way we will be able to determine the
curvature of the scalar potential at this local minimum, and
thereby obtain the corresponding Higgs mass.
To do this, we shall begin by exploring the manner in

which a general charge lattice is deformed as we vary a
scalar Higgs field away from the minimum of its potential.
Our discussion will be completely general, and we shall
defer to Sec. II C any assumptions that might be specific to
the particular Higgs field responsible for electroweak
symmetry breaking. For concreteness, we shall let our
scalar field have a value hϕi þ ϕ, where hϕi is the Higgs
VEVat the minimum of its potential and where ϕ describes
the fluctuations away from this point. If fQL;QRg are the
charge vectors associated with a given string state in the
Higgsed phase (i.e., at the minimum of the potential, when
ϕ ¼ 0), then turning on ϕ corresponds to deforming these
charge vectors. In general, for ϕ=hϕi ≪ 1, we shall para-
metrize these deformations according to

QL → QL þ
ffiffiffiffi
α0

p
ϕQa þ

1

2
α0ϕ2Qb þ…

QR → QR þ
ffiffiffiffi
α0

p
ϕQ̃a þ

1

2
α0ϕ2Q̃b þ…; ð2:13Þ

where Qa, Qb, Q̃a, and Q̃b are deformation charge vectors
of dimensionalities 22, 22, 10, and 10 respectively. Indeed,
the forms of these vectors are closely correlated with the
specific gauge symmetries broken by the Higgsing process,
and as such these vectors continue to govern the fluctua-
tions of the Higgs scalar around this Higgsed minimum.
In this paper, we shall keep our analysis as general as

possible. As such, we shall not make any specific assump-
tions regarding the forms of these vectors. However, as
discussed above, we know that the Higgsing process—and
even the fluctuations around the Higgsed minimum of the
potential—should not break modular invariance. In par-
ticular, the corresponding charge-lattice deformations in
Eq. (2.13) should not disturb level-matching. This means
that the value of the difference Q2

L −Q2
R should not be

disturbed when ϕ is taken to nonzero values, which in turn
means that this difference should be independent of ϕ.
This then constrains the choices for the vectorsQa,Qb, Q̃a,
and Q̃b.
To help simplify the notation, let us assemble a single

32-dimensional charge vector Q≡ ðQL;QRÞt (where “t”
signifies the transpose). Recalling that the dot notation “·”
signifies the Lorentzian (left-moving minus right-moving)
contraction of vector indices, as appropriate for a
Lorentzian charge lattice, we therefore require that Q2 ≡
Qt ·Q be ϕ-independent for all ϕ. Given the above shifts,
we find that terms within Qt ·Q which are respectively
linear and quadratic in ϕ will cancel provided

ðQt
a; Q̃

t
aÞ ·Q ¼ 0;

ðQt
b; Q̃

t
bÞ ·Qþ ðQt

a; Q̃
t
aÞ ·

�
Qa

Q̃a

�
¼ 0: ð2:14Þ

These are thus modular-invariance constraints on the
allowed choices for the shift vectors Qa, Qb, Q̃a, and Q̃b.
We can push these constraints one step further if we

write these shift vectors in terms of Q itself via relations of
the form�

Qa

Q̃a

�
¼ T ·Q;

�
Qb

Q̃b

�
¼ N ·Q ð2:15Þ

where T and N are ð32 × 32Þ-dimensional matrices and
where “·” retains its Lorentzian signature for the index
contraction that underlies matrix multiplication. The first
constraint equation above then tell us that Qt · T ·Q ¼ 0,
which implies that T must be antisymmetric, while the
second constraint equation tells us that Qt · ðN þ T t · T Þ ·
Q ¼ 0, which implies that N þ T t · T must also be
antisymmetric. It turns out that the precise value of
N þ T t · T will have no bearing on the Higgs mass.
We will therefore set it to zero (which is indeed antisym-
metric), implying that N ¼ −T t · T . Thus, while T is
antisymmetric, N is symmetric. Indeed, if we write our
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T -matrix in terms of left- and right-moving submatrices
T ij in the form

T ¼
�
T 11 T 12

T 21 T 22

�
; ð2:16Þ

then we must have T t
11 ¼ −T 11, T t

22 ¼ −T 22, and
T t

12 ¼ −T 21. Likewise, we then find that

N 11 ¼ −T t
11T 11 þ T t

21T 21;

N 12 ¼ −T t
11T 12 þ T t

21T 22;

N 21 ¼ −T t
12T 11 þ T t

22T 21;

N 22 ¼ −T t
12T 12 þ T t

22T 22: ð2:17Þ

C. Example: The Standard Model Higgs

In general, within any given string model, the deforma-
tion vectors Qa, Qb, Q̃a, and Q̃b in Eq. (2.13) depend on
the particular charge vector ðQR;QLÞ being deformed.
However the T - andN -matrices in Eq. (2.15) are universal
for all charge vectors within the model. It is therefore
these matrices which carry all of the relevant information
concerning the response of the theory to fluctuations of
the particular Higgs field under study. In general, these
matrices depend on how the gauge groups and correspond-
ing Higgs field are embedded within the charge lattice.
Thus the precise forms of these matrices depend on the
particular string model under study and the Higgs field to
which it gives rise.
To illustrate this point, it may be helpful to consider

the special case of the Standard Model (SM) Higgs. For
concreteness, we shall work within the framework of
heterotic string models in which the Standard Model itself
is realized at affine level k ¼ 1 through a standard level-one
SOð10Þ embedding. In the following we shall adhere to the
conventions in Ref. [3]. Since SOð10Þ has rank 5,
this group can be minimally embedded within a five-
dimensional sublattice fQ1; Q2; Q3; Q4; Q5gwithin the full
22-dimensional left-moving lattice fQLg. Within this
sublattice, we shall take the l ¼ 1, 2 directions as corre-
sponding to the Uð2Þ ¼ SUð2Þ × Uð1Þ electroweak sub-
group of SOð10Þ, while the l ¼ 3, 4, 5 directions will
correspond to the Uð3Þ ¼ SUð3Þ ×Uð1Þ color subgroup.
By convention we will take the SUð2ÞL representations
to lie along the line perpendicular to (1,1,0,0,0) within
the two-dimensional Uð2Þ sublattice, and the SUð3Þc
representations to lie within the two-dimensional plane
perpendicular to (0,0,1,1,1) within the three-dimensional
Uð3Þ sublattice. It then follows that any state with charge
vector QL has SUð2Þ quantum numbers determined by
projecting QL onto the SUð2Þ line [thereby yielding an
SUð2Þ weight in the corresponding SUð2Þ weight system]
and SUð3Þ quantum numbers determined by projecting QL

onto the SUð3Þ plane [thereby yielding an SUð3Þ
weight within the corresponding SUð3Þ weight system].
Likewise, the SOð10Þ-normalized hypercharge Y of any

state with left-moving charge vector QL is given by Y ¼P
5
l¼1 a

ðlÞ
Y Ql where

aY ¼
�
1

2
;
1

2
; −

1

3
; −

1

3
;−

1

3

�
ð2:18Þ

(with all other components vanishing). Thus, Y ≡ aY ·QL.
Indeed we see that kY ≡ 2aY · aY ¼ 5=3, as appropriate for
the standard SOð10Þ embedding [as well as other non-
standard SOð10Þ embeddings [3]]. In a similar way, the
electromagnetic charge qEM of any state with charge vector
QL is given by qEM ¼ aEM ·QL, where

aEM ¼
�
0; 1; −

1

3
; −

1

3
; −

1

3

�
ð2:19Þ

(with all other components vanishing). As a check we
verify that T3 ¼ aT3

·QL, where aT3
¼ aEM − aY ¼

ð− 1
2
; 1
2
; 0; 0; 0Þ ¼ 1

2
QTþ where QTþ is the charge vector

(or root vector) associated with the SUð2Þ gauge boson
with positive T3 charge.
Thus far, we have focused on the gauge structure of the

theory. As we have seen, the corresponding charge vectors
follow our usual group-theoretic expectations, just as they
would in ordinary quantum field theory. However, the
charge vectors associated with the SM matter states in
string theory are far more complex than would be expected
in quantum field theory and actually spill beyond the
SOð10Þ sublattice.
To see why this is so, it is perhaps easiest to consider the

original SOð10Þ theory prior to electroweak breaking. In
this phase of the theory, the SM matter content consists of
massless fermion and Higgs fields transforming in the 16
and 10 representations of SOð10Þ, respectively. The former
representations has charge vectors with SOð10Þ-sublattice
components QðfÞ

l ¼ �1=2 for each l (with an odd net

number of minus signs), while the latter has QðϕÞ
l ¼ �δlk

where k ¼ 1; 2;…; 5. Thus, the 16 and 10 representations
have conformal dimensions h16 ¼ 5=8 and h10 ¼ 1=2.
Indeed, according to the gauge embeddings discussed
above, the particular Higgs states which are electrically
neutral have Ql ¼ �δl1. However, as a result of the
nontrivial left-moving heterotic-string vacuum energy
EL ¼ −1, any massless string state must correspond to
world sheet excitations contributing a total left-moving
conformal dimension hL ¼ 1. Thus, even within the
SOð10Þ embedding specified above, string consistency
constraints require that the SM fermion and Higgs states
carry nontrivial charges not only within the SOð10Þ
sublattice fQ1; Q2;…; Q5g but also beyond it—i.e., else-
where in the 17 remaining left-moving lattice directions
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Qint ≡ fQ6;…; Q22g which a priori correspond to gauge
symmetries beyond those of the SM (such as those of
potential hidden sectors). Indeed, these additional excita-
tions must contribute additional left-moving conformal
dimensions 3=8 and 1=2 for the SM matter and Higgs

fields respectively, corresponding to ½QðfÞ
int �2 ¼ 3=4 for the

fermions and ½QðϕÞ
int �2 ¼ 1 for the Higgs.

A similar phenomenon also occurs within the ten-
dimensional right-moving charge lattice, with components
fQ̃1;…; Q̃10g. The component associated with the nonzero
component of the S-vector discussed below Eq. (2.10)—
henceforth chosen as Q̃1—describes the spacetime spin-

helicity of the state. As such, we must have Q̃ðfÞ
1 ¼ �1=2

for the SM fermions and Q̃ðϕÞ
1 ¼ 0 for the scalar Higgs. Of

course, the right-moving side of the heterotic string has
ER ¼ −1=2, requiring that all massless string states have
total right-moving conformal dimensions hR ¼ 1=2.
We thus find that the SM fermion and Higgs fields must
have additional nine-dimensional charge vectors Q̃int ≡
fQ̃2;…; Q̃10g (presumably corresponding to additional

right-moving gauge symmetries) such that ½Q̃ðfÞ
int �2 ¼ 3=4

and ½Q̃ðϕÞ
int �2 ¼ 1.

We see, then, that the electrically neutral Higgs field
prior to electroweak symmetry breaking must have a total
32-dimensional charge vector of the form

Qϕ ≡ ðQðϕÞ
L jQðϕÞ

R Þ
¼ ð1; 0; 0; 0; 0;QðϕÞ

int j0; Q̃ðϕÞ
int Þ ð2:20Þ

where ½QðϕÞ
int �2 ¼ ½Q̃ðϕÞ

int �2 ¼ 1. In general, the specific forms

of QðϕÞ
int and Q̃ðϕÞ

int depend on the specific string model and
the spectrum beyond the Standard Model. However, those
components which are specified within Eq. (2.20) are
guaranteed by the underlying SOð10Þ structure and by
the requirement that the Higgs be electrically neutral. Of
course, the process of electroweak symmetry breaking can
in principle alter the form of this vector. However, we know
that Uð1ÞEM necessarily remains unbroken. Thus, even if

the forms of the particular “internal” vectors QðϕÞ
int and Q̃ðϕÞ

int
are shifted under electroweak symmetry breaking, the zeros
in the charge vector in Eq. (2.20) ensure the electric
neutrality of the Higgs field and must therefore be
preserved. This remains true not only for the physical
Higgs field after electroweak symmetry breaking, but also
for its quantum fluctuations in the Higgsed phase.
This observation immediately allows us to constrain the

form of the T -matrices which parametrize the response of
the charge lattice to small fluctuations of the Higgs field
around its minimum. Because the zeros in the charge vector
in Eq. (2.20) must remain vanishing—and indeed because
the electromagnetic charges and spin-statistics of all string

states must remain unaltered under such fluctuations—we
see that the (necessarily antisymmetric) T -matrix can at
most have the general form

T ∼

0
BBBBBBBBBBBB@

t 0 t̃
0 0 0̃

05×5 0 0 0̃
0 0 0̃
0 0 0̃

−tt 0t 0t 0t 0t t11 0t t12
0 0 0 0 0 0 0 0̃
−t̃t 0̃t 0̃t 0̃t 0̃t −tt12 0̃t t22

1
CCCCCCCCCCCCA

ð2:21Þ

where t is an arbitrary 17-dimensional row vector; where t̃
is an arbitrary nine-dimensional row vector; where
t11, t12, and t22 are arbitrary matrices of dimensionalities
17 × 17, 9 × 17, and 9 × 9, respectively, with t11 and t22
antisymmetric; and where 0 and 0̃ are respectively 17- and
9-dimensional zero row vectors. Indeed, as we have seen,
only this form of the T -matrix can preserve the electro-
magnetic charges and spin-statistics of the string states
under small shifts in the Higgs field around its new
minimum, assuming a heterotic string model with a
standard level-one SOð10Þ embedding. The precise forms
of t, t̃, t11, t12, and t22 then depend on more model-specific
details of how the Higgs is realized within the theory—
details which go beyond the SOð10Þ embedding.
As indicated above, this is only one particular example of

the kinds of T -matrices that can occur. However, all of the
results of this paper will be completely general, and will not
rest on this particular example.

D. Calculating the Higgs mass

We can now use the general results in Sec. II B to
calculate the mass of ϕ. In general, this mass can be
defined as

m2
ϕ ≡ d2ΛðϕÞ

dϕ2

����
ϕ¼0

ð2:22Þ

where

ΛðϕÞ≡ −
M4

2

Z
F

d2τ
τ22

Zðτ; τ̄;ϕÞ: ð2:23Þ

Indeed, ΛðϕÞ is the vacuum energy that governs the
dynamics of ϕ. Here d2τ=τ22 is the modular-invariant
integration measure, F is the fundamental domain of the
modular group

F ≡
�
τ∶ −

1

2
< τ1 ≤

1

2
; τ2 > 0; jτj ≥ 1

	
; ð2:24Þ

STEVEN ABEL and KEITH R. DIENES PHYS. REV. D 104, 126032 (2021)

126032-8



and M≡Ms=ð2πÞ is the reduced string scale. In this
expression, following Eq. (2.3), the shifted partition func-
tion is given by

Zðτ; τ̄;ϕÞ ¼ τ−12
1

η̄12η24
X
QL;QR

ð−1ÞFq̄Q2
R=2qQ

2
L=2 ð2:25Þ

where the left- and right-moving charge vectorsQL andQR
are now deformed as in Eq. (2.13) and thus depend on ϕ.
Given this definition, we begin by evaluating the leading

contribution to the Higgs mass by taking partial derivatives
of Z, i.e.,

∂2Z
∂ϕ2

¼ τ−12
1

η̄12η24
X

QL;QR∈L
ð−1ÞFXq̄Q2

R=2qQ
2
L=2 ð2:26Þ

where the summand insertion X is given by

X≡πi
∂2

∂ϕ2
ðτQ2

L− τ̄Q2
RÞ−π2

� ∂
∂ϕðτQ

2
L− τ̄Q2

RÞ
�
2

: ð2:27Þ

Note that it is the partial derivative ∂2=∂ϕ2 in Eq. (2.26)
which provides the leading contribution to the Higgs mass;
we shall return to this point shortly. Expanding X in powers
of τ1 and τ2 and then setting ϕ ¼ 0 yields

Xjϕ¼0 ¼ Aτ1 þ Bτ2 þ Cτ21 þDτ22 þ Eτ1τ2; ð2:28Þ

where

A ¼ 0;

B ¼ −2πα0ðQ2
a þ Q̃2

a þQt
bQL þ Q̃t

bQRÞ;
C ¼ 0;

D ¼ 4π2α0ðQt
aQL þ Q̃t

aQRÞ2;
E ¼ 0: ð2:29Þ

Note that A, C, and E each vanish as the result of the
constraints in Eq. (2.14). This is consistent, as these are
the quantities which are proportional to powers of τ1, which
multiplies Q2

L −Q2
R within Eq. (2.27).

Using Eqs. (2.15) and (2.17), we can now express the
shift vectors within Eq. (2.29) directly in terms of QL and
QR. For convenience we define

Qh ≡ T 21QL; Q̃h ≡ T 12QR; ð2:30Þ

and likewise define

Qj ≡ T 11QL; Q̃j ≡ T 22QR: ð2:31Þ

We then find

B ¼ −4πα0ðQ2
h þ Q̃2

h − Q̃t
jQh −Qt

jQ̃hÞ;
D ¼ 4π2α0ðQt

RQh −Qt
LQ̃hÞ2: ð2:32Þ

Note the identityQt
RQh ¼ −Qt

LQ̃h, as a result of which our
expression for D can actually be collapsed into one term.
However, we have retained this form forD in order to make
manifest the symmetry between left- and right-moving
contributions. Our overall insertion into the partition
function is then given by Xjϕ¼0 ≡ X=M2, where

X ¼ τ22ðQt
RQh −Qt

LQ̃hÞ2

−
τ2
π
ðQ2

h þ Q̃2
h − Q̃t

jQh −Qt
jQ̃hÞ: ð2:33Þ

E. Modular completion and additional
Higgs-mass contributions

Thus far, we have calculated the leading contribution
to the Higgs mass by evaluating ∂2Z=∂ϕ2. However, the
full contribution d2Z=dϕ2 (with full rather than partial
ϕ-derivatives) also includes various additional effects on
the partition function Z that come from fluctuations of the
Higgs field. For example, such fluctuations deform the
background moduli fields (such as the metric that contracts
compactified components of Q2

L and Q2
R within the charge

lattice). Such effects produce additional contributions to the
total Higgs mass.
It turns out that we can calculate all of these extra

contributions in a completely general way through the
requirement of modular invariance. Indeed, because modular
invariance remains unbroken even when the theory is
Higgsed, the final expression for the total Higgs mass must
not only be modular invariant but also arise through a
modular-covariant sequence of calculational operations. As
we shall demonstrate, the above expression for the insertion
X in Eq. (2.33) does not have this property. We shall
therefore determine the additional contributions to the Higgs
mass by performing the “modular completion” of X—i.e.,
by determining the additional contribution to X which will
render this insertion consistent with modular invariance.
In general, prior to the insertion ofX , the partition-function

trace in Eq. (2.3) [or equivalently the trace in Eq. (2.25)
evaluated at ϕ ¼ 0] is presumed to already be modular
invariant, as required for the consistency of the underlying
string. In order to determine the modular completion of the
quantityX in Eq. (2.33), we therefore need to understand the
modular-invariance effects that arise when X is inserted into
this partition-function trace. Because X involves various
combinations of components of charge vectors, let us begin
by investigating the effect of inserting powers of a single
charge vector component Ql (associated with the lth lattice
direction) into our partition-function trace. Within the parti-
tion functions described in Eqs. (2.6) and (2.9), insertingQn

l
for any power n is tantamount to replacing
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ϑl →
X

Ql∈Zþαl

e2πiβlQlQn
lq

Q2
l=2: ð2:34Þ

However, one useful way to proceed is to recognize that this
latter sum can be rewritten as

1

ð2πiÞn
∂n

∂znl ϑlðzljτÞjzl¼0
ð2:35Þ

where the generalized θlðzljτÞ function is defined as

ϑlðzljτÞ≡
X

Ql∈Zþαl

e2πiðβlþzlÞQlqQ
2
l=2: ð2:36Þ

Indeed, we see that ϑlðτÞ is nothing but ϑlðzljτÞ evaluated
at zl ¼ 0. However, for arbitrary z, these generalized
ϑðzjτÞ functions have the schematic modular-transformation
properties

ϑl

�
z

���� aτ þ b
cτ þ d

�
∼ ðcτ þ dÞ1=2eπicðcτþdÞz2ϑlððcτ þ dÞzjτÞ:

ð2:37Þ

It then follows that

ϑ

�
z

���� aτ þ b
cτ þ d

�����
z¼0

∼ ðcτ þ dÞ1=2ϑðzjτÞjz¼0; ð2:38Þ

and likewise

∂
∂zϑ

�
z

���� aτ þ b
cτ þ d

�����
z¼0

∼ ðcτ þ dÞ3=2 ∂
∂z ϑðzjτÞjz¼0: ð2:39Þ

This indicates that while the function ϑðzjτÞjz¼0 transforms
covariantly with modular weight 1=2, its first deriva-
tive ½∂ϑðzjτÞ=∂z�jz¼0 transforms covariantly with modular
weight 3=2.
At first glance, one might expect this pattern to continue,

with the second derivative ½∂2ϑðzjτÞ=dz2�jz¼0 transforming
covariantly with modular weight 5=2. However, this is not
what happens. Instead, from Eq. (2.37) we find

∂2

∂z2 ϑ
�
z

���� aτ þ b
cτ þ d

�����
z¼0

∼ ðcτ þ dÞ5=2 ∂
∂z ϑðzjτÞjz¼0

þ 2πicðcτ þ dÞ3=2ϑðτÞ: ð2:40Þ

While the term on the first line is the expected result,
the term on the second line represents a modular anomaly
which destroys the modular covariance of the second
derivative.
Since modular covariance must be preserved, we must

perform a modular completion. In this simple case, this
means that we must replace ∂2=∂z2 with a modular-
covariant second derivative D2

z such that D2
z not only

contains ∂2=∂z2 but also has the property that D2
zθðzjτÞjz¼0

transforms covariantly with weight 5=2. It is straight-
forward to show that the only such modular-covariant
derivative is

D2
z ≡ ∂2

∂z2 þ
π

τ2
; ð2:41Þ

and with this definition one indeed finds

f½D2
zϑðzjτÞ�τ→aτþb

cτþd
gjz¼0 ∼ ðcτ þ dÞ5=2D2

zϑðzjτÞjz¼0; ð2:42Þ

thereby continuing the pattern set by Eqs. (2.38) and (2.39).
It turns out that this modular-covariant second z-derivative
is equivalent to the modular-covariant τ-derivative

Dτ ≡ ∂
∂τ −

ik
2τ2

ð2:43Þ

which preserves the modular covariance of any modular
function of weight k. Indeed, our ϑðzjτÞ functions have
k ¼ 1=2 and satisfy the heat equation ∂2ϑðzjτÞ=∂z2 ¼
4πi∂ϑðzjτÞ=∂τ. In this sense, the z-derivative serves as a
“square root” of the τ-derivative and gives us a precise
means of extracting the individual charge insertions (rather
than their squares). In this connection, we emphasize that
there is a tight correspondence between the Higgs field
and the z-parameter. Specifically, when we deform a theory
through a continuous change in the value of the Higgs VEV,
its partition function deforms through a corresponding
continuous change in the z parameter.
In principle we could continue to examine higher

z-derivatives (all of which will also suffer from modular
anomalies), but the results we have thus far will be sufficient
for our purposes. Recalling the equivalence between the
expressions in Eqs. (2.34) and (2.35), we thus see that the
insertion of a single power of any given Ql does not disturb
the modular covariance of the corresponding holomorphic
(or antiholomorphic) factor in the partition-function trace,
but the insertion of a quadratic term Q2

l along the lth lattice
direction does not lead to a modular-covariant result and
must, according to Eq. (2.41), be replaced by the modular-
covariant insertion Q2

l − 1=ð4πτ2Þ. Thus, our rules for
modular completion through second order in charge-vector
components are given by

�Ql → Ql;

QlQl0 → QlQl0 − 1
4πτ2

δl;l0 :
ð2:44Þ

These general results hold for all lattice directions ðl;l0Þ
regardless of whether they correspond to left- or right-
moving lattice components. Such modular completions have
also arisen in other contexts, such as within string-theoretic
threshold corrections [4–6].
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With these modular-completion rules in hand, we can
now investigate the modular completion of the expression
for X in Eq. (2.33). It is simplest to begin by focusing on
the quartic terms, i.e., the terms in the top line of Eq. (2.33).
Given the identity just below Eq. (2.32), these terms
are proportional to ðQt

LQ̃hÞ2. With QLl denoting the lth
component of QL, etc., we find

ðQt
LQ̃hÞ2 ¼

�X22
l¼1

X10
m¼1

QLlðT 12ÞlmQRm

�2

¼
X22
l;l0¼1

X10
m;m0¼1

ðT 12ÞlmðT 12Þl0m0

×QRmQRm0QLlQLl0 : ð2:45Þ

Following the rules in Eq. (2.44), we can readily obtain the
modular completion of this expression by replacing the
final line in Eq. (2.45) with�
QRmQRm0 −

1

4πτ2
δmm0

��
QLlQLl0 −

1

4πτ2
δll0

�
: ð2:46Þ

Substituting Eq. (2.46) into Eq. (2.45) and recalling that
T t

12 ¼ −T 21, we thus find that the modular completion of
the quartic term ðQt

LQ̃hÞ2 within X is given by

ðQt
LQ̃hÞ2 −

1

4πτ2
ðQ2

h þ Q̃2
hÞ þ

ξ

ð4πτ2Þ2
ð2:47Þ

where

ξ≡ TrðT t
12T 12Þ ¼ TrðT t

21T 21Þ
¼ −TrðT 12T 21Þ ¼ −TrðT 21T 12Þ: ð2:48Þ

Remarkably, the quadratic terms Q2
h þ Q̃2

h that are
generated within Eq. (2.47) already appear on the second
line of Eq. (2.33). In other words, even if we had not
already known of these quadratic terms, we could have
deduced their existence through the modular completion
of our quartic terms. Conversely, we could have generated
the quartic terms through a modular completion of these
quadratic terms—i.e., each set of terms provides the
modular completion of the other. Thus, the only remaining
terms within Eq. (2.33) that might require modular com-
pletion are the final quadratic terms on the second line of
Eq. (2.33), namely Q̃t

jQh þQt
jQ̃h. However, Qh and Qj

involve only left-moving components of the lattice while
Q̃h and Q̃j involve only right-moving components. Thus
Q̃t

jQh þQt
jQ̃h is already modular complete. Putting all the

pieces together, we therefore find that the total expression
for X in Eq. (2.33) has a simple (and in fact universal)
modular completion:

X → X þ ξ

4π2
: ð2:49Þ

Indeed, this sole remaining extra term generated by the
modular completion stems from the final term in Eq. (2.47).
It is noteworthy that this extra term is entirely independent
of the charge vectors. This is consistent with our expect-
ation that such additional terms represent the contributions
from the deformations of the moduli fields under Higgs
fluctuations—deformations which act in a universal (and
hence Q-independent) manner.
Some remarks are in order regarding the uniqueness of

the completion in Eq. (2.49). In particular, at first glance
one might wonder how the modular completion of the
quadratic terms Q̃t

jQh þQt
jQ̃h could uniquely determine

the quartic terms in X , given that the modular-completion
rules within Eq. (2.44) only seem to generate extra terms
which are of lower powers in charge-vector components.
However, the important point is that the rules in Eq. (2.44)
only ensure the modular covariance of the individual (anti)
holomorphic components of the partition-function trace. In
particular, these rules do not, in and of themselves, ensure
that we continue to satisfy the additional constraint in
Eq. (2.12) that arises when stitching these holomorphic and
antiholomorphic components together as in Eq. (2.11).
However, given thatQ2

h increases the modular weight of the
holomorphic component by two units without increasing
the modular weight of the antiholomorphic component, and
given that Q̃2

h does the opposite, the only way to properly
modular-complete their sum is by “completing the square”
and realizing these terms as the off-diagonal terms that are
generated through a factorized modular completion as in
Eq. (2.46). This then compels the introduction of the
appropriate quartic diagonal terms, as seen above.
In this connection, it is also important to note that

modular completion involves more than simply demanding
that our final result be modular invariant. After all, we have
seen in Eq. (2.49) that the modular completion of X
involves the addition of a pure number, i.e., the addition
of a quantity which is intrinsically modular-invariant on its
own (or more precisely, a quantity whose insertion into
the partition-function summand automatically preserves the
modular invariance of the original partition function).
However, as we have stated above, modular completion
ensures more than the mere modular invariance of our final
result—it also ensures that this result is obtainable through
a modular-covariant sequence of calculational operations.
As we have seen, the extra additive constant that forms
the modular completion of X in Eq. (2.49) is crucial in
allowing us to “complete the square” and thereby cast our
results into the factorized form of Eq. (2.46)—a form which
itself emerged as a consequence of our underlying modular-
covariant z-derivatives D2

z . As such, the constant appearing
in Eq. (2.49) is an intrinsic part of our resulting expression
for m2

ϕ.
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F. Classical stability condition

Thus far, we have focused on deriving an expression for
the Higgs mass, as defined in Eq. (2.22). However, our
results presuppose that we are discussing a classically
stable particle. In other words, while we are identifying the
mass with the second ϕ-derivative of the classical potential,
we are implicitly assuming that the first ϕ-derivative
vanishes so that we are sitting at a minimum of the
Higgs potential. Thus, there is an extra condition that
we need to impose, namely

dΛðϕÞ
dϕ

����
ϕ¼0

¼ 0: ð2:50Þ

This condition must be satisfied for the particular vacuum
state within which our Higgs-mass calculation has been
performed.
It is straightforward to determine the ramifications of this

condition. Proceeding exactly as above, we find in analogy
with Eq. (2.27) that ∂Z=∂ϕjϕ¼0 corresponds to an insertion
given by Yjϕ¼0 ¼ Y=M, where

Y ∼ τ2ðQt
RQh −Qt

LQ̃hÞ ∼ τ2ðQt
RT 21QLÞ: ð2:51Þ

Given this result, there are a priori three distinct ways in
which the condition in Eq. (2.50) can be satisfied within a
given string vacuum. First, Y might vanish for each state in
the corresponding string spectrum. Second, Y might not
vanish for each state in the string spectrum but may vanish
in the sum over the string states (most likely in a pairwise
fashion between chiral and antichiral states with opposite
charge vectors). However, there is also a third possibility:
the entire partition-function trace may be nonzero, even
with the Y insertion, but nevertheless vanish when inte-
grated over the fundamental domain of the modular group,
as in Eq. (2.23). In general, very few mathematical
examples are known of situations in which this latter
phenomenon occurs [7–9], although the fact that this
would involve an integrand with vanishing modular weight
offers unique possibilities.
Two further comments regarding this condition are in

order. First, it is easy to verify that this condition respects
modular invariance, as it must. Indeed, the quantity Y, as
defined above, is already modular complete. At first glance,
this might seem surprising, given that the quartic terms
within X are nothing but the square of Y, and we have
already seen that these quartic terms are not modular
complete by themselves. However, it is the squaring of
Y that introduces the higher powers of charge-vector
components which in turn induce the modular anomaly.
Second, if Y vanishes when summed over all of the string
states, then it might be tempting to hope that the quartic
terms within X also vanish when summed over the string
states. Unfortunately, this hope is not generally realized,
since important sign information is lost when these

quantities are squared. Of course, if Y vanishes for each
individual state in the string spectrum, then the quartic
terms within X will also evaluate to zero in any calculation
of the corresponding Higgs mass. This would then simplify
the explicit evaluation of X for such a string vacuum.

G. A relation between the Higgs mass and the
cosmological constant

Let us now collect our results for the Higgs mass. For
notational simplicity we define

hAi≡
Z
F

d2τ
τ22

τ−12
η̄12η24

X
QL;QR

ð−1ÞFAq̄Q2
R=2qQ

2
L=2 ð2:52Þ

where the charge vectors fQL;QRg in the sum over states
are henceforth understood as unperturbed (i.e., with ϕ ¼ 0)
and thus correspond directly to the charges that arise at the
minimum of the Higgs potential. Our results then together
imply that

m2
ϕ ¼ −

M2

2
hXi −M2

2

ξ

4π2
h1i ð2:53Þ

where X is given in Eq. (2.33). As indicated above, these
results implicitly assume that hYi ¼ 0, where Y is defined
in Eq. (2.51). However, we immediately recognize that the
quantity h1i within Eq. (2.53) is nothing other than the one-
loop zero-point function (cosmological constant) Λ. More
precisely, we may identify Λ as ΛðϕÞjϕ¼0 [where ΛðϕÞ is
given in Eq. (2.23)], or equivalently

Λ ¼ −
M4

2
h1i: ð2:54Þ

We thus obtain the relation

m2
ϕ ¼ ξ

4π2
Λ
M2

−
M2

2
hXi: ð2:55Þ

Indeed, retracing our steps in arbitrary spacetime dimen-
sion D, we obtain the analogous relation

m2
ϕ ¼ ξ

4π2
Λ

MD−2 −
M2

2
hXi ð2:56Þ

where the cosmological constant Λ now has mass dimen-
sion D.
Remarkably, this is a general relation between the Higgs

mass and the one-loop cosmological constant. Because this
relation rests on nothing but modular invariance, it holds
generally for any perturbative closed string in any arbitrary
spacetime dimensionD. The cosmological-constant term in
Eq. (2.55) is universal, emerging as the result of a modular
anomaly that required a modular completion, or equiv-
alently as the result of a universal shift in the moduli.
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By contrast, the second term depends on the particular
charges that are inserted into the partition-function trace.
For weakly coupled heterotic strings, we can push this

relation one step further. In such theories the string scale
Ms ≡ 2πM and Planck scale Mp are connected through
the relation Ms ¼ gsMP where gs is the string coupling
whose value is set by the vacuum expectation value of the
dilaton. Depending on the particular string model, gs in turn
sets the values of the individual gauge couplings. Likewise,
the canonically normalized scalar field ϕ is ϕ̂≡ ϕ=gs. We
thus find that our relation in Eq. (2.55) equivalently takes
the form

m2
ϕ̂
¼ ξ

M2
P
Λ −

g2sM2

2
hXi: ð2:57Þ

In quantum field theory, we would not expect to find a
relation between a Higgs mass and a cosmological con-
stant. Indeed, quantum field theories do not involve gravity
and are thus insensitive to the absolute zero of energy. Even
worse, in quantum field theory, the one-loop zero-point
function is badly divergent. String theory, by contrast, not
only unifies gauge theories with gravity but also yields a
finite Λ (the latter occurring as yet another by-product of
modular invariance). Thus, it is only within a string context
that such a relation could ever arise, and indeed Eqs. (2.55)
and (2.57) are precisely the relations that arise for all
weakly coupled four-dimensional heterotic strings. We
expect that this is but the tip of the iceberg, and that other
modular-invariant string constructions lead to similar
results. It is intriguing that such relations join together
precisely the two quantities (mϕ and Λ) whose values lie at
the heart of the two most pressing hierarchy problems in
modern physics.

III. REGULATING THE HIGGS MASS:
FROM AMPLITUDES TO SUPERTRACES

In Eq. (2.55) we obtained a result in which the Higgs
mass, via the definition in Eq. (2.52), is expressed in terms of
certain one-loop string amplitudes consisting of modular
integrals of various traces over the entire string spectrum. As
discussed below Eq. (2.5), these traces include the contri-
butions of not only physical (i.e., level-matched) string
states with M2

L ¼ M2
R, but also unphysical (i.e., non-level-

matched) string states with M2
L ≠ M2

R. This distinction
between physical and unphysical string states is important
because only the physical string states can serve as bona fide
in- and out-states. By contrast, the unphysical states are
intrinsically stringy and have no field-theoretic analogs.
We now wish to push our calculation several steps

further. In particular, there are three aspects to our result
in Eq. (2.55) which we will need to understand in order to
allow us to make contact with traditional quantum-field-
theoretic expectations. The first concerns the fact that while

the one-loop vacuum energy Λ which appears in these
results is finite for all tachyon-free string models—even
without spacetime supersymmetry—the remaining ampli-
tude hXi which appears in these expressions is generically
divergent. Note that this is not in conflict with string-
theoretic expectations; in particular, as we shall discuss in
Sec. IVA, string theory generally softens various field-
theoretic divergences but need not remove them entirely.
Thus, our expression for the Higgs mass is formally
divergent and requires some sort of regulator in order to
extract finite results. Second, while these results are
expressed in terms of sums over the entire string spectrum,
we would like to be able to express the Higgs mass directly
in terms of supertraces over only the physical string
states—i.e., the states with direct field-theoretic analogs.
This will ultimately allow us to express the Higgs mass in a
form that might be recognizable within ordinary quantum
field theory, and thereby extract an EFT description of the
Higgs mass in which our Higgs mass experiences an
effective renormalization-group “running.” This will also
allow us to extract a stringy effective potential for the Higgs
field. Finally, as a by-product, we would also like to
implicitly perform the stringy modular integrations inherent
in Eq. (2.52).
As it turns out, these three issues are intimately related.

However, appreciating these connections requires a deeper
understanding of the properties of the modular functions
on which which our Higgs-mass calculations rest. In this
section, we shall therefore outline the mathematical pro-
cedures which will enable us to address all three of our
goals. Many of these methods originated in the classic
mathematics papers of Rankin [10,11] and Selberg [12]
from the late 1930s, and were later extended in an
important way by Zagier [13] in the early 1980s. Some
of the Rankin-Selberg results also later independently
found their way into the string literature in various forms
[14–16], and have occasionally been studied and further
developed (see, e.g., Refs. [17–25]). Our purpose in
recounting these results here is not only to pull them all
together and explain their logical connections in relatively
nontechnical terms, but also to extend them in certain
directions which will be important for our work in Sec. IV.
This conceptual and mathematical groundwork will thus
form the underpinning for our further analysis of the Higgs
mass in Sec. IV.

A. The Rankin-Selberg technique

We are interested in modular integrals such as those in
Eq. (2.52) which generically take the form

I ≡
Z
F

d2τ
τ22

Fðτ; τ̄Þ; ð3:1Þ

where F is the modular-group fundamental domain given
in Eq. (2.24), where dτ1dτ2=τ22 is the modular-covariant
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integration measure (with τ≡ τ1 þ iτ2, τi ∈ R), and where
the integrand F is modular invariant. In general the
integrands F take the form

F≡ τk2
X
m;n

amnq̄mqn ð3:2Þ

where q≡ e2πiτ and where k is the modular weight of the
holomorphic and antiholomorphic modular functions
whose products contribute to F. Note that integrands of
this form include those in Eq. (2.1): we simply power-
expand the η-function denominators and absorb these
powers into m and n. Thus, with string integrands written
as in Eq. (3.2) we can now directly identify m ¼ α0M2

R=4
and n ¼ α0M2

L=4. The quantity amn then tallies the number
of bosonic minus fermionic string degrees of freedom
contributing to each ðM2

R;M
2
LÞ term.

Invariance under τ → τ þ 1 guarantees that every term
within F has m − n ∈ Z. The m ¼ n terms represent the
contributions from physical string states with spacetime
masses α0M2 ¼ 2ðmþ nÞ ¼ 4n, while the m ≠ n terms
represent the contributions from off-shell (i.e., unphysical)
string states. Within the τ2 ≥ 1 integration subregion within
F , the m ≠ n terms make no contribution to the integral I
because these contributions are eliminated when we per-
form the

R 1=2
−1=2 dτ1 integral. [Indeed, within this subregion

of F expressions such as Eq. (3.1) come with an implicit
instruction that we are to perform the τ1 integration prior to
performing the τ2 integration.] However, the full integral I
does receive m ≠ n contributions from the τ2 < 1 sub-
region within F . Thus, in general, both physical and
unphysical string states contribute to amplitudes such as I.
Our goal is to express I in terms of contributions from the

physical string states alone. Clearly this could be done if we
could somehow transform the region of integration within I
from the fundamental domain F to the positive half-strip

S ≡
�
τ∶ −

1

2
< τ1 ≤

1

2
; τ2 > 0

	
; ð3:3Þ

for we would then haveZ
S

d2τ
τ22

Fðτ; τ̄Þ ¼
Z

∞

0

dτ2
τ22

gðτ2Þ ð3:4Þ

where gðτ2Þ is our desired trace over only the physical
string states:

gðτ2Þ ¼
Z

1=2

−1=2
dτ1Fðτ; τ̄Þ ¼ τk2

X
n

anne−4πτ2n: ð3:5Þ

Fortunately, there exists a well-known method for
“unfolding” F into S. While F is the fundamental domain
of the modular group Γ generated by both τ → −1=τ and
τ → τ þ 1, the strip S is the fundamental domain of the

modular subgroup Γ∞ generated solely by τ → τ þ 1.
(Indeed, this is the subgroup that preserves the cusp at
τ ¼ i∞.) Thus the strip S can be realized as the sum of the
images ofF transformed under all modular transformations
γ (including the identity) in the coset Γ∞nΓ:

S ¼ ∪
γ∈Γ∞nΓ

γ · F : ð3:6Þ

It then follows for any integrand F̃ðτ; τ̄Þ that
Z
S

d2τ
τ22

F̃ðτ; τ̄Þ ¼
Z
F

d2τ
τ22

X
γ∈Γ∞nΓ

F̃γðτ; τ̄Þ; ð3:7Þ

where F̃γðτ; τ̄Þ is the γ-transform of F̃ðτ; τ̄Þ. Moreover, if
F̃ðτ; τ̄Þ is invariant under τ → τ þ 1, then the total integrand
on the right side of Eq. (3.7) is modular invariant.
At this stage, armed with the result in Eq. (3.7), we see

that we are halfway toward our goal. However, two
fundamental problems remain. First, while choosing F̃
as our original integrand F would allow us to express the
left side of Eq. (3.7) directly in terms of the desired trace in
Eq. (3.5), our need to relate this to the original integral I in
Eq. (3.1) would instead seem to require choosing F̃ such
that F ¼ P

γ∈Γ∞nΓ F̃γ . Second, the manipulations under-
lying Eq. (3.7), such as the exchanging of sums and regions
of integration, implicitly assumed that the integrand on the
right side of Eq. (3.7) converges sufficiently rapidly as
τ2 → ∞ [or equivalently that the integrand on the left side
of Eq. (3.7) converges sufficiently rapidly as τ2 → 0] so
that all relevant integrals are absolutely convergent.
However, this is generally not the case for the physical
situations that will interest us.
It turns out that these problems together motivate a

unique choice for F̃. Note that gðτ2Þ generally has a form
resembling that in Eq. (3.5), consisting of an infinite sum
multiplied by a power of τ2. As τ2 → 0, the successive
terms in this sum are less and less suppressed by the
exponential factor e−4πnτ2. We therefore expect the infinite
sum within gðτ2Þ to experience an increased tendency to
diverge as τ2 → 0. Let us assume for the moment that the
divergence of this infinite sum grows no faster than some
inverse power of τ2 as τ2 → 0. In this case, the divergence
of the sum within gðτ2Þ will cause gðτ2Þ itself to diverge as
τ2 → 0 unless gðτ2Þ also includes a prefactor consisting of
sufficiently many powers of τ2 to hold the divergence of the
sum in check. We can therefore regulate our calculation by
introducing sufficiently many extra powers of τ2 into gðτ2Þ.
In other words, in such cases we shall take

F̃ðτ; τ̄Þ ¼ τs2Fðτ; τ̄Þ ð3:8Þ

where s is chosen sufficiently large (typically requiring
s > 1) so as to guarantee convergence. Indeed, since the
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number of powers of τ2 within gðτ2Þ is generally correlated
in string theory with the number of uncompactified
spacetime dimensions, we may view this insertion of extra
powers of τ2 as a stringy version of dimensional regulari-
zation, taking D → Deff ≡D − 2s. However, since our
original integrand Fðτ; τ̄Þ is presumed modular invariant,
the choice in Eq. (3.8) in turn implies that the integrand on
the right side of Eq. (3.7) must be taken asX

γ∈Γ∞nΓ
ðImγ · τÞsFγðτ; τ̄Þ ¼ Eðτ; τ̄; sÞFðτ; τ̄Þ ð3:9Þ

where Eðτ; τ̄; sÞ is the nonholomorphic Eisenstein series,
often simply denoted Eðτ; sÞ and defined by

Eðτ; sÞ≡ X
γ∈Γ∞nΓ

½Imðγ · τÞ�s ¼ 1

2

X
ðc;dÞ¼1

τs2
jcτ þ dj2s ð3:10Þ

with the second sum in Eq. (3.10) restricted to integer,
relatively prime values of c, d. Thus, with these choices, we
now haveZ

F

d2τ
τ22

Eðτ; sÞFðτ; τ̄Þ ¼
Z

∞

0

dτ2τs−22 gðτ2Þ ð3:11Þ

where the expression on the right side depends on only the
physical string states.
The Eisenstein series Eðτ; sÞ has a number of important

properties. It is convergent for all s > 1, but can be
analytically continued to all values of s. It is not only
modular invariant (consistent with F as the corresponding
region of integration), but its insertion on the left side
of Eq. (3.11) relative to our original starting point in
Eq. (3.1) softens the divergence as τ2 → ∞, as required.
Most importantly for our purposes, however, this function
has a simple pole at s ¼ 1, with a τ-independent residue
3=π. The fact that this residue is τ-independent means that
we can formally extract our original integral I in Eq. (3.1)
by taking the s ¼ 1 residue of both sides of Eq. (3.11):

I ¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−22 gðτ2Þ: ð3:12Þ

We have therefore succeeded in expressing our original
modular integral I in terms of only the contributions from
the physical states. The result in Eq. (3.12) was originally
obtained by Rankin and Selberg in 1939 (see, e.g.,
Refs. [10–12]), and has proven useful for a number of
applications in both physics and pure mathematics.
At this stage, three important comments are in order.

First, it may seem that the result in Eq. (3.12) implies that
the unphysical states ultimately make no contributions to
the amplitude I. However, this is untrue: the result in
Eq. (3.12) was derived under the supposition that our
original integrand Fðτ; τ̄Þ is modular invariant, and this
modular invariance depends crucially on the existence of

both physical and unphysical states in the full string
spectrum. For example, through the requirement of modular
invariance, the distribution of unphysical states in the string
spectrum has a profound effect [17,18] on the values of the
physical-state degeneracies fanng which appear in Eq. (3.5).
As our second comment, we point out that the above

results can be reformulated in a manner which eliminates
the τ2 integration completely and which depends directly
on the integrand gðτ2Þ. To see this, we note if we define IðsÞ
as the term on the left side of Eq. (3.11), then the relation in
Eq. (3.11) simply states that IðsÞ is nothing but the Mellin
transform of gðτ2Þ=τ2. One can therefore use the inverse
Mellin transform to write gðτ2Þ=τ2 directly in terms of IðsÞ.
While such an inverse relation is useful in many contexts,
for our purposes it will be sufficient to note that such an
inverse relation implies a direct connection between the
poles of IðsÞ and the asymptotic behavior of gðτ2Þ as
τ2 → 0. Specifically, one finds a correlation

poles of IðsÞ at s ¼ snwith residues cn

⇒ gðτ2Þ ∼
X
n

cnτ
1−sn
2 as τ2 → 0: ð3:13Þ

As we have seen, IðsÞ has a single pole along the real axis at
s ¼ 1, with residue 3I=π. However, IðsÞ also has an infinite
number of poles at locations sn ¼ ρn=2, where ρn are the
nontrivial zeros of the Riemann ζ function ζðsÞ. According
to the Riemann hypothesis, these zeros all have the form
ρn ¼ 1

2
� iγn where γn ∈ R. The fact that ReðsnÞ < 1 for all

of these additional poles of IðsÞ then implies that the
amplitude I dominates the leading behavior of gðτ2Þ as
τ2 → 0, allowing us to write [13,16]

I ¼ π

3
lim
τ2→0

gðτ2Þ: ð3:14Þ

Of course, from Eq. (3.13) we see that the τ2 → 0 limit
of gðτ2Þ also contains subleading oscillatory terms [13]
corresponding to the nontrivial zeros of the ζ function. This
suggests, through Eq. (3.5), that the ann coefficients tend to
oscillate in sign as n → ∞. This oscillating sign is in fact a
consequence of the so-called “misaligned supersymmetry”
[17–19] which is a generic property of all tachyon-free
nonsupersymmetric string models—a property whose
existence is a direct consequence of modular invariance
in general situations where I is finite and Fðτ; τ̄Þ ≠ 0.
Our final comment, however, is perhaps the most crucial.

As we have seen, the results in Eqs. (3.12) and (3.14) were
derived under the assumption, as stated within the above
derivation, that the infinite sum within the definition of
gðτ2Þ in Eq. (3.5) diverges no more rapidly than some
inverse power of τ2 as τ2 → 0. This requirement was
needed so that the introduction of sufficiently many τ2
prefactors could suppress this divergence and render a finite
result. Undoing the modular transformations involved in
Eq. (3.7), we see that this is equivalent to demanding that
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our original integrand Fðτ; τ̄Þ either fall, remain constant, or
grow less rapidly than τ2 as τ2 → ∞. Indeed, these are the
conditions under which the Rankin-Selberg analysis is
valid. Not surprisingly, these are also the conditions under
which any integrand F lacking terms with m ¼ n < 0 will
produce a finite value for I.

B. Regulating divergences

The techniques discussed in Sec. III A are completely
adequate for situations in which the original amplitude I is
finite, with an integrand Fðτ; τ̄Þ remaining finite or diverg-
ing less rapidly than τ2 as τ2 → ∞. However, many
physical situations of interest (including those we shall
ultimately need to consider in this paper) lead to integrands
Fðτ; τ̄Þwhich diverge more rapidly than this as τ2 → ∞. As
a result, the corresponding integral I formally diverges and
must be regulated.
In this section we shall discuss three different methods of

regulating such amplitudes. These methods are appropriate
for cases—such as we shall ultimately face—in which the
integrand experiences a power-law divergence ∼τp2 with
p ≥ 1 as τ2 → ∞. As we shall see, these regulators each
have different strengths and weaknesses, and thus it will
prove useful to have all three at our disposal. In particular,
two of these regulators will explicitly break modular
invariance, but are closer in spirit to those that are tradi-
tionally employed in ordinary quantum field theory. By
contrast, the third regulator will be fully modular invariant.
By comparing the results we will then be able to discern the
novel effects that emerge through a fully modular-invariant
regularization procedure and understand the reasons why
such a regulator is greatly superior to the others.
All three of these regulators proceed from the same

fundamental observation. Let us suppose that Fðτ; τ̄Þ
diverges at least as quickly as τ2 as τ2 → ∞. Clearly, this
behavior will cause the integral I to diverge on the left side
of Eq. (3.12). However, this behavior will also cause gðτ2Þ
to diverge as τ2 → ∞, which means that the right side of
Eq. (3.12) will also diverge. Thus, in principle, a relation
such as that in Eq. (3.12) will be rendered meaningless.
However, if there were a consistent way of subtracting or
regulating the appropriate divergence on each side of
Eq. (3.12), we can imagine that we might then obtain an
analogous relation between a finite regulated integral Ĩ and
a corresponding finite regulated physical-state trace g̃ðτ2Þ.
As we shall see, all three of the regulators we shall discuss
have this property and lead to results which are analogous
to the result in Eq. (3.12) and relate regulated integrals to
regulated physical-state supertraces.

1. Minimal regulator

Perhaps the simplest and most minimal regulator that can
be envisioned [13] is one in which we directly excise the
divergence from the integral I without disturbing the rest of

the integral. Because the divergences on both sides of
Eq. (3.12) arise as τ2 → ∞, we can formally excise this
region of integration from F by defining a truncated region
F t to be the same as F but with the additional restriction
that τ2 < t for some truncation cutoff t ≥ 1. We can then
define our regulated integral Ĩ as

Ĩ ≡ lim
t→∞

�Z
F t

d2τ
τ22

F −ΦIðtÞ
�

ð3:15Þ

where the function ΦIðtÞ describes the manner in whichR
F t

d2τ
τ2
2

F diverges as t → ∞. The explicit subtraction of

ΦIðtÞ within Eq. (3.15)—although not modular invariant—
thus renders Ĩ finite.
Likewise, let us imagine that Φgðτ2Þ describes the

manner in which gðτ2Þ diverges as τ2 → ∞. We can then
define

g̃ðτ2Þ≡ gðτ2Þ −Φgðτ2Þ: ð3:16Þ

Of course, given these definitions, one might then hope
that the result in Eq. (3.12) remains intact, only with the
replacements I → Ĩ and gðτ2Þ → g̃ðτ2Þ. Unfortunately,
things are not this simple because the τ2 < t truncation
of F to F t greatly complicates the “unfolding” procedure
that underlies the intermediate algebraic step in Eq. (3.7).
Starting from

R
F t

d2τ
τ2
2

F, one must therefore follow the

effects of this truncation through all of the modular trans-
formations involved in the unfolding. This procedure is
performed in Ref. [13] and ultimately generates numerous
extra terms beyond those appearing in Eq. (3.12). While
many of these extra terms give rise to the subtractions that
appear within the definitions of Ĩ and g̃ðτ2Þ in Eqs. (3.15)
and (3.16), some of these extra terms go beyond these
subtractions and survive the final t → ∞ limit. Thus, with
Φ̃ denoting these additional terms, the Rankin-Selberg
result in Eq. (3.12) generalizes to take the form [13]

Ĩ ¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−22 g̃ðτ2Þ þ Φ̃ ð3:17Þ

where the extra terms Φ̃must also be included. We thus see
that with this regulator, our original integral I continues to
be expressible in terms of a physical-state supertrace.
The crux of the matter, then, is to determine ΦIðtÞ,

Φgðτ2Þ, and Φ̃. In general, let us suppose that Fðτ; τ̄Þ ∼
Φðτ2Þ þ � � � as τ2 → ∞, where Φðτ2Þ is a function which
diverges at least as as quickly as τ2 as τ2 → ∞. Upon
performing the τ1 integration we then immediately see that
gðτ2Þ diverges as τ2 → ∞ in exactly the same manner as
does Fðτ; τ̄Þ. We can therefore identify Φgðτ2Þ with Φðτ2Þ
itself. Likewise, it is also easy to verify that ΦIðτ2Þ is
nothing but the antiderivative of Φðτ2Þ=τ22, and of course
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we are free to disregard any terms within ΦIðtÞ that vanish
as t → ∞ since such terms will not contribute within
Eq. (3.15). The difficult part, of course, is to evaluate
the extra constant term Φ̃. While this term often vanishes,
such a cancellation is not guaranteed. However, a general
expression for this term is given in Ref. [13] for any
divergence function Φðτ2Þ.
For our later purposes we shall only need to consider one

particular case, namely that with

Φðτ2Þ ¼ c0 þ c1τ2: ð3:18Þ

For this divergence structure, it then follows that Φg ¼
c0 þ c1τ2. Likewise, we have ΦIðtÞ ¼ −c0=tþ c1 log t,
which we may equivalently take to be simply ΦIðtÞ ¼
c1 log t under the t → ∞ limit in Eq. (3.15). Finally, for this
case it turns out [13] that Φ̃ is given by

Φ̃≡ 2Res
s¼1

�
c0ζ�ð2sÞ
s − 1

−
c1ζ�ð2s − 1Þ

s − 1

�
¼ π

3
c0 þ log ð4πe−γÞc1 ð3:19Þ

where ζ�ðsÞ≡ π−s=2Γðs=2ÞζðsÞ is the so-called “com-
pleted” Riemann ζ function and where γ ≈ 0.577 is the
Euler-Mascheroni constant. Thus, pulling the pieces
together, we find that if Fðτ; τ̄Þ ∼ c0 þ c1τ2 as τ → ∞,
then our regulated integral

Ĩ ≡ lim
t→∞

�Z
F t

d2τ
τ22

F − c1 log t

�
ð3:20Þ

can be expressed in terms of purely physical string states as

Ĩ ¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−22 ½gðτ2Þ − c0 − c1τ2�

þ π

3
c0 þ log ð4πe−γÞc1: ð3:21Þ

Note that the left side of Eq. (3.20) is independent of c0.
Indeed, since the c0 term within the asymptotic behavior of
FðτÞ does not actually lead to a divergence, our regulator
need not depend on c0 in any way. However, this implies
that the right side of Eq. (3.21) must also be independent
of c0. We shall confirm this behavior explicitly in Sec. IV.
Of course, this does not imply that we can simply set
c0 ¼ 0 on the right side of Eq. (3.21); the presence of c0
within the τ2 integral on the right side of Eq. (3.21) ensures
that this integral diverges in precisely the correct way to
yield the correct residue at s ¼ 1. Thus, in some sense, the
appearance of c0 within the right side of Eq. (3.21) acts
precisely as a regulator should, adding a term in one place
to help achieve convergence and then subtracting it some-
where else in order to yield a c0-independent result. Note
that this c0-independence of the right side of Eq. (3.21) also

allows the result in Eq. (3.21) to reduce to the Rankin-
Selberg result in Eq. (3.12) when c1 ¼ 0 for any value
of c0. Indeed, we know that the result in Eq. (3.21) must
reduce in this way because with c1 ¼ 0 we have no
divergence at all, even when c0 ≠ 0. The original
Rankin-Selberg result in Eq. (3.12) must therefore also
apply when c1 ¼ 0, even when c0 ≠ 0.

2. Nonminimal regulators

The subtraction in Eq. (3.15) is minimal, yielding a finite
result without introducing any new parameters related to
the subtraction or altering any portion of the integrand other
than its divergence structure. Even though a regulating
parameter t is introduced in Eq. (3.15), this quantity must
be taken to infinity in order to encapsulate all relevant
aspects of the original integral I.
However, it is also possible to define a similar regulator

which encapsulates all parts of the original integral I and
yet produces a finite result for arbitrary finite values of
t ≥ 1. Since the divergences within Eq. (3.15) appear only
in the τ2 > t region (specifically as τ2 → ∞), we can
“undo” the τ2 → ∞ limit and alternatively define

ĨðtÞ≡
Z
F t

d2τ
τ22

F þ
Z
F−F t

d2τ
τ22

½F −Φðτ2Þ� ð3:22Þ

where we shall continue to assume that Fðτ; τ̄Þ∼Φðτ2Þþ���
as τ2 → ∞. Note that ĨðtÞ is convergent for all finite t, as we
desire. Moreover, because the second term in Eq. (3.22) has
an integrand which is convergent throughout the integration
region F − F t, taking the t → ∞ limit eliminates the
second term and ĨðtÞ reproduces our original unregulated
integral I in Eq. (3.1). Thus ĨðtÞ represents an alternative,
t-dependent method of regulating our original integral I,
one which is distinct from the minimal regularization Ĩ
in Eq. (3.15).
These two regularizations are deeply connected,

however—a fact which will also enable us to express
ĨðtÞ in terms of supertraces, just as we did for Ĩ. Note that
the only t-dependence within ĨðtÞ arises from the integra-
tion of the subtraction term Φðτ2Þ along the t-dependent
lower boundary of the integration region F − F t. We thus
see that the subtraction term Φðτ2Þ which regularizes ĨðtÞ
introduces a nontrivial dependence on t such that

ĨðtÞ ¼ ΦIðtÞ þ C ð3:23Þ

where we recall that ΦIðτ2Þ is the antiderivative of
Φðτ2Þ=τ22 and where C is an as-yet unknown t-independent
quantity. However, it is easy to solve for C. Given that
C ¼ ĨðtÞ −ΦIðtÞ, we immediately see by taking the t → ∞
limit of both sides and comparing with Eq. (3.15)
that limt→∞ C ¼ Ĩ. However, C is independent of t, which
means that C ¼ Ĩ for any value of t ≥ 1. We thus obtain a
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general relation, valid for all t ≥ 1, between our two
regulators:

ĨðtÞ ¼ Ĩ þΦIðtÞ: ð3:24Þ

Our previous result for Ĩ in Eq. (3.17) then yields [13]

ĨðtÞ ¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−22 g̃ðτ2Þ þΦIðtÞ þ Φ̃: ð3:25Þ

Thus, just as with our minimal regulator, we find that
our t-dependent regulator produces a finite integral ĨðtÞ
which continues to be expressible in terms of a physical-
state supertrace. Indeed, for the divergence structure
Φðτ2Þ ¼ c0 þ c1τ2, we find that our t-dependent regular-
ized integral

ĨðtÞ≡
Z
F t

d2τ
τ22

F þ
Z
F−F t

d2τ
τ22

ðF − c0 − c1τ2Þ ð3:26Þ

is given by

ĨðtÞ ¼ π

3
Res
s¼1

Z
∞

0

dτ2 τs−22 ½gðτ2Þ − c0 − c1τ2�

þ
�
π

3
−
1

t

�
c0 þ log ð4π te−γÞc1: ð3:27Þ

Once again, c0 plays a special role in this result because
the presence of the c0 term within Φðτ2Þ does not lead
to a divergence. Indeed, given that the region F − F t has
volume 1=t with respect to the d2τ

τ2
2

measure, we see that the

subtraction of c0 within Eq. (3.26) simply removes a finite
quantity c0=t from the value of ĨðtÞ. For integrands having
this divergence structure we can therefore define a modified
(or improved) nonminimal regulator

ÎðtÞ≡ ĨðtÞ þ c0=t

¼
Z
F t

d2τ
τ22

F þ
Z
F−F t

d2τ
τ22

ðF − c1τ2Þ; ð3:28Þ

whereupon we find from Eq. (3.27) that

ÎðtÞ ¼ π

3
Res
s¼1

Z
∞

0

dτ2 τs−22 ½gðτ2Þ − c0 − c1τ2�

þ π

3
c0 þ log ð4π te−γÞc1: ð3:29Þ

In other words, the 1=t-dependence on the right side of
Eq. (3.27) was in some sense spurious, reflecting a
corresponding 1=t-dependence that was needlessly inserted
into the regulator definition in Eq. (3.26) and which has
now been removed from Eqs. (3.28) and (3.29). The right
side of Eq. (3.29) is then independent of c0 in the manner
discussed below Eq. (3.21) for the minimal regulator.

3. Modular-invariant regulators

Although our results in Eqs. (3.21), (3.27), and (3.29)
were each derived in a manner that remained true to the
modular-invariant unfolding procedure, neither side of
these relations is modular invariant by itself. In other
words, even though these relations correctly allow us to
express our regulated integrals Ĩ, ĨðtÞ, and ÎðtÞ in terms of a
corresponding regulated physical-state supertrace g̃ðτ2Þ,
neither Ĩ, ĨðtÞ, nor ÎðtÞ is itself a modular-invariant quantity.
This is an important observation because these latter
quantities will ultimately correspond to physical observ-
ables within the modular-invariant string context. We must
therefore additionally require that these observables them-
selves be modular invariant.
The issue, of course, is that neither Ĩ, ĨðtÞ, nor ÎðtÞ

incorporates a modular-invariant way of eliminating the
associated divergences as τ2 → ∞. However, it is possible
to design regulators in which such divergences are indeed
eliminated in a fully modular-invariant way. In this
work we shall present a particular set of modular-invariant
regulators which will have several useful properties for our
purposes.
In order to define these regulators, let us first recall that

the partition function of a bosonic world sheet field
compactified on a circle of radius R is given by

Zcircða; τÞ ¼ ffiffiffiffi
τ2

p X
m;n∈Z

q̄ðma−n=aÞ2=4qðmaþn=aÞ2=4

¼ ffiffiffiffi
τ2

p X
m;n∈Z

e−πτ2ðm2a2þn2=a2Þe2πimnτ1 ð3:30Þ

where we have defined the dimensionless inverse radius
a≡ ffiffiffiffi

α0
p

=R. Here the sum over m and n represents the sum
over all possible KK momentum and winding modes,
respectively. Note that Zcirc → 1=a as a → 0, while
Zcirc → a as a → ∞. As expected, Zcircða; τÞ is modular
invariant for any a. Using Zcircða; τÞ, we shall then regulate
any divergent integral of the form in Eq. (3.1) by defining a
corresponding series of regulated integrals ĨρðaÞ:

ĨρðaÞ≡
Z
F

d2τ
τ22

FðτÞGρða; τÞ ð3:31Þ

where our regulator functions Gρða; τÞ are defined for any
ρ ∈ Rþ, ρ ≠ 1, as

Gρða; τÞ≡ Aρa2
∂
∂a ½Zcircðρa; τÞ − Zcircða; τÞ� ð3:32Þ

where Aρ ≡ ρ=ðρ − 1Þ is an overall normalization factor.
Note that Gρða; τÞ inherits its modular invariance from Zcirc,
thereby rendering the regulated integral ĨρðaÞ in Eq. (3.31)
fully modular invariant for any a and ρ. We further note that
Gρða; τÞ satisfies the identity
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Gρða; τÞ ¼ G1=ρðρa; τÞ: ð3:33Þ

We can therefore take ρ > 1 without loss of generality.
These functions Gρða; τÞ have two important properties

which make them suitable as regulators when a ≪ 1. First,
as a → 0, we find that Gρða; τÞ → 1 for all τ. Thus the
a → 0 limit restores our original unregulated theory.
Second, for any a > 0, we find that Gρða; τÞ → 0 exponen-
tially rapidly as τ2 → ∞. Thus the insertion of Gρða; τÞ into
the integrand of Eq. (3.31) successfully eliminates what-
ever power-law divergence might have otherwise arisen
from the original integrand FðτÞ. Indeed, we see that this
now happens in a smooth, fully modular-invariant way
rather than through a sharp, discrete subtraction. Motivated
by these two properties, we shall therefore focus on
situations in which a ≪ 1, as these are the situations in
which our regulator preserves as much of the original
theory as possible (as we expect of a good regulator) while
simultaneously eliminating all power-law divergences as
τ2 → ∞. In fact, for the special case ρ ¼ 2 and for the
specific values a ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
kþ 2

p
the insertion of this regulator

even has a direct physical interpretation, arising through a
procedure in which the various fields in the background
string geometry are turned on in such a way that the
conformal field theory associated with the flat four-
dimensional spacetime is replaced by that associated with
a SUð2Þk Wess-Zumino-Witten model [4–6].
That said, there is one further property of these regulator

functions Gρða; τÞwhich will prove useful for our purposes.
When a ≪ 1, the contributions from all nonzero winding
modes within Zcirc (and ultimately within G) are exponen-
tially suppressed relative to those of the KK momentum
modes. In other words, when a ≪ 1 we can effectively
restrict our summation in Eq. (3.30) to cases with n ¼ 0.
We then find that Gρða; τÞ loses its dependence on τ1,

rendering Gρða; τÞ a function of τ2 alone. In such cases we
shall simply denote our regulator function as Gρða; τ2Þ.
In Fig. 1, we have plotted the regulator function G2ða; τ2Þ

within the ða; τ2Þ plane for τ2 ≥ 1 (left panel) and as a
function of τ2 ≥ 1 for various discrete values of a ≪ 1
(right panel). We see, as promised, that G2ða; τ2Þ → 0 for
all a > 0 as τ2 → ∞, while G2ða; τ2Þ → 1 for all τ2 ≥ 1 as
a → 0. We also note that this suppression for large τ2 is
quite pronounced, even for a ≪ 1.
For any a and ρ, we see from Fig. 1 that there is a

corresponding value τ�2 which can be taken as character-
izing the approximate τ2-location of the transition between
the unregulated region with Gρða; τ2Þ ≈ 1 and the regulated
region with Gρða; τ2Þ ≈ 0. For example, we might define τ�2
as the critical value corresponding to the top of the “ridge”
in the left panel of Fig. 1 (or equivalently the maximum in
the right panel of Fig. 1). Alternatively, given the shapes of
the functions in the right panel of Fig. 1, we might define τ�2
as the location at which Gρða; τ2Þ experiences an inflection
from being concave-down to concave-up. Finally, a third
possibility might be to define τ�2 as the value of τ2 at which
Gρða; τ2Þ ¼ 1=2, representing the “midpoint” between
G ¼ 1 and G ¼ 0. For the ρ ¼ 2 case shown in Fig. 1,
we then find for a ≪ 1 that each of these has a rather
straightforward scaling behavior with a−2:

ridge top∶ τ�2 ≈
3

2πa2
≈
0.477
a2

;

inflection∶ τ�2 ≈
3þ ffiffiffi

6
p

2πa2
≈
0.867
a2

;

G ¼ 1=2∶ τ�2 ≈
1.411
a2

: ð3:34Þ

Indeed, each of these results becomes increasingly accurate
as a → 0. Moreover, although the numerical coefficient in

FIG. 1. Left panel: the modular-invariant regulator function G2ða; τ2Þ, plotted within the ða; τ2Þ plane for a ≪ 1 and τ2 ≥ 1. Right
panel: the modular-invariant regulator G2ða; τ2Þ, plotted as a function of τ2 for a ¼ 0.05 (blue), a ¼ 0.1 (orange), and a ¼ 0.3 (green). In
all cases we see that G2ða; τ2Þ → 0 for all a > 0 as τ2 → ∞, while G2ða; τ2Þ → 1 for all τ2 ≥ 1 as a → 0. Indeed, for a ¼ 0.05, we see
that G2ða; τ2Þ ≈ 1 for all τ2 ≲ 100. Thus for small nonzero a this regulator succeeds in suppressing the divergences that might otherwise
arise as τ2 → ∞ while nevertheless having little effect throughout the rest of the fundamental domain.
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the third case depends significantly on ρ, the numerical
coefficients in the first two cases are actually independent
of ρ. In all cases, however, we see that Gρða; τ2Þ suppresses
the contributions from regions of the fundamental domain
with τ2 ≫ τ�2 while preserving the contributions from
regions with 1 < τ2 ≪ τ�2. Indeed, this property holds
regardless of our precise definition for τ�2.
Armed with these regulator functions Gρða; τ2Þ, we now

wish to express the integral in Eq. (3.31) in terms of
an appropriately regulated supertrace over physical string
states. However, given that ĨρðaÞ is fully modular invariant
and convergent as τ2 → ∞, we can simply use the original
Rankin-Selberg result in Eq. (3.12). We thus have

ĨρðaÞ ¼
π

3
Res
s¼1

Z
∞

0

dτ2 τs−22 g̃ρða; τ2Þ ð3:35Þ

where, in analogy with Eq. (3.5), we have

g̃ρða; τ2Þ≡
Z

1=2

−1=2
dτ1 FðτÞGρða; τÞ: ð3:36Þ

In general, for arbitrary a, the regulator Gρða; τÞ will
have a traditional ðq; q̄Þ power expansion of the form
G ∼

P
r;s brsq̄

rqs, just as we have F ∼
P

m;n amnq̄mqn in
Eq. (3.2). Given this, we find that the τ1 integral in
Eq. (3.36) projects onto those states for which n −m ¼
r − s. However, Gρða; τÞ generally receives contributions
from states with many different values of r − s. As a result,
g̃ρða; τ2Þ will generally receive contributions from not only
the physical m ¼ n states within FðτÞ but also some of the
unphysical m ≠ n states. In other words, for general a, our
regulator function Gρða; τÞ becomes entangled with the
physical-state trace in a way that allows unphysical states to
contribute.
As we have seen, it is useful for practical purposes that

Gρða; τÞ loses its dependence on τ1 when a ≪ 1. In other
words, for a ≪ 1 we find that the contributions from terms
with r ≠ s within G are suppressed. The τ1 integral in
Eq. (3.36) then projects onto only the m ¼ n physical
states, as desired, and to a good approximation our
expression for g̃ρða; τ2Þ in Eq. (3.36) simplifies to

g̃ρða; τ2Þ ≈ gðτ2ÞGρða; τ2Þ ð3:37Þ

where gðτ2Þ is our original unregulated physical-state trace
in Eq. (3.5). Thus, for a ≪ 1, the same regulator function
Gρða; τ2Þ which smoothly softens the τ2 → ∞ divergence
in the integrand ĨρðaÞ also smoothly softens the τ2 → ∞
divergence in the physical-state trace g̃ρða; τ2Þ—all without
introducing contributions from unphysical states. However,
we shall later demonstrate that the integral in Eq. (3.31) can
actually be performed exactly, yielding an expression in
terms of purely physical states for all values of a.

While these regulator functions Gρða; τ2Þ are suitable for
many applications, it turns out that we can use these
functions in order to construct additional modular-invariant
regulators whose symmetry properties transcend even those
of Gρða; τ2Þ. To do this, we first observe from the modular
invariance of Gρða; τ2Þ that

Gρða; 1=τ2Þ ¼ Gρða; τ2Þ ð3:38Þ

for any ρ, a, and τ2. Indeed, invariance under τ2 → 1=τ2
follows directly from invariance under the modular trans-
formation τ → −1=τ for τ1 ¼ 0. Second, the identity in
Eq. (3.33) tells us that the parameters ðρ; aÞ which define
our G functions have a certain redundancy, such that the G
function with ðρ; aÞ is the same as the G function with
ð1=ρ; ρaÞ. Indeed, only the combination a0 ≡ ffiffiffi

ρ
p

a is
invariant under this redundancy. Thus, while Eq. (3.38)
provides a symmetry under reciprocal flips in τ2, Eq. (3.33)
provides a symmetry under reciprocal flips in ρ.
Given these two symmetries, it is natural to wonder

whether Gρða; τÞ also exhibits a reciprocal flip symmetry
in the one remaining variable a0 ≡ ffiffiffi

ρ
p

a. This would thus
be a symmetry under a → 1=ρa, or equivalently under
ρa2 → 1=ðρa2Þ. Indeed, we shall find in Sec. III B 4 that
such an additional symmetry will be very useful and render
the modular symmetry manifest in certain cases where it
would otherwise have been obscure. Unfortunately,
Gρða; τÞ does not exhibit such a symmetry. One might
nevertheless wonder whether it is possible to modify this
regulator function in such a way that it might exhibit this
additional symmetry as well.
It turns out that this enhanced symmetry structure is

relatively easy to arrange. First, we observe that Zcircða; τÞ
is itself invariant under a → 1=a for any τ; indeed, this is
the symmetry underlying T-duality for closed strings.
Given this, it is then straightforward to verify that the
functions

Ĝρða; τÞ≡ 1

1þ ρa2
Gρða; τÞ ð3:39Þ

not only inherit all of the regulator properties and sym-
metries discussed above for Gρða; τÞ when a ≪ 1, but are
also manifestly invariant under a0 → 1=a0, or equivalently
a → 1=ðρaÞ, for any τ:

Ĝρða; τÞ ¼ Ĝρð1=ρa; τÞ: ð3:40Þ

We shall therefore take these Ĝ functions as defining
our enhanced modular-invariant regulators. We shall like-
wise define corresponding enhanced regularized integrals
ÎρðaÞ as in Eq. (3.31), but with Gρða; τÞ replaced by

Ĝρða; τÞ. We then find that we can express ÎρðaÞ in terms
of corresponding physical-state traces ĝρða; τ2Þ as in
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Eqs. (3.35)–(3.37), except with Gρða; τ2Þ replaced by

Ĝρða; τ2Þ throughout.
The enhanced regulators in Eq. (3.39) can also be

understood in a completely different way, through analogy
with what we have already observed for our nonminimal
regulators in Sec. III B 2. As discussed after Eq. (3.29), the
quantity ĨðtÞ defined through our nonminimal regulator
ultimately contained a spurious t-dependence that could be
removed without disturbing the suitability of the regulator
itself. It is for this reason that we were able to transition
from our original nonminimal regulator in Eq. (3.26) to our
improved nonminimal regulator in Eq. (3.28) in which such
spurious terms were eliminated.
It turns out that a similar situation arises for our original

modular-invariant regulators Gρða; τ2Þ. Indeed, as we shall
find in Sec. IV, use of these regulators would have led to
results with analogously spurious terms—i.e., terms which
obscure the underlying symmetries of the theory. However,
just as with Eq. (3.28), it is possible to define improved
modular-invariant regulators in which such spurious effects
are eliminated. Indeed, these improved modular-invariant
regulators are nothing but the regulators Ĝρða; τÞ intro-
duced in Eq. (3.39). Additional reasons for adopting the
Ĝρða; τÞ regulators will be discussed in Sec. VI. These
improved regulators will therefore be our main interest in
this paper.

4. Aligning the nonminimal and modular-invariant
regulators

Needless to say, the most important feature of our
modular-invariant regulators is precisely that they are
modular invariant. Use of these regulators therefore pro-
vides a way of controlling the divergences that might
appear in string amplitudes while simultaneously preserv-
ing the modular invariance that rests at the heart of all that
we are doing in this paper.
This becomes especially apparent upon comparing these

modular-invariant regulators with the nonminimal regula-
tors of Sec. III B 2. Recall that the nonminimal regulators
operate by isolating those terms within the partition
function FðτÞ which would have led to a divergence as
τ2 → ∞, and then performing a brute-force subtraction of
those terms over the entire region of the fundamental
domain F with τ2 ≥ t. In so doing, modular invariance
is broken twice: first, in artificially separating those terms
within the partition function which would have led to a
divergence from those which do not; and second, in then
selecting a particular sharp location τ2 ¼ t at which to
perform the subtraction of these divergence-inducing terms,
essentially multiplying these terms by Θðt − τ2Þ where Θ is
the Heaviside function. By contrast, our modular-invariant
regulator keeps the entire partition function F intact and
then multiplies F by a single modular-invariant regulator
function Ĝρða; τÞ. As such it does not induce a sharp

Heaviside-like subtraction at any particular location within
the fundamental domain, but rather (as illustrated in the
right panel of Fig. 1) induces a smooth damping which
operates most strongly for τ2 ≫ τ�2 and which can be
removed (or pushed off toward greater and greater values
of τ�2) as a → 0. All of these crucial differences are induced
by the modular invariance of the regulator and render our
modular-invariant regulators wholly different from the
nonminimal regulator of Sec. III B 2.
These two regulators do share one common feature,

however: they both introduce suppressions into the inte-
grands of our string amplitudes. Within the nonminimal
regulator this takes the form of a sharp subtraction that
occurs at τ2 ¼ t, while the modular-invariant regulator
gives rise to a smoother suppression, a transition from
Ĝ ≈ 1 to Ĝ ≈ 0 that occurs near τ2 ≈ τ�2. To the extent that
these two regulators share this single common feature, it is
therefore possible to “align” them by choosing a particular
definition for τ�2 within the modular-invariant regulator and
then identifying

t ¼ τ�2: ð3:41Þ

In general, we have seen in Eq. (3.34) that τ�2 takes the
general form

τ�2 ¼
ξ

a2
¼ ξρ

ρa2
; ð3:42Þ

where ξ is a numerical coefficient which depends on the
particular definition of τ�2 that is chosen. Thus, for any value
of t, we can correspondingly tune our choices for ρ > 1 and
ρa2 in order to enforce Eq. (3.41) and in this sense bring our
regulators into alignment.
This alone is sufficient to align our regulators. However,

in keeping with the spirit of symmetry enhancement that
motivated our transition from G to Ĝ, we can push this one
step further. We have already seen that our Ĝ regulator has a
symmetry under τ2 → 1=τ2 (and thus under τ�2 → 1=τ�2)
as well as a symmetry under a → 1=ρa [or equivalently
under ρa2 → 1=ðρa2Þ]. Although these are independent
symmetries, the fact that τ�2 and ρa2 are related through
Eq. (3.42) suggests that we can align these two symmetries
as well by further demanding that ξρ ¼ 1.
For either of the first two τ�2 definitions in Eq. (3.34), this

is a very easy condition to enforce: we simply take ρ ¼ 1=ξ.
This is possible because the “ridge-top” and “inflection”
definitions lead to values of ξ which are independent of ρ.
By contrast, for the G ¼ 1=2 condition (where G ≈ Ĝ in the
ρa2 ≪ 1 limit), the value of ξ is itself highly ρ-dependent
and it turns out that the constraint ρξðρÞ ¼ 1 has no
solution for ρ.
It is easy to understand why these different τ�2 definitions

lead to such different outcomes for ρ. For a ≪ 1 and ρ > 1,
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the contributions to Ĝ from Zcircðρa; τÞ are hugely sup-
pressed compared with those from Zcircða; τÞ. As a result,
any defining condition for τ�2 which depends on the actual
values of Ĝ will carry a sensitivity to ρ only through the Ĝ
prefactor Aρ ¼ ρ=ðρ − 1Þ. By contrast, any defining con-
dition for τ�2 which depends on the vanishing of derivatives
of Ĝ becomes insensitive to the overall scale factor Aρ and
thus independent of ρ. Indeed, the “ridge-top” and “inflec-
tion” definitions depend on the vanishing of the first and
second Ĝ-derivatives respectively. Such conditions there-
fore lead to a vastly simpler algebraic structure for τ�2 as a
function of ρ.
Thus, pulling the pieces together, we see that we can

align our modular-invariant regulator with our nonminimal
regulator by adopting a particular definition for τ�2 and then
choosing the values of the ðρ; aÞ parameters within our
modular-invariant regulator such that

t ¼ ξρ

ρa2
: ð3:43Þ

Moreover, we can further enhance the symmetries under-
lying this identification by restricting our attention to ðρ; aÞ
choices for which ξρ ¼ 1. However, because modular
invariance essentially smoothes out the sharp transition
at τ2 ¼ t that otherwise existed within the nonminimal
regulator, we face an inevitable uncertainty in how we
define τ�2. In the following, we shall therefore adopt

t ¼ 1

ρa2
ð3:44Þ

as our alignment condition. Directly enforcing this con-
dition enables us to sidestep the issues associated with
choosing a particular value of ξ or a particular definition for
τ�2. However, in enforcing this condition we should remain
mindful of our regulator condition that a ≪ 1. Likewise,
whenever needed, our choices for ρ should lie within a
range that is sensibly close to the approximate values of ξ−1

that characterize the transition from Ĝ ≈ 1 to Ĝ ≈ 0. For
example, when needed for the purposes of illustration, we
shall choose the fiducial value ρ ¼ 2. Indeed, such a value
is very close to the value that would be required for the
“ridge-top” definition, yielding ξρ ¼ 0.954. However, by
enforcing Eq. (3.44) directly, we will be able to maintain
alignment without needing to identify a particular defini-
tion for τ�2. Moreover, as already noted, the combination
ρa2 is invariant under the symmetry in Eq. (3.33). This
combination will therefore appear naturally in many of our
future calculations, thereby largely freeing us from the need
to specify ρ and a individually.
Of course, we see from Eq. (3.44) that choosing ρ within

this range and taking a ≪ 1 will be possible only if t ≫ 1.
Thus, although the choice of t is completely arbitrary
within the nonminimal regulator, only those nonminimal

regulators with t ≫ 1 can be aligned with our modular-
invariant regulators in a meaningful way.

IV. TOWARD A FIELD-THEORETIC
INTERPRETATION: THE HIGGS MASS AS A

SUPERTRACE OVER PHYSICAL STRING STATES

Equipped with the mathematical machinery from
Sec. III, we now seek to express our result for the Higgs
mass given in Eq. (2.55) in terms of the supertraces over
only the physical string states. In so doing we will be
developing an understanding of our results from a field-
theory perspective—indeed, as a string-derived EFT valid
at low energies. All of these results will be crucial for
allowing us to understand how the Higgs mass “runs”
within such an EFT, and ultimately allowing us to extract a
corresponding “stringy” effective Higgs potential in Sec. V.

A. Modular invariance, UV/IR equivalence,
and the passage to an EFT

Our first task is to understand the manner through which
one may extract an EFT description of a theory with
modular invariance. This is a subtle issue because such
theories, as we shall see, possess a certain UV/IR equiv-
alence. However, understanding this issue is ultimately
crucial for the physical interpretations that we will be
providing for our results in the rest of this section,
especially as they relate to the effects of the mathematical
regulators we have presented in Sec. III.
In this paper, our interest has thus far focused on

performing a fully string-theoretic calculation of the
Higgs mass. Given that modular invariance is a funda-
mental symmetry of perturbative closed strings, we have
taken great care to preserve modular invariance at every
step of our calculations (or to note the extent to which this
symmetry has occasionally been violated, such as for two
of the three possible regulators discussed in Sec. III).
However, modular transformations mix the contributions of
individual string states into each other in highly nontrivial
ways across the entire string spectrum. Indeed, we shall
see that modular invariance even leads to a fundamental
equivalence between UVand IR divergences. Thus a theory
such as string theory can be modular invariant only if all of
its states across the entire string spectrum are carefully
balanced against each other [17] and treated similarly, as a
coherent whole. EFTs, by contrast, are predicated on an
approach that treats UV physics and IR physics in funda-
mentally different ways, retaining the dynamical degrees of
freedom associated with the IR physics while simultaneously
“integrating out” the degrees of freedom associated with the
UV physics. As a result, any attempt to develop a true EFT
description of a modular-invariant theory such as string
theory inherently breaks modular invariance.
It is straightforward to see that modular invariance

leads to an equivalence between UV and IR divergences.
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In general, one-loop closed-string amplitudes are typically
expressed in terms of modular-invariant integrands FðτÞ
which are then integrated over the fundamental domain F
of the modular group. If such an amplitude diverges, this
divergence will arise from the τ2 → ∞ region within F .
Given that the contributions from the heavy string states
within the integrand are naturally suppressed as τ2 → ∞, it
would be natural to interpret this divergence as an IR
divergence involving low-energy physics.
However, such an interpretation would be inconsistent

within a modular-invariant theory. In any modular-invariant
theory with a modular-invariant integrand FðτÞ, we can
always rewrite our amplitude through the identityZ

F

d2τ
τ22

FðτÞ ¼
Z
F

d2τ
τ22

Fðγ · τÞ ¼
Z
γ·F

d2τ
τ22

FðτÞ ð4:1Þ

which holds for any modular transformation γ. From
Eq. (4.1) we see that choosing F as our region of
integration is mathematically equivalent to choosing any
of its images γ · F under any modular transformation γ.
One of these equivalent choices is F 0 ≡ γS · F where γS is
the τ → −1=τ modular transformation. This region is
explicitly given as

F 0 ≡ fτ∶τ2 > 0; jτj ≤ 1; ðτ1 þ 1Þ2 þ τ22 ≥ 1;

ðτ1 − 1Þ2 þ τ22 ≥ 1g; ð4:2Þ

and as such includes the τ2 → 0 region but no longer
includes the τ2 → ∞ region. Indeed, via the identity in
Eq. (4.1) we see that the divergence of our amplitude now
appears as τ2 → 0. However, there is no suppression of the
contributions from the heavy string states within the
integrand as τ2 → 0. Instead, any divergence as τ2 → 0
arises through the accumulating contributions of the heavy
string states and would therefore naturally be interpreted
as a UV divergence. Thus, by trading F for F 0 through
Eq. (4.1), we see that we can always mathematically recast
what would naively appear to be an IR divergence as
τ2 → ∞ into what would naively appear to be a UV
divergence as τ2 → 0—all without disturbing the integrand
of our amplitude in any way. A similar conclusion holds
for the many other F 00 domains that could equivalently
have been chosen for other choices of the modular
transformation γ.
This is a fundamental observation. When we calculate

an amplitude in string theory, we are equipped with an
integrand which reflects the spectrum of string states but we
must choose an appropriate fundamental domain of the
modular group. This choice is not something dictated
within the theory itself, but instead amounts to a convention
which is adopted for the sake of performing a calculation.
It is possible, of course, that the amplitude in question
diverges. As we have seen, if we choose the fundamental
domain F as defined in Eq. (2.24) then this divergence will

manifest itself as an IR divergence. However, if we chooseF 0
as our fundamental domain, this same divergence of the
amplitude will manifest itself as a UV divergence. Both
interpretations are equally valid because the divergence of a
one-loop modular-invariant string amplitude is neither
intrinsically UV nor intrinsically IR. Indeed, such a diver-
gence is a property of the amplitude itself and is not intrinsi-
cally tied to anyparticular valueof τ. Such adivergence is then
merely represented as a UVor IR divergence depending on
our choice of a region of integration.
This observation can also be understood through a

comparison with our expectations from quantum field
theory. As we have seen in Eq. (3.7), there is a tight
relation between the fundamental domain F and the strip S
defined in Eq. (3.3): essentially F is a “folded” version of
S. Likewise, the modular-invariant integrand FðτÞ that is
integrated over F is nothing but the sum of the images
of the noninvariant integrand which would be integrated
over S. Thus, through the unfolding procedure in Eq. (3.7),
we have two equivalent representations for the same physics.
These are often called the F - and S-representations.
It is through theS-representation that we can most directly

make contact with the results that would come from a
quantum field theory based on point particles. Within the
S-representation, we can identify τ2 as the Schwinger
proper-time parameter, with τ2 → ∞ corresponding to the
field-theoretic IR limit and with τ2 → 0 corresponding to the
field-theoretic UV limit. Indeed, within field theory these
limits are physically distinct, just as they are geometrically
distinct within the strip. However, upon folding the strip S
into the fundamental domainF , we see that both the UVand
IR field-theoretic regions within S are together mapped onto
the τ2 → ∞ region within F . Indeed, the distinct UVand IR
regions of the strip S are now “folded” so as to lie directly on
top of each other within F . Thus, within the F -representa-
tion, the τ2 → ∞ limit in some sense represents both the UV
and IR field-theory limits simultaneously—limits which
would have been viewed as distinct within field theory
but which are now related to each other in string theory
through modular invariance. An identical argument also
holds for the τ2 → 0 region within F 0.
We can therefore summarize the situation as follows. For

a modular-invariant string-theoretic amplitude there is only
one kind of divergence. It can be represented as either a UV
divergence or an IR divergence depending on our choice of
fundamental domain (region of integration). However, in
either case, this single string-theoretic divergence can be
mapped back to what can be considered a modular-
invariant combination of UV and IR field-theoretic diver-
gences in field theory (i.e., on the strip S). Indeed, we may
schematically write

IRF ¼ UVF 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
string theory

⇔ IRS ⊕ UVS|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
field theory

ð4:3Þ

CALCULATING THE HIGGS MASS IN STRING THEORY PHYS. REV. D 104, 126032 (2021)

126032-23



where “⊕” signifies a modular-invariant combination. We
shall obtain an explicit example of such a combination
below. It is ultimately in this way, through Eq. (4.3), that
our modular-invariant string theory loses its ability to
distinguish between UV and IR physics. We will discuss
these issues further in Sec. VI.
Our discussion in this paper has thus far been formulated

with F chosen as our fundamental domain. In this way we
have been implicitly casting our string-theoretic divergences
as infrared. In the following, we shall therefore continue
along this line and attach corresponding physical inter-
pretations to our mathematical results as far as possible.
However, we shall also occasionally indicate howour results
might alternatively appear within the F 0-representation, or
within the unfolded S-representation of ordinary quantum
field theory. This will ultimately be important for extracting
an EFT for the Higgs mass, for understanding how our
Higgs mass “runs” within such an EFT, and for eventually
interpreting our results in terms of a stringy effective
potential.
One further comment regarding the nature of these

divergences is in order. The above discussion has focused
on the manner in which modular invariance mixes UV and
IR divergences when passing from field theory to string
theory. However, it is also important to remember that
modular invariance likewise affects the strengths of these
divergences. To understand this, we recall from Eq. (3.6)
that the strip S, which serves as the field-theoretic region of
integration, is nothing but the sum of the images of F , a
string-theoretic region of integration, under each of the
modular transformations γ in the coset Γ∞nΓ. However,
there is an infinite number of such modular transformations
within this coset. This means, in essence, that our string-
theoretic divergences (if any) are added together an infinite
number of times when F is unfolded into S, implying that
the resulting field-theoretic divergences are far more severe
than those of the string. Phrased somewhat differently, we
see that modular invariance softens a given field-theoretic
divergence by allowing us to reinterpret part of this
divergence as resulting from an infinity of identical copies
of a weaker (modular-invariant) string divergence, where-
upon we are authorized to select only one such copy.
This observation is completely analogous to what

happens within field theory in the presence of a gauge
symmetry. If we were to disregard the gauge symmetry
when calculating a field-theoretic amplitude, we would
integrate over an infinite number of gauge slices when
performing our path integrals. This would result in diver-
gences which are spuriously severe. However, modular
invariance is similar to gauge symmetry in the sense that
both represent redundancies of description. (In the case of
modular invariance, the redundancy arises from the fact that
all values of γ · τ for γ ∈ Γ correspond to the same world
sheet torus.) In a modular-invariant theory, we therefore
divide out by the (infinite) volume of the redundancy coset

Γ∞nΓ and consider only one modular-invariant “slice.”
Indeed, this is precisely what is happening when we pass
from S to F (or any of its images) as the appropriate region
of integration in a modular-invariant theory, where the
particular choice of image is nothing but the particular
choice of slice. This passage from S to a particular modular-
invariant slice then softens our field-theoretic divergences
and in some cases even eliminates them entirely.
We have already seen one example of this phenomenon:

the one-loop vacuum energy (cosmological constant) Λ is
badly divergent in quantum field theory, yet finite in any
tachyon-free closed-string theory. Indeed, it is modular
invariance which is alone responsible for this phenomenon.
As we shall see, a similar softening of divergences also
occurs for the Higgs mass.
We conclude this discussion with one additional com-

ment. It is a common assertion that string theory lacks UV
divergences. The rationale usually provided for this is that
string theory intrinsically has a minimum length scale,
namely M−1

s , and that this provides a “cutoff” that elim-
inates all physics from arbitrarily short length scales and
thereby eliminates the associated UV divergences.
However, this argument fails to acknowledge that IR dive-
rgences may still remain, and of course in a modular-
invariant theory the UV and IR divergences are mixed.
Indeed, as we have explained, there is no modular-invariant
way of disentangling these two kinds of divergences. Thus
string theory is not free of divergences. These divergences
are simply softer than they would have been in field theory.

B. The divergence structure of the Higgs mass

With the above comments in mind, we now consider
the divergence structure of the Higgs mass. We begin by
recalling from Eq. (2.55) that the Higgs massmϕ within any
four-dimensional heterotic string is given by

m2
ϕ ¼ −

M2

2
ðhX 1ai þ hX1bi þ hX2iÞ þ

ξ

4π2
Λ
M2

ð4:4Þ

where

X1a ≡ τ2
π
ðQ̃t

jQh þQt
jQ̃hÞ;

X1b ≡ −
τ2
π
ðQ2

h þ Q̃2
hÞ;

X2 ≡ τ22ðQt
RQh −Qt

LQ̃hÞ2
¼ 4τ22ðQt

RQhÞ2 ¼ 4τ22ðQt
LQ̃hÞ2 ð4:5Þ

and where Λ is the one-loop cosmological constant. Note
that we have explicitly separated those terms X1a and X1b
which are quadratic in charge insertions from those terms
X2 which are quartic, as these will shortly play very
different roles. Moreover, within the quadratic terms, we
have further distinguished those insertions X1a within
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which each term consists of a paired contribution of a left-
moving charge with a right-moving charge from those
insertions X1b in which each term consists of two charges
which are both either left- or right-moving. Indeed,
we recall from Sec. II that only hX1ai and the sum
hX1bi þ hX2i are modular invariant; in particular, hX 1bi
and hX2i are the modular completions of each other and
thus neither is modular invariant by itself. That said, it will
prove convenient in this section to simply define

X1 ≡ X1a þ X1b

¼ τ2
π
ðQ̃t

jQh þQt
jQ̃h −Q2

h − Q̃2
hÞ; ð4:6Þ

so long as we remember that only the full combination
hX1i þ hX2i is modular invariant.
As discussed in Sec. II, these results are completely

general and apply to any scalar ϕ whose VEV determines
the vacuum structure of the theory. Indeed, the various
charge insertions Qh, Q̃h, Qj, and Q̃j in Eq. (4.5) are
defined in Eqs. (2.30) and (2.31) in terms of the T -matrices
which encapsulate the relevant information concerning
specific scalar under study.
Unlike the other terms in Eq. (4.4), the final term Λ

emerges as the result of a universal shift in the background
moduli. As such, this quantity is wholly independent of the
specific T -matrices, and merely provides a uniform shift to
the masses of all scalars in the theory regardless of the
specific roles these scalars might play in breaking gauge
symmetries or otherwise affecting the vacuum state of
the theory. In other words, Λ provides what is essentially a
mere “background” contribution to our scalar masses.
Moreover, as the one-loop cosmological constant of the
theory, Λ is an independent physical observable unto itself.
For this reason, we shall defer our discussion of Λ to
Sec. IV E 2 and focus instead on the effects coming from
the X i insertions in Eq. (4.4).
In order to make use of the machinery in Sec. III, we

must first understand the divergence structure that can arise
from each of these X i insertions as τ2 → ∞. For any string
model in four spacetime dimensions, the original partition
function prior to anyX i insertions has the form indicated in
Eq. (2.1), with an overall factor of τ−12 . Thus, the insertion
of X1 leads to integrands without a leading factor of τ2,
while the insertion of X2 leads to integrands with a leading
factor of τþ1

2 .
Determining the possible divergences as τ2 → ∞

requires that we also understand the spectrum of low-lying
states that contribute to these integrands. We shall, of
course, assume that our string model is free of of physical
(on-shell) tachyons. Thus, expanding the partition function
Z of our string model as in Eq. (3.2) with k ¼ −1, we
necessarily have ann ¼ 0 for all n < 0 in Eq. (3.2).
There is, however, an off-shell tachyonic state which must

always appear within the spectrum of any self-consistent

heterotic string model: this is the so-called proto-graviton [9]
with ðm; nÞ ¼ ð0;−1Þ, and no possible Gliozzi-Scherk-
Olive projection can eliminate this state from the spectrum.
Although this state is necessarily a singlet under all of the
gauge symmetries of the model, it transforms as a vector
under the spacetime Lorentz group. Consequently the
degrees of freedom that compose this state have nonvani-
shing charge vectors of the form

Qproto-graviton ¼ ð022j � 1; 09Þ ð4:7Þ

where we have written this charge vector in the same basis as
used in Eq. (2.21), with the nonzero charge component in
Eq. (4.7) lying along the spacetime-statistics direction
discussed in Sec. II C.
Because of this nonzero charge component, the proto-

graviton state has the possibility of contributing to one-loop
string amplitudes even when certain charge insertions
occur. However, we have seen in Eq. (2.21) that the
T -matrices appropriate for shifts in the Higgs VEV do
not disturb the spin-statistics of the states in the spectrum,
and thus necessarily have zeros along the corresponding
columns and rows. Indeed, these zeros are a general feature
which would apply to all such T -matrices regardless of the
specific Higgs scalar under study or its particular gauge
embedding. As a result, the would-be contributions from
the proto-graviton state do not survive either of the X i
insertions in Eq. (4.5). Indeed, similar arguments also apply
to potential contributions from the proto-gravitino states
(such as would appear in the spectra of string models
exhibiting spacetime supersymmetry).
In general, a heterotic-string model can also contain other

off-shell tachyonic ðm; nÞ states withm ≠ n butmþ n < 0.
Unlike the proto-graviton state with ðm; nÞ ¼ ð0;−1Þ, such
states would generally have ðm; nÞ ¼ ðkþ 1; kÞ where
−1 < k < −1=2. However, even if a given string model
were to contain such states, these states—like the proto-
graviton state—would also likely not have nonzero charges
in the appropriate Higgs directions. Indeed, this closely
mirrors the situation that emerges for the analogous calcu-
lation of string threshold corrections in a variety of semi-
realistic string models, as discussed in Ref. [26], where it
was explicitly demonstrated that none of the potential off-
shell tachyonic states that appeared in such models carried
the sorts of nontrivial gauge charges that were relevant
for the corresponding gauge threshold calculations. We shall
therefore make the same assumption here.
The net result, then, is that the lightest states that can

contribute in the presence of the X i insertions are the
massless on-shell string states. These states contribute to
the ðm; nÞ ¼ ð0; 0Þ term in the integrand, and thus their
contributions cause the integrand to scale as τk2 in the
τ2 → ∞ limit, where k ¼ 0 for the X1 insertion and k ¼ 1
for the X2 insertion. Moreover, all heavier states make
contributions which are exponentially suppressed as
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τ2 → ∞, regardless of the τk2 prefactor, and thus do not lead
to divergences in this limit. We thus see that the X1 and X2

insertions together produce an integrand exhibiting the
τ2 → ∞ divergence structure given in Eq. (3.18), where we
now identify

c0 ¼ −
1

2
M2 Str

M¼0
X1;

c1 ¼ −
1

2
M2 Str

M¼0
X2: ð4:8Þ

Here the Xi are the same as the charge insertions X i but
without their leading τ2 prefactors:

X1 ≡ τ−12 X1; X2 ≡ τ−22 X 2: ð4:9Þ

Likewise, in writing the expressions in Eq. (4.8) we are
introducing the supertrace notation

StrA≡ X
physical i

ð−1ÞFiAi ð4:10Þ

where the sum is over the physical states i in the string
spectrum, where Fi is the spacetime fermion number of
state i, and where Ai is the value of A for that state. Note
that the off-shell string states with m ≠ n are not propa-
gating string degrees of freedom and thus our definition for
the supertrace “Str” in Eq. (4.10) does not include them.
The supertrace “Str” therefore includes the contributions
from only those string states which have direct field-theory
analogs. In Eq. (4.8) the “M ¼ 0” subscripts on “Str”
indicate that these supertraces are further restricted to
include only those states which are massless. We thus
see that the divergence in the Higgs mass arises, not
unexpectedly, from the contributions of massless string
states (specifically those massless states which are charged
under the different Xi). This is exactly as we expect for an
infrared divergence. However, as discussed in Sec. IVA,
the interpretation of this divergence as being infrared in
nature and arising from massless states depends crucially
on our choice to work in the F -representation.
Given the divergence structure in Eq. (3.18) with

coefficients given in Eq. (4.8), we see that our expression
for the Higgs mass in Eq. (4.4) is generically logarithmi-
cally divergent as τ2 → ∞ (and finite only if c1 ∼ Str

M¼0
X2

happens to vanish within a particular string model). We
thus see that
• Just as the one-loop vacuum energy in any tachyon-
free closed-string theory is finite as a result of modular
invariance, the corresponding Higgs mass is at most
logarithmically divergent.

Modular invariance has thus induced a significant softening
of the Higgs divergence, reducing what would have been
a quadratic UV Higgs divergence in field theory into a
logarithmic Higgs divergence in string theory. However,

even though the Higgs divergence has been softened within
Eq. (4.4), we must still regulate the logarithmic divergence
that remains. In the following we shall do this using the
regulators discussed in Sec. III and interpret the resulting
expressions in terms of an EFT. Because each of these
regulators has different strengths and weaknesses, we shall
apply each of these regulators in turn. Comparing the
corresponding results will ultimately enable us to under-
stand the full power of the modular-invariant regulator.

C. Results using the minimal regulator

Using the minimal regulator discussed in Sec. III B 1, we
can regulate the Higgs mass in Eq. (4.4) to take the form

m̃2
ϕ ¼ −

1

2
M2 lim

t→∞
½hX 1it þ hX2it

− ð Str
M¼0

X2Þ log t� þ
ξ

4π2
Λ
M2

ð4:11Þ

where, in analogy with Eq. (2.52), we have now defined

hAit ≡
Z
F t

d2τ
τ22

τ−12
η̄12η24

X
QL;QR

ð−1ÞFAq̄Q2
R=2qQ

2
L=2 ð4:12Þ

where F t is the truncated domain of integration discussed
above Eq. (3.15). Note that unlike m2

ϕ in Eq. (4.4), our
expression for the regulated m̃2

ϕ is manifestly finite, as the
logarithmic divergence arising due to the massless string
states charged under X2 has been explicitly excised. Indeed,
this explicit subtraction of the contributions from massless
states is similar to what occurs in the calculation of string-
theoretic gauge threshold corrections in Ref. [1] and in the
calculation of string-theoretic kinetic mixing in Ref. [27].
While the expectation values hX ii in Eq. (4.11) receive

contributions from both physical and unphysical string
states, our results from Sec. III B 1 allow us to express
m̃2

ϕ purely in terms of physical string states. Indeed,
disregarding the contributions from the finite Λ-term in
Eq. (4.4), we find that our unregulated physical-state trace
gðτ2Þ is given by

gðτ2Þ ¼ −
1

2
M2½StrðX1 þ τ2X2Þe−πα0M2τ2 �; ð4:13Þ

consistent with the divergence structureΦgðτ2Þ ¼ c0 þ c1τ2
discussed above. Our regulated physical-state trace g̃ðτ2Þ in
Eq. (3.16) is then given by

g̃ðτ2Þ≡ −
1

2
M2fStr½ðX1 þ τ2X2Þe−πα0M2τ2 �

− Str
M¼0

X1 − ð Str
M¼0

X2Þτ2g

¼ −
1

2
M2 Str

M>0
½ðX1 þ τ2X2Þe−πα0M2τ2 �; ð4:14Þ
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and thus we see that only the massive string states contribute
to g̃ðτ2Þ. However, integrating our result for g̃ðτ2Þ in
Eq. (4.14) over τ2 and taking the residue at s ¼ 1 as in
Eq. (3.21), we find

Res
s¼1

Z
∞

0

dτ2 τs−22 g̃ðτ2Þ

¼ −
1

2
M2Res

s¼1
fΓðs − 1Þ Str

M>0
½X1ðπα0M2Þ1−s�

þ ΓðsÞ Str
M>0

½X2ðπα0M2Þ−s�g

¼ −
1

2
M2 Str

M>0
X1: ð4:15Þ

Thus taking the residue has the effect of further projecting
out from the g̃ðτ2Þ term the contributions that emerge from
the X2 insertion. Following Eq. (3.21) we then obtain our
final result for the regulated Higgs mass:

m̃2
ϕ ¼ −

1

2
M2

�
π

3
Str
M>0

X1 þ
π

3
Str
M¼0

X1 þ ð Str
M¼0

X2Þ log 4πe−γ
�

¼ −
1

2
M2

�
π

3
StrX1 þ ð Str

M¼0
X2Þ log 4πe−γ

�
ð4:16Þ

where we have not displayed the additional universal Λ-term
that appears in Eq. (4.11). Note, in particular, that the
contributions from the massless states within the X1 inser-
tion, after having been subtracted in Eq. (4.14), have been
restored in Eq. (4.16). This is precisely in accord with our
expectations regarding the role of the c0 parameter, as
discussed below Eq. (3.21).
One important comment is in order. In our derivation

in Eq. (4.15), we implicitly assumed that the residue of
the supertrace sum is the same as the supertrace sum of
the individual residues. This allowed us to exchange the
order of the supertrace-summation and residue-extraction
procedures. This kind of calculation will occur repeatedly
throughout this paper, and we shall do this in each instance.
This exchange of ordering is justified because we are
working within a regulated theory in which there are no
additional divergences that might arise from the supertrace
sum beyond those which were already encapsulated within
our original assertion that the Higgs mass has at most a
logarithmic divergence when Str

M¼0
X2 ≠ 0, or equivalently

that gðτ2Þ diverges no more rapidly than c0 þ c1τ2 as
τ2 → ∞. This will be discussed further in Sec. VI.
We see, then, that use of the minimal regulator discussed

in Sec. III B 1 leads to a final parameter-independent
expression for the Higgs mass purely in terms of the
contributions of physical string states. Moreover, this
expression eliminates the explicit contributions from the
massive states within the quartic insertionX2. This initially
surprising observation makes sense if we think of the
logarithmic divergence of m2

ϕ as an ultraviolet one, given

that the contributions of the massive states to the quartic
terms are the contributions which are expected to grow the
most rapidly as we proceed upward through string spectrum.
Despite the form of Eq. (4.16), we note that m̃2

ϕ is not
actually insensitive to the massive spectrum resulting from
the X2 insertion, just as m̃2

ϕ is not insensitive to all of the
unphysical string states whose contributions also originally
appeared within Eq. (4.11). Indeed all of these states—
along with the full spectrum of physical states from the X1

insertion—are part of what makes our original expression
for m2

ϕ invariant under the fundamental modular symmetry
which lies at the core of the procedure we have followed in
casting m̃2

ϕ as a supertrace over only physical string states.
Indeed, as we have already seen in Sec. II E, the insertion
X1 is intrinsically part of the modular completion of X 2,
and vice versa. We should therefore simply interpret the
result in Eq. (4.16) as telling us that modular invariance is a
sufficiently powerful symmetry that the spectra resulting
from the X1 and X2 insertions are no longer independently
adjustable, but rather are so locked together that it is
no longer necessary to explicitly sum over all of them
independently when expressing our regulated Higgs mass
m̃2

ϕ in this manner.
That said, it is significant that our regulated result for the

Higgs mass in Eq. (4.16) treatsX1 andX2 in fundamentally
different ways. As noted below Eq. (4.5), only the strict
combination X1 þ X2 preserves modular invariance.
Indeed, X1 and X2 appeared symmetrically in our original
unregulated expression in Eq. (4.4). We therefore see that
although the string spectrum itself is strictly modular
invariant, as discussed above, our regulated result for the
Higgs mass in Eq. (4.16) is not. Of course, this outcome is
completely expected because our regulator in this case is
built upon a method for subtracting divergences which is
not modular invariant.

D. Results using the nonminimal regulator

Let us now investigate how these results change if we
instead regulate our Higgs mass using the modified non-
minimal regulator of Eqs. (3.28) and (3.29). As discussed in
Sec. III, this regulator—like the minimal regulator—is also
not modular invariant. However, it will lead to a richer
structure than that obtained from the minimal regulator—a
structure which will enable us to make a comparison with
field-theoretic expectations.
Using the modified nonminimal regulator, we follow

Eq. (3.28) in defining the regulated form of our logarithmi-
cally divergent Higgs mass m2

ϕ as

m̂2
ϕðtÞ≡ −

1

2
M2

�
hX1i þ hX2i −

Z
F−F t

d2τ
τ22

τ2ð Str
M¼0

X2Þ
�

þ ξ

4π2
Λ
M2

: ð4:17Þ
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Unlike our expression for m̃2
ϕ in Eq. (4.11) which employed

the minimal regulator, we see that this new regulated Higgs
mass m̂2

ϕðtÞ is a function of an arbitrary dimensionless
parameter 1 ≤ t < ∞. Given the discussion in Sec. III B 2,
along with our result for the minimal regulator in
Eq. (4.16), it then follows that m̂2

ϕðtÞ can be expressed
purely in terms of physical string states as

m̂2
ϕðtÞ ¼ −

1

2
M2

�
π

3
StrX1 þ ð Str

M¼0
X2Þ log 4πte−γ

�
ð4:18Þ

where we have again refrained from displaying the addi-
tional universal Λ-term. Indeed, the extra crucial factor
within Eq. (4.18) relative to the result in Eq. (4.16) is a new
logarithmic dependence on the regulator parameter t.
The expression for m̂2

ϕðtÞ in Eq. (4.18) is the exact string-
theoretic result arising from our nonminimal regulator. As
such, this result is complete unto itself for any 1 ≤ t < ∞
and requires no further manipulations. That said, we would
nevertheless like to broaden the discussion to make contact
with a potential field-theoretic interpretation. Toward this
end, we shall now make two further adaptations.
Normally, in an EFT, we divide our states into two

categories, “light” and “heavy,” with respect to some
physical scale μ. Within the EFT, those states which are
designated light then play a different role relative to those
which are designated heavy. However, because the boun-
dary between light and heavy is set in relation to the scale μ,
any calculation which distinguishes between these two
categories inevitably results in physical quantities (such as
Higgs masses) which depend on (or “run” with) the scale μ.
In other words, we would expect to obtain a regulated
Higgs mass m̂2

ϕðμÞ which is a function of the scale μ.
Moreover, given that our unregulated Higgs mass m2

ϕ is
only logarithmically divergent prior to regularization, we
would expect the regulated quantity m̂2

ϕðμÞ to have at most
a logarithmic dependence on μ. Indeed, such a relation
would be nothing but a renormalization-group equation
(RGE) for the Higgs mass.
Our string-theoretic result in Eq. (4.18) already resem-

bles such an RGE. Indeed, as stated above, there are only
two adaptations that we must make in order to turn this
into an actual RGE. First, we must somehow identify the
regulator parameter t which appears in Eq. (4.18) as
corresponding to a physical scale μ. Second, we wish to
generalize our notion of massless states—states which play
a special role in Eq. (4.18)—to states which are simply light
with respect to μ.
These two issues are intertwined and have a common

resolution. Recall that our string-theoretic calculation, as
outlined above, isolated the strictly massless states as
special based on the behavior of their potentially divergent
contributions as τ2 → ∞. Indeed, as we have seen,
the contributions from states with masses M > 0 have a

built-in Boltzmann-like suppression ∼e−πα0M2τ2 as τ2 → ∞,
while massless states do not. Thus massless states are
unprotected by the Boltzmann suppression factor as
τ2 → ∞, which is why their contributions are subtracted
as part of the regularization procedure.
Within the nonminimal regulator, however, we distin-

guish between two different ranges for τ2: one range with
1 ≤ τ2 ≤ t, and a second range with t ≤ τ2 < ∞. Only
within the second range do we subtract the contributions
from the massless states; indeed, massless states are
considered “safe” within the first range. But for any finite
t, it is possible that there are many light states which do not
have appreciable Boltzmann suppression factors at τ2 ¼ t.
Such light (or “effectively massless”) states are therefore
essentially indistinguishable from truly massless states as
far as their Boltzmann suppression factors are concerned.
Indeed, it is only as τ2 → ∞ that we can distinguish the
truly massless states relative to all the others.
This suggests that for any finite value of t, we can assess

whether a given state of massM is effectively light or heavy
according to the magnitude of its corresponding Boltzmann
suppression factor at τ2 ¼ t within the partition function.
Recalling that the contribution from a physical string
state of mass M to the string partition function scales as
e−πα

0M2τ2 , we can establish an arbitrary criterion for the
magnitude of the Boltzmann suppression of a state with
mass M ¼ μ at the cutoff t:

e−πα
0μ2t ∼ e−ε ð4:19Þ

where ε ≥ 0 is an arbitrarily chosen dimensionless param-
eter. According to this criterion, states whose Boltzmann
factors at τ2 ¼ t exceed e−ε have not experienced signifi-
cant Boltzmann suppression and can then be considered
light relative to that choice of t, while all others can be
considered heavy. We thus find that our division between
light and heavy states can be demarcated by a running mass
scale μðtÞ defined as

μ2ðtÞ≡ ε

πα0t
: ð4:20Þ

Note, as expected, that μðtÞ → 0 as t → ∞. Thus, as
expected, the only states that can be considered light as
t → ∞ are those which are exactly massless.
Ultimately, the choice of ε determines an overall scale for

the mapping between t and μ and is thus a matter of
convention. For the sake of simplicity within Eq. (4.20) and
our subsequent expressions, we shall henceforth choose
ε ¼ π, whereupon Eq. (4.20) reduces to

μ2ðtÞ ¼ 1

α0t
: ð4:21Þ

With these adaptations, our result for the regulated Higgs
mass m̂2

ϕðtÞ in Eq. (4.18) can be rewritten as
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m̂2
ϕðμÞ ¼

ξ

4π2
Λ
M2

þ 1

2
M2

�
−
π

3
StrX1

þ ðStr
M≤μ

X2Þ log
�

μ2

M2�

��
ð4:22Þ

where we have defined

M2� ≡ 4πe−γM2
s ¼ 16π3e−γM2 ð4:23Þ

and where we have restored the additional universal Λ-term
in Eq. (4.22). We thus see that while the first two terms in
Eq. (4.22) are independent of μ and together constitute what
may be considered an overall threshold term, the logarith-
mic μ-dependence within m̂2

ϕðμÞ for any μ arises from those
physical string states which are charged under X2 with
masses M ≤ μ.
As we have seen, the enhanced nonminimal regulator

we are using here operates by explicitly subtracting the
contributions of the X2-charged massless states from all
regions τ2 ≥ t. This is a sharp cutoff, and it is natural to
wonder how such a cutoff actually maps back onto the
strip under the unfolding process. Indeed, answering
this question will give us some idea about how this sort
of cutoff might be interpreted in field-theoretic language.
As expected, imposing a sharp cutoff τ2 ≤ t within the F
representation produces both an IR cutoff as well as a UV
cutoff on the strip. The IR cutoff is inherited directly from
the string-theory cutoff and takes the same form τ2 ≤ t,
thereby excising all parts of the strip with τ2 exceeding t,
independent of τ1. However, the corresponding UV cutoff
is highly nontrivial and is actually sensitive to τ1 as well—a
degree of freedom that does not have a direct interpretation
in the field theory. Mathematically, this UV cutoff excises
from the strip that portion of the region [13]

∪
ða;cÞ¼1

Sa=c ð4:24Þ

which lies within the range −1=2 ≤ τ1 ≤ 1=2, where Sa=c
denotes the disk of radius ð2c2tÞ−1 which is tangent to the
τ2 ¼ 0 axis at τ1 ¼ a=c and where the union in Eq. (4.24)
includes all such disks for all relatively prime integers
ða; cÞ. Thus, as one approaches the τ2 ¼ 0 axis of the strip
from above, the excised region consists of an infinite series
of smaller and smaller disks which are all tangential to this
axis in an almost fractal-like pattern. Clearly, all points
which actually lie along the τ2 ¼ 0 axis with τ1 ∈ Q are
excised for any finite t (and strictly speaking the other
points along the τ2 ¼ 0 axis with τ1 ∉ Q are not even part
of the strip). Thus, through this highly unusual UV
regulator, all UV divergences on the strip are indeed
eliminated for any finite t. Of course, this excised UV
region is nothing but the image of the IR-excised region
τ2 ≥ t under all of the modular transformations (namely

those within the coset Γ∞nΓ) that play a role in building the
strip from F . However, in field-theoretic language this
amounts to a highly unusual UV regulator indeed.

E. Results using the modular-invariant regulator

Finally, we turn to the results for the Higgs mass that
are obtained using the fully modular-invariant regulator
Ĝρða; τ2Þ in Eq. (3.39). As we have stressed, only such
results can be viewed as faithful to the modular symmetry
that underlies closed-string theory, and therefore only such
results can be viewed as truly emerging from closed-string
theories.
We have seen in Eq. (4.4) that the string-theoretic Higgs

massm2
ϕ has two contributions: one of these stems from the

X i insertions and requires regularization, while the other—
namely the cosmological-constant term—is finite within
any tachyon-free modular-invariant theory and hence does
not. When discussing the possible regularizations of the
Higgs mass using the minimal and nonminimal regulators
in Secs. IV C and IV D, we simply carried the cosmologi-
cal-constant term along within our calculations and focused
on applying our regulators to the contributions with X i
insertions. This was adequate for the minimal and non-
minimal regulators because these regulators involve the
explicit subtraction of divergences and thus have no effect
on quantities which are already finite and therefore lack
divergences to be subtracted. Our modular-invariant regu-
lator, by contrast, operates by deforming the theory. Indeed,
this deformation has the effect of multiplying the partition
function of the theory by a new factor Ĝρða; τÞ. As such,
this regularization procedure can be expected to have an
effect even when acting on finite quantities such as Λ.
When regularizing the Higgs mass in this manner, we must
therefore consider how this regulator affects both classes of
Higgs-mass contributions—those involving nontrivial X i
insertions, and those coming from the cosmological con-
stant. Indeed, with m̂2

ϕðρ; aÞjX ;Λ respectively denoting these

two classes of contributions to the Ĝ-regulated version
m̂2

ϕðρ; aÞ of the otherwise-divergent string-theoretic Higgs
mass in Eq. (4.4), we can write

m̂2
ϕðρ; aÞ≡ m̂2

ϕðρ; aÞjX þ m̂2
ϕðρ; aÞjΛ

≡ m̂2
ϕðρ; aÞjX þ ξ

4π2M2
Λ̂ðρ; aÞ: ð4:25Þ

We shall now consider each of these contributions in turn.

1. Contributions from terms with charge insertions

Our first contribution in Eq. (4.25) is given by

m̂2
ϕðρ; aÞjX ≡ −

M2

2
hX1 þ X2iG ð4:26Þ
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where

hAiG ≡
Z
F

d2τ
τ22

��
τ−12

X
m;n

ð−1ÞFAq̄mqn
�
Ĝρða; τÞ

	
ð4:27Þ

with m≡ α0M2
R=4, n≡ α0M2

L=4. Indeed, the insertion of
Ĝρða; τÞ into the integrand of Eq. (4.27) is what tames the
logarithmic divergence. Following the result in Eq. (3.35)
we then find that m̂2

ϕðρ; aÞ can be expressed as

m̃2
ϕðρ; aÞjX ¼ π

3
Res
s¼1

Z
∞

0

dτ2 τs−22 ĝρða; τ2Þ ð4:28Þ

where

ĝρða; τ2Þ≡ −
M2

2

Z
1=2

−1=2
dτ1

×

��X
m;n

ð−1ÞFðX1 þ τ2X2Þq̄mqn
�
Ĝρða; τÞ

	

≈ −
M2

2
½StrðX1 þ τ2X2Þe−πα0M2τ2 �Ĝρða; τ2Þ:

ð4:29Þ

Note that in passing to the approximate factorized form in
the final expression of Eq. (4.29), we have followed the
result in Eq. (3.37) and explicitly restricted our attention to
those cases with a ≪ 1, as appropriate for the regulator
function Ĝρða; τÞ. Indeed, the term within square brackets
in the third line of Eq. (4.51) is our desired supertrace over
physical string states, while the regulator function
Ĝρða; τ2Þ—an example of which is plotted in the right
panel of Fig. 1—generally eliminates the divergence that
would otherwise have arisen as τ2 → ∞ for any a > 0.
Moreover, we learn that as a consequence of the identity in
Eq. (3.38)—an identity which holds for Ĝ as well as for G
itself—the behavior shown in the right panel of Fig. 1 can
be symmetrically “reflected” through τ2 ¼ 1, resulting in
the same suppression behavior as τ2 → 0.
The next step is to substitute Eq. (4.29) back into

Eq. (4.28) and evaluate the residue at s ¼ 1. In general,
the presence of the regulator function Ĝρða; τ2Þ within
Eq. (4.29) renders this calculation somewhat intricate.
However, we know that Ĝρða; τ2Þ → 1 as a → 0. Indeed,
having already exploited our regulator in allowing us to
pass from Eq. (4.26) to Eq. (4.28), we see that taking a → 0
corresponds to the limit in which we subsequently remove
our regulator. Let us first focus on the contributions from
massive states. In the a → 0 limit, we then obtain

Res
s¼1

Z
∞

0

dτ2 τs−22 ĝρða; τ2Þ

¼ −
1

2
M2Res

s¼1
½Γðs − 1Þ Str

M>0
X1ðπα0M2Þ1−s

þ ΓðsÞ Str
M>0

X2ðπα0M2Þ−s�

¼ −
1

2
M2 Str

M>0
X1; ð4:30Þ

whereupon we find that the contribution from massive
states yields

M > 0∶ lim
a→0

m̂2
ϕðρ; aÞjX ¼ −

π

6
M2 Str

M>0
X1: ð4:31Þ

This result is independent of ρ. Moreover, as expected for
massive states, this contribution is finite. Of course, there
will also be contributions from massless states. In general,
these contributions are more subtle to evaluate, and we
know that as a → 0 the effective removal of the regulator
will lead to divergences coming from potentially nonzero
values of Str

M¼0
X2 (since it is the massless states which are

charged under X2 which cause the Higgs mass to diverge).
However, massless states charged under X1—like the
massive states—do not lead to divergences. We might
therefore imagine restricting our attention to cases with
Str
M¼0

X2 ¼ 0, and deforming our theory slightly so that these

massless X1-charged states accrue small nonzero masses.
In that case, the calculation in Eq. (4.30) continues to apply.
We can imagine removing this deformation without
encountering any divergences. This suggests that the full
result for the regulated Higgs mass in the a → 0 limit
should be the same as in Eq. (4.31), but with massless
X1-charged states also included. We therefore expect

lim
a→0

m̂2
ϕðρ; aÞjX ¼ −

π

6
M2StrX1 ð4:32Þ

in cases for which Str
M¼0

X2 ¼ 0. We shall rigorously confirm

this result below.
As discussed in Sec. III B 3, the two quantities ðρ; aÞ that

parametrize our modular-invariant regulator are analogous
to the quantity t that parametrized our nonminimal regu-
lator. Indeed, these quantities effectively specify the value
of the “cutoff” imposed by these regulators, and as such we
can view these quantities as corresponding to a floating
physical mass scale μ. This scale μ is defined in terms of t
for the nonminimal regulator in Eq. (4.21), and we have
already seen that maintaining alignment between this
regulator and our modular-invariant regulator requires that
we enforce the condition in Eq. (3.44). We shall therefore
identify a physical scale μ for our modular-invariant
regulator as
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μ2ðρ; aÞ≡ ρa2

α0
: ð4:33Þ

Since ρ ∼Oð1Þ, the a ≪ 1 region for our regulator corre-
sponds to the restricted region μ ≪ Ms.
The identification in Eq. (4.33) enables us to rewrite our

result in Eq. (4.32) in the more suggestive form

lim
μ→0

m̂2
ϕðμÞjX ¼ −

π

6
M2StrX1 ð4:34Þ

in cases for which Str
M¼0

X2 ¼ 0. In EFT language, we can

therefore regard this result as holding in the deep infrared.

The natural question that arises, then, is to determine
how our regulated Higgs mass m̂2

ϕðμÞ runs as a function of
the scale μ. In order to do this, we need to evaluate m̂2

ϕðρ; aÞ
as a function of a for small a ≪ 1 without taking the full
a → 0 limit.
As indicated above, this calculation is somewhat intricate

and is presented in Appendix A. The end result, given in
Eq. (A16), is an expression for m̂2

ϕðρ; aÞ which is both
exact and valid for all a. Using the identification in
Eq. (4.33) and henceforth taking the benchmark value
ρ ¼ 2, the result in Eq. (A16) can then be expressed in
terms of the scale μ, yielding

m̂2
ϕðμÞjX ¼ M2

1þ μ2=M2
s

�
Str
M¼0

X1

�
−
π

6
ð1þ μ2=M2

sÞ
�
þ Str

M¼0
X2

�
log

�
μ

2
ffiffiffi
2

p
eMs

��

þ Str
M>0

X1

�
−
π

6
−

1

2π

�
M
M

�
2
�
Kð0;1Þ

0

�
2

ffiffiffi
2

p
πM
μ

�
þKð0;1Þ

2

�
2

ffiffiffi
2

p
πM
μ

��	

þ Str
M>0

X2

�
2Kð0;1Þ

0

�
2

ffiffiffi
2

p
πM
μ

�
−Kð1;2Þ

1

�
2

ffiffiffi
2

p
πM
μ

��	
ð4:35Þ

where we have defined the Bessel-function combinations

Kðn;pÞ
ν ðzÞ≡X∞

r¼1

ðrzÞn½Kνðrz=ρÞ − ρpKνðrzÞ�; ð4:36Þ

with KνðzÞ denoting the modified Bessel function of the
second kind. We see, then, that the contributions to the
running of m̂2

ϕðμÞjX from the different states in our theory
depend rather nontrivially on their masses and on their
various X1 and X2 charges, with the contributions from
each string state with nonzero massM governed by various
combinations of Bessel functions KνðzÞ with arguments
z ∼M=μ.
There is a plethora of physics wrapped within Eq. (4.35),

and we shall unpack this result in several stages. First, it is
straightforward to take the μ → 0 limit of Eq. (4.35) in
order to verify our expectation in Eq. (4.32). Indeed, in the
μ → 0 limit, we have z → ∞ for all M > 0. Since

Kðn;pÞ
ν ðzÞ ∼

ffiffiffiffiffiffi
πρ

2

r
zn−1=2e−z=ρ as z → ∞; ð4:37Þ

it then follows that all of the terms involving Bessel
functions in Eq. (4.35) vanish exponentially in the
μ → 0 limit. For cases in which Str

M¼0
X2 ¼ 0 [i.e., cases

in which the original Higgs mass m2
ϕ is finite, with no

massless states charged under X2], we thus reproduce the
result in Eq. (4.32).

Using the result in Eq. (4.35), we can also study the
running of m̂2

ϕðμÞ as a function of μ > 0. Of course, given

that our Ĝ function acts as a regulator only for a ≪ 1, our
analysis is restricted to the μ ≪ Ms region. Let us first
concentrate on the contributions from the terms within
Eq. (4.35) that do not involve Bessel functions. These
contributions are given by

M2

�
−
π

6
StrX1 þ Str

M¼0
X2 log

�
μ

2
ffiffiffi
2

p
eMs

�	
: ð4:38Þ

From this we see that our deep-infrared contribution to m̂2
ϕ

in Eq. (4.32) actually persists as an essentially constant
contribution for all scales μ ≪ Ms. We also see from
Eq. (4.38) that each massless string state also contributes
an additional logarithmic running which is proportional to
its X2 charge and which persists all the way into the deep
infrared. Given that massless X2-charged states are pre-
cisely the states that led to the original logarithmic
divergence in the unregulated Higgs mass m2

ϕ, this loga-
rithmic running is completely expected. Indeed, it formally
leads to a divergence in our regulated Higgs mass m̂2

ϕðμÞ in
the full μ → 0 limit (at which our regulator is effectively
removed), but otherwise produces a finite contribution for
all other μ > 0. The issues connected with this logarithm
are actually no different from those that arise in an ordinary
field-theoretic calculation. We shall discuss these issues in
more detail in Sec. VI but in the meantime this term will not
concern us further.
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The remaining contributions are those arising from the
terms within Eq. (4.35) involving supertraces over Bessel
functions. Although our analysis is restricted to the μ ≪ Ms
region, our supertraces receive contributions from the entire
string spectrum. This necessarily includes states with
masses M ≳Ms, but may also include potentially light
states with nonzero masses far below Ms. The existence of
such light states depends on our string construction and on
the specific string model in question. Indeed, such states are
particularly relevant for the kinds of string models that
motivate our analysis, namely (nonsupersymmetric) string
models in which the Standard Model is realized directly
within the low-energy spectrum.
The Bessel functions corresponding to states with

masses M ≳Ms have arguments z ∼M=μ ≫ 1 when
μ ≪ Ms. As a result, in accordance with Eqs. (4.35) and
(4.37), the contributions from these states to the running of
m̂2

ϕðμÞjX are exponentially suppressed. It then follows that
the dominant contributions to the Bessel-function running
of m̂ϕðμÞ within the μ ≪ Ms region come from the
correspondingly light states, i.e., states with masses
M ≪ Ms. However, for states with masses M ≪ Ms, we
see from Eq. (4.35) that the corresponding Bessel-function
contributions which are proportional to theirX1 charges are
all suppressed by a factor ðM=MÞ2. We thus conclude that
the contribution from a state of nonzero mass M ≪ Ms
within the string spectrum is sizable only when this state
carries a nonzeroX2 charge. Indeed, we see from Eq. (4.35)
that this contribution for each bosonic degree of freedom of
mass M is given by

2Kð0;1Þ
0 ðzÞ −Kð1;2Þ

1 ðzÞ ð4:39Þ

per unit of X2 charge, where z≡ 2
ffiffiffi
2

p
πM=μ.

In Fig. 2, we plot this contribution as a function of μ=M.
As expected, we see that states with M ≫ μ produce no
running and can be ignored—essentially they have been
“integrated out” of our theory at the scale μ and leave
behind only an exponential tail. By contrast, states with
M ≲ μ are still dynamical at the scale μ. We see from
Fig. 2 that their effective contributions are then effectively
logarithmic. Indeed, as z → 0, one can show that [28]

Kð0;1Þ
0 ðzÞ ∼ −

1

2
log zþ 1

2
½logð2πÞ − γ�;

Kð1;2Þ
1 ðzÞ ∼ 1 ð4:40Þ

where γ is the Euler-Mascheroni constant. This leads to an
asymptotic logarithmic running of the form

log

�
1ffiffiffi
2

p e−ðγþ1Þ μ
M

�
ð4:41Þ

for μ ≫ M in Fig. 2. Finally, between these two behaviors,
we see that the expression in Eq. (4.39) interpolates

smoothly and even gives rise to a transient “dip.” This is
a uniquely string-theoretic behavior resulting from the
specific combination of Bessel functions in Eq. (4.39).
Of course, the statistics factor ð−1ÞF within the supertrace
flips the sign of this contribution for degrees of freedom
which are fermionic.
Thus far we have focused on the Higgs-mass running, as

shown in Fig. 2, from a single massive string degree of
freedom of mass M. However, the contribution from
another string state with a different mass M0 can be simply
obtained by rigidly sliding this curve toward the left or right
(respectively corresponding to cases with M0 < M and
M0 > M, respectively). The complete supertrace contribu-
tion in Eq. (4.35) is then obtained by summing over all of
these curves, each with its appropriate horizontal displace-
ment and each weighted by the corresponding net (bosonic
minus fermionic) number of degrees of freedom. The
resulting net running from the final term within
Eq. (4.35) is therefore highly sensitive to the properties
of the massiveX2-charged part of the string spectrum. This
will be discussed further in Sec. IV E 3. Of course, as
discussed above, the contributions from states withM0 ≫ μ
are exponentially suppressed. Thus, for any μ, the only
states which contribute meaningfully to this Bessel-
function running of the Higgs mass are those with M ≲ μ.

FIG. 2. The expression in Eq. (4.39), plotted as a function of
μ=M. This quantity is the Bessel-function contribution per unit
X2 charge to the running of the regulated Higgs mass
m̂2

ϕðμÞjX=M2 from a bosonic state of nonzero mass M. This
contribution is universal for all μ=M and assumes only that
μ ≪ Ms. When μ ≫ M, the state is fully dynamical and produces
a running which is effectively logarithmic. By contrast, when
μ ≪ M, the state is heavier than the scale μ and is effectively
integrated out, thereby suppressing any contributions to the
running. Finally, within the intermediate μ ≈M region, the
Bessel-function expression in Eq. (4.39) provides a smooth
connection between these two asymptotic behaviors and even
gives rise to a transient “dip” in the overall running. Note that for
a fixed scale μ, adjusting the massM of the relevant state upward
or downward simply corresponds to shifting this curve rigidly to
the right or left, respectively. In this way one can imagine
summing over all such contributions to the running as one takes
the supertrace over the entire X2-charged string spectrum.
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Thus, combining these Bessel-function contributions
with those from Eq. (4.38) and keeping only those (leading)
terms which dominate whenM ≪ μ ≪ Ms, we see that we
can approximate the exact result in Eq. (4.35) as

m̂2
ϕðμÞjX ≈ −

π

6
M2StrX1 þM2 Str

M¼0
X2 log

�
μ

2
ffiffiffi
2

p
eMs

�

þM2 Str
0<M≲μX2 log

�
1ffiffiffi
2

p e−ðγþ1Þ μ
M

�
: ð4:42Þ

Interestingly, we see that to leading order, theX1 charges of
the string states only contribute to an overall constant term
in Eq. (4.42), and they do this for all states regardless of
their masses. By contrast, it is the X2 charges of the states
which induce a corresponding running, and this only occurs
for those states within the EFT at the scale μ—i.e., those
light states with masses M ≲ μ.
The net running produced by the final term in Eq. (4.42)

can exhibit a variety of behaviors. To understand this, let us
consider the behavior of this term as we increase μ from the
deep infrared. Of course, this term does not produce any
running at all until we reach μ ∼Mlightest, where Mlightest is
the mass of the lightest massive string state carrying a
nonzero X2 charge. This state then contributes a logarith-
mic running which persists for all higher μ. However, as μ
increases still further, additional X2-charged string states
enter the EFT and contribute their own individual loga-
rithmic contributions. Of course, if these additional states
have masses M ≫ Mlightest, the logarithmic nature of the
running shown in Fig. 2 from the state with mass Mlightest

will survive intact until μ ∼M. However, if the spectrum of
states is relatively dense beyond Mlightest, the logarithmic
contributions from each of these states must be added
together, leading to a far richer behavior.
One important set of string models exhibiting the

latter property are those involving a relatively large
compactification radius R. In such cases, we can identify
Mlightest ∼ 1=R, whereupon we expect an entire tower of
corresponding KK states of masses Mk ∼ k=R, k ∈ Zþ,
each sharing a common charge X2 and a common degen-
eracy of states g. For any scale μ, the final term in Eq. (4.42)
then takes the form

M2gX2

XμR
k¼1

log

�
1ffiffiffi
2

p e−ðγþ1Þ μR
k

�

¼ M2gX2

�
μR log

�
1ffiffiffi
2

p e−ðγþ1ÞμR
�
− logðμRÞ!

	

¼ M2gX2

�
log

�
1ffiffiffi
2

p e−ðγþ1Þ
�
þ 1

	
μR ð4:43Þ

where in passing to the third line we have used Stirling’s
approximation logN! ≈ N logN − N. We thus see that in

such cases our sum over logarithms actually produces a
power-law running. In this case the running is linear, but in
general the KK states associated with d large toroidally
compactified dimensions collectively yield a regulated
Higgs mass whose running scales as μd.
This phenomenon whereby a sum over KK states

deforms a running from logarithmic to power law is well
known from phenomenological studies of theories with
large extra dimensions, where it often plays a crucial role
(see, e.g., Refs. [29–31]). This phenomenon can ultimately
be understood from the observation that a large compacti-
fication radius effectively increases the overall spacetime
dimensionality of the theory, thereby shifting the mass
dimensions of quantities such as gauge couplings and
Higgs masses and simultaneously shifting their corres-
ponding runnings. Indeed, as discussed in detail in
Appendices A and B of Ref. [30] (and as illustrated in
Fig. 11 therein), the emergence of power-law running from
logarithmic running is surprisingly robust.
Of course, it may happen that the spectrum of light states

not only has a lightest massMlightest but also a heaviest mass
Mheaviest, with a significant mass gap beyond this before
reaching even heavier scales. If such a situation were to
arise (but clearly does not within the large extra-dimension
scenario described above), then the corresponding running
of m̂2

ϕðμÞjX would only be power law within the range
Mlightest ≲ μ≲Mheaviest. For μ > Mheaviest, by contrast, the
running would then revert back to logarithmic.
In summary, we see that while the first term within

Eq. (4.42) represents an overall constant contribution arising
from the entire spectrum of X1-charged states, the second
term represents an overall logarithmic contribution from
precisely the massless X2-charged states which were the
source of the original divergence of the unregulated Higgs
mass m2

ϕ. By contrast, the final term in Eq. (4.42) represents
the nontrivial contribution to the running from the massive
X2-charged states. As we have seen, the latter contribution
can exhibit a variety of behaviors, ranging from logarithmic
(in cases with relatively large mass splittings between the
lightest massive X2-charged states) to power law (in cases
with relatively small uniform mass splittings between such
states). Of course, depending on the details of the underlying
string spectrum, mixtures between these different behaviors
are also possible.

2. Contribution from the cosmological constant

Let us now turn to the second term in Eq. (4.25). This
contribution lacks X i insertions and arises from the
cosmological-constant term in Eq. (4.4). Although this
contribution is the result of a universal shift in the back-
ground moduli and is thus independent of the specific
T -matrices, we shall now demonstrate that it too can be
expressed as a supertrace over the physical string spectrum.
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It also develops a scale dependence when subjected to our
modular-invariant regulator.
Within the definition of Λ in Eq. (2.54), the integrand

function F ðτ; τ̄Þ is simply ð−M4=2ÞZðτ; τ̄Þ where
Zðτ; τ̄Þ is the partition function of the string in the
Higgsed phase. Of course, if this theory exhibits unbro-
ken spacetime supersymmetry, the contributions from
the bosonic states in the spectrum cancel level by level
against those from their fermionic superpartners. In such
cases we then have Z ¼ 0, implying Λ ¼ 0. Otherwise,
for heterotic strings, we necessarily have Z ≠ 0. Indeed,
it is a theorem (first introduced in Ref. [9] and discussed
more recently, e.g., in Ref. [32]) that any nonsupersym-
metric heterotic-string model in D spacetime dimensions
must contain an off-shell tachyonic proto-graviton state
whose contribution to the partition function remains
uncanceled. This then results in a string partition
function whose power-series expansion has the leading
behavior Z ¼ ðD − 2Þ=qþ � � �.
In principle this proto-graviton contributionwould appear

to introduce an exponential divergence as τ2→∞, there-
by taking us beyond the realm of validity for the math-
ematical techniques presented in Sec. III A. However, this
tachyonic state is off-shell and thus does not appear in the
actual physical string spectrum. Indeed, as long as there
are no additional on-shell tachyons present in the theory,
the corresponding integral Λ is fully convergent because
the integral over the fundamental domain F comes with
an explicit instruction that we are to integrate across τ1 in
the τ2 > 1 region of F before integrating over τ2. This
integration therefore prevents the proto-graviton state
from contributing to Λ within the τ2 > 1 region of
integration, and likewise prevents this state from contrib-
uting to gðτ2Þ.
Assuming, therefore, that we can disregard the proto-

graviton contribution to Z as τ2 → ∞, we find that Z ∼ τ−12
as τ2 → ∞. ThusZ is effectively of rapid decay and we can
use the original Rankin-Selberg results in Eq. (3.12). In this
connection, we note that this assumption regarding the
proto-graviton contribution finds additional independent
support through the arguments presented in Ref. [16] which
demonstrate that any contributions from the proto-graviton
beyond those in Eq. (3.12) are suppressed by an infinite
volume factor in all spacetime dimensionsD > 2. A similar
result is also true in string models with exponentially
suppressed cosmological constants [32].
With Z taking the form in Eq. (3.2) and with the massM

of each physical string state identified via α0M2 ¼
2ðmþ nÞ ¼ 4m, we then have

gðτ2Þ ¼ −
M4

2
τ−12 Str e−πα

0M2τ2 : ð4:44Þ

Inserting this result into Eq. (3.12) and performing the τ2
integral then yields [18]

Λ ¼ −
M4

2

π

3
Res
s¼1

½π2−sΓðs − 2ÞStrðα0M2Þ2−s�

¼ M4

2

π2

3
Str ðα0M2Þ

¼ 1

24
M2StrM2: ð4:45Þ

We thus see thatΛ is given as a universal supertrace over all
physical string states, and not only those with specific
charges relative to the Higgs field.
As evident from the form of the final supertrace in

Eq. (4.45), massless states do not ultimately contribute
within this expression for Λ. Strictly speaking, our deri-
vation in Eq. (4.45) already implicitly assumed this, given
that the intermediate steps in Eq. (4.45) are valid only for
M > 0. However, it is easy to see that the contributions
from massless states lead to a τ2-integral whose divergence
has no residue at s ¼ 1. Thus, massless states make no
contribution to this expression, and the result in Eq. (4.45)
stands.
This does notmean that massless states do not contribute

to Λ, however. Rather, this just means that the constraints
from modular invariance so tightly connect the contribu-
tions to Λ from the massless states to those from the
massive states (and also those from the unphysical string
states of any mass) that an expression for Λ as in Eq. (4.45)
becomes possible.
For further insight into this issue, it is instructive to

obtain this same result through Eq. (3.14). We then have

Λ ¼ −
π

3

M4

2
lim
τ2→0

½τ−12 Str exp ð−πα0M2τ2Þ�: ð4:46Þ

Expanding the exponential e−x ≈ 1 − xþ � � � and taking
the τ2 → 0 limit of each term separately, we find that the
linear term leads directly to the result in Eq. (4.45) while
the contributions from all of the higher terms vanish.
Interestingly, the constant term would a priori appear to
lead to a divergence for Λ. The fact that Λ is finite in such
theories then additionally tells us that [18]

Str 1 ¼ 0: ð4:47Þ

As apparent from our derivation, this constraint must hold
for any tachyon-free modular-invariant theory (i.e., any
modular-invariant theory in which Λ is finite). Indeed, this
is one of the additional constraints from modular invariance
which relates the contributions of the physical string states
which are massless to the contributions of those which
are massive. Thus, we may regard the result in Eq. (4.45)—
like all of the results of this paper—as holding within a
modular-invariant context in which other constraints such
as that in Eq. (4.47) are also simultaneously satisfied. We
also see from this analysis that our supertrace definition in
Eq. (4.10) may be more formally defined as [18]
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StrA≡ lim
y→0

X
physical i

ð−1ÞFiAie−yα
0M2

i : ð4:48Þ

The supertrace results in Eqs. (4.45) and (4.47) were first
derived in Ref. [18]. As discussed in Refs. [18,19], these
results hold for all tachyon-free heterotic strings in four
dimensions, and in fact similar results hold in all spacetime
dimensions D > 2. For theories exhibiting spacetime super-
symmetry, these relations are satisfied rather trivially.
However, even if the spacetime supersymmetry is broken—
and even if the scale of supersymmetry breaking is relatively
large or at the Planck scale—these results nevertheless
continue to hold. In such cases, these supertrace relations
do not arise as the results of pairwise cancellations between
the contributions of bosonic and fermionic string states.
Rather, these relations emerge as the results of conspiracies
that occur across the entire string spectrum, with the bosonic
and fermionic string states always carefully arranging
themselves at all string mass levels so as to exhibit a so-
called “misaligned supersymmetry” [17,19]. No pairing of
bosonic and fermionic states occurs within misaligned
supersymmetry, yet misaligned supersymmetry ensures that
these supertrace relations are always satisfied. These results
therefore constrain the extent to which supersymmetry can
be broken in tachyon-free string theories while remaining
consistent with modular invariance.
The results that we have obtained thus far pertain to the

cosmological constant Λ. As such, they would be sufficient
if we were aiming to understand this quantity unto itself,
sinceΛ is finite in any tachyon-free modular-invariant theory
and hence requires no regulator. However, in this paper our
interest in this quantity stems from the fact that Λ is an
intrinsic contributor to the total Higgs mass in Eq. (2.55), and
we already have seen that the Higgs mass requires regu-
larization. At first glance, one might imagine regulating the
terms with nonzero X i insertions while leaving the Λ-term
alone. However, it is ultimately inappropriate to regularize
only a subset of terms that contribute to the Higgs mass—for
consistency we must apply the same regulator to the entire
expression at once. Indeed, we recall from Sec. II that the
entire Higgs-mass expression including Λ forms a modular-
invariant unit, with Λ emerging from the modular comple-
tion of some of the terms with nontrivial X i insertions. For
this reason, we shall now study the analogously regulated
cosmological constant

Λ̂ðρ; aÞ≡
Z
F

d2τ
τ22

ZðτÞĜρða; τÞ ð4:49Þ

and determine the extent to which this regularized cosmo-
logical constant can also be expressed in terms of supertraces
over the physical string states.
Our discussion proceeds precisely as for the terms

involving the X i insertions. Following the result in
Eq. (3.35) we find that Λ̂ðρ; aÞ can be expressed as

Λ̂ðρ; aÞ ¼ π

3
Res
s¼1

Z
∞

0

dτ2τs−32 ĝρða; τ2Þ ð4:50Þ

where

ĝρða; τ2Þ≡ −
M4

2

Z
1=2

−1=2
dτ1

×

��X
m;n

ð−1ÞFq̄mqn
�
Ĝρða; τÞ

	

¼ −
M4

2
½Str e−πα0M2τ2 �Ĝρða; τ2Þ: ð4:51Þ

On the second line the sum over ðm; nÞ indicates a sum over
the entire spectrum of the theory, while in passing to the
factorized form on the third line of Eq. (4.51) we have
followed again the result in Eq. (3.37) and explicitly restricted
our attention to those cases with a ≪ 1, as appropriate for the
regulator function Ĝρða; τÞ. Indeed, the term within square
brackets on the second line of Eq. (4.29) is our desired
supertrace over physical string states, while the regulator
function Ĝρða; τ2Þ provides a nontrivial τ2-dependentweight-
ing to the different terms within gρða; τ2Þ.
Once again, the next step is to substitute Eq. (4.51) back

into Eq. (4.50) and evaluate the residue at s ¼ 1. In general,
the presence of the regulator function Ĝρða; τ2Þ within
Eq. (4.29) renders this calculation somewhat intricate.
However, just as for the terms with nontrivial X i insertions,
we know that Ĝρða; τ2Þ → 1 as a → 0. In this limit, we
therefore expect to obtain our original (finite) unregulated Λ:

lim
a→0

Λ̂ðρ; aÞ ¼ Λ ¼ 1

24
M2StrM2 ð4:52Þ

where in the final equality we have utilized the result in
Eq. (4.45). Equivalently, upon identifying the physical scale
μ as in Eq. (4.21), we thus expect

lim
μ→0

Λ̂ðμÞ ¼ Λ: ð4:53Þ

Let us now determine how Λ̂ðμÞ runs as a function of the
scale μ. To do this, we need to evaluate Λ̂ðρ; aÞ explicitly as a
function of ρ and a. This question is tackled in Appendix B,
yielding the exact result in Eq. (B8). Written in terms of the
physical scale μ in Eq. (4.33) this result then takes the form

Λ̂ðμÞ ¼ 1

1þ μ2=M2
s

�
M2

24
StrM2 −

7

960π2
ðnB − nFÞμ4

−
1

2π2
Str
M>0

M4

�
Kð−1;0Þ

1

�
2

ffiffiffi
2

p
πM
μ

�

þ 4Kð−2;−1Þ
2

�
2

ffiffiffi
2

p
πM
μ

�
þKð−1;0Þ

3

�
2

ffiffiffi
2

p
πM
μ

��	
ð4:54Þ
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where we have again taken ρ ¼ 2 as our benchmark

value, where Kðn;pÞ
ν ðzÞ are the Bessel-function combinations

defined in Eq. (4.36), and where nB and nF are the numbers
of massless bosonic and fermionic degrees of freedom in the
theory respectively (so that Str

M¼0
1 ¼ nB − nF).

It is straightforward to verify that this result is consistent
with the result in Eq. (4.53) in the μ → 0 limit. Because all
of the Bessel-function combinations within Eq. (4.54)
vanish exponentially rapidly as their arguments grow to
infinity, only the first term in Eq. (4.54) survives in this
limit. We therefore find that the μ → 0 limit of Eq. (4.54)
yields the anticipated result in Eq. (4.53).
From Eq. (4.54) we can also understand the manner in

which Λ̂ðμÞ runs as a function of μ for all 0 < μ ≪ Ms. Let
us first focus on the Bessel-function terms within the square
brackets in Eq. (4.54). By themselves, these terms behave
in much the same way as shown in Fig. 2, except without
the transient dip and with the asymptotic behavior for
μ≳M scaling as a power (rather than logarithm) of μ. More
specifically, to leading order in μ=M and for μ≳M, we find
using the techniques developed in Ref. [28] that

Kð−1;0Þ
1 ðzÞþ4Kð−2;−1Þ

2 ðzÞþKð−1;0Þ
3 ðzÞ∼ 7

480

�
μ

M

�
4

ð4:55Þ

where z≡ 2
ffiffiffi
2

p
πM=μ. By contrast, for μ ≲M, this quantity

is exponentially suppressed. Thus, recalling the result in
Eq. (4.45) for our original unregulated (but nevertheless
finite) cosmological constant Λ and once again keeping
only those (leading) running terms which dominate for
M ≪ μ ≪ Ms, we find that Eq. (4.54) simplifies to take the
approximate form

Λ̂ðμÞ ≈ Λ −
7

960π2

h�
Str
M¼0

1

�
þ
�

Str
0<M≲μ1

�i
μ4

≈ Λ −
7

960π2

�
Str

0≤M≲μ1
�
μ4: ð4:56Þ

We once again emphasize that we have retained the second
term (scaling as μ4) as this is the leading μ-dependent
term when M ≪ μ ≪ Ms. Just as for m̂2

ϕðμÞjX , there also
generally exist additional running terms which scale as μ2

and log μ, but these terms are subleading relative to the
above μ4 term when M ≪ μ ≪ Ms. We shall discuss these
subleading terms further in Sec. V. Moreover, just as we
saw for m̂2

ϕðμÞjX , the μ4 scaling behavior can be enhanced
to an even greater effective power μn with n > 4 if the
spectrum of light states is sufficiently dense when taking
the supertrace over string states. However, even this leading
μn scaling is generally subleading compared with the
constant term Λ. Thus the regulated quantity Λ̂ðμÞ—unlike
m̂2

ϕðμÞjX in Eq. (4.42)—is dominated by a constant term

and exhibits at most a highly suppressed running relative to
this constant.

3. The Higgs mass in string theory: See how it runs

We now finally combine both contributions m̂2
ϕðμÞjX ;Λ as

in Eq. (4.25) in order to obtain our final result for the total
modular-invariant regulated Higgs mass m̂2

ϕðμÞ. The exact
result, of course, is given by the sum of Eqs. (4.35) and
(4.54), with the latter first multiplied by ξ=ð4π2M2Þ.
However, once again taking the corresponding approxi-
mate forms in Eqs. (4.42) and (4.56) which are valid for
M ≪ μ ≪ Ms, we see that the μ4 running within Eq. (4.56)
is no longer the dominant running for m̂2

ϕðμÞ as a whole, as
it is extremely suppressed compared with the running
coming from Eq. (4.42). We thus find that to leading order,
the net effect of adding Eqs. (4.42) and (4.56) is simply to
add the overall constant ξΛ=ð4π2M2Þ to the result in
Eq. (4.42). We therefore find that the total regulated Higgs
mass has the leading running behavior

m̂2
ϕðμÞ ≈

ξ

4π2
Λ
M2

−
π

6
M2StrX1

þM2 Str
M¼0

X2 log
�

μ

2
ffiffiffi
2

p
eMs

�

þM2 Str
0<M≲μX2 log

�
1ffiffiffi
2

p e−ðγþ1Þ μ
M

�
ð4:57Þ

where we have retained only the terms that are leading for
M ≪ μ ≪ Ms. Once again, just as for m̂2

ϕðμÞjX , we see that
to this order the X2 charges of the string states lead to
nontrivial running while their X1 charges only contribute
to an overall additive constant. Indeed, in the μ → 0 limit,
we find

lim
μ→0

m̂2
ϕðμÞ ¼ ξ

4π2
Λ
M2

−
π

6
M2StrX1 ð4:58Þ

when Str
M¼0

X2 ¼ 0. Of course, when Str
M¼0

X2 ≠ 0, the μ → 0

limit diverges, as expected from the fact that the massless
X2-charged states are precisely the states that led to a
divergence in the original unregulated Higgs mass m2

ϕ. As
discussed in Sec. IV E 1, we nevertheless continue to obtain
a finite result for the regulated Higgs mass m̂2

ϕðμÞ for all
μ > 0 even when Str

M¼0
X2 ≠ 0.

In order to understand what the running in Eq. (4.57)
looks like for 0 < μ ≪ Ms, let us begin by considering the
contribution from a single X2-charged string state with a
given mass 0 < M ≪ Ms. In this case, we have
Str
M¼0

X2 ¼ 0. It then follows that the approximate form in

Eq. (4.57) reduces to
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m̂2
ϕðμÞjX ≈

ξ

4π2
Λ
M2

−
π

6
M2StrX1

þM2 Str
0<M≲μX2 log

�
1ffiffiffi
2

p e−ðγþ1Þ μ
M

�
ð4:59Þ

where Λ now represents the contribution to the total
cosmological constant from this single state and where
the supertraces StrX1;2 now simply reduce to the (statistics-
weighted) X1;2 charges of that state. For μ ≫ M, the final
term in Eq. (4.59) produces a logarithmic running. Of
course, the approximate result in Eq. (4.59) is valid only for
μ ≫ M. For μ ≪ M, we instead know that our running
asymptotically approaches the constant in Eq. (4.58).
Likewise, for μ ∼M, we know that the running interpolates
between these two behaviors via the transient “dip” shown
in Fig. 2.
With all of these pieces combined, the net running

contributed from a single bosonic X2-charged state of
massM has the behavior sketched as the green curve within
the μ ≪ Ms portion of Fig. 3, where we interpret
Mlightest ∼M. Indeed, this curve is essentially the same
as that shown in Fig. 2, but with the addition of the
asymptotic constant in Eq. (4.58).
Given this result from a single state of mass M, we now

must take the supertrace over the entire spectrum of states
in the theory. However, as discussed in Sec. IV E 1,
increasing (decreasing) the mass of the contributing state
simply shifts the corresponding contribution rigidly to the
right (left). Taking the supertrace then simply amounts to
adding these different shifted contributions together,
weighted by their corresponding X2 charges and statistics
factors. Of course, as discussed in Sec. IV E 1, heavy states
whose masses exceed μ are effectively integrated out of the
theory: they contribute to the overall asymptotic constant in
Eq. (4.58) but produce no effective running beyond this.
For any value of μ we therefore need only sum over the
contributions from those light states whose masses lie
below μ.
The net result of this summation over string states is as

follows. As explained in the discussion surrounding
Eq. (4.43), this summation has the potential to turn the
logarithmic running into a power-law running for scales μ
which lie within the spectrum of masses of the light
X2-charged states—i.e., for scales μ > Mlightest, where
Mlightest denotes the mass of the lightest X2-charged states.
Indeed, as discussed previously, whether an effective
power-law running emerges depends on the density of
states in the theory with masses M ≳Mlightest. It is for this
reason that we have indicated in Fig. 3 that the net running
within the μ > Mlightest region can be either logarithmic
or power-law. However, as we progress to lower scales
μ ∼Mlightest, we enter the “dip region” where this loga-
rithmic/power-law running shuts off. Finally, for
μ < Mlightest, all running ceases as we enter the deep

infrared region. It is here that we recover the asymptotic
constant value predicted in Eq. (4.58), which now repre-
sents the sum over the individual asymptotic contributions
from all of the string states. Note that this implies that
the unregulated integral represents the IR value of the
Higgs mass.
Depending on the relative values of Λ, StrX1, and

Str
M>0

X2, the Higgs may actually become tachyonic within

the “dip” region. Possible phenomenological implications
of this will be briefly discussed in Sec. VI. Of course, if
Mlightest is exceedingly small (or similarly if Str

M¼0
X2 ≠ 0),

we never hit the dip region or the asymptotic-constant
region. In this case, our EFT-like logarithmic/power-law
running persists all the way into the deep infrared (as
indicated through the dashed blue line in Fig. 3).
All of these results are valid for the same “infrared”

region in which our regulator itself is valid, namely the
region with a ≪ 1 or equivalently μ ≪ Ms. However, it
turns out that we also have information about what happens
in the opposite region, namely that with μ ≫ Ms: as
sketched in Fig. 3, we simply enter a “dual infrared”
region in which this same infrared behavior again
emerges, but in reverse. This is a direct consequence of
the modular invariance which we have been careful to
maintain throughout our calculations. Indeed, modular
invariance ensures that this entire picture is symmetric
under the scale-inversion duality transformation

μ →
M2

s

μ
: ð4:60Þ

As a result, when plotted as a function of logðμ=MsÞ, the
behavior of m̂2

ϕðμÞ for μ ≪ Ms is reflected symmetrically
through the self-dual point μ� ¼ Ms to yield the reverse
behavior as μ ≫ Ms. Of course, this tells us nothing about
the behavior of m̂2

ϕðμÞ near the self-dual region with
μ ∼Ms, except that any running at the self-dual point μ� ¼
Ms must ultimately become exactly flat. We have sketched
one possible shape for this running with a dashed (rather
than solid) curve within the self-dual region in Fig. 3.
The origins of the scale-duality symmetry in Eq. (4.60)

are easily understood. We have seen in Eq. (3.40) that
our regulator functions Ĝρða; τÞ—and hence our regulated
Higgs masses m̂2

ϕðρ; aÞ—have an invariance under ρa2 →
1=ðρa2Þ. Likewise, we have seen in Eq. (4.33) that the
running scale μ2 is given by ρa2M2

s. These two relations
then directly imply that m̂2

ϕðμÞ is invariant under the scale-
duality transformation in Eq. (4.60). However, the origins
of this scale-duality symmetry actually run deeper than
any particular modular-invariant regulator we might
choose, and are directly connected to the underlying
modular invariance of theory. To see this, we recall from
the discussion surrounding Eqs. (4.19) and (4.20) that the
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contributions of string states of mass M to the one-loop
partition function experience Boltzmann suppressions scal-
ing as e−πα

0M2τ2 . Thus, for any particular benchmark value
τ2 ¼ t, we can separate our string spectrum into two
groups: “heavy” states (whose Boltzmann suppressions
at τ2 ¼ t are significant according to some convention, and
whose contributions therefore do not require regularization)
and “light” states (whose Boltzmann suppressions are not
significant, and whose contributions therefore require
regularization). Indeed, taking t → ∞ ensures that the only
states whose contributions to the partition function remain

unsuppressed are those which are strictly massless. On this
basis, with an eye toward extracting an EFTwith a running
scale μ, we are directly led to identify μ2 inversely with t,
as in Eq. (4.20). However, modular invariance tells us that
any physical quantities which depend on τ must be
invariant under τ → −1=τ. Along the τ1 ¼ 0 axis, this
becomes an invariance under τ2 → 1=τ2. This then immedi-
ately implies an invariance under t → 1=t, or equivalently
under μ → μ2�=μ where μ� is an arbitrary self-dual mass
scale. Of course, the choice of normalization for μ in
relation to t is purely a matter of convention, and for

FIG. 3. The “running” of the regulated Higgs mass m̂2
ϕðμÞ, as calculated from first principles in a fully modular-invariant string

framework. As discussed in the text, this running (green curve) exhibits a rather complicated anatomy. In the deep infrared (as μ → 0),
the Higgs mass approaches an asymptotic value which depends on the cosmological constant of the theory as well as on the supertrace
over the X1 charges of all of the string states. Moving toward higher values of μ, a nontrivial scale-dependence does not emerge until
μ ∼Mlightest, where Mlightest collectively represents the masses of the lightest massive X2-charged states. The “dip” that is observed in
this region is a string-theoretic transient effect which smoothly connects the asymptotic deep-IR region (μ ≪ Mlightest) to an EFT-like
region (Mlightest ≲ μ ≪ Ms). Moving beyond this dip region, the theory then enters the EFT-like region in which the Higgs mass
experiences a running which is either logarithmic or power-law, depending on the density of string states with masses in the range
Mlightest ≲M ≪ Ms. Note that this logarithmic/power-law running behavior will actually persist all the way into the deep infrared
(dashed blue curve) ifMlightest is exceedingly small. Finally, as μ approachesMs, the regulator we have employed is no longer valid and
thus we cannot explicitly calculate the running. One possible running is sketched (dashed green curve).However, as a general principle,
modular invariance requires that the running of the Higgs mass (and indeed the running of any physical quantity) exhibit an invariance
under μ → M2

s=μ. Thus, as μ increases beyond Ms, we inevitably begin to reenter an IR-like regime which we may associate with a
“dual” EFT. The background colors of this sketch indicate the transition from the deep IR (red) to the UV (blue) and then back to IR
(red). This symmetry under μ → M2

s=μ implies that the self-dual scale μ ∼Ms exhibits the “maximum possible” UV behavior, in the
sense that further increases in μ only serve to push the theory back toward IR behavior. Of course, as discussed in Sec. IVA, a fully
modular-invariant string theory does not distinguish between the UV and the IR. Indeed, the UV and IR labels in this figure only arise
upon attempting to extract a field-theoretic description of our theory, as we are implicitly doing when discussing the “running” of the
Higgs mass.
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convenience in this paper we have chosen our normaliza-
tion for μ such that μ� ¼ Ms. We thus see that while the
particular choice of self-dual scale μ� is a matter of
convention, the existence of a scale-inversion duality
symmetry of the form μ → μ2�=μ is inevitable, emerging
directly from the underlying modular invariance of the
theory. This issue will be discussed further in Sec. VI.
Although this scale-duality symmetry follows directly

from modular invariance, its implications are profound.
Ultimately, the existence of such a symmetry signals the
existence of an ultimate limit on the extent to which our
EFT way of thinking can possibly remain valid in string
theory. Indeed, as discussed in the Introduction, string
theory is rife with duality symmetries which defy EFT
notions: an immediate example of this is T-duality, under
which the physics associated with a closed string propa-
gating on a spacetime with a compactified dimension of
radius R is indistinguishable from the physics associated
with a closed string propagating on a spacetime with a
compactified dimension of radius R0 ≡ α0=R. This is true as
an exact symmetry not only for the string spectrum but also
for all interactions. Thus such strings cannot distinguish
between large and small compactification geometries,
thereby preventing us from establishing a linear EFT-like
ordering of length scales from large to small, or equiv-
alently from IR to UV. What we are seeing now is that a
similar phenomenon is guaranteed by modular invariance.
Although we can identify μ ≪ Ms as the deep-infrared
region of our EFT, and although we may legitimately
identify the passage toward larger scales μ as a passage
toward an increasingly UV region of this EFT, we see that
the validity of this identification has a fundamental limit.
Indeed, pushing μ beyondMs only serves to reintroduce the
original IR behavior of our theory—a behavior which we
may now associate with the dual energy scale μ0 ≡M2

s=μ
associated with a “dual” EFT. In this sense, the energy
scales near Ms exhibit the “most possible UV” behavior
that can be realized. This is indicated through the back-
ground colors of Fig. 3, with red indicating the IR regions
of our theory and blue indicating the UV.
As we have emphasized, all of this is the inevitable

consequence of modular invariance. At first glance, it may
not seem that our results for m̂2

ϕðμÞ are modular invariant,
much less symmetric under the scale-duality symmetry in
Eq. (4.60). Indeed, this symmetry is hardly manifest within
our exact expressions for m̂2

ϕðμÞjX and Λ̂ðμÞ in Eqs. (4.35)
and (4.54), respectively. However, this symmetry is ulti-
mately ensured through intricate relations satisfied by the
various supertraces involved. Indeed, such relations are
themselves manifestations of the underlying modular
invariance of the theory. In this paper we have not focused
on the identities satisfied by these supertraces. However, we
have already seen two such identities, namely the simple
expressions for Str 1 and StrM2 in Eqs. (4.47) and (4.45),
respectively. These identities, which were originally

derived in Ref. [18], hold in any modular-invariant string
theory, arising as a consequence of the so-called “mis-
aligned supersymmetry” [17] that tightly constrains the
distributions of bosonic and fermionic states across any
modular-invariant string spectrum. In a similar vein, there
will also exist identities satisfied by all of the supertraces
that appear within Eqs. (4.35) and (4.54), especially when
Xi insertions are involved. These identities are likely to be
more intricate and interwoven than those for Str 1 and
StrM2, but together they act to ensure the modular
invariance of our results for m̂2

ϕðμÞ.
We conclude, then, that the duality symmetry in

Eq. (4.60) is a fundamental property of the running of
any physical quantity in a modular-invariant theory. As
such, there is a maximum degree to which our theory can
approach the UV: once the energy scale μ passes the self-
dual point μ ∼Ms, further increases in μ only push us
toward increasingly IR behavior. Of course, as we
explained in Sec. IVA, the full modular-invariant string
theory does not distinguish between the UV and IR—this
distinction only has meaning when we attempt to extract
an EFT description, as we are doing when discussing the
“running” of the Higgs mass. Such, then, are the unique
properties of UV/IR-mixed theories such as those exhibit-
ing modular invariance.

V. TRANSCENDING THE CHARGE LATTICE

Thus far in this paper, our guide has been modular
invariance—an exact symmetry of closed strings. However,
right from the beginning of Sec. II, we have further
assumed that our closed-string models have associated
charge lattices. This has been the language of our analysis,
and as such this has given our calculations a certain
concreteness, enabling us to obtain and express our main
results in a rather direct and understandable fashion as the
supertrace of physical string states weighted by their
eigenvalues with respect to certain combinations of world
sheet charge operators. This language also allowed us to
understand the origins of the modular anomaly that
ultimately connected the Higgs mass and the cosmological
constant.
It is certainly the case that many classes of closed-string

models can be described in terms of their associated charge
lattices. For example, charge lattices appear for a wide
variety of geometric compactifications and thus play an
essential role in many corresponding free-field construc-
tions (such as those based on free world sheet bosons and
complex fermions). However, not all string theories can be
described in this manner.
Fortunately, in hindsight, it is not difficult to demonstrate

that our results are actually general and do not ultimately
rely on the existence of such charge lattices. Indeed, as we
shall now demonstrate, most of our results follow from
modular invariance alone, and can be expressed in a more
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general language that makes no specific reference to charge
operators. Thus, phrasing our results in this more general
language demonstrates that our results actually transcend
their charge-lattice roots and have a more encompassing
generality. This will also help us discern the existence of a
“stringy” effective potential for the Higgs.

A. X ’s without Q’s: A reformulation of the
partition-function insertions

In Sec. II, we established a framework for calculating the
Higgs mass in which the charge lattice played a central role.
By extracting the η functions as explicit prefactors in
Eq. (2.1), we implicitly separated out the contributions
from the oscillator modes and thereby implicitly cast the
partition function of our theory into a form in which the
ðm; nÞ exponents in Eq. (2.1) were directly related to
the lengths of the charge vectors in an underlying charge
lattice, as in Eq. (2.2). By contrast, the spacetime masses
ðML;MRÞ of the corresponding string states receive con-
tributions from not only the charges (i.e., the compactifi-
cation momentum modes) but also the oscillator modes
within the η’s. Indeed, these contributions are ultimately
added together, as in Eq. (2.5).
Taken together, this means that we can always rewrite

our partition function Z in a general form which is closer to
what appears in Eq. (3.2), namely

ZðτÞ ¼ τ−12
X
states

ð−1ÞFq̄α0M2
R=4qα

0M2
L=4 ð5:1Þ

where we are summing over the states in the string
spectrum with left- and right-moving spacetime mass
contributions ðML;MRÞ. Although Eq. (5.1) reduces to
Eq. (2.1) for theories with a charge lattice, the expression in
Eq. (5.1) is more general and applies to any closed string.
Just as in Sec. II, this partition function is assumed to
describe the theory in its Higgsed phase.
Following the arguments in Sec. II, we seek to evaluate

the Higgs mass by exploring the response of the theory to
small fluctuations ϕ of the Higgs field around its minimum
hϕi. Previously we described the response of the system in
terms of a deformation of the charge lattice, as in Eq. (2.13).
However, we may more generally simply describe the
response of our theory in terms of the corresponding
deformations to our left- and right-moving masses, so that
ML andMR for a given string state s now become functions
of ϕ:

MðsÞ
L → MðsÞ

L þ δMðsÞ
L ðϕÞ≡MðsÞ

L ðϕÞ;
MðsÞ

R → MðsÞ
R þ δMðsÞ

R ðϕÞ≡MðsÞ
R ðϕÞ: ð5:2Þ

Of course, for a given Higgs field, not all states in the
string spectrum will have their masses shifted. Indeed, mass
shifts will arise for only those states which couple to the

fluctuations parametrized by ϕ; the masses of the other
states will remain independent of ϕ. It is for this reason that
we have explicitly attached a state index s to the masses in
Eq. (5.2)—namely to clarify that the mass shifts depend on
the particular state s and not merely on the unperturbed
masses ðML;MRÞ. This is completely analogous to the fact
that only certain charge vectors in Eq. (2.13) will be
deformed. In the following, for the sake of parallelism
with Eq. (2.13), we shall suppress the state index s in
Eq. (5.2) with the understanding that whether certain
ML;RðϕÞ are truly ϕ-dependent depends not on ML;R but
rather on the identity of the state s from which these
contributions emerge. In this context, we remark that
changing the value of ϕ generally does more than shift
the masses of certain states—it will also typically mix
these states, thereby changing the corresponding mass
eigenstates. We should thus understand the index s as
continuously following a given mass eigenstate as ϕ is
changed.
Just as in the charge-vector formalism, the choices of

δML;RðϕÞ are not arbitrary; modular invariance [in this
case, the invariance of ZðϕÞ under τ → τ þ 1] must still be
maintained. This implies that

δMLðϕÞ ¼ δMRðϕÞ; ð5:3Þ

which is the generalization of the constraints in Eq. (2.14).
Given these observations, we can then calculate the

Higgs mass precisely as in Eqs. (2.22) and (2.23), except
with Z expressed as in Eq. (5.1) with the masses ML and
MR replaced by their ϕ-dependent versions MLðϕÞ and
MRðϕÞ. We then have

∂2Z
∂ϕ2

¼ τ−12
X
states

ð−1ÞFXq̄α0M2
R=4qα

0M2
L=4 ð5:4Þ

where the summand insertion X is precisely the same
quantity as in Eq. (2.27) but now expressed as

X ≡ πiα0

2
∂2
ϕðτM2

L − τ̄M2
RÞ −

�
πα0

2

�
2

½∂ϕðτM2
L − τ̄M2

RÞ�2:

ð5:5Þ

However, each term within Eq. (5.5) with a nonzero power
of τ1 also contains equally many powers of M2

L −M2
R, and

we see from Eqs. (5.2) and (5.3) that

∂ϕðM2
L −M2

RÞ ¼ ∂ϕðδM2
L − δM2

RÞ ¼ 0: ð5:6Þ

Thus each factor of τM2
L − τ̄M2

R within Eq. (5.5) can be
replaced with iτ2ðM2

L þM2
RÞ ¼ 2iτ2M2 where M is the

(ϕ-dependent) shifted spacetime mass of the corresponding
state. This then yields
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X ¼ −πα0τ2∂2
ϕM

2 þ ðπα0τ2Þ2ð∂ϕM2Þ2: ð5:7Þ

Recalling X ≡M2Xjϕ¼0 and separating out the different
powers of τ2 in Eq. (5.7) then immediately enables us to
identify

X1 ¼ −
1

4π
∂2
ϕM

2

����
ϕ¼0

;

X2 ¼
1

16π2M2
ð∂ϕM2Þ2

����
ϕ¼0

: ð5:8Þ

These, then, are the general forms of the Xi insertions—
forms which do not rely on the existence of a charge lattice.
As indicated above, only for those string states which
couple to the Higgs will the corresponding spacetime
masses M be affected by fluctuations of the Higgs field
and thereby accrue a ϕ-dependence. Thus, given the
ϕ-derivatives in Eq. (5.8), we see that only these states
will contribute to X1 and X2. Of course, when the string
model in question has an underlying charge lattice, the
masses of our string states can be written in terms of the
lengths of the vectors in that lattice, whereupon the results
in Eq. (5.8) can be evaluated to have the more specific
forms presented in earlier sections.
Given the general results in Eq. (5.8), the rest of our

analysis proceeds precisely as before. The ϕ-derivatives
generally induce modular anomalies that require modular
completions and lead us to add the universal Λ-term, as
before. Our final result for the unregulated Higgs mass
from Eq. (2.55) then takes the form

m2
ϕ ¼ ξ

4π2
Λ
M2

−
M2

2
hτ2X1 þ τ22X2i

¼ ξ

4π2
Λ
M2

þM2

8π
hτ2∂2

ϕM
2jϕ¼0i

−
1

32π2
hτ22ð∂ϕM2Þ2jϕ¼0i ð5:9Þ

where the bracket notation h…i is defined in Eq. (2.52).
This result can then be regulated, as discussed in Sec. IV,
leading to a regulated Higgs mass m̂2

ϕðρ; aÞ. Indeed, none
of the results presented after Sec. II depended on the
specific forms of X1 and X2 in any way.

B. A stringy effective potential for the Higgs

As we shall now demonstrate, the results in Eq. (5.8)
allow us to reach some powerful conclusions about the
regulated Higgs mass m̂2

ϕðρ; aÞ. They will also allow us to
extract a stringy effective potential for the Higgs. We begin
by noting that m̂2

ϕðρ; aÞ has two contributions, m̂2
ϕðρ; aÞjX

and m̂2
ϕðρ; aÞjΛ, as indicated in Eq. (4.25). The first of these

contributions involves Xi insertions, while the second
comes from the cosmological constant and lacks such

insertions. Of course, both contributions depend on the
spectrum of masses of the states in our theory—masses
which we are now taking to be general functions of ϕ
before eventually truncating to ϕ ¼ 0. However, we see
from Eq. (5.8) that the Xi insertions depend on the
derivatives of these masses with respect to ϕ, whereas
no such derivatives appear within m̂2

ϕðρ; aÞjΛ. Thus sug-
gests that m̂2

ϕðρ; aÞjX might be related to ϕ-derivatives of
m̂2

ϕðρ; aÞjΛ prior to the truncation to ϕ ¼ 0. If so, the two
Higgs-mass contributions m̂2

ϕðρ; aÞjX and m̂2
ϕðρ; aÞjΛ

would actually be deeply connected to each other.
To investigate this possibility, we note from

Appendices A and B that these two contributions to the
Higgs mass can be identically expressed in terms of simpler
quantities, PX and PΛ, via the relations

m̂2
ϕðρ; aÞjX ¼ 1

1þ ρa2
Aρa2

∂
∂a ½PXðρaÞ − PX ðaÞ�;

Λ̂ðρ; aÞ ¼ 1

1þ ρa2
Aρa2

∂
∂a ½PΛðρaÞ − PΛðaÞ� ð5:10Þ

where Aρ ≡ ρ=ðρ − 1Þ, where we recall m̂2
ϕðρ; aÞjΛ≡

ξΛ̂ðρ; aÞ=ð4π2M2Þ, and where PX ðaÞ and PΛðaÞ are given
in Eqs. (A15) and (B7) respectively. Since ϕ-derivatives
commute with the operators in Eq. (5.10), the question of
whether m̂2

ϕðρ; aÞjX might be related to ϕ-derivatives of
m̂2

ϕðρ; aÞjΛ then boils down to whether PX ðaÞ might be
related to ϕ-derivatives of PΛðaÞ, where each mass M is
now to be regarded as a function of ϕ prior to truncation.
Our procedure, then, will be to evaluate ϕ-derivatives of

PΛðaÞ in Eq. (B7) and determine the extent to which we
reproduce PX ðaÞ in Eq. (A15). To do this, we shall now
treat each squared mass M2 within PΛðaÞ in Eq. (B7) as
representing the ϕ → 0 limit of a function M2ðϕÞ which,
for ϕ=M ≪ 1, we can imagine Taylor-expanding to take
the generic form1

M2ðϕÞ¼M2

�
β0þβ1

�
ϕ

M

�
þ1

2
β2

�
ϕ

M

�
2

þ…

�
ð5:11Þ

where β0 ≥ 0. The original physical squared mass of the
state then corresponds to M2ðϕÞjϕ¼0 ¼ β0M2, so that
massive states correspond to functions with β0 > 0 while
massless states have β0 ¼ 0. However, we see that even
massless states introduce a ϕ-dependence prior to the
truncation to ϕ ¼ 0.

1It is significant that we are Taylor-expanding M2 rather than
M. In closed-string theories,M2 is the fundamental quantity, with
world sheet excitations making contributions directly to α0M2 as
in Eq. (2.5). As we shall shortly see when discussing the stability
of these theories, it is also significant that our Taylor expansion
for M2 generically includes a term linear in ϕ. This follows
directly from Eq. (2.13) in conjunction with Eqs. (2.4) and (2.5).
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Focusing initially on the first term within PΛðaÞ in
Eq. (B7), we immediately see that

∂2
ϕ

�
M2

24a
StrM2

�����
ϕ¼0

¼ M2

24a
Str ð∂2

ϕM
2Þ
����
ϕ¼0

¼ −
M2

2

�
π

3a
StrX1

�
ð5:12Þ

where we have used the result in Eq. (5.8) in passing to the
final expression. This successfully reproduces the initial
terms within PX ðaÞ in Eq. (A15). Next, we evaluate the
second ϕ-derivative of the Bessel-function terms within
PΛðaÞ in Eq. (B7). To do this, we note the mathematical
identity

∂2
ϕ

�
M2K2

�
rM
aM

��
¼ −

rM
2aM

ð∂2
ϕM

2ÞK1

�
rM
aM

�

þ r2

4a2M2
ð∂ϕM2Þ2K0

�
rM
aM

�
ð5:13Þ

which follows from standard results for Bessel-function
derivatives along with a judicious repackaging of terms.
Given this, and given the relations in Eq. (5.8), we then
find that

∂2
ϕ

�
a
π2

Str
β0>0

�
M2

X∞
r¼1

1

r2
K2

�
rM
aM

��	����
ϕ¼0

¼ 2

π
Str
M>0

X1

�X∞
r¼1

�
M
rM

�
K1

�
rM
aM

��

þ 4

a
Str
M>0

X2

�X∞
r¼1

K0

�
rM
aM

��
; ð5:14Þ

where the supertrace on the first line is over all states whose
mass functions M2ðϕÞ have β0 > 0. We thus see that the
result in Eq. (5.14) likewise successfully reproduces the
Bessel-function terms within PX ðaÞ in Eq. (A15).
Our final task is to evaluate ∂2

ϕ acting on the second term
in Eq. (B7). At first glance, it would appear that this term
does not yield any contribution since it is wholly inde-
pendent of the mass M and would thus not lead to any
ϕ-dependence. Indeed, as evident from Eq. (B5), this term
represents a contribution to PΛðaÞ from purely massless
states, and as such the identification M ¼ 0 has already
been implemented within this term. This is why no factors
of the mass M remain within this term. However, as
discussed above, for the purposes of the present calculation
we are to regard the masses M as functions of ϕ before
taking the ϕ-derivatives. Thus, when attempting to take ϕ-
derivatives of the second term in Eq. (B7), we should
properly go back one step to the original derivation of

this term that appears in Eq. (B5) and reinsert a nontrivial
mass function M2ðϕÞ with β0 ¼ 0 into the derivation. The
remaining derivation of this term then algebraically mirrors
the derivation of the massive Bessel-function term in
Eq. (B6), only with M2 now replaced by M2ðϕÞ with
β0 ¼ 0. In other words, for the purposes of our current
calculation, we should formally identify

M4

2

π2

45
ðnB − nFÞa3

¼ M2

2

a
π2

Str
β0¼0

�
M2

X∞
r¼1

1

r2
K2

�
rM
aM

������
ϕ¼0

ð5:15Þ

and then evaluate the ϕ-derivatives before truncating to
ϕ ¼ 0. Aside from the overall factor of −M2=2, acting
with ∂2

ϕ and then truncating to ϕ ¼ 0 yields the same
result as on the right side of Eq. (5.14), except with each
supertrace over massive states replaced with a supertrace
over massless states. We thus need to evaluate these Bessel-
function expressions at zero argument. However, for small
arguments z ≪ 1, the Bessel functions have the leading
asymptotic behaviors

KνðzÞ ∼
�− logðz=2Þ − γ þ… for ν ¼ 0;

1
2
ΓðνÞðz=2Þν þ… for ν > 0

ð5:16Þ

where γ is the Euler-Mascheroni constant. Analyzing the
StrX1 term, we thus see that

2

π
lim
M→0

Str
M>0

X1

�X∞
r¼1

�
M
rM

�
K1

�
rM
aM

��

¼ 2

π
Str
M¼0

X1 lim
M→0

�X∞
r¼1

�
M
rM

��
aM
rM

��

¼ 2a
π

X∞
r¼1

1

r2
¼ π

3
a; ð5:17Þ

thereby successfully reproducing the corresponding term
which appears in PX ðaÞ. Indeed, we see that the M → 0

limit in Eq. (5.17) is convergent and continuous with the
exact M ¼ 0 result.
For theories in which Str

M¼0
X2 ¼ 0, there are no further

terms to consider. The results of this analysis are then clear:
within such theories, we have found that

PX ðaÞ ¼ ∂2
ϕPΛða;ϕÞjϕ¼0: ð5:18Þ

Through Eq. (5.10), this then implies that

m̂2
ϕðρ; aÞjX ¼ ∂2

ϕΛ̂ðρ; a;ϕÞjϕ¼0; ð5:19Þ
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whereupon use of Eq. (4.25) tells us that

m̂2
ϕðρ; aÞ ¼

�
∂2
ϕ þ

ξ

4π2M2

�
Λ̂ðρ; a;ϕÞ

����
ϕ¼0

; ð5:20Þ

or equivalently

m̂2
ϕðμÞ ¼

�
∂2
ϕ þ

ξ

4π2M2

�
Λ̂ðμ;ϕÞ

����
ϕ¼0

¼ D2
ϕΛ̂ðμ;ϕÞjϕ¼0

; ð5:21Þ

where we have defined the modular-covariant derivative

D2
ϕ ≡ ∂2

ϕ þ
ξ

4π2M2
: ð5:22Þ

Of course, for theories with Str
M¼0

X2 ¼ 0, our original

unregulated Higgs mass was already finite and a priori
there was no need for a regulator. However, even within
such theories, it is the use of our modular-invariant
regulator for both Λ and m2

ϕ which enabled us to extract
EFT descriptions of these quantities and to analyze their
runnings as functions of an effective scale μ.
The result in Eq. (5.21) is both simple and profound.

Indeed, comparing this result with our starting point in
Eq. (2.22) and recalling the subsequent required modular
completion in Eq. (2.49), we see that we have in some sense
come full circle. However, as stressed above, we have now
demonstrated this result using only the general expressions
for X1 and X2 in Eq. (5.8) and thus entirely without the
assumption of a charge lattice. This result therefore holds
for any modular-invariant string theory with Str

M¼0
X2 ¼ 0.

Indeed, as indicated above, we can view D2
ϕ as a modular-

covariant derivative, in complete analogy with the lattice-
derived covariant derivative D2

z in Eq. (2.41).
But more importantly, we see from Eq. (5.21) that within

such theories we can now identify Λ̂ðμ;ϕÞ as an effective
potential for the Higgs. Strictly speaking, this is not the
entire effective potential—it does not, for example, allow us
to survey different minima as a function of ϕ in order to
select the global and local minima, as would be needed in
order to determine the ground states of the theory in
different possible phases (with unbroken and/or broken
symmetries). However, we see that Λ̂ðμ;ϕÞ does provide a
piece of the full potential, namely the portion of the
potential in the immediate vicinity of the assumed mini-
mum (around which ϕ parametrizes the fluctuations, as
always). With this understanding, we shall nevertheless
simply refer to Λ̂ðμ;ϕÞ as the Higgs effective potential.
Indeed, as expected, we see from Eq. (5.21) that the Higgs

mass is related to the curvature of this potential around this
minimum. One can even potentially imagine repeating
the calculations in this paper without implicitly assuming
the stability condition in Eq. (2.50), thereby dropping the
implicit assumption that we are sitting at a stable vacuum of
the theory. In that case, the first and second ϕ-derivatives of
Λ̂ðμ;ϕÞ would describe the slope and curvature of the
potential for arbitrary values of ϕ, whereupon the methods
in this paper could provide a method of “tracing out” the
shape of the full potential. However, at best this would
appear to be a challenging undertaking.
As remarked above, the form of Eq. (5.21) makes sense

from the perspective of Eq. (2.22), in conjunction with the
subsequent modular completion. At first glance, it may
seem surprising that such a result would continue to survive
even after imposing our modular-invariant regulator in
order to generate our regulated expressions for m̂2

ϕðμÞ
and Λ̂ðμ;ϕÞ, and perhaps even more surprising after the
Rankin-Selberg techniques and their generalizations in
Sec. III are employed in order to express these regulated
quantities in terms of supertraces over purely physical
(level-matched) string states. Ultimately, however, the
result in Eq. (5.21) concerns the ϕ-structure of the theory
and the response of the theory to fluctuations in the Higgs
field. In theories with Str

M¼0
X2 ¼ 0, these properties are

essentially “orthogonal” to the manipulations that occurred
in Secs. III and IV, which ultimately concern the regulators
and the resulting behavior of these quantities as functions
of μ. In other words, in such theories the process of
ϕ-differentiation in some sense “commutes” with all of
these other manipulations. Thus the relation in Eq. (5.21)
holds not only for our original unregulated Higgs
mass and cosmological constant, but also for their regulated
counterparts as well as for the running which de-
scribes their dependence on the variables defining the
regulator.
It is also intriguing that we are able to identify a modular-

covariant derivative D2
ϕ within the results in Eq. (5.21). Of

course, this is the second ϕ-derivative. By contrast, the first
ϕ-derivative does not require modular completion. We have
already seen this in Sec. II F, where we found that ∂ϕ acting
on the partition function Z corresponds to insertion of the
factor Y, which was already modular invariant. In this
sense, ϕ-derivatives are similar to the z-derivatives dis-
cussed in Sec. II E.
The result in Eq. (5.21) holds only for theories in which

Str
M¼0

X2 ¼ 0. However, when Str
M¼0

X2 ≠ 0, there is an addi-

tional term to consider within PΛ. Taking the M → 0
limit of the Str

M>0
X2 result in Eq. (5.14) in conjunction

with the limiting behavior in Eq. (5.16), we formally
obtain
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4

a
lim
M→0

Str
M>0

X2

�X∞
r¼1

K0

�
rM
aM

��

¼ 4

a
Str
M¼0

X2

X∞
r¼1

�
− log

�
rM
2aM

�
− γ

�
: ð5:23Þ

Unfortunately, this infinite r-summation is not convergent.
It also does not correspond to what is presumably the exact
M ¼ 0 result within PX . We stress that these complications
arise only when Str

M¼0
X2 ≠ 0, which is precisely the con-

dition under which the original unregulated Higgs mass is
divergent.
In order to better understand this phenomenon, we can

perform a more sophisticated analysis by analytically
performing the r-summation in complete generality before

taking the M → 0 limit. We begin by defining the Bessel-
function combinations

KνðzÞ≡ 2
X∞
r¼1

ðrzÞ−νKνðrzÞ: ð5:24Þ

These Bessel-function combinations are relevant for both

PX and PΛ in the same way that the combinationsKðn;pÞ
ν ðzÞ

in Eq. (4.36) were relevant for m̂2
ϕjX and Λ̂, and indeed

Kð−ν;pÞ
ν ðzÞ ¼ 1

2
½ρ−νKνðz=ρÞ − ρpKνðzÞ�: ð5:25Þ

Using the techniques in Ref. [28], it is then straightforward
(but exceedingly tedious) to demonstrate that KνðzÞ for
z ≪ 1 has a Maclaurin-Laurent series representation
given by

KνðzÞ ¼
Xν
p¼1

2−νπp
ð−1Þν−p
ðν − pÞ! ζ

�ð2pÞ
�
z
2

�
−2p

þ 2−ν
ffiffiffi
π

p
Γ
�
1

2
− ν

�
1

z

þ ð−2Þ−ν
ν!

�
γ −

Hν

2
þ log ðz=4πÞ

�
þ
X∞
p¼1

2−νπ−p
ð−1Þνþp

ðνþ pÞ! ζ
�ð2pþ 1Þ

�
z
2

�
2p

ð5:26Þ

where Hn ≡P
n
k¼1 1=k is the nth harmonic number and where ζ�ðsÞ≡ π−s=2Γðs=2ÞζðsÞ ¼ ζ�ð1 − sÞ is the “completed”

Riemann ζ function. The representation in Eq. (5.26) is particularly useful for z ≪ 1, allowing us to extract the leading
behaviors

K0ðzÞ ¼
π

z
þ
�
γ þ log

�
z
4π

��
−
ζð3Þz2
8π2

þ 3ζð5Þz4
128π4

þ…

K1ðzÞ ¼
π2

3z2
−
π

z
−
1

2

�
γ −

1

2
þ log

�
z
4π

��
þ ζð3Þz2

32π2
−
ζð5Þz4
256π4

þ…

K2ðzÞ ¼
2π4

45z4
−

π2

6z2
þ π

3z
þ 1

8

�
γ −

3

4
þ log

�
z
4π

��
−
ζð3Þz2
192π2

þ ζð5Þz4
2048π4

þ…: ð5:27Þ

Indeed, use of the expression for K1ðzÞ confirms our result
in Eq. (5.17).
Armed with the expression for K2ðzÞ in Eq. (5.27), we

can now rigorously evaluate the leading terms within
PΛðaÞ—and by extension within Λ̂ðρ; aÞ—in complete
generality, even when massless states are included.
Starting from Eq. (B7) in conjunction with the replacement
in Eq. (5.15), we now have

PΛðaÞ¼
M2

24a
StrM2−

1

4π2a
StrM4K2

�
M
aM

�

≈
M2

24a
StrM2−

1

4π2a
Str

0≤M≪aM
M4K2

�
M
aM

�
ð5:28Þ

where the final supertrace on the first line is over all states
in the theory, including those that are massless, and where
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in passing to the second line we have recognized
that K2ðzÞ is exponentially suppressed unless z ≪ 1. The
fact that K2ðzÞ is now explicitly restricted to the z ≪ 1
regime implies that it is legitimate to insert the series

expansion for K2ðzÞ from Eq. (5.27) within Eq. (5.10).
Identifying the physical scale μ as in Eq. (4.33)
and retaining only the leading terms for μ ≪ Ms, we then
obtain

Λ̂ðμ;ϕÞ ¼ 1

1þ μ2=M2
s

�
1

24
M2StrM2 þ Str

0≤M≲μ

�
M2μ2

96π2
−

7μ4

960π2

�
−

1

32π2
Str

0≤M≲μM
4 log

� ffiffiffi
2

p
eγþ1=4M

μ

�
þ…

	

¼ 1

24
M2StrM2 − Str

M2μ2

96π2
þ Str

0≤M≲μ

�
M2μ2

96π2
−

7μ4

960π2

�
−

1

32π2
Str

0≤M≲μM
4 log

� ffiffiffi
2

p
eγþ1=4M

μ

�
þ… ð5:29Þ

where we have continued to adopt our benchmark value
ρ ¼ 2 and where we recall that each factor ofM carries a ϕ-
dependence through Eq. (5.11). Note that in passing to the
final expression in Eq. (5.29) we have Taylor-expanded the
overall prefactor and kept only those terms of the same
order as those already shown. However, we now see that the
μ2-term from expanding the prefactor cancels the corre-
sponding μ2-term from K2, leaving behind a net μ2-term
which scales as the M2 supertrace of only those states
whose masses exceed μ. We thus obtain our final result

Λ̂ðμ;ϕÞ ¼ 1

24
M2StrM2 − Str

M≳μ
M2μ2

96π2
− Str

0≤M≲μ
7μ4

960π2

−
1

32π2
Str

0≤M≲μM
4 log

� ffiffiffi
2

p
eγþ1=4M

μ

�
þ…:

ð5:30Þ

Indeed, this result provides the leading approximation to
the exact expression in Eq. (4.54).
The first and third terms in this result are consistent with

those in Eq. (4.56), and indeed the μ4-term is the con-
tribution from the massless states within the second super-
trace in Eq. (5.28). However, to this order, we now see that
there are two additional terms. The first is a term scaling as
μ2 which depends on the spectrum of states with masses
M ≳ μ. This contribution lies outside the range M ≪ μ
studied in Eq. (4.56) but nevertheless generally appears for
M ≳ μ. The second is a logarithmic term. This term is
subleading when compared to the other terms shown, and
massless states make no contribution to this term (divergent
or otherwise) when evaluated at ϕ ¼ 0 because of its M4

prefactor.
This logarithmic term is nevertheless of critical impor-

tance when we consider the corresponding Higgs mass. As
we have seen in Eq. (5.21), the Higgs mass m̂2

ϕðμÞ receives
a contribution which scales as ∂2

ϕΛ̂ðμÞ. Of course, all of the
dependence on ϕ is carried within the masses M which
appear in Eq. (5.30), and as expected Λ̂ðμÞ depends not on
these masses directly but on their squares. However, for any
function fðM2Þ we have the algebraic identity

∂2
ϕfðM2Þ ¼ ð∂2

ϕM
2Þ ∂f
∂M2

þ ð∂ϕM2Þ2 ∂2f
ð∂M2Þ2 : ð5:31Þ

Thus, identifying f ∼ Λ̂ðμÞ and recalling Eq. (5.8), we
obtain

∂2
ϕΛ̂ðμÞjϕ¼0 ¼ −4π StrX1

∂Λ̂ðμÞ
∂M2

����
ϕ¼0

þ 16π2M2 StrX2

∂2Λ̂ðμÞ
ð∂M2Þ2

����
ϕ¼0

ð5:32Þ

where we have implicitly used the fact that only non-
negative powers of ϕ appear within Λ̂ðμÞ, thereby ensuring
that our truncation to ϕ ¼ 0 factorizes within each term.
In principle, both supertraces in Eq. (5.32) include

massless states. Moreover, we see that the StrX1 term is
proportional to the singleM2-derivative of Λ̂ðμÞ, and when
acting on the logarithm term within Eq. (5.30) we find that
massless states continue to be harmless, yielding no
contribution (and therefore no divergences). By contrast,
we see that the StrX2 term is proportional to the second
M2-derivative of Λ̂ðμÞ. This derivative therefore leaves
behind a logarithm with no leading M2 factors remaining.
Thus, for M ¼ 0, we obtain a logarithmic divergence for
the Higgs mass—as expected—so long as Str

M¼0
X2 ≠ 0.

Indeed, all of this information is now directly encoded
within the effective potential Λ̂ðμÞ for this theory, as given
in Eq. (5.30).
This situation is analogous to the behavior of the

traditional Coleman-Weinberg potential VðφcÞ as originally
given in Refs. [33,34]. In that case, it was shown that VðφcÞ
contains a term scaling as

VðφcÞ ∼ φ4
c log φ2

c ð5:33Þ

where φc are the fluctuations of the classical Higgs field
around its VEV and where one has assumed a Uð1Þ-
charged scalar field subject to a λϕ4 interaction. The Higgs
mass (which goes as the second derivative ∂2V=∂φ2

c)
therefore remains finite even as φc → 0, whereas the fourth

CALCULATING THE HIGGS MASS IN STRING THEORY PHYS. REV. D 104, 126032 (2021)

126032-45



derivative ∂4V=∂φ4
c actually has a logarithmic singularity

as φc → 0. Indeed, this fourth derivative describes the
behavior of the coupling λ. The cure for this disease, as
suggested in Refs. [33,34], is to move away from the
φc ¼ 0 origin, and instead define the coupling λ at this
shifted point.
Of course, in our more general string context, we see that

our potential scales like M4 log M. Moreover, within the
X2 term, it is not the fourth derivative with respect to M
which leads to difficulties—rather, it is the second deriva-
tive with respect toM2. As a consequence, this logarithmic
divergence shows up in the Higgs mass rather than in a
four-point coupling. That said, it is possible that the cure
for this disease may be similar to that discussed in
Refs. [33,34]. In particular, this suggests that in string
theories for which Str

M¼0
X2 ≠ 0, a cure for our logarithmi-

cally divergent Higgs mass and the fact that radiative
potential is not twice-differentiable there may be similarly
found by avoiding the sharp ϕ ¼ 0 truncation that origi-
nally appears in Eq. (2.22), and by instead deforming our
theory away from the ϕ ¼ 0 origin in ϕ-space.
Finally, given that we are now equipped with our

effective Higgs potential Λ̂ðμ;ϕÞ, we can revisit our
classical stability condition, as originally discussed in
Sec. II F. In general, our theory will be sitting at an
extremum of the potential as long as

∂ϕΛ̂ðμ;ϕÞjϕ¼0 ¼ 0: ð5:34Þ

This, then, is a supplementary condition that we have
implicitly assuming to be satisfied within our analysis.
Note that

∂ϕΛ̂ðμ;ϕÞjϕ¼0 ¼ ð∂ϕM2Þ ∂Λ̂ðμÞ∂M2

����
ϕ¼0

¼ 4πM Str Y
∂Λ̂ðμÞ
∂M2

����
ϕ¼0

ð5:35Þ

where

Y ≡ 1

4πM
ð∂ϕM2Þ

����
ϕ¼0

: ð5:36Þ

Indeed, for the case of theories with an underlying charge
lattice, we have Y ¼ τ−12 Y where Y is given in Eq. (2.51).
Thus the stability of the theory (and the possible existence
of a destabilizing ϕ-tadpole) is closely related to the values
of Y across the string spectrum, as already anticipated in
Sec. II F. Substituting the exact expression in Eq. (4.54)
into Eq. (5.35), we find

∂ϕΛ̂ðμ;ϕÞjϕ¼0 ¼
M3

1þ μ2=M2
s
StrY

�
π

6
þ 1

2π

�
M
M

�
2
�
Kð0;1Þ

0

�
2

ffiffiffi
2

p
πM
μ

�
þKð0;1Þ

2

�
2

ffiffiffi
2

p
πM
μ

��	

¼ M3

1þ μ2=M2
s

�
Str
M¼0

Y

�
π

6
ð1þ μ2=M2

sÞ
�

þ Str
M>0

Y

�
π

6
þ 1

2π

�
M
M

�
2
�
Kð0;1Þ

0

�
2

ffiffiffi
2

p
πM
μ

�
þKð0;1Þ

2

�
2

ffiffiffi
2

p
πM
μ

��		
ð5:37Þ

where in passing to the second expression we have
explicitly separated the contributions from the massless
and massive string states, and where Kðn;pÞ

ν ðzÞ continue
to denote the combinations of Bessel functions in
Eq. (4.36).
Interestingly (but not unexpectedly), the terms multiply-

ing Str Y in Eq. (5.37) are the same as the terms multiplying
StrX1 in Eq. (4.35). Equivalently, we can view the quantity
in Eq. (5.37) as the coefficient of the tadpole term (linear in
ϕ) within the effective potential Λðμ;ϕÞ in Eq. (4.54) when
the masses are Taylor-expanded as in Eq. (5.11).
There are several ways in which the expressions in

Eq. (5.37) might vanish for all μ, as required for a stable
vacuum. In principle, for a given value of μ, there might
exist a spectrum of states with particular masses M such
that the contributions from the Bessel and non-Bessel terms
together happen to cancel when tallied across the spectrum.

Any continuous change in the value of μ might then induce
a corresponding continuous change in the spectrum such
that this cancellation is maintained. This is not unlike
what happens in the traditional field-theoretic Coleman-
Weinberg potential, where changing the scale μ can change
the vacuum state and the spectrum of excitations built upon
it. Of course in the present case we are working within the
context of string theory rather than field theory. As such,
we are dealing with an infinite tower of string states and
simultaneously maintaining modular invariance as the
spectrum is deformed.
Another possibility is to simply demand stability in the

deep-infrared region, as μ → 0. From Eq. (5.37) we see that
this would then require simply that

Str Y ¼ 0 ð5:38Þ
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where the supertrace is over all string states, both massless
and massive.
A final possibility is to guarantee stability for every value

of μ by demanding the somewhat stronger condition

Str Y ¼ 0 for each mass level individually: ð5:39Þ

Of course, Eq. (5.39) implies Eq. (5.38), but the fact that
Str Y vanishes for each mass level individually ensures that
stability no longer rests on any μ-dependent cancellations
involving the Bessel functions.
Comparing Eq. (5.36) with Eq. (5.8), we see that

X2 ¼ Y 2. However, as discussed below Eq. (2.51), con-
straints on Y do not necessarily become constraints on X2,
even if the values of Y happen to cancel pairwise among
degenerate states across the string spectrum [which would
guarantee Eq. (5.39)]. Thus the requirement of stability
does not necessarily lead to any immediate constraints on
the supertraces of X2.
In summary, then, we have shown that for theories

with Str
M¼0

X2 ¼ 0 there exists an effective Higgs potential

Λ̂ðμ;ϕÞ from which the Higgs mass can be obtained
through the modular-covariant double derivative D2

ϕ, as
in Eq. (5.21). This effective potential is given exactly in
Eq. (4.54), with the leading terms given in Eq. (5.30).
By contrast, for theories with Str

M¼0
X2 ≠ 0 we have found

that the effective potential Λ̂ðμ;ϕÞ picks up an additional
contribution whose second derivative is discontinuous at
ϕ ¼ 0. In this sense, the Higgs mass is not well defined at
ϕ ¼ 0. Of course, one option is to retain the expression
obtained in Eq. (4.35); this expression is not the second
derivative of Λ̂ðμ;ϕÞ when Str

M¼0
X2 ≠ 0, but it is indeed

finite except as μ → 0. An alternative option is to define our
Higgs mass away from the ϕ ¼ 0 origin. Either way, these
features exactly mirror those seen within the traditional
Coleman-Weinberg potential.

VI. PULLING IT ALL TOGETHER:
DISCUSSION, TOP-DOWN PERSPECTIVES,

AND FUTURE DIRECTIONS

A central question when analyzing any string theory is to
understand the properties of its ubiquitous scalars—its
Higgs fields, its moduli fields, its axions, and so forth.
To a great extent the behavior of a scalar is dominated by its
mass, and in this paper we have developed a completely
general framework for understanding the masses of such
scalars at one-loop order in closed-string theories. Our
framework can be applied at all energy scales, is indepen-
dent of any supersymmetry, and maintains world sheet
modular invariance and hence finiteness at all times.
Moreover, our framework is entirely string-based and does
not rely on establishing any particular low-energy effective
field theory. Indeed the notion of an effective field theory

at a given energy scale ends up being an output of our
analysis, and we have outlined the specific conditions and
approximations under which such an EFT emerges from an
otherwise completely string-theoretic calculation.
Beyond the crucial role played by the scalar mass,

another motivation for studying this quantity is its special
status as the “canary in the coal mine” for UV completion.
The scalar mass term is virtually the only operator that is
both highly UV-sensitive and also IR-divergent when
coupled to massless states. Thus, once we understand this
operator, we understand much of the entire structure of the
theory.
We can appreciate the special status of this operator if we

think about a typical EFT. Within such an EFT, the familiar
result for the one-loop contributions to the Higgs mass
takes the general form

m2
ϕ ¼ M2

UV

32π2
Str
eff

∂2
ϕM

2 − Str
eff

∂2
ϕ

�
M4

64π2
log

�
c
M2

M2
UV

��
ð6:1Þ

where MUV is an ultraviolet cutoff, where c is a constant,
and where Str

eff
denotes a supertrace over the states in the

effective theory. This expression has both a quadratic
UV-divergence which we would normally subtract by a
counterterm as well as a logarithmic cutoff dependence
which would normally be indicative of RG running. Thus
any UV-completion such as string theory has to resolve two
issues within this expression at once: not only must it make
the quadratic term finite, but it must also be able to give us
specific information about the running. In particular, to
what value does the Higgs mass actually run in the IR?
Such information is critical in order to nail down the
logarithmic running, anchoring it firmly as a function
of scale.
Prior to our work, such questions remained unanswered.

In retrospect, one clue could already be found in the earlier
work of Ref. [18], which in turn rested on previous results
in Ref. [16]. In Ref. [18], it was shown that the one-loop
cosmological constant Λ for any nontachyonic closed
string can be expressed as a supertrace over the entire
infinite spectrum of level-matched physical string states:

Λ ¼ 1

24
M2StrM2: ð6:2Þ

This result, which we have rederived in Eq. (4.45),
immediately suggests two things. The first is that it might
be possible to derive an analogous spectral supertrace
formula for the one-loop Higgs mass within such strings
which, like that in Eq. (6.2), depends on only the physical
states in the theory. The second, stemming from a com-
parison between the result in Eq. (6.2) and the first term in
Eq. (6.1), is that there might exist a possible derivative-
based connection between the one-loop Higgs mass and the
one-loop cosmological constant.
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In this study, we have addressed all of these issues.
Indeed, one of the central results of our study is an equivalent
spectral supertrace formula for the one-loop Higgs mass.
Like the calculation of the cosmological constant, our
calculation for the Higgs mass relies on nothing more than
world sheet modular invariance—an exact symmetry which
maintains string finiteness and is preserved, even today.
Another of our central results is a deep connection between
the Higgs mass and the cosmological constant. However, we
also found that unlike the cosmological constant, the Higgs
mass may actually have a leading logarithmic divergence.
Indeed, this issue depends on the particular string model
under study, and in particular the presence of massless states
carrying specific charges. As a result of this possible
divergence, and as a result of the extreme sensitivity of
the Higgs mass to physics at all scales, arriving at a fully
consistent treatment of the Higgs mass required us to broach
several delicate issues. These encompassed varied aspects of
regularization and renormalization and touched on the very
legitimacy of extracting an effective field theory from a
UV/IR-mixed theory. The scope of our study was therefore
quite broad, with a number of important insights and
techniques developed along the way.
Our first step was to understand how the Higgs and

similar scalars reside within a typical modular-invariant
string theory. In particular, for closed-string theories with
charge lattices, we began by examining the manner in
which fluctuations of the Higgs field deform these charge
lattices, all the while bearing in mind that these deforma-
tions must preserve modular invariance. We were then able
to express the contributions to the Higgs mass in terms of
one-loop modular integrals with specific charge insertions
X i incorporated into the string partition-function traces.
However, we found that these insertions have an immediate
consequence, producing a modular anomaly which then
requires us to perform a “modular completion” of the
theory. This inevitably introduces an additional term into
the Higgs mass, one which is directly related to the one-
loop cosmological constant. Our derivation of this term
rested solely on considerations of modular invariance and
thereby endows this result with a generality that holds
across the space of perturbative closed-string models. In
this way we arrived at one of the central conclusions of our
work, namely the existence of a universal relation between
scalar masses and the cosmological constant in any
tachyon-free closed-string theory. This relation is given
in Eq. (2.55) for four-dimensional theories, and in
Eq. (2.56) for theories in arbitrary spacetime dimensions
D. Stemming only from modular invariance, this result is
exact and holds regardless of other dynamics that the theory
may experience.
Having established the generic structure of one-loop

contributions to the Higgs mass, we then pushed our
calculation one step further with the aim of expressing
our result for the Higgs mass as a supertrace over the purely

physical level-matched spectrum of the theory. Indeed, we
demonstrated that the requirements of modular covariance
so deeply constrain the contributions to the Higgs mass
from the unphysical states that these latter contributions
can be expressed in terms of contributions from the
physical states alone. However, part of this calculation
required dealing with the logarithmic divergences which
can arise. This in turn required that we somehow regularize
the Higgs mass.
For this reason, we devoted a large portion of our study

to establishing a general formalism for regulating quantities
such as the Higgs mass that emerge in string theory. We
initially considered two forms of what could be called
“standard” regulators. The “minimal” regulator is essen-
tially a subtraction of the contributions of the massless
states. We referred to this as a minimal regulator because it
does not introduce any additional parameters into the
theory. Thus, for any divergent quantity, there is a single
corresponding regulated quantity. We also discussed what
we referred to as a “nonminimal” regulator, based on a
mathematical regularization originally introduced in the
mathematics literature [13]. This regulator introduces a new
dimensionless parameter t, so that for any divergent
quantity there exist a set of corresponding regularized
quantities parametrized by t, with the limit t → ∞ corre-
sponding to the removal of the regulator and the restoration
of the original unregulated quantity. This regulator is
essentially the one used in Ref. [1] and later in Ref. [27].
As we have explained in Sec. III, both of these regulators

yield finite quantities which can be expressed in terms of
supertraces over only those string states which are physical
(i.e., level-matched). Indeed, in each of these cases, the
relation between the regulated quantities and the corre-
sponding supertraces respects modular invariance. Thus,
the regulated quantity and the corresponding supertrace in
each case transform identically under modular transforma-
tions. However, for both the minimal and nonminimal
regulators, neither the regulated quantity nor the corre-
sponding supertrace expression is modular invariant on its
own. While this additional criterion was not important
for the purposes that led to the original development of
these regulators in the mathematics literature, this criterion
is critical for us because we now wish these regulated
quantities to correspond to physical observables (such as
our regulated Higgs mass). Each of these regulated quan-
tities must therefore be independently modular invariant on
its own.
We therefore presented a third set of regulators—those

based on the functions Ĝρða; τÞ. These are our modular-
invariant regulators, and they depend on two free param-
eters ðρ; aÞ. Unlike the minimal and nonminimal regulators,
these regulators do not operate by performing a sharp,
brute-force subtraction of particular contributions within
the integrals associated with one-loop string amplitudes.
Instead, we simply multiply the integrand of any one-loop
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string amplitude by the regulator function Ĝρða; τÞ. These
functions have two important properties which make them
suitable as regulators when a ≪ 1. First, as a → 0, we find
that Ĝρða; τÞ → 1 for all τ. Thus the a → 0 limit restores our

original unregulated theory. Second, Ĝρða; τÞ → 0 expo-
nentially quickly as τ → i∞ for all a > 0. These functions
thereby suppress all relevant divergences which might
appear in this limit. But most importantly for our purposes,
Ĝρða; τÞ is completely modular invariant. In particular, this
function is completely smooth, with no sharp transitions in
its behavior. As a result, multiplying the integrand of any
one-loop string amplitude by Ĝρða; τÞ does not simply
excise certain problematic contributions within the corre-
sponding string amplitude, but rather provides a smooth,
modular-invariant way of deforming (and thereby regulat-
ing) the entire theory. This function even has a physical
interpretation in the ρ ¼ 2 special case, arising as the result
of the geometric deformations discussed in Refs. [4–6].
Armed with this regulator, we then demonstrated that our

regulated Higgs mass can be expressed as the supertrace
over only the physical string states. Our result for m̂2

ϕðρ; aÞ
is given in Eq. (4.25), where m̂2

ϕðρ; aÞjX is given in

Eq. (A16) and where Λ̂ðρ; aÞ is given in Eq. (B8). We
stress that this is the exact string-theoretic result for the
regulated Higgs mass, expressed as a function of the
regulator parameters ðρ; aÞ. Moreover Λ̂ðρ; aÞ by itself is
the corresponding regulated cosmological constant. As
discussed in the text, the one-loop cosmological constant
Λ requires regularization in this context even though it is
already finite in all tachyon-free closed-string theories.
We originally derived these results under the assumption

that our underlying string theory could be formulated with
an associated charge lattice. This assumption gave our
calculations a certain concreteness, allowing us to see
exactly which states with which kinds of charges ultimately
contribute to the Higgs mass. However, we then proceeded
to demonstrate that many of our results are actually more
general than this, and do not require a charge lattice at all.
This lattice-free reformulation also had an added benefit,
allowing us to demonstrate a second deep connection
between the Higgs mass and the cosmological constant
beyond that in Eq. (2.55). In particular, we were able to
demonstrate that each of these quantities can be expressed
in terms of a common underlying quantity Λ̂ðρ; a;ϕÞ via
relations of the form

� Λ̂ðρ; aÞ ¼ Λ̂ðρ; a;ϕÞjϕ¼0;

m̂2
ϕðρ; aÞ ¼ D2

ϕΛ̂ðρ; a;ϕÞjϕ¼0

ð6:3Þ

where D2
ϕ is the modular-covariant second ϕ-derivative

given in Eq. (5.22). These relations allow us to interpret
Λ̂ðρ; a;ϕÞ as a stringy effective potential for the Higgs.

Indeed, these relations are ultimately the fulfillment of our
original suspicion that the Higgs mass might be related to
the cosmological constant through a double ϕ-derivative, as
discussed below Eq. (6.2). However, we now see from
Eq. (5.22) that this is not just an ordinary ϕ-derivative ∂2

ϕ,
but rather a modular-covariant derivative, complete with
anomaly term. The second relation in Eq. (6.3) thereby
subsumes our original relation between the Higgs mass and
the cosmological constant, as expressed in Eq. (2.55).
Moreover, we see that the regulated cosmological constant
Λ̂ðρ; aÞ is nothing but the ϕ ¼ 0 truncation of the same
effective potential Λ̂ðρ; a;ϕÞ. In this way, Λ̂ðρ; a;ϕÞ
emerges as the central object from which our other relevant
quantities can be obtained.
At no step in the derivation of these results was modular

invariance broken. Thus all of these results are completely
consistent with modular invariance, as required. Moreover,
expressed as functions of the world sheet regulator param-
eters ðρ; aÞ, all of our quantities are purely string-theoretic
and there are no ambiguities in their definitions.
Our next goal was to interpret these regulated quantities

in terms of a physical cutoff scale μ. Of course, if we had
been working within a field-theoretic context, all of our
regulator parameters would have had direct spacetime
interpretations in terms of a spacetime scale μ. As a result,
varying the values of these regulator parameters would
have led us directly to a renormalization-group flow with an
associated RGE. String theories, by contrast, are formu-
lated not in spacetime but on the world sheet—for such
strings, spacetime is nothing but a derived quantity. As a
result, although we were able to express our regulated
quantities as functions of the two regulator parameters
ðρ; aÞ, the only way to extract an EFT description from
these otherwise complete string-theoretic expressions was
to develop a mapping between the world sheet parameters
ðρ; aÞ and a physical spacetime scale μ.
As we have seen, this issue of connecting ðρ; aÞ to μ is

surprisingly subtle, and it is at this step that we must make
certain choices that break modular invariance.We already
discussed some the issues surrounding IR/UV equivalence
in Sec. IVA—indeed, these issues already suggested that
the passage to an EFT would be highly nontrivial and
involve the breaking of modular invariance. But now, with
our complete results in hand, we can take a bird’s-eye view
and finally map out the full structure of the problem.
Our understanding of this issue is summarized in

Fig. 4. Although the specific situation sketched in
Fig. 4 corresponds to our modular-invariant regulator
function Ĝρða; τÞ, the structure of this diagram is general.
Ultimately, the connection between world sheet physics
and spacetime physics follows from the one-loop partition
function, which for physical string states of spacetime
masses Mi takes the general form
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Z ∼ τ−12
X
i

e−πα
0M2

i τ2 : ð6:4Þ

TheseMi are precisely the masses which ultimately appear
in our physical supertrace formulas. However, our regulator
function Ĝρða; τÞ cannot regulate the divergences that
might arise from light and/or massless states as τ → i∞
unless it suppresses contributions to the partition function
within the region τ2 ≳ τ�2 for some τ�2. We thus see that
whether a given state contributes significantly to one-loop
amplitudes in the presence of the regulator depends on
the magnitude of α0M2

i τ
�
2. This immediately leads us to

identify a corresponding spacetime physical RG scale
μ2 ∼ 1=ðα0τ�2Þ. Indeed, this was precisely the logic that
originally led us to Eq. (4.21). Moreover, for our specific
regulator function Ĝρða; τÞ, we have τ�2 ∼ 1=ðρa2Þ, thus
leading to the natural identification μ2=M2

s ¼ ρa2.
However, modular invariance does not permit us to

identify just one special point τ2 ¼ τ�2 along the τ1 ¼ 0

axis within the fundamental domain. Indeed, for every such

special point, the corresponding point with τ2 ¼ 1=τ�2 is
equally special, since these two points along the τ1 ¼ 0 axis
are related by the τ → −1=τ modular transformation. In
other words, although our Ĝρða; τÞ regulator function
suppresses contributions from the τ2 ≳ τ�2 region, the
modular invariance of this function requires that it also
simultaneously suppress contributions from the region with
τ2 ≲ 1=τ�2. (In general a modular-invariant regulator func-
tion equally suppresses the contributions from the regions
that approach any of the modular cusps, but for the
purposes of mapping to a physical spacetime scale μ our
concern is limited to the cusps along the τ1 ¼ 0 axis.) We
thus see that for any value of the spacetime scale μ that we
attempt to identify as corresponding to ρa2, there always
exists a second scaleM2

s=μwhich we might equally validly
identify as corresponding to ρa2. This is the implication
of the μ → M2

s=μ scale-inversion symmetry discussed
in Sec. IV.
The upshot of this discussion is that the mapping from

ρa2 to μ in any modular-invariant theory actually has two

FIG. 4. The scale structure of physical quantities in a modular-invariant string theory. For the modular-invariant regulator function
Ĝρða; τ2Þ discussed in this paper, the mapping between the regulator parameter ρa2 and the physical spacetime scale μ has two distinct
branches. The traditional branch (shown in blue) identifies μ2=M2

s ¼ ρa2, but modular invariance implies the existence of an invariance
under the scale-inversion duality symmetry μ → M2

s=μ. This in turn implies the existence of a second branch (shown in green) on which
we can alternatively identify μ2=M2

s ¼ 1=ðρa2Þ. Although Ĝρða; τ2Þ functions as a regulator for ρa2 < 1, its symmetry under ρa2 →
1=ðρa2Þ implies that this function also acts as a regulator when extended into the ρa2 > 1 region. This then allows us to see the full
fourfold modular structure of the theory. The Higgs-mass plot shown in Fig. 3 can now be understood as following the μ2=M2

s ¼ ρa2

branch from the lower-left corner of this figure inward toward the central location at which μ ¼ Ms, after which it then follows the
μ2=M2

s ¼ 1=ðρa2Þ branch outward toward the upper-left corner. However, in a modular-invariant theory, all four quadrants of this figure
are equivalent and describe the same physics. Likewise, in such theories there is no distinction between IR and UV. Thus one can
exchange “IR” ↔ “UV” within all labels of this sketch, and we have simply chosen to show those labels that have the most natural
interpretations within the lower-left quadrant. Finally, regions with beige shading indicate locations where EFT descriptions exist, while
stringy effects dominate in the yellow central region. As a result, focusing on any one of the four EFT regions by itself necessarily breaks
modular invariance because the choice of EFT region is tantamount to picking a preferred direction for the flow of the scale μ relative to
the underlying string-theoretic regulator parameter ρa2. However, even within the EFT regions, string states at all mass scales contribute
nontrivially. Thus even these EFT regions differ from what might be expected within quantum field theory.
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branches, as shown in Fig. 4. Along the first branch we
identify μ2=M2

s ¼ 1=τ�2 ¼ ρa2, but along the second branch
we identify μ2=M2

s ¼ τ�2 ¼ 1=ðρa2Þ. These branches con-
tain the same physics, but the choice of either branch breaks
modular invariance. In this respect modular invariance is
much like another description-redundancy symmetry,
namely gauge invariance: all physical quantities must be
gauge invariant, but the choice of a particular gauge slice
(which is tantamount to the choice of a particular branch)
necessarily breaks the underlying symmetry.
In most of our discussions in this paper, we focused on

the behavior of our regulator functions within the a ≪ 1
regime. However, as we have seen in Eq. (3.40), these
functions exhibit a symmetry under ρa2 → 1=ðρa2Þ. The
logical necessity for this extra symmetry will be discussed
below, but this symmetry implies that Ĝρða; τÞ also acts as a
regulator when extended into the a ≫ 1 region. This then
allows us to see the full fourfold modular structure of the
theory, as shown in Fig. 4. Given this structure, we can
also revisit the Higgs-mass plot shown in Fig. 3. We now
see that we can interpret this plot as following the
μ2=M2

s ¼ ρa2 branch from the lower-left corner of Fig. 4
toward the central location at which μ ¼ Ms, and then
following the μ2=M2

s ¼ 1=ðρa2Þ branch outward toward
the upper-left corner.
Given the sketch in Fig. 4, we can also understand more

precisely how the passage from string theory to an EFT
breaks modular invariance. Within this sketch, regions with
beige shading indicate locations where EFT descriptions
exist (and where our regulators are designed to function
most effectively, with a ≪ 1 or a ≫ 1). By contrast, stringy
effects dominate in the yellow central region, which is the
only region that locally exhibits the full modular symmetry,
lying on both branches simultaneously. As a result, we
necessarily break modular invariance by choosing to focus
on any one of the four EFT regions alone. Indeed, each EFT
region intrinsically exhibits a certain direction for the flow
of the scale μ relative to the flow of the underlying world
sheet parameter ρa2. However, the relative direction of this
flow is not modular invariant, as evidenced from the fact
that this flow is reversed in switching from one branch to
the other.
At first glance, the fact that the EFT regions appear only

at the extreme ends of each branch in Fig. 4 might lead
one to believe that only extremely light states contribute
within the EFT and that the infinite towers of heavy string
states can be ignored within such regions. However, as we
have repeatedly stressed throughout this paper, even this
seemingly mild assertion would be incorrect. For example,
even within the μ → 0 limit, we have seen in Eq. (4.58) that
the Higgs mass receives contributions from X1-charged
states of all masses across the entire string spectrum.
Likewise, Λ receives contributions from all string states,
regardless of their mass. We have also seen that the Higgs

mass accrues a μ-dependence which transcends our field-
theoretic expectations, even for μ ≪ Ms. A particularly
vivid example of this is the unexpected “dip” region shown
in Fig. 3—an effect which is the direct consequence of the
stringy Bessel functions whose form is dictated by modular
invariance. Thus modular invariance continues to govern
the behavior of the Higgs mass at all scales, even within the
EFT regions.
Likewise, within such theories there is no distinction

between IR and UV. We can already see this within Fig. 4,
where the points near the upper end of the figure (i.e., with
large μ) are designated not as “UV” but as “dual IR,” since
they are the images of the IR regions with small μ under the
duality-inversion symmetry. But even this labeling is not
truly consistent with modular invariance, since there is
no reason to adopt the language of the small-μ region in
asserting that the bottom part of the figure corresponds to
the IR. Thanks to the equivalence under μ → M2

s=μ, we
might as well have decided to label the upper portion of the
figure as “UV” and the lower portion of the figure as “dual
UV.” In that case, the center of the figure would represent
the most IR behavior that is possible, rather than the most
UV. The upshot is that the mere distinction between “IR”
and “UV” itself breaks modular invariance. In a modular-
invariant theory, what we would normally call a UV
divergence is not distinct from an IR divergence—they
are one and the same. Indeed, we have seen that the
quadratic divergences normally associated with the Higgs
mass in field theory are softened to mere logarithmic
divergences—such as the power of modular invariance—
but in string theory there is no deeper physical interpre-
tation to this remaining divergence as either UV or IR in
nature until we decide to introduce one.
In this connection, we note that it might have seemed

tempting to look at the EFT expression in Eq. (6.1) and
suppose that in a UV-complete theory one could have set
about the calculation in a piecemeal manner, dividing the
contributions into a UV contribution and a much less lethal
logarithmically divergent IR contribution and then evalu-
ating each one separately. This is certainly the kind of
reasoning that is suggested by the notion of softly broken
symmetries, for example. However, because there is no
intrinsic notion of UVand IR in a modular-invariant theory,
no such separation can exist. Instead, all we have in string
theory are amplitudes which may be divergent, and the
question as to whether such divergences are most naturally
interpreted as UVor IR in nature ultimately boils down to a
convention as to which modular-group fundamental
domain is selected as our region of integration. Although
these arguments are expressed in terms of one-loop
amplitudes, similar arguments extend to higher loops as
well. Of course, most standard textbook recipes for
evaluating one-loop modular integrals in string theory
adopt the fundamental domain which includes the cusp
at τ → i∞. This choice then leads to an IR interpretation for
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the divergence. But when we derived our supertrace
expressions involving only the physical string states, our
calculations required that we sum over an infinite number
of such fundamental domains which are all related to each
other under modular transformations, as in Eq. (3.6). It is
only in this way that we were able to transition from the
fundamental domain to the strip and thereby obtain super-
traces involving only the physical string states. Thus UV
and IR physics are inextricably mixed within such super-
trace expressions.
Given this bird’s-eye view, we can now also understand

in a deeper way why it was necessary for us to switch
from our original modular-invariant regulator functions
Gρða; τÞ in Eq. (3.32) to our enhanced modular-invariant

functions Ĝρða; τÞ in Eq. (3.39) which exhibited the
additional symmetry under a → 1=ðρaÞ. At the level of
the string world sheet, our original functions Gρða; τÞ
would have been suitable, since they already satisfied
the two critical criteria which made them suitable as
regulators:
• Gρða; τÞ → 1 for all τ as a → 0, so that the a → 0 limit
restores our original unregulated theory; and

• Gρða; τÞ → 0 sufficiently rapidly for any a > 0 as τ2
approaches the appropriate cusps (τ → i∞, or equiv-
alently τ → 0), so that f is capable of regulating our
otherwise-divergent integrands for all a > 0.

Indeed, for any divergent string-theoretic quantity I,
these functions would have led to a corresponding set of
finite quantities ĨρðaÞ for each value of ðρ; aÞ. We further
saw that these G functions had a redundancy under
ðρ; aÞ → ð1=ρ; ρaÞ, so that the only the combination ρa2

was invariant.
However, while such functions would have been suitable

at the level of the string world sheet, there is one additional
condition that must also be satisfied if we want to be able
to interpret our results in spacetime, with the invariant
combination ρa2 identified as a running spacetime scale
μ2=M2

s . As we have argued below Eq. (6.4), modular-
invariant string theories necessarily exhibit an invariance
under μ → M2

s=μ; indeed, this scale-duality symmetry rests
on very solid foundations. However, given this scale-
inversion symmetry, we see that we would not have been
able to consistently identify ρa2 with the spacetime scale
μ2=M2

s unless our regulator function itself also exhibited
such an inversion symmetry, with an invariance under
ρa2 → 1=ðρa2Þ [or equivalently under a → 1=ðρaÞ]. This
was the ultimately the reason we transitioned from the G
functions to the Ĝ functions, as in Eq. (3.39). This not only
preserved the first two properties itemized above, but also
ensured a third:
• Ĝρða; τÞ ¼ Ĝρð1=ρa; τÞ for all ðρ; aÞ.

In other words, while our first two conditions ensured
proper behavior for our regulator functions on the string
world sheet, it was the third condition which allowed us to

endow our regulated string theory with an interpretation in
terms of a renormalization flow with a spacetime mass
scale μ. Indeed, we see from Fig. 4 that in some sense this
extra symmetry was forced on us the moment we identified
μ2=M2

s ¼ ρa2 and recognized the existence of the scale-
duality symmetry under μ → M2

s=μ. A similar symmetry
structure would also need to hold for any alternative
regulator functions that might be chosen.
Given these insights, we then proceeded to derive

expressions for our regulated Higgs mass m̂2
ϕðμÞ and

regulated cosmological constant (effective potential)
Λ̂ðμÞ as functions of μ. The exact results for these quantities
are given in Eqs. (4.35) and (4.54), respectively. Once
again, we stress that these results are fully modular
invariant except for the fact that we have implicitly chosen
to work within the lower-left branch of Fig. 4. For μ ≪ Ms,
we were then able to derive the corresponding approximate
EFT running for these quantities in Eqs. (4.42) and (4.56).
Indeed, as we have seen in Eq. (5.30), our final result for the
running effective potential Λ̂ðμ;ϕÞ takes the general form

Λ̂ðμ;ϕÞ ¼ 1

24
M2StrM2 − c0 Str

M≳μM
2μ2

− Str
0≤M≲μ

�
M4

64π2
log

�
c
M2

μ2

�
þ c00μ4

�
ð6:5Þ

where c ¼ 2e2γþ1=2, c0 ¼ 1=ð96π2Þ, and c00 ¼ 7c0=10, and
where of course we regard the masses M2 as a functions of
ϕ as in Eq. (5.11). These specific values of fc; c0; c00g were
of course calculated with our regulator function taken as
Ĝρða; τÞ assuming the benchmark value ρ ¼ 2, and with μ
defined along the lower-left branch in Fig. 4. However, in
general these constants depend on the precise profile of our
regulator function. Finally, given our effective potential, we
also discussed the general conditions under which our
theory is indeed sitting at a stable minimum as a function
of ϕ.
With the results in Eq. (6.5) in conjunction with the

relations in Eq. (6.3), we have now obtained an under-
standing of the Higgs mass as emerging from ϕ-derivatives
of an infinite spectral supertrace of regulated effective
potentials. We can now also perceive the critical similarities
and differences relative to the EFT expectations in Eq. (6.1)
and thereby address the questions posed at the beginning
of this section. For example, from the first term within
Eq. (6.5) we see that the Higgs mass within the full
modular-invariant theory contains a term of the form
1
24
M2Str∂ϕM2. Comparing this term with first term within

Eq. (6.1), we might be tempted to identify MUV¼ffiffiffiffiffiffiffiffi
3=2

p
πM. However, despite the superficial resemblance

between these terms, we see that the full string-theoretic
term is very different because the relevant supertrace is over
the entire spectrum of states in the theory and not just the
light states in the EFT.
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It is also possible to compare the logarithmic terms
within Eqs. (6.1) and (6.5). Of course, as in the standard
treatment, the logarithmic term in Eq. (6.1) can be regulated
by subtracting a term of the form logðMUV=μÞ, thereby
obtaining an effective running. We then see that both
logarithmic terms actually agree. While it is satisfying to
see this agreement, it is nevertheless remarkable that we
have obtained such a logarithmic EFT-like running from
our string-theoretic result. As we have seen, our full
string results in Eqs. (4.35) and (4.54) did not contain
logarithms—they contained Bessel functions. Moreover,
unlike the term discussed above, their contributions were
not truncated to only the light states with M ≲ μ—they
involved supertraces over all of the states in the string
spectrum, as expected for a modular-invariant theory.
However, the behavior of the Bessel functions themselves
smoothly and automatically suppressed the contributions
from states with M ≳ μ. Thus, we did not need to impose
the M ≲ μ restriction on the supertrace of the logarithm
term in Eq. (6.5) based on a prior EFT-based expectation, as
in Eq. (6.1); this restriction, and thus an EFT-like inter-
pretation, emerged naturally from the Bessel functions
themselves. It is, of course, possible to verify the appear-
ance of such a term directly within the context of a given
compactification through a direct calculation of the two-
point function of the Higgs field (and indeed we verified
this explicitly for various compactification choices), but of
course the expression in Eq. (6.5) is completely general and
thus holds regardless of the specific compactification.
We can also now answer the final question posed at the

beginning of this section: to what value does the Higgs
mass actually run as μ → 0? Assuming Str

M¼0
X2 ¼ 0, the

answer is clear from Eq. (4.58):

lim
μ→0

m̂2
ϕðμÞ ¼

ξ

4π2
Λ
M2

−
π

6
M2StrX1

¼ ξ

96π2
StrM2 þ 1

24
M2Str ∂2

ϕM
2

����
ϕ¼0

¼ M2

24
D2

ϕ StrM
2

����
ϕ¼0

: ð6:6Þ

From a field-theory perspective, this is a remarkable result:
all running actually stops as μ → 0, and the Higgs mass
approaches a constant whose value is set by a supertrace
over all of the states in the string spectrum. This behavior
is clearly not EFT-like. However, the underlying reason
for this has to do with UV/IR equivalence and the
scale-inversion symmetry under μ → M2

s=μ. Regulating
our Higgs mass ensures that our theory no longer diverges
as μ → ∞; rather, the Higgs mass essentially “freezes” to a
constant in this limit. It is of course natural that in this limit
the relevant constant includes contributions from all of the
string states. The scale-inversion symmetry then implies
that the Higgs mass must also “freeze” to exactly the same

value as μ → 0. We thus see that although a portion of the
running of the Higgs mass is EFT-like when μ ≪ Ms, this
EFT-like behavior does not persist all the way to μ ¼ 0
because the scale-inversion symmetry forces the behavior
as μ → 0 to mirror the behavior as μ → ∞. Indeed, the
“dip” region is nothing but the stringy transition between
these two regimes.
Given the results in Eq. (6.6), we also observe that we

can now write

m2
ϕ ¼ 1

24
M2Str½D2

ϕM
2ðϕÞ�

����
ϕ¼0

. ð6:7Þ

This result is thus the Higgs-mass analogue of the Λ-result
in Eq. (6.2).
The final results of our analysis are encapsulated within

Fig. 3. Indeed, this figure graphically illustrates many of the
most important conclusions of this paper. In Fig. 3, we have
dissected the anatomy of the Higgs-mass running, illustrat-
ing how this running passes through different distinct
stages as μ increases. Starting from the “deep IR/UV”
region near μ ≈ 0, the Higgs mass passes through the “dip”
region and the “EFT” region before ultimately reaching the
“turnaround” region. Beyond this, the theory enters the
“dual EFT” region, followed by the “dual dip” region and
ultimately the “dual deep-IR/UV” region. Above all else,
this figure clearly illustrates how in a modular-invariant
theory our normal understanding of “running” is turned on
its head. The Higgs mass does not somehow get “born” in
the UV and then run to some possibly undesirable value in
the IR. Instead, we may more properly consider the Higgs
mass to be “born” at μ ¼ Ms. It then runs symmetrically
toward both lesser and greater values of μ until it eventually
asymptotes to a constant as μ → 0 and as μ → ∞.
We conclude this discussion with two comments regard-

ing technical points. First, as discussed in Sec. IV, we have
freely assumed throughout this paper that the residue of a
supertrace sum is equivalent to the supertrace sum of the
individual residues. In other words, as discussed below
Eq. (4.15), we have assumed that the supertrace sum does
not introduce any additional divergences beyond those
already encapsulated within our assertion that the four-
dimensional Higgs mass is at most logarithmically diver-
gent, or equivalently that the level-matched integrand
has a divergence structure gðτÞ ∼ c0 þ c1τ2 as τ2 → ∞.
Indeed, this assumption is justified because we are working
within the presence of a regulator which is sufficiently
powerful to render our modular integrals finite, given this
divergence structure. Moreover, the divergence structure
of our original unregulated Higgs mass is completely general
for theories in four spacetime dimensions, since only a
change in spacetime dimension can alter the numbers of τ2
prefactors which emerge. Of course, four-dimensional string
models generically contain many moduli, and some of these
moduli may correspond to the radii associated with possible
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geometric compactifications from our original underlying
10- and/or 26-dimensional world sheet theories. If those
moduli are extremely large or small, one approaches a
decompactification limit in which our theory becomes
effectively higher-dimensional. For any finite or nonzero
value of these moduli, our results still hold as before.
However, in the full limit as these moduli become infinite
or zero, new divergences may appear which are related to
the fact that the effective dimensionality of the theory has
changed. Indeed, extra spacetime dimensions generally
correspond to extra factors of τ2, thereby increasing the
strengths of the potential divergences. Although all of our
results in Secs. II and III are completely general for all
spacetime dimensions, our results in Sec. IV are focused on
the case of four-dimensional string models for which gðτ2Þ ∼
c0 þ c1τ2 as τ2 → ∞. As a result, the supertrace-summation
and residue-extraction procedures will not commute in the
decompactification limit, and additional divergences can
arise. However, this does not pose a problem for us—we
simply use the same regulators we have already outlined in
Sec. III, but instead work directly in a higher-dimensional
framework in which gðτ2Þ as τ2 → ∞ takes a form appro-
priate for the new effective spacetime dimensionality. Once
this is done, we are once again free to exchange the orders of
residue extraction and supertrace summation, knowing that
our results must once again be finite.
Our second technical point relates to the concern that has

occasionally been expressed in the prior literature about the
role played by the off-shell tachyons which necessarily
appear within the spectra of all heterotic strings, and the
exponential one-loop divergences they might seem to
induce in the absence of supersymmetry as τ → i∞. In
this paper, we discussed this issue briefly in the paragraph
surrounding Eq. (4.7). Ultimately, however, we believe that
this concern is spurious. First, as discussed below Eq. (4.7),
such states typically lack the nonzero charges needed in
order to contribute to the relevant one-loop string ampli-
tudes. Second, within such one-loop amplitudes, our
modular integrations come with an implicit instruction that
within the τ2 > 1 region of the fundamental domain we are
to perform the τ1 integration prior to performing the τ2
integration. This then eliminates the contributions from the
off-shell tachyons in the τ → i∞ limit. This integration-
ordering prescription is tantamount to replacing the diver-
gence as τ → i∞ with its average along the line segment
−1=2 ≤ τ1 ≤ 1=2, which makes sense in the τ2 → ∞ limit
as this line segment moves infinitely far up the fundamental
domain. Another way to understand this is to realize that
under a modular transformation no information can be lost,
yet this entire line segment as τ2 → ∞ is mapped to the
single point with τ1 ¼ τ2 ¼ 0 under the modular trans-
formation τ → −1=τ. Finally, through the compactification/
decompactification argument presented in Ref. [16],
one can see directly that this off-shell tachyon makes no
contribution in all spacetime dimensions D > 2. Thus no

exponential divergence arises. However, we note that even
if an exponential divergence were to survive, it would also
be automatically regulated through our modular-invariant
regulator Ĝρða; τÞ—or sufficiently many higher powers
thereof—given that Ĝρða; τÞ itself exhibits an exponential
suppression as τ → i∞.
The results in this paper have touched on many different

topics. Accordingly, there are several directions that future
work may take.
First, although we have focused in this paper on the

mass of the Higgs, it is clear that this UV/IR-mixed picture
of running provides a general paradigm for how one
should think about the behavior of a modular-invariant
theory as a whole. For example, one question that
naturally arises from our discussion concerns the renorm-
alization of the dimensionless couplings. This was the
subject of the seminal work in Ref. [1]. Even though a
regulator was chosen in Ref. [1] which was not consistent
with modular invariance, this was one of the first calcu-
lations in which the contributions from the full infinite
towers of string states were incorporated within a calcu-
lation of gauge couplings and their behavior. It would
therefore be interesting to revisit these issues and analyze
the running and beta functions of the dimensionless gauge
couplings that would emerge in the presence of a fully
modular-invariant regulator. The first steps in this direc-
tion have already been taken in Refs. [4–6]. However,
using the techniques we have developed in this paper, it is
now possible to extend these results to obtain full scale-
dependent RG flows for the gauge couplings as functions
of μ, and in a continuous way that simultaneously
incorporates both UV and IR physics and which does
not artificially separate the results into a field-theoretic
running with a string-theoretic threshold correction.
Moreover, due to the μ → M2

s=μ symmetry we expect
that the coefficients of all operators in the theory should
experience symmetric runnings with vanishing gradients
at μ ¼ Ms. For operators with zero engineering dimen-
sion, this then translates to a vanishing beta function at
μ ¼ Ms, suggesting the existence of an unexpected (and
ultimately unstable) “UV” fixed point at that location.
In the same vein, it would also be interesting to study

the behavior of scattering amplitudes within a full modular-
invariant context. We once again expect significant
deviations from our field-theoretic expectations at all
scales—including those at energies relatively far below the
string scale—but it would be interesting to obtain precise
information about how this occurs and what shape the
deviations take.
Given our results thus far, perhaps the most important

and compelling avenue to explore concerns the gauge
hierarchy problem. As discussed in the Introduction, it
remains our continuing hope that modular symmetries
might provide a new perspective on this problem, one that
transcends our typical field-theoretic expectations. Some
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ideas in this direction were already sketched in Ref. [19],
along with suggestions that the gauge hierarchy problem
might be connected with the cosmological-constant prob-
lem, and that these both might be closely connected with
the question of vacuum stability. It was also advocated in
the Conclusions section of Ref. [19] that these insights
might be better understood through calculational frame-
works that did not involve discarding the contributions of
the infinite towers of string states, but which instead
incorporated all of these contributions in order to preserve
modular invariance and the string finiteness that follows.
The results of this paper enable us to begin the process of

fulfilling these ambitions. In particular, the effective poten-
tial in Eq. (6.5) is a powerful first step because this result
provides a “UV-complete” effective potential which yields
the raw expressions for radiative corrections written in
terms of the spectrum of whatever theory one may be
interested in studying. Moreover it is an expression that is
applicable at all energy scales, including the scales asso-
ciated with the cosmological constant and the electroweak
physics where such results are critical.
Given our results, we can develop a string-based

reformulation of both of these hierarchy problems. Our
expression for the cosmological constant in Eq. (6.2) [or
equivalently taking limμ→0 Λ̂ðμÞ] implicitly furnishes us
with a constraint of the form Str M2 ∼ 24M4

Λ=M
2 where

MΛ ∼ Λ1=4 ≈ 2.3 × 10−3 eV is the mass scale associated
with the cosmological constant. Likewise, we see that
Λ ≪ 4π2M2

EWM
2 where MEW ∼Oð100Þ GeV denotes the

electroweak scale. Thus, with ϕ representing the Standard
Model Higgs and roughly identifying the physical Higgs
mass as limμ→0 m̂2

ϕðμÞ ∼M2
EW, we see from Eq. (6.6)

that we can obtain a second constraint of the form
∂2
ϕStrM

2jϕ¼0 ∼ 24M2
EW=M

2. We therefore see that our
two hierarchy conditions now respectively take the forms

�StrM2jϕ¼0 ∼ 24M4
Λ=M

2;

∂2
ϕStrM

2jϕ¼0 ∼ 24M2
EW=M

2
ð6:8Þ

where we continue to regard our massesM2 as functions of
the Higgs fluctuations ϕ, as in Eq. (5.11). To one-loop
order, these are the hierarchy conditions that must be
satisfied by the spectrum of any modular-invariant string
theory. Indeed, substituting the masses in Eq. (5.11), these
two conditions reduce to the forms�

Str β0 ∼ 24M4
Λ=M

4;

Str β2 ∼ 24M2
EW=M

2:
ð6:9Þ

Although every massive string state has a nonzero β0 and
therefore contributes to the first constraint, only those string
states which couple to the Higgs field have a nonzero β2
and thereby contribute to the second. Of course, given the
form of Eq. (5.11), the nonzero βi’s for each state are still

expected to be ∼Oð1Þ, which is precisely why these
constraints are so difficult to satisfy. Moreover, as we
know in the case of string models exhibiting charge lattices,
these βi-coefficients are related to the charges of the
individual string states and therefore can be discrete in
nature.
Given the constraints in Eq. (6.9), it is natural to wonder

why there is no hierarchy condition corresponding to Str β1.
Actually, such a condition exists, although this is not
normally treated as a hierarchy constraint. This is nothing
but our stability condition ∂ϕΛ̂ðμ;ϕÞjϕ¼0 ¼ 0 in Eq. (6.10),
which can be considered on the same footing as the other
two relations in Eq. (6.3). As we have seen, this leads
directly to the relations Str Y ¼ 0 or equivalently
∂ϕStrM2jϕ¼0 ¼ 0, which can be considered alongside
the relations in Eq. (6.8). This then leads to the constraint
Str β1 ¼ 0. Of course, it is always possible that there exists
a nonzero Higgs tadpole, as long as this tadpole is
sufficiently small as to have remained unobserved (e.g.,
at colliders, or cosmologically), leading to string models
which are not truly stable but only metastable. Such models
would be analogous to nonsupersymmetric string models in
which the dilaton tadpole is nonvanishing but exponentially
suppressed to a sufficient degree that the theory is essen-
tially stable on cosmological timescales [32]. In such cases
involving a nonzero Higgs potential, we can define an
associated mass scale Mstab which characterizes the maxi-
mum possible Higgs instability we can tolerate experimen-
tally and/or observationally. Our corresponding “hierarchy”
condition would then take the form

Str β1 ≲Mstab=M: ð6:10Þ

Of course, this condition differs from the others in that it
does not describe a phenomenological constraint on a
particular vacuum but rather helps to determine whether
that vacuum even exists. All conditions nevertheless
determine whether a given value of hϕi (in this case
defined as hϕi ¼ 0) is viable. In general, such “hierarchies”
exist for each scalar ϕ in the theory.
Despite their fundamentally different natures, these two

types of hierarchies can actually be connected to each other.
In the case that ϕ represents the Standard Model Higgs, this
connection will then allow us to relate Mstab to MEW. The
fundamental reason for this connection is that a tadpole
corresponds to a linear term in an effective potential for the
Higgs. This is in addition to the quadratic mass term.
However, we can eliminate the linear term by completing
the square, which of course simply shifts the corresponding
Higgs VEV. The maximum size of this tadpole diagram is
therefore also bounded by MEW. More precisely, we find
for the Standard Model Higgs that

Mstab ∼ 24M3
EW=M

2; ð6:11Þ
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whereupon Eq. (6.10) takes the form

Str β1 ≲ 24M3
EW=M

3: ð6:12Þ

Indeed, in this form Eq. (6.12) more closely resembles the
relations in Eq. (6.9).
It is remarkable that in string theory the constraints from

the cosmological-constant problem and the gauge hierarchy
problem in Eq. (6.9) take such similar algebraic forms.
Indeed in some sense β0 and β2 measure the responses of
our individual string states to mass (or gravity) and to
fluctuations of the Higgs field, respectively, with β2 related
to the charges of these states with respect to Higgs
couplings. It is also noteworthy that these conditions each
resemble the so-called “Veltman condition” [35] of field
theory. Recall that the Veltman condition for addressing the
gauge hierarchy in an effective field theory such as the
Standard Model calls for canceling the quadratic diver-
gence of the Higgs mass by requiring the vanishing of the
ðmassÞ2 supertrace StrM2 when summed over all light EFT
states which couple to the Higgs. However, we now see that
in string theory the primary difference is that the super-
traces StrM2 in Eq. (6.9) are evaluated over the entire
spectrum of string states and not merely the light states
within the EFT. This is an important difference because
the vanishing of this supertrace when restricted to the EFT
generally tells us nothing about its vanishing in the full
theory, or vice versa. These are truly independent con-
ditions, and we see that string theory requires the latter, not
the former.
One of the virtues of modular invariance—and indeed

an indication of its overall power as a robust, unbroken
symmetry—is that the string naturalness conditions in
Eqs. (6.8) and (6.9) necessarily include the effects of all
physics occurring at intermediate scales. This includes,
for example, the effects of a possible grand unified theory
phase transition. As discussed earlier in this paper, this is
true because modular invariance is an exact symmetry
governing not only all of the states in the string spectrum
but also their interactions. Thus all intermediate-scale
physics—even including phase transitions—must preserve
modular invariance. This in turn implies that as the masses
and degrees of freedom within the theory evolve, they all
evolve together in a carefully balanced way such that
modular invariance is preserved. Thus, given that relations
such as that in Eq. (6.6) are general and rest solely on
modular invariance, they too will remain intact. Relations
such as those in Eqs. (6.8) and (6.9) then remain valid.
Thus far we have reformulated the constraints associated

with the cosmological-constant and gauge hierarchy
problems, providing what may be viewed as essentially
“stringy” versions of the traditional Veltman condition.
However our results also suggest new stringy mechanisms
by which such constraints might actually be satisfied—
mechanisms by which such hierarchies might actually

emerge within a given theory. Given the general running
behavior of the Higgs mass in Fig. 3, we observe two
interesting features that may be relevant for hierarchy
problems. First, let us imagine that we apply our formalism
for the running of the Higgs mass in the original unbroken
phase of the theory. We will then continue to obtain a result
for the Higgs running with the same shape as that shown in
Fig. 3, only with the relevant quantities Λ, X1, and X2

evaluated in the unbroken phase. Concentrating on the
region with μ ≤ Ms, we see that there is a relatively slow
(logarithmic) running which stretches all the way from the
string scale Ms down to the energy scales associated with
the lightest massive string states, followed by a transient
“dip” region within which the Higgs mass experiences a
sudden local minimum. This therefore provides a natural
scenario in which electroweak symmetry breaking might
be triggered at an energy scale hierarchically below the
fundamental high energy scales in the theory. Note that the
dip region indeed produces a minimum for the Higgs mass
only if StrX2 > 0; otherwise the logarithmic running
changes sign and the Higgs mass would already be tachyonic
at high energy scales near the string scale, signifying
(contrary to assumptions) that our theory was not sitting
at a stable minimum in ϕ-space at high energies. (We also
note that even thoughX2 ≥ 0, the supertrace StrX2 can have
either sign depending on how these X2 charges are distrib-
uted between bosonic and fermionic states.) However, with
StrX2 > 0, this transient minimum in Fig. 3 will cause the
Higgs to become tachyonic as long as

π

6
StrX1 þ

3

10
StrX2 ≳ ξ

4π2
Λ
M4

ð6:13Þ

where the factor of 3=10 represents the approximate value
≈0.3 parametrizing the “dip depth” from Fig. 3. It is
remarkable that this condition links the scale of electroweak
symmetry breaking with the value of the one-loop cosmo-
logical constant. Just as with our other conditions, this
condition can be also expressed as a constraint on the values
of our βi coefficients:

9

5
Str β21 − 4π2 Str β2 ≳ ξ Str β0: ð6:14Þ

This is then our condition for triggering electroweak sym-
metry breaking at small scales hierarchically below M. Of
course, after this breaking occurs, we would need to work in
the broken phase wherein ϕ returns to representing the Higgs
fluctuations relative to the new broken-phase vacuum.
The second feature illustrated within Fig. 3 that may

be relevant for the hierarchy problems concerns the scale-
duality symmetry μ → M2

s=μ. As we have discussed at
numerous points throughout this paper, this symmetry
implies an equivalence between UV physics and IR
physics—an observation which already heralds a major
disruption of our understanding of the relationship between
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high and low energy scales compared with field-theoretic
expectations. Given that hierarchy problems not only
emerge within the context of low-energy EFTs but also
assume traditional field-theoretic relationships between
UV and IR physics, it is possible to speculate that such
hierarchy problems are not fundamental and do not survive
in string theory in the manner we normally assume.
Furthermore, we have already seen that modular invariance
not only leads to this UV/IR mixing but also softens
divergences so dramatically that certain otherwise-
divergent amplitudes (such as the cosmological constant)
are rendered finite. Taken together, these observations
suggest that modular invariance may hold the key to an
entirely new way of thinking about hierarchy problems—a
point originally made in Ref. [19] and which we will
develop further in upcoming work [36].
The results of this paper also prompt a number of

additional lines of research. For example, although most
of our results are completely general and hold across all
modular-invariant string theories, much of our analysis in
this paper has been restricted to one-loop order. It would
therefore be interesting to understand what occurs at higher
loops. In this connection, we note that it is often asserted in
the string literature that modular invariance is only a one-
loop symmetry, seeming to imply that it should no longer
apply at higher loops. However, this is incorrect: modular
invariance is an exact world sheet symmetry of (perturba-
tive) closed strings, and thus holds at all orders. This
symmetry is merely motivated by the need to render one-
loop string amplitudes consistent with the underlying
conformal invariance of the string world sheet. Once
imposed, however, this symmetry affects the entire string
model—all masses and interactions, to any order. Likewise,
one might wonder whether there are multiloop versions of
modular invariance which could also be imposed, similarly
motivated by considerations of higher-loop amplitudes.
However, it has been shown [37] that within certain closed-
string theories, amplitude factorization and physically
sensible state projections together ensure that one-loop
modular invariance automatically implies multiloop modu-
lar invariance. Thus one-loop modular invariance is suffi-
cient, and no additional symmetries of this sort are needed.
Because modular invariance is an exact world sheet

symmetry, we expect that certain features we have dis-
cussed in this paper (such as the existence of the scale-
duality symmetry under μ → M2

s=μ) will remain valid to all
orders. We believe that the same is true of other conse-
quences of modular invariance, such as our supertrace
relations and the “misaligned supersymmetry” [17–19]
from which they emerge.
That said, modular invariance is a symmetry of closed

strings. For this reason, we do not expect modular invari-
ance to hold for type I strings, which contain both closed-
string and open-string sectors. However, within type I
strings there are tight relations between the closed-string

and open-string sectors, and certain remnants of modular
invariance survive even into the open-string sectors.
For example, certain kinds of misaligned supersymmetry
have been found to persist even within open-string sectors
[38]. It will therefore be interesting to determine the extent
to which the results and techniques of this paper might
extend to open strings.
The results described in this paper have clearly covered a

lot of territory, stretching from the development of new
techniques for calculating Higgs masses to the development
of modular-invariant methods of regulating divergences.
We have also tackled critical questions concerning UV/IR
mixing and the extent to which one can extract effective
field theories from modular-invariant string theories, com-
plete with Higgs masses and a cosmological constant that
run as functions of a spacetime mass scale. We have
demonstrated that there are unexpected relations between
the Higgs mass and the one-loop cosmological constant in
any modular-invariant string model, and that it is possible
to extract an entirely string-based effective potential for
the Higgs. Moreover, as indicated in the Introduction, our
results apply to all scalars in the theory—even beyond the
Standard Model Higgs—and apply whether or not space-
time supersymmetry is present. As such, we anticipate
that there exist numerous areas of exploration that may be
prompted by these developments. But perhaps most
importantly for phenomenological purposes, we believe
that the results of this paper can ultimately serve as the
launching point for a rigorous investigation of the gauge
hierarchy problem in string theory. Much work therefore
remains to be done.
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APPENDIX A: EVALUATING THE HIGGS MASS
WITH THE MODULAR-INVARIANT

REGULATOR: EXPLICIT CALCULATION

Our goal in Appendices A and B is to provide an explicit
calculation of the regulated Higgs mass m̂2

ϕðρ; aÞ given
in Eq. (4.25), and to express the result directly in terms
of supertraces over the physical string states. In this
appendix we shall focus on the contribution m̂2

ϕðρ; aÞjX
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which comes from the terms with nontrivial X i insertions.
The contribution m̂2

ϕðρ; aÞjΛ from the Λ-term will be
discussed in Appendix B.
Because our regulator function Ĝρða; τÞ is built upon the

circle partition function Zcircða; τÞ defined in Eq. (3.30), the
core of our calculation of m̂2

ϕðρ; aÞjX ultimately rests on
evaluating the integral

PðaÞ≡
Z
F

d2τ
τ22

FðτÞZcircða; τÞ ðA1Þ

where FðτÞ is the modular-invariant string partition
function with the X i insertions indicated in Eq. (4.26).
We shall therefore begin by focusing on this integral.
Note that the a → 1=a symmetry of ZcircðaÞ ensures that
PðaÞ ¼ Pð1=aÞ. Once we have evaluated PðaÞ, we
can then easily evaluate the full expression for the
X i-dependent contributions to the Higgs mass in
Eq. (4.26) via

m̂2
ϕðρ; aÞjX ¼ 1

1þ ρa2
Aρa2

∂
∂a ½PðρaÞ − PðaÞ� ðA2Þ

where Aρ ≡ ρ=ðρ − 1Þ. Given that PðaÞ ¼ Pð1=aÞ, the
expression in Eq. (A2) for the Higgs mass will be invariant
under a → 1=ðρaÞ. We also emphasize that the result of our
calculation will be a manifestly finite quantity, as ensured
by the presence of the regulator Ĝρða; τÞ in our integrand.
Therefore the calculation we shall be performing here is
nothing but the direct evaluation of an integral, with no
additional regulators needed.
As in Sec. III, our first step is to recast Eq. (A1) as an

integral over the strip S in Eq. (3.3). In order to do this,
we first note that we can perform a Poisson resummation of
the expression for Zcircða; τÞ in Eq. (3.30). Indeed, we can
resum either the winding modes or the momentum modes
in Eq. (3.30), ultimately obtaining the two alternative
expressions

Zcircða; τÞ ¼ a
X
j;k

exp

�
−
πa2

τ2
jjþ kτj2

�

¼ 1

a

X
j;k

exp

�
−

π

a2τ2
jjþ kτj2

�
ðA3Þ

respectively. Indeed, the existence of these two equivalent
expressions for Zcirc is nothing but a manifestation of the
symmetry of Zcirc under a → 1=a. Of course, each of these
expressions independently retains the a → 1=a symmetry
[since each is equal to Zcircða; τÞ], but this symmetry is no
longer manifest.
In principle, we could now proceed using either of the

two expressions in Eq. (A3). However, since we shall be
most interested in the physics that emerges for a ≪ 1,

we shall find it most useful to continue from the second
expression in Eq. (A3). This is the expression in which the
momentum modes within Zcirc are Poisson-resummed, as
appropriate when the compactification radius a−1 is large.
Indeed, it is precisely through this resummation that we
find Zcirc ∼ a−1 as a → 0.
Continuing from Eq. (A3), we next define the greatest

common divisor r≡ gcdðj; kÞ, where r ¼ 0 if j ¼ k ¼ 0,
where r > 0 in all other cases, and where gcdð0; kÞ≡ jkj
for all k. With this definition, the second line of Eq. (A3)
becomes

Zcircða;τÞ¼
1

a
þ1

a

X∞
r¼1

X
j;k

ðj;kÞ¼1

exp

�
−
πr2

a2τ2
jjþkτj2

�

¼ 1

a
þ2

a

X∞
r¼1

X
j;k

ðj;kÞ¼1
jþk>0

exp

�
−
πr2

a2τ2
jjþkτj2

�
: ðA4Þ

Note that in these expressions the new ðj; kÞ summations
are over values of j and kwhich are relatively prime. On the
first line of Eq. (A7) we have explicitly separated those
contributions with r ¼ 0 from those with r > 0, while on
the second line we have further restricted our sum so that
jþ k > 0 [thereby ensuring that if ðj; kÞ is included then
ð−j;−kÞ is excluded, and vice versa].
Next, we observe that any modular transformation

τ→ τ0≡ðAτþBÞ=ðCτþDÞ sends τ2→ τ02≡τ2=jCτþDj2.
We further note that C and D are relatively prime for any
such modular transformation (thanks to the constraint
AD − BC ¼ 1) and that the set of modular transformations
consisting of one representative for each possible pair
of relatively prime integers ðC;DÞ with CþD > 0 are
precisely those that fill out the coset Γ∞nΓ. (Indeed, the
infinite number of possible choices for A and B in each case
generate the distinct cosets.) As a result, when acting on F ,
these modular transformations fill out the strip S. Thus,
multiplying Eq. (A3) by FðτÞ, integrating over the funda-
mental domain F , and then utilizing the unfolding relation
in Eq. (3.7) on the second term on the second line of
Eq. (A7) yields the result

PðaÞ ¼ P1ðaÞ þ P2ðaÞ ðA5Þ

where

P1ðaÞ≡ 1

a

Z
F

d2τ
τ22

FðτÞ;

P2ðaÞ≡ 2

a

Z
S

d2τ
τ22

FðτÞ
X∞
r¼1

e−πr
2=ða2τ2Þ

¼ 2

a

Z
∞

0

dτ2
τ22

gðτ2Þ
X∞
r¼1

e−πr
2=ða2τ2Þ: ðA6Þ
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Indeed, P1ðaÞ is nothing but our original integral PðaÞ in
the full a → 0 limit, wherein Zcirc → a−1.
In principle, our goal at this stage is to evaluate P1ðaÞ

and P2ðaÞ. Unfortunately, although the sum PðaÞ≡
P1ðaÞ þ P2ðaÞ leads to a finite result for the Higgs mass
in Eq. (A2), the individual terms P1;2ðaÞ do not; instead
they lead to expressions which each exhibit the original
logarithmic divergence associated with our unregulated
Higgs mass. Indeed, these logarithmic divergences only
cancel in the Higgs-mass contributions coming from the
sum PðaÞ. For this reason, we shall now reshuffle our
expressions for P1ðaÞ and P2ðaÞ, producing new quantities
P0
1ðaÞ and P0

2ðaÞ such that each leads to an independently
finite contribution to the Higgs mass. To do this, we recall
that our Higgs-mass calculation yields gðτ2Þ ∼ c0 þ c1τ2 as
τ2 → ∞, where c0 and c1 are given in Eq. (4.8). We shall
therefore define

P0
1ðaÞ≡ P1ðaÞ −

1

a

Z
∞

t

dτ2
τ2

c1;

P0
2ðaÞ≡ P2ðaÞ þ

1

a

Z
∞

t

dτ2
τ2

c1 ðA7Þ

where t is an arbitrary finite parameter. As we shall see, the
extra terms in Eq. (A7) have the net effect of transferring
this logarithmic divergence between the Higgs-mass con-
tributions coming from these separate terms, thereby
allowing these divergences to separately cancel. Indeed,
for any finite t, each of these new quantities P0

iðaÞ leads to a
finite contribution to the Higgs mass [and P0

1ðaÞ will even
be finite by itself]. Of course, with these extra terms, the
new quantities P0

iðaÞ are no longer individually modular
invariant. However, modular invariance continues to be
preserved for their sum, as required. Likewise, although
P0
1ðaÞ and P0

2ðaÞ will now depend on t, all dependence on t
will cancel in their sum.
We emphasize that despite a superficial similarity to

the nonminimal regulator, the act of passing from
fP1ðaÞ; P2ðaÞg to fP0

1ðaÞ; P0
2ðaÞg is not one in which

we are regulating our Higgs mass by softening or elimi-
nating a net divergence. We are simply performing an
algebraic reshuffling of terms, transferring a logarithmic
divergence from one contributing expression to another.
Indeed, the only regulator in our Higgs-mass calculation
remains the Ĝρða; τÞ function with which we started.
Having defined these quantities, we now begin by

evaluating P0
1ðaÞ. However, upon comparing Eq. (A7) with

Eq. (3.28), we note that

P0
1ðaÞ ¼

1

a
m̂2

ϕðtÞjQ ðA8Þ

where on the right side we are explicitly disregarding the
Λ-term (i.e., keeping only those terms that result from
nontrivial Q-insertions). Thus, even though we are not

employing the nonminimal regulator in this calculation
(and thus we do not interpret t as corresponding to a mass
scale), we nevertheless find that P0

1ðaÞ by itself is alge-
braically identical to what we would have obtained for the
Q-dependent contributions to the Higgs mass using the
nonminimal regulator. The same algebraic manipulations
that took us from Eq. (3.28) to Eq. (3.29) and ultimately
Eq. (4.18) then yield

P0
1ðaÞ ¼ −

M2

2a

�
π

3
StrX1 þ ð Str

M¼0
X2Þ log 4πte−γ

�
: ðA9Þ

We now evaluate P0
2ðaÞ. Given the form of P2ðaÞ in

Eq. (A6), we shall begin our evaluation of P0
2ðaÞ by

breaking P2ðaÞ into three contributions: those from mass-
less string states charged under X1; those from massless
string states charged under X2; and those from the massive
string states charged underX1 and/orX2. Note that only the
second of these contributions to P2ðaÞ is divergent. It is
therefore within this contribution to P0

2ðaÞ that we shall
absorb the extra divergent term in Eq. (A7). This will allow
each of these three contributions to take an explicitly
finite form.
We can easily evaluate the first of these contributions:

P2ðaÞj X1
M¼0

¼ −
M2

a

Z
∞

0

dτ2
τ22

Str
M¼0

X1

X∞
r¼1

e−πr
2=ða2τ2Þ

¼ −
M2

a
Str
M¼0

X1

X∞
r¼1

ðπr2=a2Þ−1

¼ −
1

2
aM2

�
π

3
Str
M¼0

X1

�
: ðA10Þ

By contrast, evaluating the contribution to P2ðaÞ from
massless states charged under X2 is more subtle. Including
the extra logarithmically divergent term from Eq. (A7),
we have

P0
2ðaÞj X2

M¼0
¼ −

M2

a

Z
∞

0

dτ2
τ2

Str
M¼0

X2

X∞
r¼1

e−πr
2=ða2τ2Þ

−
M2

2a

Z
∞

t

dτ2
τ2

Str
M¼0

X2: ðA11Þ

Each line of Eq. (A11) is individually logarithmically
divergent, but their sum is not. In order to isolate these
divergences algebraically and then cancel them between
these two terms, we can insert a factor of τs2 inside each
integral, with s ≤ 0. We then find explicitly that each term
diverges as s → 0, but that their sum remains finite as
s → 0. Explicitly, we have
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P0
2ðaÞj X2

M¼0
¼ −

M2

a

Z
∞

0

dτ2
τ2

τs2 StrM¼0
X2

X∞
r¼1

e−πr
2=ða2τ2Þ

−
M2

2a

Z
∞

t

dτ2
τ2

τs2 StrM¼0
X2

¼ −
M2

2a
Str
M¼0

X2

�
2πsa−2sΓð−sÞζð−2sÞ − ts

s

�
:

ðA12Þ

Each of the terms inside the square brackets on the final line
has an expansion around s ¼ 0 beginning with a leading
simple pole 1=s. These then cancel, whereupon the s → 0
limit leaves behind the net finite contribution

P0
2ðaÞj X2

M¼0
¼ M2

2a
Str
M¼0

X2 logð4πa2te−γÞ: ðA13Þ

Indeed, although this result continues to depends on t,
this t-dependence ultimately cancels when this result is
added to the result coming from Eq. (A9). Thus, as
required, none of our results depend on the parameter t
that characterized our reshuffling of the logarithmic
divergence in Eq. (A7).
Finally, we turn to the contributions to P2ðaÞ from the

massive states charged under X1 and/or X2. These are also
finite, and are given by

P2ðaÞjM>0 ¼ −
M2

a

X∞
r¼1

Z
∞

0

dτ2
τ22

h
Str
M>0

ðX1 þ τ2X2Þe−πα0M2τ2−πr2=ða2τ2Þ
i

¼ −
2M2

a

X∞
r¼1

�
1

2π
Str
M>0

X1

�
aM
rM

�
K1

�
rM
aM

�
þ Str

M>0
X2 K0

�
rM
aM

��
ðA14Þ

where KνðzÞ is the modified Bessel function of the second kind.
Thus, combining Eqs. (A9), (A15), (A13), and (A14), we obtain our final result

PðaÞ ¼ −
1

2
M2

�
Str
M¼0

X1

�
π

3
ðaþ 1=aÞ

�
þ Str

M¼0
X2

�
−
2

a
log a

�

þ Str
M>0

X1

�
π

3a
þ 2

π

X∞
r¼1

�
M
rM

�
K1

�
rM
aM

��
þ Str

M>0
X2

�
4

a

X∞
r¼1

K0

�
rM
aM

��	
: ðA15Þ

Indeed, this result is exact for all a and for any modular-
invariant theory.
At no step in our calculation for the total PðaÞ did we

break the a → 1=a symmetry. It therefore remains true that
PðaÞ ¼ Pð1=aÞ. However, this symmetry is deeply hidden.
Indeed, our manipulations in deriving this result presup-
posed that FðτÞ in Eq. (A1) is modular invariant, and this in
turn provides tight (but not obvious) relative constraints on
the supertraces which appear on each line of Eq. (A15). For
example, given that modular transformations mix massless
and massive string modes, the supertraces over the massless
modes in any modular-invariant theory are nontrivially

balanced against the supertraces over the massive modes—
especially when these supertraces are weighted by extra
factors ofM and the Bessel functions thereof. We have also
seen thatX1 andX2 are modular completions of each other,
and hence their contributions are also mixed under modular
transformations. Thus, although PðaÞ continues to be
invariant under a → 1=a, we no longer expect to see this
explicitly when our terms are organized in the manner
presented in Eq. (A15).
Given this result for PðaÞ, we can now directly calculate

m̂2
ϕðρ; aÞ via Eq. (A2). Our result is

m̂2
ϕðρ; aÞjX ¼ M2

1þ ρa2

�
Str
M¼0

X1

�
−
π

6
ð1þ ρa2Þ

�
þ Str

M¼0
X2

�
log a − 1 −

log ρ
ρ − 1

�

þ Str
M>0

X1

�
−
π

6
−

1

2πðρ − 1Þ
�
M
M

�
2

×

�
Kð0;1Þ

0

�
M
aM

�
þKð0;1Þ

2

�
M
aM

��	

þ Str
M>0

X2

�
2

ρ − 1

�
Kð0;1Þ

0

�
M
aM

�
−
1

ρ
Kð1;2Þ

1

�
M
aM

��		
ðA16Þ

where Kðn;pÞ
ν ðzÞ are the combinations of Bessel functions in Eq. (4.36).
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APPENDIX B: EVALUATING THE
COSMOLOGICAL CONSTANT WITH THE
MODULAR-INVARIANT REGULATOR:

EXPLICIT CALCULATION

In Appendix A, we provided an explicit calculation
of the first contribution to the total regulated Higgs mass
listed in Eq. (4.25). In this appendix, with an eye toward
evaluating the second contribution, we now provide an
explicit calculation of Λ̂ðρ; aÞ.
In any tachyon-free modular-invariant theory, the one-

loop cosmological constant Λ is finite. As such, evaluating
Λ requires no regulator. However, we have seen that Λ also
appears as a contributing term within our total result for the
Higgs mass in Eq. (2.55), along with contributions stem-
ming from the nontrivial X i insertions. The latter contri-
butions are divergent, and thus the Higgs mass requires
regularization. However, when we regularize our Higgs
mass, for consistency we must apply the same regulator
to all of the terms that contribute to the Higgs mass,
and this includes the cosmological-constant term as well.
Accordingly, in this appendix, we shall evaluate the
quantity Λ̂ðρ; aÞ defined in Eq. (4.49) where Z is the
one-loop partition function of our theory with no charge
insertions, and express our result in terms of supertraces
over only physical string states. Indeed, our result for
Λ̂ðρ; aÞ can then be incorporated alongside our result for
m̂2

ϕðρ; aÞjX from Appendix A in order to obtain a full
expression for the regularized Higgs mass m̂2

ϕðμÞ.
Our calculation will parallel the calculation presented in

Appendix A. In particular, we shall begin by evaluating the
core integral

PðaÞ≡
Z
F

d2τ
τ22

ZðτÞZcircða; τÞ; ðB1Þ

which is the same as PðaÞ in Eq. (A1) except that we have
replaced FðτÞ → ZðτÞ within the integrand of Eq. (A1).
We therefore now have

gðτ2Þ ¼ −
M4

2
τ−12 ½ Str

M¼0
1þ Str

M>0
e−πα

0M2τ2 �: ðB2Þ

Of course,

Str
M¼0

1 ¼ nB − nF; ðB3Þ

where nB and nF are respectively the numbers of physical
massless bosonic and fermionic degrees of freedom in the
string spectrum. Proceeding exactly as in Appendix A,
we can then separate PðaÞ into two distinct contributions
P1ðaÞ and P2ðaÞ as in Eq. (A3), except with FðτÞ → ZðτÞ.
However, unlike the situation in Appendix A, there is no
need to transfer any divergences between these two terms.

Evaluating P1ðaÞ is straightforward, yielding

P1ðaÞ ¼
1

a
Λ ¼ M2

24a
StrM2 ðB4Þ

where in passing to the final expression we have followed
the derivation in Eq. (4.45). Evaluating P2ðaÞ is also
relatively straightforward. The contribution to P2ðaÞ from
the massless states—i.e., from the first term in Eq. (B2)—is
given by

P2ðaÞjM¼0 ¼ −
M4

a
ðnB − nFÞ

X∞
r¼1

Z
∞

0

dτ2
τ32

e−πr
2=ða2τ2Þ

¼ −
M4

a
ðnB − nFÞ

X∞
r¼1

a4

π2r4

¼ −
M4

2

π2

45
ðnB − nFÞa3: ðB5Þ

By contrast, the contribution to P2ðaÞ from the massive
states—i.e., from the second term in Eq. (B2)—is given by

P2ðaÞjM>0 ¼ −
M4

a
Str
M>0

X∞
r¼1

Z
∞

0

dτ2
τ32

e−πτ2α
0M2−πr2=ða2τ2Þ

¼ −
M2

2

a
π2

Str
M>0

�
M2

X∞
r¼1

1

r2
K2

�
rM
aM

��
ðB6Þ

where K2ðzÞ is the order-two modified Bessel function of
the second kind. Combining our results from Eqs. (B4),
(B5), and (B6) then yields our final expression for PðaÞ:

PðaÞ ¼ M2

24a
StrM2 −

M4

2

π2

45
ðnB − nFÞa3

−
M2

2

a
π2

Str
M>0

�
M2

X∞
r¼1

1

r2
K2

�
rM
aM

��
: ðB7Þ

Applying the operator in Eq. (A2), we then find that our
regulated cosmological constant Λ̂ðρ; aÞ is given by

Λ̂ðρ; aÞ ¼ 1

1þ ρa2

�
M2

24
StrM2

−
π2

30
ρð1þ ρþ ρ2ÞðnB − nFÞðaMÞ4

−
1

4π2
ρ

ρ − 1
Str
M>0

M4

�
Kð−1;0Þ

1

�
M
aM

�

þ 2ρKð−2;−1Þ
2

�
M
aM

�

þKð−1;0Þ
3

�
M
aM

��	
ðB8Þ

where Kðn;pÞ
ν ðzÞ are the Bessel-function combinations

defined in Eq. (4.36).

CALCULATING THE HIGGS MASS IN STRING THEORY PHYS. REV. D 104, 126032 (2021)

126032-61



[1] V. S. Kaplunovsky, Nucl. Phys. B307, 145 (1988); B382,
436(E) (1992).

[2] K. R. Dienes and J. March-Russell, Nucl. Phys. B479, 113
(1996).

[3] K. R. Dienes, A. E. Faraggi, and J. March-Russell, Nucl.
Phys. B467, 44 (1996).

[4] E. Kiritsis and C. Kounnas, Nucl. Phys. B442, 472 (1995).
[5] E. Kiritsis, C. Kounnas, P. M. Petropoulos, and J. Rizos,

Nucl. Phys. B483, 141 (1997).
[6] E. Kiritsis, C. Kounnas, P. M. Petropoulos, and J. Rizos,

Nucl. Phys. B540, 87 (1999).
[7] G.W. Moore, Nucl. Phys. B293, 139 (1987); B299, 847(E)

(1988).
[8] K. R. Dienes, Phys. Rev. D 42, 2004 (1990).
[9] K. R. Dienes, Phys. Rev. Lett. 65, 1979 (1990).

[10] R. Rankin, Proc. Cambridge Philos. Soc. 35, 351 (1939).
[11] R. Rankin, Proc. Cambridge Philos. Soc. 35, 357 (1939).
[12] A. Selberg, Arch. Math. Naturvidensk. 43, 47 (1940).
[13] D. Zagier, J. Fac. Sci. Univ. Tokyo 28, 415 (1982).
[14] B. McClain and B. D. B. Roth, Commun. Math. Phys. 111,

539 (1987).
[15] K. O’Brien and C. Tan, Phys. Rev. D 36, 1184 (1987).
[16] D. Kutasov and N. Seiberg, Nucl. Phys. B358, 600 (1991).
[17] K. R. Dienes, Nucl. Phys. B429, 533 (1994).
[18] K. R. Dienes, M. Moshe, and R. C. Myers, Phys. Rev. Lett.

74, 4767 (1995).
[19] K. R. Dienes, Nucl. Phys. B611, 146 (2001).
[20] C. Angelantonj, M. Cardella, S. Elitzur, and E. Rabinovici,

J. High Energy Phys. 02 (2011) 024.
[21] C. Angelantonj, I. Florakis, and B. Pioline, Commun.

Number Theory Phys. 6, 159 (2012).
[22] C. Angelantonj, I. Florakis, and B. Pioline, J. High Energy

Phys. 06 (2012) 070.

[23] C. Angelantonj, I. Florakis, and B. Pioline, J. High Energy
Phys. 07 (2013) 181.

[24] B. Pioline, Proc. Symp. Pure Math. 88, 119 (2014).
[25] I. Florakis and B. Pioline, Commun. Number Theory Phys.

11, 337 (2017).
[26] K. R. Dienes and A. E. Faraggi, Nucl. Phys. B457, 409

(1995).
[27] K. R. Dienes, C. F. Kolda, and J. March-Russell, Nucl. Phys.

B492, 104 (1997).
[28] R. B. Paris, Math. Eterna 8, 71 (2018), https://www.longdom

.org/abstract/the-evaluation-of-single-bessel-function-sums-
4807.html

[29] K. R. Dienes, E. Dudas, and T. Gherghetta, Phys. Lett. B
436, 55 (1998).

[30] K. R. Dienes, E. Dudas, and T. Gherghetta, Nucl. Phys.
B537, 47 (1999).

[31] K. R. Dienes, E. Dudas, and T. Gherghetta, in Proceedings
of the 1st European Meeting From the Planck Scale to the
Electroweak Scale (Planck 1998), Kazimierz, Poland, 1998
(1998), pp. 613–620, https://cds.cern.ch/record/361067/files/
9807522.pdf.

[32] S. Abel, K. R. Dienes, and E. Mavroudi, Phys. Rev. D 91,
126014 (2015).

[33] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888
(1973).

[34] E. J. Weinberg, arXiv:hep-th/0507214.
[35] M. Veltman, Acta Phys. Pol. B 12, 437 (1981).
[36] S. A. Abel and K. R. Dienes (to be published).
[37] H. Kawai, D. C. Lewellen, J. A. Schwartz, and S. H. H. Tye,

Nucl. Phys. B299, 431 (1988).
[38] N. Cribiori, S. Parameswaran, F. Tonioni, and T. Wrase,

J. High Energy Phys. 04 (2021) 099.

STEVEN ABEL and KEITH R. DIENES PHYS. REV. D 104, 126032 (2021)

126032-62

https://doi.org/10.1016/0550-3213(88)90526-3
https://doi.org/10.1016/0550-3213(96)00406-3
https://doi.org/10.1016/0550-3213(96)00406-3
https://doi.org/10.1016/0550-3213(96)00085-5
https://doi.org/10.1016/0550-3213(96)00085-5
https://doi.org/10.1016/0550-3213(95)00156-M
https://doi.org/10.1016/S0550-3213(96)00550-0
https://doi.org/10.1016/S0550-3213(98)00713-5
https://doi.org/10.1016/0550-3213(87)90067-8
https://doi.org/10.1103/PhysRevD.42.2004
https://doi.org/10.1103/PhysRevLett.65.1979
https://doi.org/10.1017/S0305004100021095
https://doi.org/10.1017/S0305004100021101
https://doi.org/10.1007/BF01219073
https://doi.org/10.1007/BF01219073
https://doi.org/10.1103/PhysRevD.36.1184
https://doi.org/10.1016/0550-3213(91)90426-X
https://doi.org/10.1016/0550-3213(94)90153-8
https://doi.org/10.1103/PhysRevLett.74.4767
https://doi.org/10.1103/PhysRevLett.74.4767
https://doi.org/10.1016/S0550-3213(01)00344-3
https://doi.org/10.1007/JHEP02(2011)024
https://doi.org/10.4310/CNTP.2012.v6.n1.a4
https://doi.org/10.4310/CNTP.2012.v6.n1.a4
https://doi.org/10.1007/JHEP06(2012)070
https://doi.org/10.1007/JHEP06(2012)070
https://doi.org/10.1007/JHEP07(2013)181
https://doi.org/10.1007/JHEP07(2013)181
https://doi.org/10.1090/pspum/088
https://doi.org/10.4310/CNTP.2017.v11.n2.a4
https://doi.org/10.4310/CNTP.2017.v11.n2.a4
https://doi.org/10.1016/0550-3213(95)00497-1
https://doi.org/10.1016/0550-3213(95)00497-1
https://doi.org/10.1016/S0550-3213(97)80028-4
https://doi.org/10.1016/S0550-3213(97)80028-4
https://www.longdom.org/abstract/the-evaluation-of-single-bessel-function-sums-4807.html
https://www.longdom.org/abstract/the-evaluation-of-single-bessel-function-sums-4807.html
https://www.longdom.org/abstract/the-evaluation-of-single-bessel-function-sums-4807.html
https://www.longdom.org/abstract/the-evaluation-of-single-bessel-function-sums-4807.html
https://www.longdom.org/abstract/the-evaluation-of-single-bessel-function-sums-4807.html
https://doi.org/10.1016/S0370-2693(98)00977-0
https://doi.org/10.1016/S0370-2693(98)00977-0
https://doi.org/10.1016/S0550-3213(98)00669-5
https://doi.org/10.1016/S0550-3213(98)00669-5
https://cds.cern.ch/record/361067/files/9807522.pdf
https://cds.cern.ch/record/361067/files/9807522.pdf
https://cds.cern.ch/record/361067/files/9807522.pdf
https://cds.cern.ch/record/361067/files/9807522.pdf
https://cds.cern.ch/record/361067/files/9807522.pdf
https://doi.org/10.1103/PhysRevD.91.126014
https://doi.org/10.1103/PhysRevD.91.126014
https://doi.org/10.1103/PhysRevD.7.1888
https://doi.org/10.1103/PhysRevD.7.1888
https://arXiv.org/abs/hep-th/0507214
https://doi.org/10.1016/0550-3213(88)90544-5
https://doi.org/10.1007/JHEP04(2021)099

