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Recently a generalization of the Fefferman-Graham gauge for asymptotically locally anti–de Sitter
spacetimes, called the Weyl-Fefferman-Graham (WFG) gauge, has been proposed. It was shown that the
WFG gauge induces a Weyl geometry on the conformal boundary. The Weyl geometry consists of a metric
and a Weyl connection. Thus, this is a useful setting for studying dual field theories with background Weyl
symmetry. Working in the WFG formalism, we find the generalization of obstruction tensors, which are
Weyl-covariant tensors that appear as poles in the Fefferman-Graham expansion of the bulk metric for even
boundary dimensions. We see that these Weyl-obstruction tensors can be used as building blocks for the
Weyl anomaly of the dual field theory. We then compute the Weyl anomaly for 6d and 8d field theories in
the Weyl-Fefferman-Graham formalism and find that the contribution from the Weyl structure in the bulk
appears as cohomologically trivial modifications. Expressed in terms of the Weyl-Schouten tensor and
extended Weyl-obstruction tensors, the results of the holographic Weyl anomaly up to 8d also reveal hints
on its expression in any dimension.
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I. INTRODUCTION

There is an important fact about the asymptotic AdS
geometry: the conformal boundary of a (dþ 1)-
dimensional asymptotically locally anti–de Sitter (AlAdS)
spacetime carries not a metric but a conformal class of
metrics; i.e., the boundary enjoysWeyl symmetry. This is due
to the fact that the asymptotic boundary is formally located at
conformal infinity [1]. In holographic theories [2], the
(background)Weyl symmetry is implied by diffeomorphism
invariance in the bulk spacetime (called Weyl diffeomor-
phism). Usually when discussing AdS=CFT, one picks a
specific representative of the conformal class. For example,
the most commonly used choice for studying the conformal
boundary of an AlAdS spacetime is the Fefferman-Graham
(FG) gauge [3,4]. However, the FG gauge explicitly breaks
the Weyl symmetry by fixing a specific boundary metric.
In a suitable coordinate system fz;xμg (μ ¼ 0;…; d − 1),

themetric of any (dþ 1)-dimensional AlAdS spacetime can
be expanded with respect to the bulk coordinate z into two
series, called the Fefferman-Graham expansion [5,6]. The
first series has the boundary metric in the leading order,
while the subleading terms are determined by the bulk

equations of motion; the leading order of the second series
represents the vacuum expectation value of the energy-
momentum tensor operator of the boundary field theory,
which cannot be determined in the absence of an interior
boundary condition [6].
When the spacetime dimension is odd, both series in the

FG expansion are power series to infinite order; however, in
an even-dimensional spacetime, a logarithmic term will
occur at orderOðzd−2Þ, causing an obstruction to the power
series expansion [7]. This logarithmic term in d ¼ 2k (with

k an integer) gives rise to the obstruction tensor Oð2kÞ
μν . The

obstruction tensor was first proposed in [3] as a symmetric
traceless tensor of type (0,2), which is Weyl covariant with
Weyl weight 2k − 2 (k ≥ 2), and was precisely defined
using the ambient metric in [7] (see also [4]). It is also
convenient to define the extended obstruction tensor[8]
which has a pole at d ¼ 2k, and whose residue gives rise to
the obstruction tensor. The obstruction tensor for d ¼ 4 is
also known as the Bach tensor [9], which is the only Weyl-
covariant tensor in 4d that is algebraically independent of
the Weyl tensor. It has been shown in [7] that the only
irreducibleWeyl-covariant tensors in the 2k dimension with

k ≥ 2 are the obstruction tensor Oð2kÞ
μν and the Weyl tensor

(which has weight 0), while in any odd dimension d ¼
2kþ 1 with k ≥ 2 the Weyl tensor is the only one (in 3d
where the Weyl tensor becomes trivial, it is the Cotton
tensor).
The origin of the obstruction tensor in the FG expansion

is that the two series will mix if the spacetime dimension d
is even, and the solution to the equations of motion
encounters a pole. Hence, another way to formulate the

*weizhen2@illinois.edu
†karydas2@illinois.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 126031 (2021)

2470-0010=2021=104(12)=126031(26) 126031-1 Published by the American Physical Society

https://orcid.org/0000-0002-6268-6496
https://orcid.org/0000-0003-2788-6297
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.126031&domain=pdf&date_stamp=2021-12-29
https://doi.org/10.1103/PhysRevD.104.126031
https://doi.org/10.1103/PhysRevD.104.126031
https://doi.org/10.1103/PhysRevD.104.126031
https://doi.org/10.1103/PhysRevD.104.126031
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


FG expansion is to use the technique of dimensional
regularization, i.e., to regard d as a variable (formally
complex)[5,6]. Using this formulation, in this paper we will
describe a practical way of reading off the obstruction
tensor from the pole of the FG expansion in an even
dimension.
Even though the FG gauge is quite convenient to use, the

Weyl symmetry in the boundary will be broken when the
boundary metric is fixed. More specifically, one can
introduce a Penrose-Brown-Henneaux (PBH) transforma-
tion [10–12] in the bulk and induce a Weyl transformation
on the boundary, but the subleading terms in the z
expansion will not transform in a Weyl-covariant way if
the form of the FG ansatz is to be preserved. In order to
resolve this issue, one can relax the FG ansatz of the bulk
metric to the Weyl-Fefferman-Graham (WFG) ansatz [5].
In the WFG gauge, the form of the bulk metric is preserved
under a Weyl diffeomorphism, and all the terms in the z
expansion transform in a Weyl-covariant way, which brings
a powerful reorganization of the holographic dictionary.
Unlike the FG gauge, where the bulk Levi-Civita (LC)
connection induces on the conformal boundary also a LC
connection (of the boundary metric), in theWFG gauge, the
bulk LC connection gives a Weyl connection on the
boundary [5]. Having the induced metric together with
the Weyl connection, the bulk geometry induces on the
boundary a Weyl-covariant geometry [13–15].
On the boundary, the induced metric and the Weyl

connection act as nondynamical backgrounds of the dual
quantum field theory. Similar to the FG case, the metric is
the source of the energy-momentum tensor operator on the
boundary. However, the Weyl connection does not source
any current since it comes from a pure gauge mode of the
bulk metric. Despite being pure gauge, the appearance of
the Weyl connection on the boundary is far from innocuous
since it makes the geometric quantities on the boundary
Weyl covariant. Specifically, we will show that the obstruc-
tion tensors in the WFG gauge are promoted to Weyl-
obstruction tensors, which will play an important role in the
construction of the Weyl anomaly in this paper.
The Weyl anomaly is reflected by the nonvanishing trace

of the energy-momentum tensor in even dimensions, which
has been computed for various conformal field theories
[16–26]. The results in 2d and 4d are well-known:

2d∶ hTμ
μi ¼ −

c
24π

R; 4d∶ hTμ
μi ¼ cW2 − aEð4Þ; ð1Þ

whereW2 is the contraction of two Weyl tensors and Eð4Þ is
the Euler density in 4d. In the context of holography, the
Weyl anomaly was first suggested in [27] and was then
calculated from the bulk in [24,28]. For a holographic
theory where we have the vacuum Einstein theory in the
bulk, one gets a ¼ c in the four-dimensional boundary
theory as a constraint on the central charges. In the FG
gauge, after going through the holographic renormalization

procedure by adding counterterms to cancel the divergence
extracted by the regulator, one finds that the holographic
Weyl anomaly in an even dimension corresponds to the
logarithmic term in the bulk volume expansion. In math-
ematical literature this is also referred to as the Q curvature
[29–32] (see [33] for a short review), which has been
studied by means of obstruction tensors and extended
obstruction tensors in [7,8]. Going into the WFG gauge,
it was shown in [5] using dimensional regularization that
the Weyl anomaly in the 2k dimension can be extracted
directly from the variation of the pole term at the Oðz2k−dÞ
order of the “bare” on-shell action under the d → 2k− limit.
This is the method we will use for computing the Weyl
anomaly in this work.
Our goal in this paper is to find the holographic Weyl

anomaly in higher dimensions using the advantages of the
WFG gauge, and organize the results in a form that
manifests its general structure. It has been shown in [5]
that, up to total derivatives, the Weyl anomaly in 2d and 4d
in the WFG gauge has the same form of that in the FG
gauge, but now become Weyl covariant. We generalize
these results to 6d and 8d by calculating the Weyl anomaly
explicitly, and we find that the same statement still holds.
Furthermore, we discover that by promoting the obstruction
tensors in the FG gauge to the Weyl-obstruction tensors
in the WFG gauge, one can use them as natural building
blocks for the Weyl anomaly. In this way, we will see
clearly how the WFG gauge Weyl covariantizes the Weyl
anomaly without introducing additional nontrivial
cocycles. Our results also reveal some interesting clues
about the general form of the holographic Weyl anomaly in
any dimension.
This paper will be organized as follows. In Sec. II we

briefly introduce the obstruction tensors and extended
obstruction tensors in the FG gauge and their properties.
In Sec. III we review the WFG gauge as the Weyl-covariant
modification of the FG gauge, and how the bulk LC
connection induces a Weyl connection on the conformal
boundary. More details about the Weyl connection and
Weyl geometry are given in Appendix A. In Sec. IV we
generalize the results of Sec. II to Weyl-obstruction tensors
and extended Weyl-obstruction tensors by solving the
Einstein equations in the WFG gauge. The expansions
of the Einstein equations can be found in Appendix B.
Using the Weyl-Schouten tensor and extended Weyl-
obstruction tensors as building blocks, in Sec. V we will
derive the holographic Weyl anomaly in the WFG gauge in
6d and 8d after we review the results in 2d and 4d. More
details of the calculation are provided in Appendix C. As a
consistency check, we also compute the 8d holographic
Weyl anomaly in the FG gauge using a completely different
approach—the dilatation operator method [34,35]—which
will be presented in Appendix D. The result agrees with
what we get in Sec. V. The expressions for the holographic
Weyl anomaly up to 8d also suggest the pattern in any
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dimension, which will be discussed at the end of Sec. V.
In Sec. VI we discuss some aspects of the Weyl structure
observed from the role it plays in the formulas for theWeyl-
obstruction tensors and Weyl anomaly that we derived.
Finally, in Sec. VII we summarize our results and point out
possible directions for future studies.

II. OBSTRUCTION TENSORS

The obstruction tensor is known as the only irreducible
conformal covariant tensor besides the Weyl tensor in an
even-dimensional spacetime. The general references for the
obstruction tensor are [4,7], where it was defined precisely
in terms of the ambient metric. Instead of providing the
formal definition, we will derive the obstruction tensors
explicitly in the FG gauge for up to d ¼ 6 by solving the
bulk equations of motion order by order. The same method
will also be used in Sec. IV for the Weyl-obstruction tensor.
According to the Fefferman-Graham theorem [3] the

metric of a (dþ 1)-dimensional AlAdS spacetime can
always be expressed in the following form:

ds2 ¼L2
dz2

z2
þhμνðz;xÞdxμdxν; μ;ν¼ 0;…;d− 1; ð2Þ

where the coordinate z can be considered as a “radial”
coordinate, and z ¼ 0 is the “location” of the conformal
boundary. When hμν ¼ L2ημν=z2 with ημν the flat metric,
this represents the Poincaré metric for AdSdþ1 spacetime.
Near the conformal boundary, hμν can be expanded with
respect to z as follows [5]:

hμνðz; xÞ ¼
L2

z2

�
γð0Þμν ðxÞ þ z2

L2
γð2Þμν ðxÞ þ � � �

�

þ zd−2

Ld−2

�
πð0Þμν ðxÞ þ z2

L2
πð2Þμν ðxÞ þ � � �

�
: ð3Þ

As we mentioned in the Introduction, the conformal
boundary carries a conformal class of metrics. In the FG

expansion γð0Þμν serves as the “canonical” representative of
the conformal class sourcing the energy-momentum
tensor of the dual field theory on the boundary, while

πð0Þμν corresponds to the expectation value of the energy-

momentum tensor [6]. Once γð0Þμν is given, each term in the
first series can be determined by solving the vacuum
Einstein equations with a negative cosmological constant

in the bulk. Similarly, once πð0Þμν is given, the second series

will be determined. However, πð0Þμν is not completely
arbitrary but is actually constrained by the Einstein equa-
tions. To be more specific, the zz component of the Einstein

equations tells us that πð0Þμν is traceless while the zμ
components indicate that it is also divergence-free.

Nevertheless, subtleties will arise when the boundary
dimension d is an even integer, since the two series in (3)
mix into one. To resolve this issue for an even d ¼ 2k, we
treat d formally as a variable d ∈ C in the expansion (3) and
let d approach 2k from below. As we will see explicitly,

when the Einstein equations are satisfied, γð2kÞμν has a first
order pole at d ¼ 2k. For any integer k ≥ 2, up to some
factor, the coefficient of the pole term (which is actually a
meromorphic function of the boundary dimension) is what

we define as the obstruction tensor, denoted by Oð2kÞ
μν :

γð2kÞμν ¼ cð2kÞ
d − 2k

Oð2kÞ
μν þ γ̃ð2kÞμν ;

cð2kÞ ¼ −
L2k

22k−3k!
Γðd=2 − kþ 1Þ
Γðd=2 − 1Þ ; ð4Þ

where the normalization factor cð2kÞ has been chosen so that
the obstruction tensor agrees with the convention of [4],

and the tensor γ̃ð2kÞμν is analytic at d ¼ 2k.
Besides holographic dimensional regularization [6],

another common approach is to introduce a logarithmic
term for d ¼ 2k [24], which turns out to be proportional to
the obstruction tensor. This is also the origin of the name
obstruction tensor, as it obstructs the existence of a formal

power series expansion. Note that the tensor Oð2kÞ
μν is well-

defined in any d ≥ 2k, but only behaves as an “obstruction”
when d ¼ 2k. The relation between the two approaches
will be cleared up at the end of this section once we show
how to correctly take the limit for an even d in holographic
dimensional regularization.
Now we present the obstruction tensors explicitly. First,

by solving the bulk Einstein equations to the Oðz2Þ order
one finds that

γð2Þμν

L2
¼ −

1

d − 2

�
Rð0Þ
μν −

Rð0Þ

2ðd − 1Þ γ
ð0Þ
μν

�
; ð5Þ

where Rð0Þ
μν and Rð0Þ represent the Ricci tensor and Ricci

scalar of γð0Þμν at the boundary, respectively. One can

recognize γð2Þμν =L2 as the Schouten tensor Pμν at the
boundary (with a minus sign):

Pμν ¼
1

d − 2

�
Rð0Þ
μν −

Rð0Þ

2ðd − 1Þ γ
ð0Þ
μν

�
: ð6Þ

Indeed, we notice that there is a first order pole when d ¼ 2
as expected. However, it is easy to see that the residue of the
pole vanishes identically for d ¼ 2. This is the reason why
it is often stated that there is no obstruction tensor
for d ¼ 2.
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At the Oðz4Þ order, the Einstein equations give us

γð4Þμν

L4
¼ −

1

4ðd − 4ÞBμν þ
1

4
PρμPρ

ν: ð7Þ

Note that on the boundary, the tensor indices are lowered

and raised using γð0Þμν and its inverse γμνð0Þ. The tensor Bμν is

the Bach tensor, which is defined as

Bμν ¼ ∇λ
ð0Þ∇ð0Þ

λ Pμν −∇λ
ð0Þ∇ð0Þ

ν Pμλ −Wð0Þ
ρνμλP

λρ; ð8Þ

where ∇ð0Þ
μ is the derivative operator on the boundary

associated with γð0Þμν , and Wð0Þ
ρμνλ is the Weyl tensor of γð0Þμν .

We notice that the first term has a pole at d ¼ 4 and it
follows from (4) that the obstruction tensor for d ¼ 4 is just

the Bach tensor, i.e., Oð4Þ
μν ¼ Bμν.

Similarly, if we move on to the Oðz6Þ order of the

Einstein equations, we find that γð6Þμν has a pole at d ¼ 6 and
can be written as

γð6Þμν

L6
¼ −

1

24ðd − 6Þðd − 4ÞO
ð6Þ
μν −

1

6ðd − 4ÞBρμPρ
ν: ð9Þ

From (4) one can see that Oð6Þ
μν is the obstruction tensor for

d ¼ 6, now given by

Oð6Þ
μν ¼∇λ

ð0Þ∇ð0Þ
λ Bμν − 2Wð0Þ

ρνμλB
λρ − 4BμνP

þ 2ðd− 4Þð2Pρλ∇ð0Þ
λ CðμνÞρ þ∇ð0Þ

λ PCðμνÞλ

−Cρ
μ
λCλνρ þ ∇̂λ

ð0ÞPρðμCνÞρλ −Wð0Þ
ρμνλP

λ
σPσρÞ; ð10Þ

where P≡ Pμνγ
μν
ð0Þ and Cμνρ is the Cotton tensor on the

boundary defined as

Cμνρ ¼ ∇ð0Þ
ρ Pμν −∇ð0Þ

ν Pμρ: ð11Þ

Let us make a few remarks on some important properties
of the obstruction tensors. First, they are symmetric trace-
less tensors for any boundary dimension d. The traceless
condition can be derived from the zz component of the
Einstein equations at theOðz2kÞ order. Also, the obstruction
tensor Oð2kÞ

μν is divergence-free when d ¼ 2k. For instance,
divergence of the Bach tensor gives

∇ν
ð0ÞBνμ ¼ ðd − 4ÞPνρCρνμ: ð12Þ

The divergence of the Bach tensor can be read from the
Oðz4Þ order of the zμ component of Einstein equations.
In general, at anyOðz2kÞ order one finds that the divergence
of Oð2kÞ

μν is proportional to d − 2k and thus vanishes when

d ¼ 2k. The divergence of Oð2kÞ
μν can also be obtained by

using the following identity:

∇ν
ð0ÞPνμ ¼ ∇ð0Þ

μ P: ð13Þ

This is equivalent to the contracted Bianchi identity at the
boundary (see Appendix A), which can also be read from
the leading order of the zμ component of Einstein equa-

tions. Finally, a notable feature of Oð2kÞ
μν is that it is Weyl

covariant when d ¼ 2k with Weyl weight 2k − 2 (for a
proof see [7]).
For convenience, we can also absorb the d-dependent

factors in γð2kÞμν by introducing Graham’s extended obstruc-

tion tensor Ωðk−1Þ
μν (k ≥ 2) in d > 2k:

Ωð1Þ
μν ¼−

1

d−4
Bμν; Ωð2Þ

μν ¼ 1

ðd−6Þðd−4ÞO
ð6Þ
μν ;…: ð14Þ

The extended obstruction tensor ΩðkÞ
μν was precisely defined

in [8] in the context of the ambient metric. The general
relation between the obstruction tensor and extended
obstruction tensor is

ΩðkÞ
μν ¼ ð−1Þk

2k
Γðd=2 − k − 1Þ
Γðd=2 − 1Þ Oð2kþ2Þ

μν ðk ≥ 1Þ: ð15Þ

We finish this section by describing how to get the
d → 2k− limit of the two series in (3) properly. By taking
the limit carefully we will recover a logarithmic term in the
expansion whose coefficient is exactly the obstruction
tensor for d ¼ 2k, which also justifies the name “obstruc-
tion” as we mentioned before. There are two issues one has
to deal with while taking the d → 2k− limit. First, as we

already noted, γð2kÞμν has a pole at d − 2k, so it diverges in

this limit. Second, the two series mix since both γð2kÞμν and

πð0Þμν appear at the same order Oðz2ðk−1ÞÞ in (3), for d ¼ 2k.

To keep theOðz2kÞ order finite we pose that πð0Þμν should also

have a pole for d ¼ 2k proportional to Oð2kÞ
μν so that the

divergence in γð2kÞμν gets canceled; i.e., we claim that πð0Þμν has
the following form:

πð0Þμν ¼ −
cð2kÞ
d − 2k

Oð2kÞ
μν þ π̃ð0Þμν ; ð16Þ

where π̃ð0Þμν is finite at d ¼ 2k. Substituting back (16) and (4)
to (3) we get

hμνðz;xÞ¼
Xk−1
n¼0

γð2nÞμν

�
z
L

�
2n−2

þðγ̃ð2kÞμν þ π̃ð0Þμν Þ
�
z
L

�
2k−2

−cð2kÞ

�
z
L

�
2k−2

ln

�
z
L

�
Oð2kÞ

μν þoððz=LÞdÞ: ð17Þ
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This makes contact with the expansion with a logarithmic
term (for an even d) presented in the literature, e.g.,
[24,36,37].

III. WEYL-FEFFERMAN-GRAHAM GAUGE

This section is a brief review of the Weyl-Fefferman-
Graham formalism established in [5]. At the end of this
section we introduce the “Weyl quantities” that will appear
in later sections.
The Fefferman-Graham ansatz (2) is quite convenient for

calculations, especially in the context of holographic
renormalization. In this setup, one can induce a Weyl
transformation of the boundary metric by a bulk diffeo-
morphism, namely the PBH transformation [10],

z → z0 ¼ z=BðxÞ; xμ → x0μ ¼ xμ þ ξμðz; xÞ; ð18Þ

where ξμðz; xÞ vanish at the boundary z ¼ 0. The functions
ξμðz; xÞ can be found (infinitesimally) in terms of BðxÞ by
the constraint that the form of the FG ansatz is preserved
under the transformation. However, under the PBH trans-
formation, the subleading terms in the FG expansion (3) do
not transform in a Weyl-covariant way. The source of this
complication is the compensating diffeomorphisms ξμðz; xÞ
introduced for preserving the FG ansatz.
This above-mentioned issue motivated the authors of [5]

to replace the FG ansatz with

ds2 ¼ L2

�
dz
z
− aμðz; xÞdxμ

�
2

þ hμνðz; xÞdxμdxν; ð19Þ

which was named the Weyl-Fefferman-Graham ansatz.
With the additional Weyl structure aμ added, the form of
the WFG ansatz is now preserved under the Weyl diffeo-
morphism

z → z0 ¼ z=BðxÞ; xμ → x0μ ¼ xμ: ð20Þ

It is not hard to see that the Weyl diffeomorphism (20)
induces the following transformation of the fields aμ
and hμν:

aμðz; xÞ → a0μðz0; xÞ ¼ aμðBðxÞz0; xÞ − ∂μ lnBðxÞ;
hμν → h0μνðz0; xÞ ¼ hμνðBðxÞz0; xÞ: ð21Þ

Thus, we can now induce a Weyl transformation on the
boundary and preserve the form of the metric without
introducing the irritating ξμðz; xÞ. Note that according to
the FG theorem, any AlAdS spacetime can always be
expressed in the FG form, and so (19) can be transformed
into (2) under a suitable diffeomorphism. This indicates
that aμ is actually pure gauge in the bulk. Another way of
going back to the FG gauge is to simply set aμ to zero; in

this perspective, the FG gauge is nothing but a special case
of the WFG gauge with a fixed gauge.
The main utility of the WFG gauge is that all the terms

(except one) in the z expansions of hμνðz; xÞ and aμðz; xÞ
transform as Weyl tensors under Weyl diffeomorphisms.
To see this, let us expand hμν and aμ near z ¼ 0:

hμνðz; xÞ ¼
L2

z2

�
γð0Þμν ðxÞ þ z2

L2
γð2Þμν ðxÞ þ � � �

�

þ zd−2

Ld−2

�
πð0Þμν ðxÞ þ z2

L2
πð2Þμν ðxÞ þ � � �

�
; ð22Þ

aμðz; xÞ ¼
�
að0Þμ ðxÞ þ z2

L2
að2Þμ ðxÞ þ � � �

�

þ zd−2

Ld−2

�
pð0Þ
μ ðxÞ þ z2

L2
pð2Þ
μ ðxÞ þ � � �

�
: ð23Þ

In the FG gauge where aμ is turned off, the FG expansion

only includes (22), and the subleading terms γð2kÞμν in the first
series are determined solely by the boundary induced

metric γð0Þμν and its derivatives. Now with the extra series

(23), γð2kÞμν will also depend on að0Þμ , að2Þμ , að4Þμ , etc. Moving
on, from the transformations (21) under a Weyl diffeo-
morphism, one finds the transformation of each term in the
expansions (22) and (23) as follows [5]:

γð2kÞμν ðxÞ → γð2kÞμν ðxÞBðxÞ2k−2;
πðkÞμν ðxÞ → πð2kÞμν ðxÞBðxÞd−2þ2k; ð24Þ

að2kÞμ ðxÞ → að2kÞμ ðxÞBðxÞ2k − δk;0∂μ lnBðxÞ;
pð2kÞ
μ ðxÞ → pð2kÞ

μ ðxÞBðxÞd−2þ2k: ð25Þ

Indeed, we see that almost all the terms in the expansions

transform Weyl covariantly. The only exception is að0Þμ ,
which transforms inhomogeneously under Weyl transfor-
mation, and thus does not have a definite Weyl weight.
All the other terms in the expansions (22) and (23) can be
viewed as tensor fields on the boundary, and we can easily
read off their Weyl weights from the power of BðxÞ
appearing in (24) and (25).
For a metric in the form of (19) defined on the bulk

manifold M, one can choose a dual form basis and its
corresponding vector basis as follows:

ez ¼ L
dz
z
− Laμðz; xÞdxμ; eμ ¼ dxμ; ð26Þ

ez ¼
z
L
∂z ≡Dz; eμ ¼ ∂μ þ zaμðz; xÞ∂z ≡Dμ: ð27Þ

Then the tangent space at any point ðz; xμÞ ∈ M can be
spanned by the basis fDz;Dμg, and the basis vectors fDμg
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form a d-dimensional distribution on M which belongs to
the kernel of ez. The Lie brackets of these basis vectors are

½Dμ; Dν� ¼ LfμνDz; ½Dz;Dμ� ¼ LφμDz; ð28Þ

where φμ ≡Dzaμ and fμν ≡Dμaν −Dνaμ (Dz and Dμ

represent taking the derivatives along ez and eμ). According
to the Frobenius theorem, the condition for the distribution
spanned by fDμg to be integrable is that ½Dμ; Dν� ¼ 0, i.e.,
fμν ¼ 0. In this case, this distribution defines a hypersur-
face. For instance, in the FG gauge where aμ is turned off,
the distribution fDμg becomes f∂μg, which generates a
foliation of constant-z surfaces. However, fDμg in the
WFG gauge is not necessarily an integrable distribution,
and thus one needs to keep in mind that the boundary
hypersurface z ¼ 0 is in general not part of a foliation.
Suppose ∇ is the Levi-Civita connection on M. One can

find the connection coefficients of ∇ in the frame fDz;Dμg
from its definition (A1):

∇Dμ
Dν ¼ Γλ

μνDλ þ Γz
μνDz: ð29Þ

The coefficients Γλ
μν in the above equation define the

induced connection coefficients on the distribution over M
spanned by fDμg (see [38]). Expanding Γλ

μν with respect to
z, at the leading order one finds that

Γλ
ð0Þ μν ¼

1

2
γλρð0Þð∂μγ

ð0Þ
νρ þ ∂νγ

ð0Þ
μρ − ∂ργ

ð0Þ
μν Þ

− ðað0Þμ δλν þ að0Þν δλμ þ að0Þρ γλρð0Þγ
ð0Þ
μν Þ: ð30Þ

We can see that (30) gives exactly the connection coef-
ficients of a torsion-free connection with Weyl metricity
[see (A12) in Appendix A, where Aμ and gμν correspond to

að0Þμ and γð0Þμν ]. That is, on the boundary with z → 0 we have
a connection ∇ð0Þ satisfying

∇ð0Þ
μ γð0Þνρ ¼ 2að0Þμ γð0Þνρ : ð31Þ

This indicates that although aμ is pure gauge in the bulk, its

leading order að0Þμ serves as a Weyl connection at the

conformal boundary. Together with the induced metric γð0Þμν ,
they provide a Weyl geometry at the boundary [13]. Under
a boundary Weyl transformation

γð0Þμν → BðxÞ−2γð0Þμν ; að0Þμ → að0Þμ − ∂μ lnBðxÞ; ð32Þ

for any tensor T (with indices suppressed) with Weyl
weight wT on the boundary, we have

T → BwTT;

ð∇ð0Þ
μ T þ wTa

ð0Þ
μ TÞ → BwT ð∇ð0Þ

μ T þ wTa
ð0Þ
μ TÞ: ð33Þ

One can also absorb the Weyl connection and define ∇̂ð0Þ

such that

∇̂ð0Þ
μ T ≡∇ð0Þ

μ T þ wTa
ð0Þ
μ T; ð34Þ

which renders ∇̂ð0Þ
μ T Weyl covariant. Particularly, Eq. (31)

indicates that ∇̂ð0Þ is metricity-free, which makes it
convenient for boundary calculations.
Now that we have the Weyl geometry on the boundary,

the geometric quantities there are promoted to the “Weyl
quantities.” More precisely, for any geometric quantity
constructed by the boundary metric γð0Þμν and the LC
connection in the FG case, we now have a Weyl-covariant

counterpart of it constructed by γð0Þμν , a
ð0Þ
μ , and ∇̂ð0Þ in the

WFG case. For instance, we have the Weyl-Riemann tensor

R̂μ ð0Þ
νρσ , Weyl-Ricci tensor R̂ð0Þ

μν , and Weyl-Ricci scalar R̂ð0Þ.
In addition, fμν induces on the boundary a tensor

fð0Þμν ¼ ∂μa
ð0Þ
ν − ∂νa

ð0Þ
μ , namely the curvature of the Weyl

connection að0Þ, which is obviously Weyl invariant. We can
also define the Weyl-Schouten tensor P̂μν and Weyl-Cotton
tensor Ĉμνρ on the boundary as follows:

P̂μν ¼
1

d − 2

�
R̂ð0Þ
μν −

1

2ðd − 1Þ R̂
ð0Þγð0Þμν

�
; ð35Þ

Ĉμνρ ¼ ∇̂ð0Þ
ρ P̂μν − ∇̂ð0Þ

ν P̂μρ: ð36Þ

One should notice that the symmetry of the indices of a
“Weyl quantity” is not necessarily the same as the corre-
sponding quantity defined with the LC connection. For
instance, the Weyl-Ricci tensor is not symmetric, with its

antisymmetric part R̂ð0Þ
½μν� ¼ −ðd − 2Þfð0Þμν =2, and hence the

Weyl-Schouten tensor P̂μν also contains an antisymmetric

part P̂½μν� ¼ −fð0Þμν =2. In the next section, we will see that
the obstruction tensors also have their Weyl-covariant
counterparts. More details of the above Weyl quantities
are exhibited in Appendix A.

IV. WEYL-OBSTRUCTION TENSORS

In the previous section we saw that theWFG gauge in the
bulk induces a Weyl geometry on the boundary. Now we
would like to determine the higher order terms in the
expansion (22) and find the obstruction tensors with the
Weyl connection turned on. The method is exactly analo-
gous to that in Sec. II for the FG gauge. By solving the bulk
Einstein equations order by order in the WFG gauge, we

find that γð2kÞμν still has the same form as (4), except that the

obstruction tensor Oð2kÞ
μν is now promoted to the Weyl-

obstruction tensor Ôð2kÞ
μν . UnlikeOð2kÞ

μν , which is only Weyl-
covariant in a 2k dimension, the Weyl-obstruction tensors
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Ôð2kÞ
μν are Weyl covariant with a weight 2k − 2 in any

dimension; that is, under a Weyl transformation (32) it
transforms in any d as Ôð2kÞ

μν → BðxÞ2k−2Ôð2kÞ
μν .

In principle, γð2kÞμν at any order can be obtained from the
Einstein equations by iteration. In this section, we will

show solutions of γð2kÞμν obtained from Einstein equations up
to k ¼ 3 and read off the corresponding Weyl-obstruction
tensors from them. Some detailed expansions of Einstein
equations can be found in Appendix B.
First, the leading order of the μν components of the

Einstein equations gives

γð2Þμν

L2
¼ −

1

d − 2

�
R̂ð0Þ
ðμνÞ −

1

2ðd − 1Þ R̂
ð0Þγð0Þμν

�
: ð37Þ

We notice that this is the symmetric part of the Weyl-
Schouten tensor defined in (35) with a minus sign, i.e.,

γð2Þμν

L2
¼ −P̂ðμνÞ ¼ −P̂μν −

1

2
fð0Þμν : ð38Þ

Similar to the FG gauge, one can check that the residue of
the pole in (37) vanishes identically when d ¼ 2. Hence,
there is no Weyl-obstruction tensor for d ¼ 2,and so no
logarithmic term will appear in the metric expansion in the
d → 2− limit.
Then, solving the Oðz2Þ order of the μν components of

the Einstein equations yields

γð4Þμν

L4
¼ −

1

4ðd − 4Þ Ô
ð4Þ
μν þ 1

4
P̂ρ

μP̂ρν −
1

2L2
∇̂ð0Þ

ðμ a
ð2Þ
νÞ ; ð39Þ

where Ôð4Þ
μν is the Weyl-obstruction tensor for d ¼ 4,

namely the Weyl-Bach tensor B̂μν, given by

Ôð4Þ
μν ¼ B̂μν¼∇̂ð0Þ

λ ∇̂λ
ð0ÞP̂μν−∇̂ð0Þ

λ ∇̂ð0Þ
ν P̂μ

λ−Ŵð0Þ
ρνμλP̂

λρ: ð40Þ

If we compare (39) with the corresponding result (7) in the
FG case, we see that the form of the expression stays almost
the same, with all the LC quantities now being promoted to
the corresponding Weyl quantities. Besides, in the WFG

gauge γð4Þμν also has an additional term involving að2Þμ , which
does not contribute to the pole at d ¼ 4.
Moving on to the Oðz4Þ order of the Einstein equations

we get

γð6Þμν

L6
¼ −

1

24ðd − 6Þðd − 4Þ Ô
ð6Þ
μν þ 1

6ðd − 4Þ B̂ρðμP̂ρ
νÞ

−
1

3L4
∇̂ð0Þ

ðμ a
ð4Þ
νÞ −

1

L4
að2Þμ að2Þν þ 1

6L2
að2Þ · að2Þγð0Þμν

þ 1

6L2
∇̂ð0Þ

ðμ ðP̂ρ
νÞa

ð2Þ
ρ Þ þ 1

2L4
γ̂σð2Þ μνa

ð2Þ
σ ; ð41Þ

where γ̂σð2Þ μν≡−L2

2
ð∇̂ð0Þ

μ P̂λ
νþ ∇̂ð0Þ

ν P̂μ
λ− ∇̂λ

ð0ÞP̂μνÞ and Ôð6Þ
μν

is the Weyl-obstruction tensor for d ¼ 6:

Ôð6Þ
μν ¼ ∇̂λ

ð0Þ∇̂ð0Þ
λ B̂μν−2Ŵð0Þ

ρνμλB̂
λρ−4P̂B̂μνþ2P̂ρðνB̂ρ

μÞ

−2B̂ρðμP̂νÞρþ2ðd−4Þð∇̂λ
ð0ÞĈλρðμP̂ρ

νÞ

− P̂λρ∇̂ð0Þ
ðμ ĈνÞρλþ2P̂ðρλÞ∇̂ð0Þ

λ ĈðμνÞρþ∇̂ð0Þ
λ P̂ρλĈðμνÞρ

− Ĉρ
μ
λĈλνρþ∇̂λ

ð0ÞP̂
ρðμĈνÞρλ−Ŵð0Þ

ρðνμÞλP̂
λ
σP̂

σρÞ: ð42Þ

It is easy to verify that (41) and (42) go back to the FG
expressions (9) and (10) when we turn off the Weyl
structure aμ. Note that when the Weyl connection is turned
off, the first term inside the parentheses of (42) vanishes
due to (A33), and the second term there vanishes since the

LC Schouten tensor P
∘
μν is symmetric. Once again, we

observe that all the að2Þμ and að4Þμ terms that appear in γð6Þμν do
not contribute to the pole at d ¼ 6 and thus are not part of
the obstruction tensor Ôð6Þ

μν . We will discuss this more
in Sec. VI.
Just as Oð2kÞ

μν derived in the FG gauge, all the Ôð2kÞ
μν are

also symmetric traceless tensors, and they are divergence-
free when d ¼ 2k. These properties can either be verified
by using the result from the μν components of the Einstein
equations (“evolution equations”) or read off from the zz
and zμ components of the Einstein equations (“constraint

equations”). More specifically, plugging γð2kÞμν into the zz
component of the Einstein equations we can see that Ôð2kÞ

μν

is traceless in any dimension, and the same result can also
be obtained by taking the trace of the μν components of
the Einstein equations. To see that Ôð2kÞ

μν is divergence-free

when d ¼ 2k, we can plug γð2kÞμν into the zμ components of
the Einstein equations. For instance, the Oðz4Þ order of the
zμ equations gives

∇̂ν
ð0ÞB̂νμ ¼ ðd − 4ÞP̂νρðĈρνμ þ ĈμνρÞ; ð43Þ

and so the divergence of B̂μν vanishes when d ¼ 4. In the
FG gauge where the Schouten tensor is symmetric, the
second term in the bracket vanishes and so (43) goes back
to (12). On the other hand, the divergence of Ôð2kÞ

μν can also
be derived from a direct calculation by using repeatedly the
Weyl-Bianchi identity

∇̂ν
ð0ÞP̂νμ ¼ ∇̂ð0Þ

μ P̂; ð44Þ

which can be read off from the Oðz2Þ order of the zμ
equation. The above discussion indicates that the zz and zμ
components of the Einstein equations do not contain more

information about γð2kÞμν than the μν components of Einstein
equations. Note that here we only talk about the equations
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of motion for γð2kÞμν . At OðzdÞ order the zz and zμ equations

do provide new constraints on πð0Þμν , while the μν equations

on πð0Þμν become trivial.
It is also convenient to define the extended Weyl-

obstruction tensor Ω̂ðkÞ
μν as the Weyl-covariant version of

the extended obstruction tensor defined in (14). For
example, for k ¼ 1 and k ¼ 2 we have

Ω̂ð1Þ
μν ¼ −

1

d− 4
B̂μν; Ω̂ð2Þ

μν ¼ 1

ðd− 6Þðd− 4Þ Ô
ð6Þ
μν : ð45Þ

Similar to the FG case, the Weyl-obstruction tensor
Ôð2kþ2Þ

μν is also proportional to the residue of the extended

Weyl-obstruction tensor Ω̂ðkÞ
μν . Both the Weyl-obstruction

tensors and the extended Weyl-obstruction tensors can be
defined following [7,8] by promoting the ambient metric to
the “Weyl-ambient metric.”We will discuss this in detail in
a separate publication.

V. HOLOGRAPHIC WEYL ANOMALY

A. Weyl-Ward identity

In this section, we first discuss the anomalous Weyl-
Ward identity for a general field theory on a background
Weyl geometry following [5], and then we focus on
holographic theories in the WFG gauge. Later, we will
compute the Weyl anomaly for a holographic theory in the
WFG gauge up to d ¼ 8.
Essentially, for a d-dimensional field theory1 coupled to

a background metric γð0Þμν and a Weyl connection að0Þμ , the
Weyl anomaly comes from an additional exponential
factor arising in the path integral after applying a Weyl
transformation:

Z½γð0Þ; að0Þ� ¼ e−A½BðxÞ;γð0Þ;að0Þ�Z½γð0Þ=BðxÞ2; að0Þ − d lnBðxÞ�:
ð46Þ

The anomaly A½BðxÞ; g; a� should satisfy the 1-cocycle
condition [39,40]

A½B00B0;γð0Þ;að0Þ�¼A½B0;γð0Þ;að0Þ�
þA½B00;γð0Þ=ðB0Þ2;að0Þ−dlnB0�: ð47Þ

For any nonexact Weyl-invariant d-form A½γð0Þ; að0Þ�, one
can check that A½BðxÞ; γð0Þ; að0Þ� ¼ R ðlnBÞA satisfies the
cocycle condition, and thus it is a possible candidate for
the Weyl anomaly. However, if A is exact, A would
be cohomologically trivial since it can be written as
the difference of a Weyl-transformed local functional.

The linearly independent choices of A in nontrivial
cocycles correspond to different central charges.
In general, the background fields γð0Þμν and að0Þμ are the

sources of the energy-momentum tensor operator Tμν and
the Weyl current operator Jμ, respectively:

hTμνðxÞi ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δS

δγð0Þμν ðxÞ
;

hJμðxÞi ¼ − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δS

δað0Þμ ðxÞ
: ð48Þ

Expanding the quantum effective action S≡ − lnZ to the
first order under an infinitesimal Weyl transformation and
integrating by parts, for a theory with a Weyl anomaly we
obtain

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δA
δ lnBðxÞ ¼ hTμνðxÞγð0Þμν ðxÞ þ ∇̂ð0Þ

μ JμðxÞi: ð49Þ

This is the (anomalous) Weyl-Ward identity. As we can see,
besides the trace of the energy-momentum tensor that
appears in the usual case, the divergence of the Weyl
current also contributes to the Ward identity when the Weyl
connection is turned on.
Let us now focus on a holographic field theory dual to

the vacuum Einstein theory in the (dþ 1)-dimensional
bulk. The holographic dictionary provides the relation
between the on-shell classical bulk action Sbulk and
quantum effective action Sbdr of the field theory on the
boundary [27]:

exp ð−Sbulk½g; γð0Þ; að0Þ�Þ ¼ exp ð−Sbdr½γð0Þ; að0Þ�Þ; ð50Þ

where γð0Þ and að0Þ are the boundary values of h and a as
shown in (22) and (23). Since aμ is pure gauge in the bulk,

að0Þμ could be gauged away, and hence it is not expected to

source any current on the boundary. The role of the að0Þμ ,
however, is important since it makes the energy-momentum
tensor along with all the geometric quantities on the

boundary Weyl covariant. On the other hand, the pð0Þ
μ also

plays a role in theWeyl-Ward identity. In the FG gauge, πð0Þμν

corresponds to the expectation value of Tμν; the Ward

identity for the Weyl symmetry shows that the trace of πð0Þμν

vanishes, which can be read off from the OðzdÞ order of the
zz component of the Einstein equations [6]. In the WFG
gauge, this equation now gives

0 ¼ d
2L2

γμνð0Þπ
ð0Þ
μν þ ∇̂ð0Þ · pð0Þ: ð51Þ

Besides πð0Þμν , there is an additional term ∇̂ð0Þ · pð0Þ which
represents a gauge ambiguity of aμ. This suggests that the
energy-momentum tensor in the WFG gauge acquires an

1From now on, we will work in the Euclidean signature. We
also adopt natural units where c ¼ ℏ ¼ 1.
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extra piece, which now can be considered as an “improved”
energy-momentum tensor T̃μν (à la [41,42]):

hκ2T̃μνi ¼
d

2L2
πð0Þμν þ ∇̂ð0Þ

ðμ p
ð0Þ
νÞ ; ð52Þ

where κ2 ¼ 8πG.2 It is easy to see that the trace of this
energy-momentum tensor gives the right-hand side of (51).
One can also find that the zμ components of the Einstein
equations at the OðzdÞ order give exactly the conservation
law h∇̂μ

ð0ÞT̃μνi ¼ 0 [see (B16)], which is the Ward
identity corresponding to the boundary diffeomorphisms.
Therefore, in the holographic case we can write the
anomalous Weyl-Ward identity (49) as

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δA
δ lnBðxÞ ¼ hT̃μνðxÞγð0Þμν ðxÞi: ð53Þ

Notice that one should distinguish pð0Þ
μ and the Weyl

current Jμ. Unlike πð0Þμν which is sourced by γð0Þμν , p
ð0Þ
μ is

not sourced by að0Þμ since aμ is pure gauge in the bulk. In the
boundary field theory, the Weyl current Jμ vanishes

identically, while pð0Þ
μ contributes to the expectation value

of T̃μν as an “improvement.” In a generic nonholographic
field theory defined on the background with Weyl geom-
etry, there may exist a nonvanishing Jμ sourced by the Weyl

connection að0Þμ (see [5] for an example).
Using the basis fez; eμ ¼ dxμg in (26), the bulk on-shell

Einstein-Hilbert action with negative cosmological con-
stant can be written as

Sbulk ¼
1

2κ2

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðR − 2ΛÞez ∧ dx1 ∧ � � � ∧ dxd:

ð54Þ

Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
. Considering the vacuum

Einstein equation in the bulk and the expansion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
¼

�
L
z

�
d ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det γð0Þ
q �

1þ 1

2

�
z
L

�
2

Xð1Þ þ 1

2

�
z
L

�
4

Xð2Þ þ � � � þ 1

2

�
z
L

�
d
Yð1Þ þ � � �

�
; ð55Þ

one can expand (54) as

Sbulk ¼ −
L−2

κ2

Z
M

�
L
z

�
d
�
dþ d

2

�
z
L

�
2

Xð1Þ þ d
2

�
z
L

�
4

Xð2Þ þ � � � þ d
2

�
z
L

�
d
Yð1Þ þ � � �

�
ez ∧ volΣ; ð56Þ

where volΣ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p
dx1 ∧ � � � ∧ dxd.

When the bulk action transforms under a Weyl diffeo-
morphism, the corresponding boundary theory undergoes a
Weyl transformation. However, the diffeomorphism invari-
ance of the bulk Einstein theory does not imply the Weyl
invariance on the boundary when there is an anomaly [43],
since it follows from (46) that

0 ¼ Sbulk½gjz0; x0� − Sbulk½gjz; x�
¼ Sbdr½γ0ð0Þ; a0ð0Þjx� − Sbdr½γð0Þ; að0Þjx� þA½B�; ð57Þ

where ðz0; x0Þ ¼ ðz=B; xÞ for the bulk and γ0ð0Þ ¼ γð0Þ=B2,
a0ð0Þ ¼ að0Þ − d lnB for the boundary.
Normally, to compute the Weyl anomaly first one needs

to regularize the bulk on-shell action (56) by introducing a
cutoff surface at some small value of z ¼ ϵ, and then add
counterterms to cancel the divergences when ϵ → 0 [24].
This is essentially how the Weyl anomaly arises since
the regulator breaks the Weyl symmetry and causes the

appearance of a logarithmically divergent term. However,
since we do not assume that we have an integrable
distribution when the Weyl structure is turned on, the
cutoff regularization scheme is inconvenient for the WFG
gauge. It has been elucidated in [5] using dimensional
regularization that the Weyl anomaly can be extracted from
the pole of Sbulk that arises in an even dimension. By
evaluating the difference of the pole term in Sbulk under a
Weyl diffeomorphism, one finds that the Weyl anomaly Ak
of the 2k-dimensional boundary theory is

Ak ¼
k

κ2L

Z
lnBXðkÞ

d¼2kvolΣ: ð58Þ

Therefore, to find the Weyl anomaly in a 2k dimension, we
only have to compute XðkÞ coming from the expansion
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
.

B. Weyl anomaly in 2d and 4d

Now let us apply (58) to 2d and 4d. Here we first go over
the WFG results presented in [5], and then make a few
important remarks. To find the holographic Weyl anomaly

2The energy-momentum tensor (52) in the WFG gauge can be
verified using the prescription introduced in [37].
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in 2d and 4d all we have to do is plug in the expressions of
Xð1Þ and Xð2Þ obtained from the zz components of the
Einstein equations (see Appendix B), that is,

Xð1Þ ¼ −
L2

2ðd − 1Þ R̂;

Xð2Þ ¼ −
L4

4ðd − 2Þ2
�
R̂μνR̂

νμ −
d

4ðd − 1Þ R̂
2

�

−
L2

2
∇̂ · að2Þ: ð59Þ

[From now on we will drop the label “(0)” for the boundary
curvature quantities and derivative operator when there is
no confusion.] First we look at the Weyl anomaly in d ¼ 2:

A1 ¼
1

κ2L

Z
lnBXð1Þ

d¼2volΣ

¼ −
L

16πG

Z
lnBR̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
d2x; ð60Þ

where in the second equality we used (59). Then, it follows
from (53) that the Weyl-Ward identity now reads

hT̃μ
μi ¼ −

L
16πG

R̂: ð61Þ

We can see that the right-hand side of this result has exactly
the same form as what we get from the standard calculation
in the FG gauge, except that the curvature scalar now is
Weyl covariant. Similarly, plugging (59) into (58), we find
that the Weyl anomaly in d ¼ 4 can be written as

A2 ¼
2

κ2L

Z
lnBXð2Þ

d¼4volΣ

¼ −
L

8πG

Z �
L2

8

�
R̂μνR̂

νμ −
1

3
R̂2

�
þ ∇̂ · að2Þ

�

× lnB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
d4x: ð62Þ

Again, one can immediately tell that the right-hand side of
this result matches the standard FG result (e.g., [24]) if we
turn off the Weyl structure.
There are a few things worth paying attention to: first, in

the 2dWeyl anomaly (60), the Weyl-Ricci scalar is also the
Weyl-Euler density Eð2Þ in 2d, i.e., the Euler density Weyl
covariantized by the Weyl connection. Furthermore, we can
rewrite the 4d Weyl anomaly (62) as

A2 ¼ −
L

8πG

Z �
L2

16
ðŴμνρσŴ

ρσμν − Êð4ÞÞ þ ∇̂ · að2Þ
�

× lnB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
d4x; ð63Þ

where Êð4Þ is the Weyl-Euler density in 4d:

Êð4Þ ¼ R̂μνρσR̂
ρσμν − 4R̂μνR̂

νμ þ R̂2: ð64Þ

Traditionally, the Euler density Eð2kÞ without the Weyl
connection is called the type A Weyl anomaly, which is
topological in a 2k dimension and not Weyl invariant, while
the type B Weyl anomaly is the Weyl-invariant part of the
anomaly [23]. Here we find that in the WFG gauge, this
classification of theWeyl anomaly is still available, with the
Weyl-Euler density now Weyl-invariant since the curvature
quantities in this setup are endowed with Weyl covariance.
Also, notice that the subleading term að2Þμ of aμ only

makes an appearance in the anomaly through a cohomo-
logically trivial term; i.e., we can express it as a Weyl-
transformed local functional as follows:

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
lnB∇̂μa

μ
ð2Þ

¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γ0ð0Þ

q
a0ð0Þμ a0μð2Þ

−
Z

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
að0Þμ aμð2Þ; ð65Þ

where a0μð2Þ ¼ B4aμð2Þ and the boundary term due to inte-

grating by parts is ignored. We will see that this is a generic
feature of the Weyl anomaly in the WFG gauge for any
dimension.
Although in (60) and (62) we expressed the holographic

Weyl anomaly in 2d and 4d in terms of curvature to match
the corresponding familiar results in the FG gauge, we can
also express them alternatively in terms of the Weyl-
Schouten tensor:

Xð1Þ

L2
¼ −P̂;

Xð2Þ

L4
¼ −

1

4
trðP̂2Þ þ 1

4
P̂2 −

1

2L2
∇̂ · að2Þ: ð66Þ

Then (60) and (62) can be written as

A1 ¼ −
L
κ2

Z
d2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
lnBP̂; ð67Þ

A2 ¼ −
L3

κ2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q

× lnB
�
1

2
trðP̂2Þ − 1

2
P̂2 þ 1

L2
∇̂ · að2Þ

�
: ð68Þ

In higher dimensions, XðkÞ can be expressed in terms of

γð0≤j≤2kÞμν (see Appendix C). By solving the Einstein
equations we have seen that these terms can all be
expressed in terms of P̂μν and Ôð2<j<2kÞ

μν . Therefore, we
will use the Weyl-Schouten tensor and Weyl-obstruction
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tensors as the building blocks for the Weyl anomaly in even
dimensions.

C. Weyl anomaly in 6d

After revisiting the results in 2d and 4d, we will now
present our computations for 6d and 8d. In principle,
XðkÞ can be obtained by solving Einstein equations as we
have done for 2d and 4d. However, as the dimension
goes higher, computing the curvature will become
extremely tedious. To facilitate the computation in higher
dimensions, we can use a more efficient way of organizing
the Einstein equations which helps us avoid the curvature
tensors, namely to use the Raychaudhuri equation of the
congruence generated by Dz. The details of the
Raychaudhuri equation and its expansions are given in
Appendix C.
To solve for Xð3Þ, we need to expand

ffiffiffiffiffiffi
−h

p
to the order

Oðz6−dÞ. Using (C12) and plugging the results we have got
for γð2Þμν , γ

ð4Þ
μν and Xð1Þ, Xð2Þ into (C15), we obtain

Xð3Þ

L6
¼ −

1

12
trðP̂3Þ þ 1

8
trðP̂2ÞP̂ −

1

24
P̂3 þ 1

12
trðΩ̂ð1ÞP̂Þ

þ 1

6L4
ðd − 6Þa2ð2Þ −

1

3L4
∇̂ · að4Þ

−
1

12L2
∇̂μ½að2Þν ð3P̂μν þ P̂νμ − 3P̂γμνð0ÞÞ�; ð69Þ

where we used the extended Weyl-obstruction tensor Ω̂ð1Þ
μν

defined in (45). Notice first that the að2Þμ quadratic term in
Xð3Þ vanishes in 6d, and thus does not contribute to the
Weyl anomaly. Then, it follows from (58) that the Weyl
anomaly in 6d is

A3 ¼
3

κ2L

Z
lnBXð3Þ

d¼6volΣ

¼ −
L5

κ2

Z
d6x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det γð0Þ

q

× lnB
�
1

4
trðP̂3Þ − 3

8
trðP̂2ÞP̂þ 1

8
P̂3 −

1

4
trðΩ̂ð1ÞP̂Þ

þ 1

L4
∇̂ · að4Þ þ 1

4L2
∇̂μ½að2Þν ð3P̂μν þ P̂νμ − 3P̂γμνð0ÞÞ�

�
:

ð70Þ

Just as what we have shown for the 4d case, the subleading
terms in the expansion of aμ appear only in total derivatives
and thus only contribute to cohomologically trivial terms in

the 6d Weyl anomaly. When we turn off að0Þμ and að2Þμ , this
result agrees with the holographic Weyl anomaly in the FG
gauge computed in [24].
Usually, the Weyl anomaly in 6d is written as a linear

combination of the 6d Euler density and three conformal
invariants in 6d (see [21,23,24]), which represents the four
central charges in 6d. The result we obtained can also be
written in this way, which means the classification of type
A and type B anomalies still holds for the WFG gauge in
6d. However, as we will discuss shortly, the expression we

have in (69) in terms of P̂μν and Ω̂ð1Þ
μν reveals some

interesting aspects of the Weyl anomaly.

D. Weyl anomaly in 8d

Expanding
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
to the order Oðz8−dÞ, we have Xð4Þ

in (C16). Using (C13) and plugging the results up to γð6Þμν

and Xð3Þ into (C16), we have

Xð4Þ

L8
¼ −

1

32
trðP̂4Þ þ 1

24
trðP̂3ÞP̂þ 1

64
ðtrðP̂2ÞÞ2 − 1

32
trðP̂2ÞP̂2 þ 1

192
P̂4

−
1

24
trðΩ̂ð1ÞP̂ÞP̂þ 1

24
trðΩ̂ð1ÞP̂2Þ − 1

96
trðΩ̂ð1ÞΩ̂ð1ÞÞ − 1

96
trðΩ̂ð2ÞP̂Þ

þ d − 8

4L6
að4Þ · að2Þ þ d − 8

12L4
að2Þμ að2Þν ðP̂μν − P̂γμνð0ÞÞ þ total derivatives: ð71Þ

As expected, all the terms in (71) that involve að2Þμ , að4Þμ , að6Þμ either vanish when d ¼ 8 or contribute only to the total
derivatives. The details of the total derivatives are given in (C17). Plugging (71) into (58), we obtain the holographic Weyl
anomaly in 8d:

A4 ¼
4

κ2L

Z
lnBXð4Þ

d¼8volΣ

¼ −
L7

κ2

Z
d8x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
lnB

�
1

8
trðP̂4Þ − 1

6
trðP̂3ÞP̂ −

1

16
ðtrðP̂2ÞÞ2 þ 1

8
trðP̂2ÞP̂2 −

1

48
P̂4

þ 1

6
trðΩ̂ð1ÞP̂ÞP̂ −

1

6
trðΩ̂ð1ÞP̂2Þ þ 1

24
trðΩ̂ð1ÞΩ̂ð1ÞÞ þ 1

24
trðΩ̂ð2ÞP̂Þ þ total derivatives

�
: ð72Þ
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Once again, we can see that the subleading terms in aμ only
have cohomologically trivial contributions. If we go back to
the FG gauge, then this result agrees with the renormalized
volume coefficient for k ¼ 4 shown in [8]. One can also
write the FG version of the above result in the traditional
way as a linear combination of the type A and type B
anomalies; i.e., the Euler density and Weyl invariants (the
list of Weyl invariants in 8d can be found in [44]). We
naturally expect that this classification can also be applied
to the holographic Weyl anomaly in the WFG gauge for
higher dimensions.

E. Building blocks of the Weyl anomaly

As we have seen, if we ignore the total derivatives that
depend on the subleading terms of the aμ expansion, Xð1Þ
corresponds to the Weyl-Ricci scalar (i.e., the 2d Weyl-
Euler density) and Xð2Þ corresponds to the classic “a ¼ c”
result. For the Weyl anomaly in 6d and 8d both Xð3Þ and
Xð4Þ can also be written as linear combinations of the Weyl-
Euler density and type B anomalies. This is true for both the
FG and the WFG cases; just the quantities in the latter are
Weyl covariant. One just needs to substitute the Weyl
quantities with their LC counterparts (i.e., set aμ to zero) to
get the Weyl anomaly in the FG case. However, when
expressing them in terms of the Weyl-Schouten tensor and
extended Weyl-obstruction tensors (or Schouten tensor and
extended obstruction tensors in the FG case), we observe
that the polynomial terms of XðkÞ=L2k (without the total
derivative terms) in 2k dimensions, denoted by X̄ðkÞ, have
the following structures:

X̄ð1Þ ¼ −δμνP̂ν
μ; ð73Þ

2X̄ð2Þ ¼ 1

2
δμ1μ2ν1ν2 P̂

ν1
μ1P̂

ν2
μ2 ; ð74Þ

6X̄ð3Þ ¼ −
1

4
δμ1μ2μ3ν1ν2ν3 P̂

ν1
μ1P̂

ν2
μ2P̂

ν3
μ3

−
1

2
δμ1μ2ν1ν2 Ω̂

ν1
ð1Þ μ1P̂

ν2
μ2 ; ð75Þ

24X̄ð4Þ ¼ 1

8
δμ1μ2μ3μ4ν1ν2ν3ν4 P̂

ν1
μ1P̂

ν2
μ2P̂

ν3
μ3P̂

ν4
μ4

þ1

2
δμ1μ2μ3ν1ν2ν3 Ω̂

ν1
ð1Þ μ1P̂

ν2
μ2P̂

ν3
μ3

þ1

4
δμ1μ2ν1ν2 Ω̂

ν1
ð1Þ μ1Ω̂

ν2
ð1Þ μ2 þ

1

4
δμ1μ2ν1ν2 Ω̂

ν1
ð2Þ μ1P̂

ν2
μ2 ; ð76Þ

where the Kronecker δ symbol is defined as

δμ1���μsν1���νs ¼ s!δμ1 ½ν1 � � � δμsνs�: ð77Þ

From (73)–(76) we can see that X̄ðkÞ contains all kinds of
possible combinations of P̂μν and Ω̂ð2<j<2kÞ

μν whose Weyl

weights add up to be 2k, i.e., theWeyl weight of XðkÞ. Using
this pattern, one can directly write down the terms in the
holographic Weyl anomaly in any dimension. For instance,
we can easily predict without explicit calculation that X̄ð5Þ
is the linear combination of the following terms:

δμ1μ2μ3μ4μ5ν1ν2ν3ν4ν5 P̂
ν1
μ1P̂

ν2
μ2P̂

ν3
μ3P̂

ν4
μ4P̂

ν5
μ5 ;

δμ1μ2μ3μ4ν1ν2ν3ν4 Ω̂
ν1
ð1Þ μ1P̂

ν2
μ2P̂

ν3
μ3P̂

ν4
μ4 ;

δμ1μ2μ3ν1ν2ν3 Ω̂
ν1
ð2Þ μ1P̂

ν2
μ2P̂

ν3
μ3 ; δμ1μ2μ3ν1ν2ν3 Ω̂

ν1
ð1Þ μ1Ω̂

ν2
ð1Þ μ2P̂

ν3
μ3 ;

δμ1μ2ν1ν2 Ω̂
ν1
ð2Þ μ1Ω̂

ν2
ð1Þ μ2 ; δμ1μ2ν1ν2 Ω̂

ν1
ð3Þ μ1P̂

ν2
μ2 :

These terms represent the independent central charges that
appear in the holographic Weyl anomaly in d ¼ 10.
Based on the above pattern, it is natural to expect

a general expression that can generate the holographic
Weyl anomaly in any dimension, which is an analog of
the exponential structure given by the Chern class that
generates the chiral anomaly in any dimension (see, e.g.,
[45–47]). It has been suggested in [23] that the type AWeyl
anomaly can be generated by a mechanism similar to that
for the chiral anomaly. The expressions for the Weyl
anomaly in terms of the (Weyl-)Schouten tensor and the
extended (Weyl-)obstruction tensors suggest a similar
mechanism for the holographic Weyl anomaly.

VI. THE ROLE OF WEYL STRUCTURE

Now that we have obtained the Weyl-obstruction tensors
and Weyl anomaly, let us provide some observations on
how the aμ mode (23) is involved. We have already
mentioned that according to the FG theorem, this mode
is pure gauge in the bulk. Now we have a few clear
manifestations of this from our calculations.
The first one is that the subleading terms að2kÞμ with k > 0

in the expansion of aμ cannot be determined from the

Einstein equations when að0Þμ is given. This is different from

the expansion of hμν where the subleading terms γð2kÞμν can

be solved (on-shell) in terms of γð0Þμν .
The second one is that aμ appears only inside total

derivatives in XðkÞ, and thus represents cohomologically
trivial modifications of the boundary Weyl anomaly. For

að2kÞμ with k ≥ 2, this can easily be seen from the expres-
sions (68), (70), and (72). What is not explicit in these

formulas is that að0Þμ also appears inside a total derivative.
This can be verified by separating the LC quantities out of
the Weyl quantities in XðkÞ. For instance, denote the LC

Schouten tensor as P
∘
μν and the LC connection as ∇∘ , and

then Xð1Þ in 2d and Xð2Þ in 4d can be written as

L−2Xð1Þ
d¼2 ¼ L−2X

∘ ð1Þ
d¼2 þ∇∘ · að0Þ; ð78Þ
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L−4Xð2Þ
d¼4 ¼ L−4X

∘ ð2Þ
d¼4 −

1

2
∇∘ μðP

∘ μν
að0Þν − P

∘
aμð0ÞÞ

−
1

4
∇∘ μðað0Þν ∇∘ ν

aμð0Þ − aμð0Þ∇
∘
· að0ÞÞ

−
1

4
∇∘ μðaμð0Þa2ð0ÞÞ −

1

2L2
∇∘ · að2Þ; ð79Þ

where L−2X
∘ ð1Þ ¼ −P

∘
and L−4X

∘ ð2Þ ¼ 1
4
P
∘ 2

− 1
4
trðP∘ 2Þ.3

Notice that although the terms involving að0Þμ are total
derivatives, they are not Weyl covariant, and so one cannot
naively assume that they are trivial cocycles. However, by
finding suitable local counterterms, we have checked that

all the terms involving að0Þμ are indeed part of a trivial
cocycle for 2d and 4d. As aμ is pure gauge, we expect this
to be generally true.
In principle, the Weyl connection að0Þμ on the boundary

brings new Weyl-invariant objects, such as trðf2ð0ÞÞ, which
could lead to new central charges in the Weyl anomaly.
However, up to d ¼ 8 we find the classification of type A
and type B anomalies is still available, and in such a basis
the nonvanishing central charges are still the same as those
in the FG case. Once this can be carried over to higher

dimensions, then að0Þμ appearing in total derivatives in XðkÞ
can also be deduced by considering the Weyl anomaly as
the sum of the type A and type B anomalies. In the FG
gauge, under a Weyl transformation the type B anomaly is
invariant while the type A anomaly, i.e., the Euler density,
gets an extra total derivative involving lnB. Since the Weyl
connection makes the Weyl anomaly in the WFG gauge

Weyl invariant, the terms with að0Þμ in the Weyl-Euler
density should exactly compensate the extra total deriva-
tive, and hence they must form a total derivative.
Another observation we have mentioned is that although

the subleading terms in the expansion of aμ make an

appearance in γð2kÞμν , they do not appear in the Weyl-
obstruction tensors. Up to k ¼ 3, we have seen explicitly

in (37), (39), and (41) that the terms with að2Þμ and að4Þμ do

not contribute to the pole at d ¼ 2k in γð2kÞμν . What is also

true but not as obvious, is that the terms with að0Þμ do not
contribute to the pole at d − 2 in the Weyl-Schouten
tensor and are proportional to d − 2k in Weyl-obstruction

tensors. For instance, one can separate the að0Þμ from P̂μν

and get

P̂μν ¼ P
∘
μν þ∇∘ νa

ð0Þ
μ þ að0Þμ að0Þν −

1

2
a2ð0Þγ

ð0Þ
μν ; ð80Þ

while the only pole on the right-hand side is in the LC

Schouten tensor P
∘
μν. Similarly, expressing the Weyl-Bach

tensor in terms of LC quantities we have

B̂μν ¼ B
∘
μνþðd− 4Þðaλð0ÞC

∘
λνμ − 2aλð0ÞC

∘
μνλ þ aλð0Þa

ρ
ð0ÞW

∘
ρμλνÞ:
ð81Þ

Thus, when d ¼ 4, að0Þμ does not contribute to the pole in

γð4Þμν , and the Weyl-Bach tensor B̂μν is equivalent to the LC

Bach tensor B
∘
μν. One should naturally expect that this is

also true for any Weyl-obstruction tensors; i.e., Ôð2kÞ
μν is

equivalent to the LC obstruction tensorO
∘ ð2kÞ
μν when d ¼ 2k.

Note that when d > 2k, the að0Þμ terms are included in the
Weyl-obstruction tensor so that Ôð2kÞ

μν is always Weyl
covariant.
The statement that any term in the expansion of aμ does

not appear in the pole of γ̂ð2kÞμν is consistent with the
following claim: when d ¼ 2k, the Weyl-obstruction tensor
Ôμν

ð2kÞ satisfies

Ôμν
ð2kÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

p δ

δγð0Þμν

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q
XðkÞ: ð82Þ

The FG version of this relation for O
∘ μν

ð2kÞ was proved in [7]
(see also [37]). If the claim above can be proved for the
WFG gauge, then the reason that none of the terms in the
expansion of aμ contributes to Ôð2kÞ

μν at d ¼ 2k will be
straightforward: as they only appear in total derivative
terms in XðkÞ, they will be dropped in the variation above.
Hence, this can be viewed as another manifestation of aμ
being pure gauge in the bulk. We have verified by brute
force that for k ¼ 2 the variation in (82) indeed gives the
Weyl-Bach tensor when d ¼ 4, and a rigorous proof for any
k is worth further study.
Based on the FG version of relation (82), there is another

approach of finding the (LC) obstruction tensors and Weyl
anomaly in even dimensions called the dilatation operator
method [34]. As a consistency check, we also computed the
8d Weyl anomaly in the FG gauge using this method. We
will briefly introduce this method in Appendix D and show
there that the result in 8d agrees with what we have in (72)
when the Weyl structure is turned off.

VII. CONCLUSIONS

In this work, we first derived the obstruction tensor
from the pole at d ¼ 2k of the (on-shell) γð2kÞμν in the FG
expansion of an AlAdS spacetime using dimensional
regularization. Under an appropriate analytical continu-
ation when d approaches an even integer, this approach is

3Note that ∇∘ · að2Þ is equivalent to ∇̂ · að2Þ, since in 2k

dimension ∇̂ and ∇∘ give the same result when acting on a
vector with Weyl weight þ2k (see Appendix A).
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equivalent to the one with a logarithmic term in [4,7]. We
defined the pole term in the expansion to be Graham’s
extended obstruction tensor, whose residue is the obstruc-
tion tensor (up to a constant factor). Then, after introducing
the WFG ansatz, we generalized the Schouten tensor and
obstruction tensors in the FG gauge to the Weyl-Schouten
tensor and Weyl-obstruction tensors in the WFG gauge,
which are now Weyl covariant in any dimension. By
solving the bulk Einstein equations, we computed the
Weyl-obstruction tensors in 4d (i.e., the Weyl-Bach tensor)
and 6d explicitly, and found that they have almost the same
form as the corresponding obstruction tensors, with every-
thing Weyl-covariantized and some extra terms due to the
Weyl-Schouten tensor being not symmetric. This is a
natural manifestation of the fact that the WFG gauge
Weyl covariantizes the boundary geometry. We observed
that all the subleading terms in the expansion of aμ do not
contribute to the Weyl-obstruction tensor. We also found

that when d ¼ 2k, the Weyl-obstruction tensor Oð2kÞ
μν is

equivalent to its LC counterpart, and so að0Þμ does not

contribute to the obstruction either. When d > 2k, the að0Þμ

terms are included in the Oð2kÞ
μν to make it Weyl covariant.

As the main result of this paper, we computed the Weyl
anomaly in 6d and 8d in the WFG gauge by using the
Weyl-Schouten tensor and extended Weyl-obstruction ten-
sors as the building blocks. The Weyl anomaly shown in
(70) and (72) indeed go back to the corresponding FG
results when the Weyl structure aμ is turned off, but now
they become Weyl covariant. In addition, we also reex-
pressed the Weyl anomaly in 2d and 4d in terms of the
Weyl-Schouten tensor. By observing the pattern of the
Weyl anomaly in different dimensions, we suspect there
exists a general formulation that can generate the holo-
graphic Weyl anomaly in any dimension, which will be
explored in future work.
In the boundary field theory, both the induced metric γð0Þμν

and the Weyl connection að0Þμ are nondynamical back-

ground fields. However, only γð0Þμν is sourcing a current

operator, namely the energy-momentum tensor, while að0Þμ

does not source any current since aμ is pure gauge in the
bulk. From theWeyl-Ward identity (53), we can see that the
trace of the energy-momentum tensor obtains a contribu-

tion from pð0Þ
μ due to the gauge freedom of WFG. Together

we can regard it as an improved energy-momentum tensor
T̃μν. For nonholographic field theories with background
Weyl geometry the corresponding Weyl current Jμ of the
Weyl connection does not need to vanish. The Weyl current
in the general case deserves further investigation.
An important corollary in our analysis is that the Weyl

structure aμ only appears as a trivial cocycle in the Weyl
anomaly, and thus only contributes cohomologically trivial
modifications. From the Weyl anomaly up to 8d we can
directly see this for the subleading terms of aμ as they

appear only in total derivative terms in XðkÞ. For the leading
term að0Þμ this is less obvious since it plays the role of the
boundary Weyl connection, but one can verify that by
writing the anomaly in terms of the boundary LC con-

nection, the terms involving að0Þμ also represent trivial
cocycles. This indicates a striking feature of the WFG

gauge, namely að0Þμ manages to make the expressions Weyl
covariant without introducing new central charges, which,
once again, is consistent with the fact that aμ is pure gauge
in the bulk. Nonetheless, these cohomologically trivial
terms might have significant effects in the presence
of corners, i.e., spacelike codimension-2 surfaces.4 The
recent construction proposed in [48,49] may be useful for
the analysis of these effects.
In this paper we introduced the obstruction tensor and

extended obstruction tensor as the pole of γð2kÞμν . However,
as we have mentioned, they can also be defined using the
ambient construction. What we have found but not dem-
onstrated in this paper is that the Weyl-obstruction tensors
and extended Weyl-obstruction tensors can be defined in a
similar way by promoting the ambient metric to the Weyl-
ambient metric. We expect to discuss the Weyl-ambient
construction in detail in a future publication.
Finally, although this paper focuses on the holographic

Weyl anomaly, we believe that the (Weyl-)Schouten tensor
and extended (Weyl-)obstruction tensors can also be used
as the building blocks for the Weyl anomaly of other
theories in general. How can these building blocks arise in a
nonholographic context requires a deep understanding of
the Lorentz-Weyl structure of a frame bundle, which
encodes all the local Lorentz and Weyl transformations.
To achieve this, the picture of Atiyah Lie algebroids
introduced in [50] for gauge theories can be used to
organize the Weyl and Lorentz anomalies in a geometric
fashion. By means of this geometric picture, we look
forward to carrying over the holographic results obtained in
this paper to the construction of Weyl anomaly in the
general case.

ACKNOWLEDGMENTS

We thank Rob Leigh for suggesting the problem and
providing constant support to us. We are also grateful to
Luca Ciambelli for many valuable discussions and care-
fully going through our manuscript. This work was
partially supported by the U.S. Department of Energy
under Contract No. DE-SC0015655.

APPENDIX A: WEYL GEOMETRY

This Appendix provides a brief review of Weyl geometry
[13,14]. We will mainly introduce the geometric quantities

4We thank Rob Leigh and Luca Ciambelli for pointing this out
in conversations.
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equipped with Weyl connection as well as some useful
relations we used in the previous sections. We use a; b;…,
to label the internal Lorentz indices and μ; ν;…, to label
the spacetime indices. For clarity, we also put ∘ on the top

of LC quantities, e.g., R
∘ a

bcd, P
∘
ab, etc.

Given a generalized Riemannian manifold ðM; gÞ with a
connection ∇, in an arbitrary basis feag, the connection
coefficients Γc

ab are defined as

∇ea
eb ¼ Γc

abec: ðA1Þ

The torsion tensor and Riemann curvature tensor of ∇ in
this basis are given by

Tc
abec ≡∇ea

eb −∇eb
ea − ½ea; eb�; ðA2Þ

Ra
bcdea ≡∇ec

∇ed
eb −∇ed

∇ec
eb −∇½ec;ed�eb: ðA3Þ

When ∇ is associated with g and is torsion-free, it is called

a LC connection, denoted by ∇∘ . Using Γ
∘
to denote the LC

connection coefficients, we have ∇∘ ea
eb ¼ Γ

∘ c
abec. By

definition, the conditions satisfied by the LC connection

coefficients Γ
∘ c

ab are

0 ¼ ð∇∘ gÞðea; eb; ecÞ
¼ ∇∘ ec

gðea; ebÞ − Γ
∘ d

cagðed; ebÞ − Γ
∘ d

cbgðed; eaÞ; ðA4Þ

0 ¼ Ta
bc ¼ Γ

∘ c
ab − Γ

∘ c
ba − Cab

c; ðA5Þ

where Cμν
ρ are the commutation coefficients defined by

½ea; eb� ¼ Cab
cec. Denote gab ≡ gðea; ebÞ as the compo-

nent of the metric in the frame feag. From these conditions

Γ
∘ c

ab can be derived as

Γ
∘ c

ab ¼
1

2
gcdðeaðgdbÞ þ ebðgadÞ − edðgabÞÞ

−
1

2
gcdðCad

egeb þ Cbd
egae − Cab

egedÞ: ðA6Þ

Now we will work in a coordinate basis f∂μg.5 Consider
a Weyl transformation

g → B−2g: ðA7Þ
The metricity tensor ∇g will not transform covariantly
under (A7). To restore the Weyl covariance, one can

introduce a Weyl connection A ¼ Aμdxμ which transforms
under a Weyl transformation as

Aμ → Aμ −∇μ lnB: ðA8Þ

Then, we obtain an object that is Weyl covariant:

ð∇μgνρ − 2AμgνρÞ → B−2ð∇μgνρ − 2AμgνρÞ: ðA9Þ

More generally, for a tensor T of an arbitrary type (with
indices suppressed) that transforms under a Weyl trans-
formation with a specific Weyl weight ωT , i.e., T → BωT T,
we can define

∇̂μT ≡∇μT þ wTAμT: ðA10Þ

In this way, ∇̂ acting on T will also transform Weyl
covariantly as ∇̂μT → BωT ∇̂μT.
Now we choose the connection ∇ by setting the Weyl

metricity as follows:

0 ¼ ∇μgνρ − 2Aμgνρ ¼ ∇̂μgνρ: ðA11Þ

We will also require ∇ defined in the above equation to be
torsion-free. With the existence of the Weyl metricity, the
connection coefficients of∇ in the coordinate basis become

Γρ
μν ¼

1

2
gρσð∂μgσν þ ∂νgνσ − ∂σgμνÞ

− ðAμδ
ρ
ν þ Aνδ

ρ
μ − gρσAσgμνÞ: ðA12Þ

We can see that this is different from the familiar Christoffel
symbols due to the extra terms involving the Weyl con-

nection. When∇ and ∇∘ act on a vector, their difference can
be reflected by

∇μvν ¼ ∇∘ μvν − ðAμδ
ν
ρ þ Aρδ

ν
μ − gνσAσgμρÞvρ: ðA13Þ

It is worthwhile to notice that if vν has Weyl weight
d ¼ dimM, then it follows from (A10) and (A13) that

∇̂μvμ ¼ ∇∘ μvμ.
Now one can compute the Riemann tensor of ∇ and its

contractions. Denoting the coordinate components of the

Riemann tensor of ∇∘ as R
∘ μ

νρσ , one finds from (A3) that

Rμ
νρσ ¼R

∘ μ
νρσþ∇∘ σAνδ

μ
ρ−∇∘ ρAνδ

μ
σþð∇∘ σAρ−∇∘ ρAσÞδμν

þ∇∘ ρAμgνσ−∇∘ σAμgνρþAνðAσδ
μ
ρ−Aρδ

μ
σÞ

þAμðgνσAρ−gνρAσÞþA2ðgνρδμσ−gνσδμρÞ; ðA14Þ

5Note that ea ≡ eμa∂μ and ea ≡ eaμdxμ have Weyl weights þ1
and −1, respectively, while ∂μ and dxμ have no Weyl weights.
This is because the Weyl transformation of the frame only comes
from the soldering of the vector bundle associated with the frame
bundle to the tangent space of M.
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Rμν ¼ R
∘
μν −

d
2
Fμν þ ðd − 2Þð∇∘ ðμAνÞ þ AμAνÞ

þ ð∇∘ · A − ðd − 2ÞA2Þgμν; ðA15Þ

R ¼ R
∘ þ 2ðd − 1Þ∇∘ · A − ðd − 1Þðd − 2ÞA2; ðA16Þ

where Rμν ≡ Rρ
μρν, R≡ Rμνgμν, and we defined the cur-

vature of Aμ as Fμν ¼ ∇∘ μAν −∇∘ νAμ. It is easy to see from

(A14) that, unlike R
∘ μ

νρσ , the Rμ
νρσ of ∇ now is not

antisymmetric in the first two indices, and it does not
have the interchange symmetry for the two index pairs.
Also, the Rμν of ∇ is not symmetric due to the appearance
of the Fμν term.
On the other hand, from (A1) we have the connection

coefficients Γ̂c
ab for ∇̂:

Γ̂c
abec ¼ ∇̂ea

eb ¼ ∇ea
eb þ AðeaÞeb

¼ Γc
abec þ AðeaÞeb; ðA17Þ

where we used the fact that the basis vector ea has Weyl
weight þ1. Plugging this into (A3), we find that the
Riemann tensor of ∇̂ and its contractions satisfy

R̂μ
νρσ¼Rμ

νρσþδμνFρσ; R̂μν¼RμνþFμν; R̂¼R: ðA18Þ

We refer to R̂μ
νρσ , R̂μν, and R̂ as the Weyl-Riemann

tensor, Weyl-Ricci tensor, and Weyl-Ricci scalar, respec-
tively.6 Similar to the curvature tensors for ∇, the Weyl-
Riemann tensor is not antisymmetric in the first two indices
and does not have the interchange symmetry for the two
index pairs, and the Weyl-Ricci tensor is not symmetric.
Also notice that the Weyl-Weyl tensor, namely the traceless
part of the Weyl-Riemann tensor, is equal to the LC Weyl
tensor, i.e.,

Ŵμ
νρσ ¼ W

∘ μ

νρσ: ðA19Þ

Unlike the LC curvature quantities, which transform in a
noncovariant way under the Weyl transformation, the
Weyl-Riemann tensor, Weyl-Ricci tensor, and Weyl-Ricci
scalar transform under the Weyl transformation as

R̂μ
νρσ → R̂μ

νρσ; R̂μν → R̂μν; R̂ → B2R̂: ðA20Þ

Furthermore, we can define the Weyl-Schouten tensor P̂μν

and Weyl-Cotten tensor Ĉμνρ as

P̂μν ¼
1

d − 2

�
R̂μν −

1

2ðd − 1Þ R̂gμν
�
; ðA21Þ

Ĉμνρ ¼ ∇̂ρP̂μν − ∇̂νP̂μρ: ðA22Þ

Although the LC Schouten tensor P
∘
μν defined by substitut-

ing R̂μν and R̂ in (A21) with Rμν and R is a symmetric

tensor, P̂μν has an antisymmetric part P̂½μν� ¼ −Fμν=2. In
terms of the LC connection, the Bach tensor is defined by
(the indices of the components are raised and lowered by g)

B
∘
μν ¼ ∇∘ ρ∇∘ ρP

∘
μν −∇∘ ρ∇∘ νP

∘
μρ −W

∘
σνμρP

∘ ρσ
; ðA23Þ

which satisfies B
∘
μν → B2B

∘
μν in 4d. Now we can define the

Weyl-Bach tensor

B̂μν ¼ ∇̂ρ∇̂ρP̂μν − ∇̂ρ∇̂νP̂μρ − ŴσνμρP̂
ρσ: ðA24Þ

Similar to the LC Bach tensor, the Weyl-Bach tensor is also
symmetric and traceless; however, it is Weyl covariant in
any dimension. Following (A14)–(A16), here we list the
above-mentioned Weyl quantities in terms of their corre-
sponding LC quantities:

P̂μν ¼ P
∘
μν þ∇∘ νAμ þ AμAν −

1

2
A2gμν; ðA25Þ

Ĉμνρ ¼ C
∘
μνρ − AσW

∘ σ

μρν; ðA26Þ

B̂μν ¼ B
∘
μν þ ðd − 4ÞðAρC

∘
ρνμ − 2AρC

∘
μνρ þ AρAσW

∘
σμρνÞ:
ðA27Þ

The Bianchi identity for ∇̂ reads

∇̂μR̂
λ
νρσ þ ∇̂ρR̂

λ
νσμ þ ∇̂σR̂

λ
νμρ ¼ 0: ðA28Þ

Noticing that ∇̂μgνρ ¼ 0, the contraction of the above
equation gives

∇̂μĜμν ¼ 0; ðA29Þ

where we defined the Weyl-Einstein tensor Ĝμν ≡
R̂μν − 1

2
R̂gμν. Using (A21), this identity can also be

expressed using the Weyl-Ward identity as

∇̂μP̂μν ¼ ∇̂νP̂; ðA30Þ

where P̂ is the trace of P̂μν. Starting from (A24) and using
(A30) repeatedly, one obtains

∇̂μB̂μν ¼ ðd − 4ÞP̂μρðĈρμν þ ĈνμρÞ: ðA31Þ
6Note that this is different from [5], in which the quantities

defined using ∇ instead of ∇̂ are called Weyl quantities.
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Note that since P
∘
is symmetric, the above equation in the

LC case becomes

∇∘ μ
B
∘
μν ¼ ðd − 4ÞP∘ μρC∘ ρμν: ðA32Þ

It is also useful to notice that in the LC case, the divergence
of the Cotton tensor vanishes

∇∘ μ
C
∘
μνρ ¼ 0; ðA33Þ

while for the Weyl-Cotton tensor we have instead

∇̂μĈμνρ ¼ ŴσρλνFσλ: ðA34Þ

In the end of this Appendix, we list the Weyl weights of the
above-mentioned Weyl quantities: see Table I.

APPENDIX B: SOLVING THE BULK
EINSTEIN EQUATIONS

To solve for γð2kÞμν in the WFG gauge from the Einstein
equations, we first introduced the following notations:

φμ ≡Dzaμ; fμν ≡Dμaν −Dνaμ;

ρμν ≡ 1

2
Dzhμν; θ≡ trρ; ψμν ≡ ρμν þ

L
2
fμν;

γλμν ≡ Γλ
μν ¼

1

2
hλρðDμhρν þDνhμρ −DρhνμÞ: ðB1Þ

Since the integral curves of Dz form a congruence, some of
these quantities can be interpreted as the properties of this
congruence: φμ is the acceleration, fμν is the twist, θ is the
expansion, and σμν ≡ ρμν − 1

d θhμν is the shear. By plugging
in the expansions (22) and (23), one can obtain the
expansions of the quantities above. A list of these expan-
sions enough for capturing the first two leading orders of
the Einstein equations can be found in the Appendix of [5].
Using the connection coefficients Γλ

μν in the bulk, one
can compute the curvature tensors and the Einstein tensor.
Then, the vacuum Einstein equations can be written as

0 ¼ Gzz þ gzzΛ

¼ −
1

2
trðρρÞ − 3L2

8
trðffÞ − 1

2
R̄þ 1

2
θ2 þ Λ; ðB2Þ

0 ¼ Gzμ þ gzμΛ ¼ ∇νψ
ν
μ −Dμθ þ L2fνμφν; ðB3Þ

0 ¼ Gμν þ gμνΛ

¼ Ḡμν − ðDz þ θÞψμν − L∇νφμ þ 2ρνρρ
ρ
μ

þ L2

2
fνρfρμ − L2φμφν

þ hμν

�
L∇μφ

μ þDzθ þ
1

2
trðρρÞ − L2

8
trðffÞ

þ L2φ2 þ 1

2
θ2 þ Λ

�
; ðB4Þ

where Λ ¼ − dðd−1Þ
2L2 is the cosmological constant and

R̄ ¼ hμνR̄μν with

R̄μν ¼ Dργ
ρ
νμ −Dνγ

ρ
ρμ þ γρρσγ

σ
νμ − γρνσγ

σ
ρμ: ðB5Þ

Denote mμ
ð2kÞν ≡ γμρð0Þγ

ð2kÞ
ρν and nμð2kÞν ≡ γμρð0Þπ

ð2kÞ
ρν . Expanding

(B2)–(B4) using (22) and (23), one can solve the Einstein
equations order by order. First, the zz component of the
Einstein equations gives

0 ¼
�
dðd − 1Þ
2L2

þ Λ
�
−

z2

L2

�
Rð0Þ

2
þ d − 1

L2
Xð1Þ

�

þ z4

L4

�
d

2L2
ðXð1ÞÞ2 − 2ðd − 1Þ

L2
Xð2Þ −

1

2L2
trðm2

ð2ÞÞ

−
3L2

8
trðf2ð0ÞÞ −

1

2
ðγλνð0Þ∇̂ð0Þ

λ ∇̂μðmð2Þμν − trðmð2ÞÞδμνÞ

þ 2ðd − 1Þ∇̂ · að2Þ − trðmð2Þγ−1ð0ÞR
ð0ÞÞÞ

�

þ � � � − zd

Ld ðd − 1Þ
�

d
2L2

Yð1Þ þ ∇̂ · pð0Þ

�
þ � � � ; ðB6Þ

where Xð1Þ, Xð2Þ, and Yð1Þ are given in expansion (55),
which can be expressed in terms of the expansion of hμν as

Xð1Þ ¼ trðmð2ÞÞ;

Xð2Þ ¼ trðmð4ÞÞ −
1

2
trðm2

ð2ÞÞ þ
1

4
ðtrðmð2ÞÞÞ2;…;

Yð1Þ ¼ trðnð0ÞÞ;…: ðB7Þ

At the Oð1Þ order, the zz equation is trivially satisfied, and
at the Oðz2Þ order, we can find that

Xð1Þ ¼ −
L2

2ðd − 1ÞR
ð0Þ ¼ −L2P̂: ðB8Þ

Then, using the above result we can obtain from the Oðz4Þ
order that

TABLE I. Weyl weights of Weyl-covariant quantities.

ea ea gμν gμν R̂μ
νρσ R̂μν R̂ Fμν P̂μν Ĉμνρ B̂μν

þ1 −1 −2 þ2 0 0 þ2 0 0 0 þ2
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Xð2Þ ¼−
1

4
trðm2

ð2ÞÞþ
1

4
ðXð1ÞÞ2−L2

2
∇̂ ·að2Þ −

L4

16
trðfð0Þfð0ÞÞ

¼−
L4

4
trðP̂2ÞþL4

4
P̂2−

L2

2
∇̂ ·að2Þ; ðB9Þ

where we used (38). Also notice that the OðzdÞ order gives
the Weyl-Ward identity

0 ¼ d
2L2

Yð1Þ þ ∇̂ · pð0Þ: ðB10Þ

Now we look at the μν components of the Einstein
equations:

0 ¼
�
Gð0Þ

μν þ d
2
fð0Þμν −

d − 2

L2
Xð1Þγð0Þμν þ d − 2

L2
γð2Þμν

�
þ z2

L2

�
1

2
∇̂λðγλξð0Þð∇̂νγ

ð2Þ
ξμ þ ∇̂μγ

ð2Þ
ξν − ∇̂ξγ

ð2Þ
μν ÞÞ

−
1

2
γð0Þμν ∇̂μ∇̂νðγμνð2Þ − Xð1Þγμνð0ÞÞ −

1

2
∇̂ðμ∇̂νÞXð1Þ þ ðd − 4Þð∇̂ð0Þ

ðμ a
ð2Þ
νÞ − γð0Þμν ∇̂ · að2ÞÞ

þ 2ðd − 4Þ
L2

γð4Þμν þ 2

L2
mρ

ð2Þ μγ
ð2Þ
ρν þ L2

2
fð0Þνρ f

ð0Þ
σμ γ

σρ
ð0Þ þ

�
1

2
trðmð2Þγ−1ð0ÞR

ð0Þ
�
−
L2

8
trðfð0Þfð0ÞÞ

−
2ðd − 4Þ

L2
Xð2Þ þ d − 3

2L2

�
Xð1ÞÞ2 þ 1

2L2
trðm2

ð2ÞÞ
�
γð0Þμν

�
þ � � � : ðB11Þ

Note that γμνð2Þ ≡ ðγ−1ð0Þγð2Þγ−1ð0ÞÞμν is not the inverse of γð2Þμν . Plugging in the results we got from the zz equation, we obtain from

the first two leading orders of (B11) that

γð2Þμν ¼ −
L2

d − 2

�
Rð0Þ
ðμνÞ −

1

2ðd − 1ÞR
ð0Þγð0Þμν

�
; ðB12Þ

γð4Þμν ¼ −
L2

4ðd − 4Þ
�
2∇̂λ∇̂ðμmð2ÞλνÞ − ∇̂ · ∇̂γð2Þμν − ∇̂ðμ∇̂νÞXð1Þ −

1

L2
γð0Þμν trðm2

ð2ÞÞ þ
4

L2
mρ

ð2Þ μγ
ð2Þ
ρν

þ L2fð0Þνρ f
ð0Þ
σμ γ

σρ
ð0Þ −

L2

4
trðfð0Þfð0ÞÞγð0Þμν

�
−
L2

2
∇̂ð0Þ

ðμ a
ð2Þ
νÞ : ðB13Þ

Furthermore, expanding (B11) to the Oðz4Þ order one obtains

γð6Þμν ¼ −
L2

3ðd − 6Þ
�
∇̂λγ̂

λ
ð4Þμν −

1

2
∇̂ðμ∇̂νÞtrðmð4ÞÞ − ∇̂λðγ̂σð2Þμνmλ

ð2Þ σÞ þ ∇̂ðνðγ̂σð2ÞμÞλmλ
ð2Þ σÞ

þ 1

2
∇̂σXð1Þγ̂σð2Þμν − γ̂σð2Þμλγ̂

λ
ð2Þσν −

2

L2
ðm3

ð2ÞÞρνγð0Þμρ þ 8

L2
γð4Þρðμm

ρ
ð2Þ νÞ −

1

L2
γð4Þμν Xð1Þ

−
L2

2
fð0Þσμ f

ð0Þ
νρ γ

ρσ
ð2Þ þ L2fð2Þσðμf

ð0Þ
νÞργ

ρσ
ð0Þ −

1

L2
γð0Þμν

�
trðmð4Þmð2ÞÞ −

1

2
trðm3

ð2ÞÞ −
L4

8
trðmð2Þf2ð0ÞÞ

−
L4

4
∇̂ρa

ð2Þ
σ fρσð0Þ −

L2

4
∇̂σXð1Þaσð2Þ þ

L2

2
∇̂λðγλρð2Það2Þρ Þ

�
þ 2∇̂λðmλ

ð2Þ ðνa
ð2Þ
μÞ Þ − 2γð0Þσðνγ̂

σ
ð2ÞμÞλa

λ
ð2Þ

− að2Þðν ∇̂μÞXð1Þ − ∇̂ðνðXð1Það2ÞμÞ Þ
�
−
L2

3
∇̂ðμa

ð4Þ
νÞ − L2að2Þμ að2Þν þ L2

6
að2Þ · að2Þγð0Þμν þ L2

3
γ̂λð2Þμνa

ð2Þ
λ ; ðB14Þ

where fð2Þσμ ≡ ∇̂σa
ð2Þ
μ − ∇̂μa

ð2Þ
σ and

γ̂λð2Þμν ¼
1

2
γλρð0Þð∇̂ð0Þ

μ γð2Þνρ þ ∇̂ð0Þ
ν γð2Þμρ − ∇̂ð0Þ

ρ γð2Þμν Þ ¼ −
L2

2
ð∇̂ð0Þ

μ P̂λ
ν þ ∇̂ð0Þ

ν P̂μ
λ − ∇̂λ

ð0ÞP̂μνÞ: ðB15Þ

(In the second step we used ∇̂ð0Þ
μ fð0Þνρ þ ∇̂ð0Þ

ν fð0Þρμ þ ∇̂ð0Þ
ρ fð0Þμν ¼ 0.) The γð4Þμν and γð6Þμν above can be organized in to (39) and

(41), respectively.
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Finally, the zμ component of the Einstein equations gives

0 ¼ −
L

d − 2

z2

L2
γαβð0Þ∇̂ð0Þ

α Ĝð0Þ
βμ þ L−1 z

4

L4

�
∇̂αð2mα

ð4Þμ − ðm2
ð2ÞÞαμÞ þ

1

2
mα

ð2Þμ∇̂αXð1Þ

þ L2

2

�
∇̂ · ∇̂að2Þμ − ∇̂μ∇̂ · að2Þ þ ðRð0Þ

βμ þ 4fð0Þβμ Þγαβð0Það2Þα − ∇̂αðfð0Þβμm
α
ð2Þργ

ρβ
ð0ÞÞ

− fð0Þνρ γανð0Þ∇̂αm
ρ
ð2Þ μ þ

1

2
fð0Þβμ γ

αβ
ð0Þ∇̂αXð1Þ

�
− 2∇̂μXð2Þ þ 1

2
∇̂μðXð1ÞÞ2 − 1

4
∇̂μtrðm2

ð2ÞÞ
�
þ � � �

þ zd

Ld

�
d
2L

∇̂αnαð0Þμ þ
L
2
ð∇̂ · ∇̂pð0Þ

μ þ ∇̂α∇̂μpα
ð0ÞÞ

�
þ � � � : ðB16Þ

One can observe that theOðz2Þ order of the above equation is exactly the contraction of the Weyl-Bianchi identity as shown
in (A29). By plugging in the results we got from the zz equation, the Oðz4Þ order can be organized into the identity (43),
which demonstrates the divergence of the Bach tensor. Also, the OðzdÞ order gives the conservation law of the improved
energy-momentum tensor defined in (52).

APPENDIX C: EXPANSIONS OF THE RAYCHAUDHURI EQUATION AND
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi− det h

p

Using the components of Einstein equations (B2)–(B4), one can construct the following equation [5]:

0 ¼ gMNðGMN þ ΛgMNÞ
d − 1

þ ðGzz þ ΛgzzÞ

¼ Dzθ þ L∇νφ
ν þ L2φ2 þ trðρρÞ þ L2

4
trðffÞ − d

L2
; ðC1Þ

where the indices M and N represent the bulk components as M ¼ ðz; μÞ. This equation can be recognized as the
Raychaudhuri equation of the congruence generated byDz. Expanding each term in the above equation, we can write down
a general expansion of this equation to any order. This combination of the components of the Einstein equations contains all
the information we need for deriving XðkÞ. We here provide some details of deriving Xð3Þ and Xð4Þ by means of the
Raychaudhuri equation.
First, it is useful to expand the inverse of hμν:

hμνðz; xÞ ¼ z2

L2

�
γμνð0ÞðxÞ þ

z2

L2
γμνð2ÞðxÞ þ � � �

�
þ zdþ2

Ldþ2

�
πμνð0ÞðxÞ þ

z2

L2
πμνð2ÞðxÞ þ � � �

�

¼ z2

L2

�
γμνð0ÞðxÞ −

z2

L2
m̃μ

ð2Þργ
ρν
ð0ÞðxÞ −

z4

L4
m̃μ

ð4Þργ
ρν
ð0ÞðxÞ þ � � �

�
þ zdþ2

Ldþ2
½ñμð2Þργρνð0ÞðxÞ þ � � ��; ðC2Þ

where m̃μ
ð2kÞν ≡ −γμρð2kÞγ

ð0Þ
ρν , ñ

μ
ð2kÞν ≡ −πμρð2kÞγ

ð0Þ
ρν . The above expansion can be solved order by order in terms ofmμ

ð2kÞν and n
μ
ð2kÞν:

γμνð0Þ ¼ ðγð0Þμν Þ−1; m̃μ
ð2Þν ¼ mμ

ð2Þν; m̃μ
ð4Þν ¼ mμ

ð4Þν −mμ
ð2Þρm

ρ
ð2Þν;…

ñμð0Þν ¼ nμð0Þν; ñμð2Þν ¼ nμð2Þν −mμ
ð2Þρn

ρ
ð0Þν − nμð0Þρm

ρ
ð2Þν;…: ðC3Þ

Also by taking the inverse of the metric, one finds the following relation:

mð2pÞ − m̃ð2pÞ ¼
Xp−1
k¼1

m̃ð2kÞmð2p−2kÞ: ðC4Þ

Specifically, we have

mð2Þ − m̃ð2Þ ¼ 0; mð4Þ − m̃ð4Þ ¼ m2
ð2Þ; mð6Þ − m̃ð6Þ ¼ mð2Þmð4Þ þ m̃ð4Þmð2Þ: ðC5Þ

Now we expand the quantities defined in (B1) to an arbitrary order by plugging the expansions (22), (23), and (C2) into their
definitions. For the purpose of finding theWeyl anomaly, here we only keep themð2pÞ and að2pÞ terms in the first series of hμν
and aμ and neglect the nð2pÞ and pð2pÞ terms. The expansions of these quantities are
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ρμν ¼ −δμν þ
1

2

X∞
p¼1

�
z
L

�
2p
�
pðmð2pÞ þ m̃ð2pÞÞ þ

Xp−1
k¼1

ð2k − pÞm̃ð2kÞmð2p−2kÞ

�
μ

ν

þOðzdÞ; ðC6Þ

θ ¼ −
d
L
þ 1

2L

X∞
p¼1

�
z
L

�
2p
�
ptrðmð2pÞ þ m̃2pÞ þ

Xp−1
k¼1

ð2k − pÞtrm̃ð2kÞmð2p−2kÞ

�
þOðzdÞ; ðC7Þ

φμ ¼
1

L

X∞
p¼0

�
z
L

�
2p
2pað2pÞμ þOðzd−2Þ; ðC8Þ

fμν ¼
X∞
p¼0

�
z
L

�
2p
�
fð2pÞμν þ

Xp−1
q¼1

2qðað2p−2qÞμ pð2qÞ
ν − að2p−2qÞν pð2qÞ

μ Þ
�
þOðzd−2Þ; ðC9Þ

γλμν ¼ γλð0Þμν −
X∞
p¼1

�
z
L

�
2p
�Xp−1

q¼0

m̃λ
ð2qÞ ργ̂

ρ
ð2p−2qÞμν þ

1

2

Xp−1
q¼0

½m̃ð2qÞγ−1ð0Þ�λρ
Xp−q−1
k¼0

ð2k − 2Þ

× ðað2p−2q−2kÞμ γð2kÞνρ þ að2p−2q−2kÞν γð2kÞμρ − að2p−2q−2kÞρ γð2kÞμν Þ
�
þOðzd−2Þ; ðC10Þ

where

fð0Þμν ¼ ∂μa
ð0Þ
ν − ∂νa

ð0Þ
μ ; fð2kÞμν ¼ ∇̂ð0Þ

μ að2kÞν − ∇̂ð0Þ
ν að2kÞμ ðk > 0Þ;

γλð0Þμν ¼
1

2
γλρð0Þð∂μγ

ð0Þ
νρ þ ∂νγ

ð0Þ
μρ − ∂ργ

ð0Þ
μν Þ − ðað0Þμ δλν þ að0Þν δλμ − að0Þρ γλρð0Þγ

ð0Þ
μν Þ;

γ̂λð2kÞμν ¼
1

2
γλρð0Þð∇̂ð0Þ

μ γð2kÞνρ þ ∇̂ð0Þ
ν γð2kÞμρ − ∇̂ð0Þ

ρ γð2kÞμν Þ ðk > 0Þ:

Expanding everything in (C1) using (C6)–(C10), we obtain the following equation:

0 ¼ 1

L2
pðp − 1Þtrðmð2pÞ þ m̃ð2pÞÞ þ

1

L2

Xp−1
q¼1

ðp − 1Þð2q − pÞtrm̃ð2qÞmð2p−2qÞ

−
Xp−1
q¼1

2q∇̂μa
ð2qÞ
ν ½m̃ð2p−2q−2Þγ−1ð0Þ�μν −

Xp−1
q¼1

Xq−1
k¼0

ð2p − 2qþ 2kÞ2kað2p−2qÞμ að2kÞν ½m̃ð2q−2k−2ÞÞγ−1ð0Þ�μν

−
Xp−1
q¼1

Xq−1
k¼0

Xp−q−1
n¼0

nað2nÞλ ½m̃ð2p−2q−2n−2Þγ−1ð0Þ�μν
�
m̃λ

ð2kÞ ργ̂
ρ
ð2q−2kÞμν

− ½m̃ð2kÞγ−1ð0Þ�λρ
Xq−k−1
m¼0

ð2 − 2mÞðað2q−2k−2mÞ
μ γð2mÞ

νρ þ að2q−2k−2mÞ
ν γð2mÞ

μρ − að2q−2k−2mÞ
ρ γð2mÞ

μν Þ
�

þ 1

4L2

Xp−1
q¼1

ðp − qÞtr
�
ðmð2p−2qÞ þ m̃ð2p−2qÞÞ½qðmð2qÞ þ m̃ð2qÞÞ þ

Xq−1
k¼1

2ð2k − qÞm̃ð2kÞmð2q−2kÞ�
�

þ 1

4L2

Xp−1
q¼1

Xq−1
k¼1

Xp−q−1
m¼1

ð2k − qÞð2m − pþ qÞtr½m̃ð2kÞmð2q−2kÞm̃ð2mÞmð2p−2q−2mÞ�

þ L2

4

Xp−1
q¼1

Xq−1
k¼0

�
fð2kÞμρ þ

Xk−1
m¼1

2mðað2k−2mÞ
μ að2mÞ

ρ − að2k−2mÞ
ρ að2mÞ

μ Þ
�
½m̃ð2q−2k−2Þγ−1ð0Þ�ρν

×
Xp−q−1
n¼0

�
fð2nÞνσ þ

Xn−1
s¼1

2sðað2n−2sÞν að2sÞσ − að2n−2sÞσ að2sÞν Þ
�
½m̃ð2p−2q−2n−2Þγ−1ð0Þ�σμ: ðC11Þ

From this equation, one can find trðmð2pÞ þ m̃ð2pÞÞ in terms of mð2qÞ and m̃ð2qÞ for all q < p.
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Taking p ¼ 3 we get the Raychaudhuri equation at the Oðz6Þ order:

0 ¼ 6

L2
trðmð6Þ þ m̃ð6ÞÞ þ

4

L2
trðmð4Þmð2ÞÞ −

4

L2
trðm3

ð2ÞÞ −
L2

2
mμ

ð2Þ αf
α
ð0Þβf

β
ð0Þμ

þ 4∇̂ · að4Þ − 2mμ
ð2Þ ργ

ρν
ð0Þ∇̂νa

ð2Þ
μ − 2γμνð0Þγ̂

λ
ð2Þμνa

ð2Þ
λ − 2ðd − 6Þa2ð2Þ þ

L2

2
fð2Þμν f

νμ
ð0Þ: ðC12Þ

And for p ¼ 4, we have the Raychaudhuri equation at the Oðz8Þ order:

0 ¼ 12

L2
trðmð8Þ þ m̃ð8ÞÞ þ

9

L2
trðmð6Þmð2ÞÞ −

22

L2
trðmð4Þm2

ð2ÞÞ þ
6

L2
trðm4

ð2ÞÞ þ
4

L2
trðm2

ð4ÞÞ

þ L2

4
fð0Þμρ fνσð0Þm

ρ
ð2Þ νm

μ
ð2Þ σ þ

L2

2
fð0Þμρ f

ρσ
ð0Þðm2

ð2ÞÞμσ −
L2

2
fð0Þμρ f

ρσ
ð0Þðmð4ÞÞμσ þ 6∇̂ · að6Þ

− 4∇̂μa
ð4Þ
ν γμνð2Þ þ L2∇̂½μa

ð4Þ
ρ� f

ρμ
ð0Þ − 4að4Þσ γμνð0Þγ̂

σ
ð2Þ μν − 6ðd − 8Það4Þ · að2Þ − 2∇̂μa

ð2Þ
ν γμνð4Þ

− 2að2Þσ γμνð0Þγ̂
σ
ð4Þ μν þ 2∇̂μa

ð2Þ
ν ðm2

ð2ÞÞμργρνð0Þ þ L2∇̂½μa
ð2Þ
ρ� ∇̂½ρaμ�ð2Þ − 2L2∇̂½μa

ð2Þ
ρ� f

ρσ
ð0Þm

μ
ð2Þ σ

þ 2að2Þσ γμνð2Þγ̂
σ
ð2Þ μν þ 2að2Þλ γμνð0Þm

λ
ð2Þ σγ̂

σ
ð2Þ μν þ 2ðd − 8Það2Þμ að2Þν γμνð2Þ þ 2Xð1Það2Þ · að2Þ: ðC13Þ

Now let us look at the expansion of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
. Using the fact that θ ¼ Dzðln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p Þ, we can write down the expansion
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
to any order as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γð0Þ

q �
z
L

�
−d X∞

0

1

n!

×
�
1

2

X∞
m¼1

�
z
L

�
2m
�
1

2
trðmð2mÞ þ m̃ð2mÞÞ þ

Xm−1

k¼1

�
k
m
−
1

2

�
trðm̃ð2kÞmð2m−2kÞÞ

��n
: ðC14Þ

Comparing with (55), at the Oðz6Þ order and the Oðz8Þ order, the above equation gives, respectively,

Xð3Þ ¼ 1

2
trðmð6Þ þ m̃ð6ÞÞ −

1

6
trðm3

ð2ÞÞ þ
1

2
Xð1ÞXð2Þ −

1

12
ðXð1ÞÞ3; ðC15Þ

Xð4Þ ¼ 1

2
trðmð8Þ þ m̃ð8ÞÞ −

1

2
trðmð4Þm2

ð2ÞÞ þ
1

4
trðm4

ð2ÞÞ þ
1

2
Xð3ÞXð1Þ −

1

4
Xð2ÞðXð1ÞÞ2 þ 1

4
ðXð2ÞÞ2 þ 1

32
ðXð1ÞÞ4: ðC16Þ

Now solving trðmð6Þ þ m̃ð6ÞÞ from (C12) and plugging (37), (39), and (66) into (C15), we can organize all themð2Þ and fð0Þ
terms in Xð3Þ and get (69). Similarly, plugging trðmð8Þ þ m̃ð8ÞÞ obtained from (C13) into (C16), the expression for Xð4Þ can
be organized in terms of the Weyl-Schouten tensor and extended Weyl-obstruction tensors as

24

L2
Xð4Þ ¼ L6

�
1

8
P̂4 −

3

4
trðP̂2ÞP̂2 þ 3

8
½trðP̂2Þ�2 þ trðP̂3ÞP̂ −

3

4
trðP̂4Þ − trðΩ̂ð1ÞP̂ÞP̂þ trðΩ̂ð1ÞP̂2Þ

−
1

4
trðΩ̂2

ð1ÞÞ −
1

4
trðΩ̂ð2ÞP̂Þ

�
þ 2ðd − 8Þ½3að4Þ · að2Þ þ að2Þμ að2Þν ðP̂μν − P̂γμνð0ÞÞ� − 6∇̂ · að6Þ

− L2∇̂μ½að4Þν ð4P̂μν þ 2P̂νμ − 4P̂γμνð0ÞÞ� −
L2

2
∇̂μ½að2Þν ð3∇̂νaμð2Þ þ ∇̂μaνð2Þ − 3∇̂ · að2Þγ

μν
ð0ÞÞ�

þ L4∇̂μ½að2Þν ð3P̂μνP̂þ P̂νμP̂Þ� þ 3L4

2
∇̂μ½að2Þμ ðtrðP̂2Þ − P̂2Þ� − 3L4

2
∇̂μðað2Þν Ω̂μν

ð1ÞÞ

−
L4

4
∇̂μ½að2Þν ð3P̂ρμP̂ν

ρ − 5P̂ρμP̂ρ
ν þ 7P̂μρP̂ρ

ν − 9P̂μρP̂ν
ρÞ�; ðC17Þ

which leads to (71).
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APPENDIX D: DILATATION
OPERATOR METHOD

In this Appendix we will derive the holographic Weyl
anomaly in 8d using the recursive algorithm of [34] which
we will refer to as the dilatation operator method. We point
out that this method uses the usual FG gauge where the
Weyl connection is turned off. This alternative way of
finding the Weyl anomaly will provide a nontrivial con-
sistency check of the results presented in Sec. V. For
completeness we start with a brief review of the algorithm
of the dilatation operator method. We then apply the
algorithm one step further than [34] and compute the
holographic Weyl anomaly in 8d.

1. Review of the algorithm

We start by using the metric in the FG gauge (2)

ds2 ¼ dr2 þ hμνðr; xÞdxμdxν; μ; ν ¼ 1;…; d; ðD1Þ
where we changed the coordinates by setting r ¼
−L ln ðz=LÞ. The Einstein-Hilbert action in the bulk mani-
fold M with a Gibbons-Hawking boundary term is

SEH-GH ¼ 1

2κ2

Z
M
drddx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðR − 2ΛÞ

þ 1

κ2

Z
∂Mrc

ddx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
K; ðD2Þ

where κ2 ¼ 8πG, Λ ¼ − dðd−1Þ
2L2 , and ∂Mrc is a cutoff

surface at some large value of rc.
7 Taking a metric variation

and evaluating the result on-shell one gets

δSo:sEHGH ¼
Z
∂Mrc

ddxπμνδhμν;

πμν ¼ 1

2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
ðKhμν − KμνÞ; ðD3Þ

where Kμν ¼ 1
2
∂rhμν is the extrinsic curvature tensor in the

FG gauge and hμν is the induced metric on ∂Mrc . The
boundary tensor density πμν appears in many different
contexts; it was first defined in [51] and was later used in
[52] to define a boundary stress tensor in an asymptotically
AdS spacetime (with the inclusion of necessary counter-
terms to cancel divergences). It also appears as the con-
jugate momenta in the ADM formalism [53].8

The rr and rμ components of the Einstein equations, i.e.,
Grr þ Λgrr ¼ 0 and Grμ ¼ 0, can be written in terms of the
conjugate momenta as follows:

2κ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
−deth

p
�
πμνπ

ν
μ−

1

d−1
π2
�
þ 1

2κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−deth

p
ðR∘ −2ΛÞ ¼ 0;

ðD4Þ

∇∘ ρπ
ρμ ¼ 0; ðD5Þ

where π ≡ hμνπμν, ∇
∘
is the LC connection of the induced

metric hμν on ∂Mrc , and R
∘
is the LC Ricci scalar of hμν.

Note that the indices are raised and lowered using the
induced metric hμν. Equations (D4) and (D5) are the
well-known Hamiltonian and momentum constraints in
the ADM language [53].
The dilatation operator method of solving the constraint

equations uses an asymptotic expansion of the conjugate
momenta in terms of the induced metric. One assumes a
Hamilton-Jacobi functional S½h� such that

πμν ¼ δS½h�
δhμν

; S½h�≡
Z
∂Mrc

ddxL½h�; ðD6Þ

where S½h� is a local diffeomorphic invariant functional of
the induced metric.9

The momentum constraint (D5) is now trivially satisfied.
The Hamiltonian constraint (D4) can be solved asymptoti-
cally by writing

L¼
X
k¼0

Lð2kÞ½h�; δDLð2kÞ½h� ¼ ðd−2kÞLð2kÞ½h�; ðD7Þ

where δD is the dilatation operator [35] (acting on metric
functionals), defined as

δD ≡
Z

ddx

�
2hμν

δ

δhμν

�
: ðD8Þ

It is useful to keep in mind that for an AlAdS spacetime the
radial derivative ∂r asymptotes the dilatation operator, i.e.
δD ∼ ∂

∂r (see [34]). We can view the dilatation operator
expansion as another asymptotic expansion near the con-

formal boundary since hμν ∼ e2r=Lγð0Þμν þ � � �.
The expansion (D7) together with (D6) implies an

expansion of πμν in terms of the dilatation weight:

πμνð2kÞ ¼
δ

δhμν

Z
∂Mrc

ddxLð2kÞ; πμν ¼
X
k¼0

πμνð2kÞ: ðD9Þ

The Lð2kÞ½h� are defined only up to total derivative terms in
∂Mrc . To set up the recursive algorithm we need the
following relation:

7We abuse notation and call the cuttof surface ∂Mrc even
though it is not necessarily the boundary of M.

8The sign difference in the definition of πμν in [53] arises
because here we consider the radial evolution which is in a
spacelike direction.

9In [34] the functional S½h� is used to derive the boundary
terms for a well-defined bulk variational problem. Since these are
tangential remarks for the calculation of the Weyl anomaly, we
simply neglect them and refer the reader there for more details.
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πð2kÞ ¼
L
2
Qð2kÞ; πð2kÞ ≔ hμνπ

μν
ð2kÞ; ðD10Þ

where we defined the Q curvature

Qð2kÞ ≔
d − 2k
L

Lð2kÞ: ðD11Þ

The Q curvature is the main quantity we are interested in,
since it is proportional to the Weyl anomaly in a specific
even dimension [see (D14)]. Plugging (D9) into (D4) and
making use of (D10) we find

Qð2kÞ ¼
2κ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
Xk−1
m¼1

�
πð2mÞμνπð2k−2mÞνμ

−
1

d − 1
πð2mÞπð2k−2mÞ

�
; ðD12Þ

where we used the initial values

Qð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p

2κ2
R
∘
;

πμνð0Þ ¼
ðd − 1Þ
2κ2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
hμν: ðD13Þ

Equations (D12), (D9), and the initial values (D13) are
enough to fix the iterative algorithm of the dilatation
operator method. Expanding on this a little more, given
the value ofQð2Þ we can use (D9) to find π

μν
ð2Þ. Since we now

have πμνð2Þ and πμνð0Þ, we can find Qð4Þ from (D12). The

process can then be iterated to compute πμνð2kÞ and Qð2kÞ to
any order. The recursive algorithm has been solved up to
πμνð4Þ and Qð6Þ in [34]. In the next section we will push the

calculation one step further for finding πμνð6Þ and Qð8Þ. This
will enable us to find the Weyl anomaly in 8d.

2. Results and anomaly in 8d

We have explained the algorithm for solving the
Hamiltonian and momentum constraints. We now focus
on the Q curvature, which is expressed in terms of the
conjugate momenta in (D12). The Weyl anomaly in d-
dimension corresponds to the Q curvature for d ¼ 2k [34]:

Ak ¼ −L
Z

ddx lnBQd¼2k
ð2kÞ : ðD14Þ

We now present the results of the algorithm presented in
D 1. First, we review the results for πμνð2kÞ and Qð2kÞ up to
k ¼ 3:

πμνð0Þ ¼
ðd − 1Þ
2κ2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
hμν;

πμνð2Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
L

2κ2
ðP∘ μν − P

∘
hμνÞ;

πμνð4Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
L3

2κ2ðd − 4Þðd − 2Þ
�
B
∘ ij þ ðd − 4Þ

�
P
∘ μ

λP
∘ λν

− P
∘
P
∘ μν

−
1

2
hμνðtrðP∘ 2Þ − P

∘ 2Þ
��

; ðD15Þ

and

Qð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p

2κ2
R
∘
;

Qð4Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
L2

2κ2
½trðP∘ 2Þ − P

∘ 2�;

Qð6Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p
L4

κ2ðd − 4Þðd − 2Þ
�
trðP∘ B∘ Þ þ ðd − 4Þ

�
trðP∘ 3Þ − 3

2
P
∘
trðP∘ 2Þ þ 1

2
P
∘ 3��

: ðD16Þ

We can see that Qð2Þ, Qð4Þ, and Qð6Þ correspond to the LC counterparts of the Weyl anomaly shown in (67), (68),
and (70), respectively. UsingQð6Þ in (D16) we can calculate π

μν
ð6Þ from (D9) by taking ametric variation ofQð6Þ. The result is as

follows:
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πμνð6Þ ¼ −
L5

κ2ðd − 6Þðd − 4Þðd − 2Þ2
�
O
∘ μν

ð6Þ þ ðd − 6Þ
�
P
∘ ðμ

λB
∘ νÞλ

− P
∘
B
∘ μν

− 2P
∘
ρλ∇

∘ λ
C
∘ ðμνÞρ

− ð∇∘ λPÞC
∘ ðμνÞλ þ C

∘ ρμλ
C
∘
λ

ν

ρ −
1

2
C
∘ μρλ

C
∘ ν

ρλ þ P
∘
W
∘ μ

αβ

ν
P
∘ αβ þ 1

2
∇∘ λ∇∘ λðP

∘ μβ
P
∘ β

ν − P
∘
P
∘ μνÞ

−
ðd − 2Þ
4ðd − 1Þ∇

∘ μ∇∘ νðtrðP∘ 2Þ − P
∘ 2Þ − 1

4ðd − 1Þ h
μν∇∘ λ∇∘ λðtrðP

∘ 2Þ − P
∘ 2Þ þ ðd − 4ÞP∘ μαP

∘ αβ
P
∘
β

ν

−
ð3d2 − 12dþ 8Þ

4ðd − 1Þ P
∘ μνðtrðP∘ 2Þ − P

∘ 2Þ − ðd − 4ÞP∘P∘ μλP
∘ λν

−
1

2
hμν

�
trðP∘ B∘ Þ þ ðd − 4ÞtrðP∘ 3Þ

−
ð3d2 − 14dþ 10Þ

2ðd − 1Þ P
∘
trðP∘ 2Þ þ ðd2 − 4dþ 2Þ

2ðd − 1Þ P
∘ 3���

; ðD17Þ

whereO
∘ μν

ð6Þ is theLCobstruction tensor defined in (10).Wehave also checked thatπμνð6Þ is divergence-free in any dimension, as is

required by (D5).10

By plugging (D17) and (D15) into (D12) we find after some reorganization the expression of Qð8Þ as
follows:

Qð8Þ ¼
2L6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p

κ2ðd − 6Þðd − 4Þðd − 2Þ2
� ðd − 2Þ
2ðd − 4Þ trðP

∘
O
∘
ð6ÞÞ þ ðd − 6Þ

�
3

4ðd − 4Þ trðB
∘ 2Þ þ 5d − 16

2ðd − 4Þ trðP
∘ 2
B
∘ Þ

−
5d − 16

2ðd − 4ÞP
∘
trðP∘ B∘ Þ − 5d2 − 20dþ 8

16ðd − 1Þ P
∘ 4 þ 16 − 5d

2
P
∘
trðP∘ 3Þ þ 15d2 − 62dþ 40

8ðd − 1Þ P
∘ 2
trðP∘ 2Þ

−
13d2 − 44dþ 24

16ðd − 1Þ ðtrðP∘ 2ÞÞ2 þ 7d − 20

4
trðP∘ 4Þ

�
þ∇∘ μKμ

�
; ðD18Þ

where Kμ ¼ ðd−6Þ
2ðd−4ÞK

μ
0 þ ðd−6Þ

2
Kμ

1 þ ðd−6Þ
2

Kμ
2 þ ðd−6Þðd−2Þ

4ðd−1Þ Kμ
3, with

Kμ
0 ≔ P

∘ αβ∇∘ μ
B
∘
αβ − B

∘
αβ∇

∘ μ
P
∘ αβ þ B

∘ μβ∇∘ βP
∘
− P

∘ ∇∘ αB
∘ αμ

;

Kμ
1 ≔ ðP∘ μλP∘ βλ − P

∘
P
∘ μβÞ∇∘ βP

∘
− P

∘ ∇∘ βðP
∘ βα

P
∘ μ
α − P

∘
P
∘ βμÞ;

Kμ
2 ≔ P

∘
αβ∇

∘ μðP∘ αλP∘ λ
β
− P

∘
P
∘ αβÞ − ð∇∘ μ

P
∘
αβÞðP

∘ αλ
P
∘ β
λ − P

∘
P
∘ αβÞ;

Kμ
3 ≔ ðtrðP∘ 2Þ − P

∘ 2Þ∇∘ μ
P
∘
− P

∘ μλ∇∘ λðtrðP
∘ 2Þ − P

∘ 2Þ:

If we plug d ¼ 8 into (D18), we find that the holographic Weyl anomaly A4 in 8d is

A4 ¼ −L
Z

d8x lnBQd¼8
ð8Þ

¼ −
Z

d8x
L7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det h

p

48κ2

�
1

4
trðP∘O

∘
ð6ÞÞ þ

1

8
trðB∘ 2Þ þ 2trðP∘ 2B∘ Þ − 2P

∘
trðP∘ B∘ Þ

þ 6trðP∘ 4Þ − 3trðP∘ 2Þ2 þ 6P
∘ 2
trðP∘ 2Þ − 8P

∘
trðP∘ 3Þ − P

∘ 4 þ∇∘ μKμ

�
: ðD19Þ

This result agrees with the Weyl anomaly we obtained in (72) when the Weyl structure is turned off, up to total
derivatives.

10This calculation was done thanks to the Mathematica package diffgeo.m by Matthew Headrick.
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