PHYSICAL REVIEW D 104, 126031 (2021)

Obstruction tensors in Weyl geometry and holographic Weyl anomaly
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Recently a generalization of the Fefferman-Graham gauge for asymptotically locally anti—de Sitter
spacetimes, called the Weyl-Fefferman-Graham (WFG) gauge, has been proposed. It was shown that the
WFG gauge induces a Weyl geometry on the conformal boundary. The Weyl geometry consists of a metric
and a Weyl connection. Thus, this is a useful setting for studying dual field theories with background Weyl
symmetry. Working in the WFG formalism, we find the generalization of obstruction tensors, which are
Weyl-covariant tensors that appear as poles in the Fefferman-Graham expansion of the bulk metric for even
boundary dimensions. We see that these Weyl-obstruction tensors can be used as building blocks for the
Weyl anomaly of the dual field theory. We then compute the Weyl anomaly for 6d and 84 field theories in
the Weyl-Fefferman-Graham formalism and find that the contribution from the Weyl structure in the bulk
appears as cohomologically trivial modifications. Expressed in terms of the Weyl-Schouten tensor and
extended Weyl-obstruction tensors, the results of the holographic Weyl anomaly up to 8d also reveal hints

on its expression in any dimension.
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I. INTRODUCTION

There is an important fact about the asymptotic AdS
geometry: the conformal boundary of a (d+ 1)-
dimensional asymptotically locally anti—de Sitter (AIAdS)
spacetime carries not a metric but a conformal class of
metrics; i.e., the boundary enjoys Weyl symmetry. This is due
to the fact that the asymptotic boundary is formally located at
conformal infinity [1]. In holographic theories [2], the
(background) Weyl symmetry is implied by diffeomorphism
invariance in the bulk spacetime (called Weyl diffeomor-
phism). Usually when discussing AdS/CFT, one picks a
specific representative of the conformal class. For example,
the most commonly used choice for studying the conformal
boundary of an AIAdS spacetime is the Fefferman-Graham
(FG) gauge [3.4]. However, the FG gauge explicitly breaks
the Weyl symmetry by fixing a specific boundary metric.

In a suitable coordinate system {z,x*} (u =0, ...,d — 1),
the metric of any (d 4 1)-dimensional AIAdS spacetime can
be expanded with respect to the bulk coordinate z into two
series, called the Fefferman-Graham expansion [5,6]. The
first series has the boundary metric in the leading order,
while the subleading terms are determined by the bulk
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equations of motion; the leading order of the second series
represents the vacuum expectation value of the energy-
momentum tensor operator of the boundary field theory,
which cannot be determined in the absence of an interior
boundary condition [6].

When the spacetime dimension is odd, both series in the
FG expansion are power series to infinite order; however, in
an even-dimensional spacetime, a logarithmic term will
occur at order O(z%2), causing an obstruction to the power
series expansion [7]. This logarithmic term in d = 2k (with

k an integer) gives rise to the obstruction tensor (Qﬁk). The
obstruction tensor was first proposed in [3] as a symmetric
traceless tensor of type (0,2), which is Weyl covariant with
Weyl weight 2k —2 (k > 2), and was precisely defined
using the ambient metric in [7] (see also [4]). It is also
convenient to define the extended obstruction tensor|[8]
which has a pole at d = 2k, and whose residue gives rise to
the obstruction tensor. The obstruction tensor for d = 4 is
also known as the Bach tensor [9], which is the only Weyl-
covariant tensor in 4d that is algebraically independent of
the Weyl tensor. It has been shown in [7] that the only
irreducible Weyl-covariant tensors in the 2k dimension with

k > 2 are the obstruction tensor Of,z,,k) and the Weyl tensor
(which has weight 0), while in any odd dimension d =
2k + 1 with k > 2 the Weyl tensor is the only one (in 3d
where the Weyl tensor becomes trivial, it is the Cotton
tensor).

The origin of the obstruction tensor in the FG expansion
is that the two series will mix if the spacetime dimension d
is even, and the solution to the equations of motion
encounters a pole. Hence, another way to formulate the
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FG expansion is to use the technique of dimensional
regularization, i.e., to regard d as a variable (formally
complex)[5,6]. Using this formulation, in this paper we will
describe a practical way of reading off the obstruction
tensor from the pole of the FG expansion in an even
dimension.

Even though the FG gauge is quite convenient to use, the
Weyl symmetry in the boundary will be broken when the
boundary metric is fixed. More specifically, one can
introduce a Penrose-Brown-Henneaux (PBH) transforma-
tion [10-12] in the bulk and induce a Weyl transformation
on the boundary, but the subleading terms in the z
expansion will not transform in a Weyl-covariant way if
the form of the FG ansatz is to be preserved. In order to
resolve this issue, one can relax the FG ansatz of the bulk
metric to the Weyl-Fefferman-Graham (WFG) ansatz [5].
In the WFG gauge, the form of the bulk metric is preserved
under a Weyl diffeomorphism, and all the terms in the z
expansion transform in a Weyl-covariant way, which brings
a powerful reorganization of the holographic dictionary.
Unlike the FG gauge, where the bulk Levi-Civita (LC)
connection induces on the conformal boundary also a LC
connection (of the boundary metric), in the WFG gauge, the
bulk LC connection gives a Weyl connection on the
boundary [5]. Having the induced metric together with
the Weyl connection, the bulk geometry induces on the
boundary a Weyl-covariant geometry [13—15].

On the boundary, the induced metric and the Weyl
connection act as nondynamical backgrounds of the dual
quantum field theory. Similar to the FG case, the metric is
the source of the energy-momentum tensor operator on the
boundary. However, the Weyl connection does not source
any current since it comes from a pure gauge mode of the
bulk metric. Despite being pure gauge, the appearance of
the Weyl connection on the boundary is far from innocuous
since it makes the geometric quantities on the boundary
Weyl covariant. Specifically, we will show that the obstruc-
tion tensors in the WFG gauge are promoted to Weyl-
obstruction tensors, which will play an important role in the
construction of the Weyl anomaly in this paper.

The Weyl anomaly is reflected by the nonvanishing trace
of the energy-momentum tensor in even dimensions, which
has been computed for various conformal field theories
[16-26]. The results in 2d and 4d are well-known:

c
2d:. (T",) = ———R,
d: (Ty) 247

4d: (T ) = cW? —aE®, (1)
where W? is the contraction of two Weyl tensors and E is
the Euler density in 4d. In the context of holography, the
Weyl anomaly was first suggested in [27] and was then
calculated from the bulk in [24,28]. For a holographic
theory where we have the vacuum Einstein theory in the
bulk, one gets a = ¢ in the four-dimensional boundary
theory as a constraint on the central charges. In the FG
gauge, after going through the holographic renormalization

procedure by adding counterterms to cancel the divergence
extracted by the regulator, one finds that the holographic
Weyl anomaly in an even dimension corresponds to the
logarithmic term in the bulk volume expansion. In math-
ematical literature this is also referred to as the Q curvature
[29-32] (see [33] for a short review), which has been
studied by means of obstruction tensors and extended
obstruction tensors in [7,8]. Going into the WFG gauge,
it was shown in [5] using dimensional regularization that
the Weyl anomaly in the 2k dimension can be extracted
directly from the variation of the pole term at the O(z%~%)
order of the “bare” on-shell action under the d — 2k~ limit.
This is the method we will use for computing the Weyl
anomaly in this work.

Our goal in this paper is to find the holographic Weyl
anomaly in higher dimensions using the advantages of the
WFG gauge, and organize the results in a form that
manifests its general structure. It has been shown in [5]
that, up to total derivatives, the Weyl anomaly in 2d and 4d
in the WFG gauge has the same form of that in the FG
gauge, but now become Weyl covariant. We generalize
these results to 6d and 8d by calculating the Weyl anomaly
explicitly, and we find that the same statement still holds.
Furthermore, we discover that by promoting the obstruction
tensors in the FG gauge to the Weyl-obstruction tensors
in the WFG gauge, one can use them as natural building
blocks for the Weyl anomaly. In this way, we will see
clearly how the WFG gauge Weyl covariantizes the Weyl
anomaly without introducing additional nontrivial
cocycles. Our results also reveal some interesting clues
about the general form of the holographic Weyl anomaly in
any dimension.

This paper will be organized as follows. In Sec. II we
briefly introduce the obstruction tensors and extended
obstruction tensors in the FG gauge and their properties.
In Sec. IIT we review the WFG gauge as the Weyl-covariant
modification of the FG gauge, and how the bulk LC
connection induces a Weyl connection on the conformal
boundary. More details about the Weyl connection and
Weyl geometry are given in Appendix A. In Sec. IV we
generalize the results of Sec. II to Weyl-obstruction tensors
and extended Weyl-obstruction tensors by solving the
Einstein equations in the WFG gauge. The expansions
of the Einstein equations can be found in Appendix B.
Using the Weyl-Schouten tensor and extended Weyl-
obstruction tensors as building blocks, in Sec. V we will
derive the holographic Weyl anomaly in the WFG gauge in
6d and 8d after we review the results in 2d and 4d. More
details of the calculation are provided in Appendix C. As a
consistency check, we also compute the 8d holographic
Weyl anomaly in the FG gauge using a completely different
approach—the dilatation operator method [34,35]—which
will be presented in Appendix D. The result agrees with
what we get in Sec. V. The expressions for the holographic
Weyl anomaly up to 8d also suggest the pattern in any
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dimension, which will be discussed at the end of Sec. V.
In Sec. VI we discuss some aspects of the Weyl structure
observed from the role it plays in the formulas for the Weyl-
obstruction tensors and Weyl anomaly that we derived.
Finally, in Sec. VII we summarize our results and point out
possible directions for future studies.

II. OBSTRUCTION TENSORS

The obstruction tensor is known as the only irreducible
conformal covariant tensor besides the Weyl tensor in an
even-dimensional spacetime. The general references for the
obstruction tensor are [4,7], where it was defined precisely
in terms of the ambient metric. Instead of providing the
formal definition, we will derive the obstruction tensors
explicitly in the FG gauge for up to d = 6 by solving the
bulk equations of motion order by order. The same method
will also be used in Sec. IV for the Weyl-obstruction tensor.

According to the Fefferman-Graham theorem [3] the
metric of a (d + 1)-dimensional AIAdS spacetime can
always be expressed in the following form:

d2
ds? = 1255 4 by, (zx)detde?, pv=0,...d—1, (2)
Z

where the coordinate z can be considered as a “radial”
coordinate, and z = 0 is the “location” of the conformal
boundary. When h,, = LGﬂv /z* with 1, the flat metric,
this represents the Poincaré metric for AdS,, spacetime.
Near the conformal boundary, 4,, can be expanded with
respect to z as follows [5]:

L2 ZZ
) = 55 |0+ S22

d-2

2
Z 0 < 2
+ e [;:},J () + 25 22 (x) + - ] . (3)

As we mentioned in the Introduction, the conformal

boundary carries a conformal class of metrics. In the FG

. 0 . .
expansion yfw) serves as the “canonical” representative of

the conformal class sourcing the energy-momentum

tensor of the dual field theory on the boundary, while

nf,‘i) corresponds to the expectation value of the energy-

momentum tensor [6]. Once y,(fi) is given, each term in the

first series can be determined by solving the vacuum

Einstein equations with a negative cosmological constant

in the bulk. Similarly, once 77,',(4(,),) is given, the second series

will be determined. However, 7z,<3) is not completely
arbitrary but is actually constrained by the Einstein equa-

tions. To be more specific, the zz component of the Einstein

equations tells us that n,(,‘i’ is traceless while the zu

components indicate that it is also divergence-free.

Nevertheless, subtleties will arise when the boundary
dimension d is an even integer, since the two series in (3)
mix into one. To resolve this issue for an even d = 2k, we
treat d formally as a variable d € C in the expansion (3) and
let d approach 2k from below. As we will see explicitly,
when the Einstein equations are satisfied, y,(,zyk) has a first
order pole at d = 2k. For any integer k > 2, up to some
factor, the coefficient of the pole term (which is actually a
meromorphic function of the boundary dimension) is what

we define as the obstruction tensor, denoted by O,(,ik):

2k C(2k) 2k ~(2k
7;(41/) =d£2k0,(w>+}/,(w),

L% T(d/2-k+1)

€00 T T RSk (a2 - 1) “)

where the normalization factor ¢ ;) has been chosen so that

the obstruction tensor agrees with the convention of [4],

and the tensor 77,(3() is analytic at d = 2k.

Besides holographic dimensional regularization [6],
another common approach is to introduce a logarithmic
term for d = 2k [24], which turns out to be proportional to
the obstruction tensor. This is also the origin of the name
obstruction tensor, as it obstructs the existence of a formal

power series expansion. Note that the tensor (’),(,ik) is well-
defined in any d > 2k, but only behaves as an “obstruction”
when d = 2k. The relation between the two approaches
will be cleared up at the end of this section once we show
how to correctly take the limit for an even d in holographic
dimensional regularization.

Now we present the obstruction tensors explicitly. First,
by solving the bulk Einstein equations to the O(z?) order
one finds that

ve 1 (.0 RO
2~ 42

(0)
R — Nd=n)™ ) (5)

where R,(,(,),> and R represent the Ricci tensor and Ricci

(0)

scalar of y,/  at the boundary, respectively. One can

recognize y,(,%,) /L?* as the Schouten tensor P,, at the
boundary (with a minus sign):

I (go_ RV o
P,=— (RO~ _,0) 6
MU d_2< H Z(d_l) H ()

Indeed, we notice that there is a first order pole when d = 2
as expected. However, it is easy to see that the residue of the
pole vanishes identically for d = 2. This is the reason why
it is often stated that there is no obstruction tensor
for d =2.
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At the O(z*) order, the Einstein equations give us

7ho 1 1
= B, +-P,P, 7
LY 4(d-4) wt g Ewty @

Note that on the boundary, the tensor indices are lowered

and raised using yfl(l),) and its inverse y’(‘g). The tensor B, is

the Bach tensor, which is defined as

_ (0) (0) (0)
By, = ViV, Py = Vi Vi Py = W

HA pupd P > (8)

where V,(,O) is the derivative operator on the boundary

associated with y,(f,),), and W,(;(,)l)m is the Weyl tensor of yf,?).

We notice that the first term has a pole at d =4 and it
follows from (4) that the obstruction tensor for d = 4 is just

the Bach tensor, i.e., O,(;) = B,,.
Similarly, if we move on to the O(z°%) order of the

Einstein equations, we find that y,(g) has a pole at d = 6 and
can be written as

(©)
S 1
Yo oL -

LS 24(d-6)(d—-4)

B, P,
6(d— 4) PH v (9)

From (4) one can see that (9,(43) is the obstruction tensor for
d = 6, now given by

0
,—2WY) B¥ —4B,P

6 0
Oftv) = Vzlo) vf(l >Bﬂ

+2(d=4) 2PV C,, + VY PC,)

2 0
- C/)/Clvp + VEIO)P p(ﬂCvW - W< )

i eP?). (10)

where P = Pﬂyy’(’g) and C,,,

boundary defined as

is the Cotton tensor on the

_v©® (0)
Cup =V, Py —=V,"Py,. (11)

Let us make a few remarks on some important properties
of the obstruction tensors. First, they are symmetric trace-
less tensors for any boundary dimension d. The traceless
condition can be derived from the zz component of the
Einstein equations at the O(z**) order. Also, the obstruction
tensor Oﬁk) is divergence-free when d = 2k. For instance,
divergence of the Bach tensor gives

vl(/())Bvﬂ = (d - 4)PW)C/)1/;V (12)

The divergence of the Bach tensor can be read from the
O(z*) order of the zu component of Einstein equations.
In general, at any O(z?*) order one finds that the divergence

of O,ﬁk) is proportional to d — 2k and thus vanishes when

d = 2k. The divergence of Oﬁk) can also be obtained by
using the following identity:

Vi P = VP, (13)

This is equivalent to the contracted Bianchi identity at the
boundary (see Appendix A), which can also be read from
the leading order of the zu component of Einstein equa-

tions. Finally, a notable feature of Oﬁk) is that it is Weyl
covariant when d = 2k with Weyl weight 2k —2 (for a
proof see [7]).

For convenience, we can also absorb the d-dependent
factors in yﬁk) by introducing Graham’s extended obstruc-

tion tensor Qf,k_l) (k>2)in d > 2k:

(1) 1 2) 1 (6)
Q) =——B,. Q.= Ou.... (14
. d—4"" " (d-6)(d—4) " (14)
(k)

The extended obstruction tensor €2,/ was precisely defined
in [8] in the context of the ambient metric. The general
relation between the obstruction tensor and extended
obstruction tensor is

(=D)*r(d/2-k-1) O2k+2)

(k)
Q v — v
. 2 T(d)2-1) *

(k>1). (15)

We finish this section by describing how to get the
d — 2k~ limit of the two series in (3) properly. By taking
the limit carefully we will recover a logarithmic term in the
expansion whose coefficient is exactly the obstruction
tensor for d = 2k, which also justifies the name “obstruc-
tion” as we mentioned before. There are two issues one has

to deal with while taking the d — 2k~ limit. First, as we

(2k)

already noted, y,,’ has a pole at d — 2k, so it diverges in

this limit. Second, the two series mix since both y,(,%,k) and

T[,gl),) appear at the same order O(z>*=1)) in (3), for d = 2k.

To keep the O(z%*) order finite we pose that zr,(,(z) should also
have a pole for d = 2k proportional to (’),ﬁk) so that the

divergence in y,(,%k) gets canceled; i.e., we claim that n,(f,),) has

the following form:

0 C(2k) 2k ~(0
71';(”) = _d—ZkOI(lU) +7T;(u/), (16)
where 7.0 is finite at d = 2k. Substituting back (16) and (4)
to (3) we get

k=1 2n-2 2k—2
)= (£) " + 6+l ()
n=0

— o (é) i <§> O +o((z/L)%). (17)
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This makes contact with the expansion with a logarithmic
term (for an even d) presented in the literature, e.g.,
[24,36,37].

III. WEYL-FEFFERMAN-GRAHAM GAUGE

This section is a brief review of the Weyl-Fefferman-
Graham formalism established in [5]. At the end of this
section we introduce the “Weyl quantities” that will appear
in later sections.

The Fefferman-Graham ansatz (2) is quite convenient for
calculations, especially in the context of holographic
renormalization. In this setup, one can induce a Weyl
transformation of the boundary metric by a bulk diffeo-
morphism, namely the PBH transformation [10],

z -7 =z/B(x), X XM =X+ (z;x), (18)
where & (z; x) vanish at the boundary z = 0. The functions
&#(z; x) can be found (infinitesimally) in terms of B(x) by
the constraint that the form of the FG ansatz is preserved
under the transformation. However, under the PBH trans-
formation, the subleading terms in the FG expansion (3) do
not transform in a Weyl-covariant way. The source of this
complication is the compensating diffeomorphisms & (z; x)
introduced for preserving the FG ansatz.

This above-mentioned issue motivated the authors of [5]
to replace the FG ansatz with

dz 2
ds> =12 (; —-a,(z x)dx") + hy,(z:x)dx*dx”,  (19)
which was named the Weyl-Fefferman-Graham ansatz.
With the additional Weyl structure a, added, the form of
the WFG ansatz is now preserved under the Weyl diffeo-
morphism

7z -7 =z/B(x), Xt — XM = xH, (20)
It is not hard to see that the Weyl diffeomorphism (20)
induces the following transformation of the fields a
and h,,:

{7

a,(z:x) = a,(z';x) = a,(B(x)Z'; x) — 9, In B(x),
hyy = hy (25 x) = hy, (B(x)Z'; x). (21)

Thus, we can now induce a Weyl transformation on the
boundary and preserve the form of the metric without
introducing the irritating £"(z;x). Note that according to
the FG theorem, any AIAdS spacetime can always be
expressed in the FG form, and so (19) can be transformed
into (2) under a suitable diffeomorphism. This indicates
that a, is actually pure gauge in the bulk. Another way of
going back to the FG gauge is to simply set a,, to zero; in

this perspective, the FG gauge is nothing but a special case
of the WFG gauge with a fixed gauge.

The main utility of the WFG gauge is that all the terms
(except one) in the z expansions of 4,,(z;x) and a,(z;x)
transform as Weyl tensors under Weyl diffeomorphisms.
To see this, let us expand £, and a, near z = 0:

L* 2 o
i) =55 A0+ S22 + -

d-2 2
Z 0 Z 2
+ 12 [”/(tv) (x) + 12 ”;(w) (x) + - ] (22)

d-2 2
V4 V4
T O R R ey

In the FG gauge where a,, is turned off, the FG expansion

only includes (22), and the subleading terms y,(,zyk) in the first

series are determined solely by the boundary induced
metric y,(,(,)) and its derivatives. Now with the extra series

(23), y,(l%k) will also depend on af,o), a,(f), a,(,4), etc. Moving

on, from the transformations (21) under a Weyl diffeo-
morphism, one finds the transformation of each term in the
expansions (22) and (23) as follows [5]:

72 (x) = 727 () B(x) %2,
(k) (2/() B d-2+2k 24
7 (x) = 7)) (x)B(x)4-242%, (24)

0 (x) = @ (x)B(x)* = 3,00, In B(x).
pLZk) (x) > p}(lzk) (x) B(x)4-2+2k (25)

Indeed, we see that almost all the terms in the expansions

transform Weyl covariantly. The only exception is a,(,()),

which transforms inhomogeneously under Weyl transfor-
mation, and thus does not have a definite Weyl weight.
All the other terms in the expansions (22) and (23) can be
viewed as tensor fields on the boundary, and we can easily
read off their Weyl weights from the power of B(x)
appearing in (24) and (25).

For a metric in the form of (19) defined on the bulk
manifold M, one can choose a dual form basis and its
corresponding vector basis as follows:

d
e’ = L—Z — La,(z; x)dx*, e = dx#, (26)
Z

Z
e, = ZQZ =D, e, =0, +za,(z:x)0,=D,. (27)

u

Then the tangent space at any point (z,x*) € M can be
spanned by the basis {D_, D, }, and the basis vectors {D,, }

126031-5
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form a d-dimensional distribution on M which belongs to
the kernel of e*. The Lie brackets of these basis vectors are

[Q/u Qu] = Lf/wQZ’

[QZ’ Q/t] - L(/’ﬂQz’ (28)
where ¢, =D.a, and f,, =D,a,—-D,a, (D, and D,
represent taking the derivatives along e, and ¢,). According
to the Frobenius theorem, the condition for the distribution
spanned by {D, } to be integrable is that [D,, D,| = 0, i.e.,
fuw = 0. In this case, this distribution defines a hypersur-
face. For instance, in the FG gauge where a,, is turned off,
the distribution {D,} becomes {0,}, which generates a
foliation of constant-z surfaces. However, {D,} in the
WEFG gauge is not necessarily an integrable distribution,
and thus one needs to keep in mind that the boundary
hypersurface z = 0 is in general not part of a foliation.
Suppose V is the Levi-Civita connection on M. One can
find the connection coefficients of V in the frame {D.. D, }

from its definition (A1):
VQ,, D,=T*,D, +T%,D.. (29)

The coefficients I'* w 1n the above equation define the
induced connection coefficients on the distribution over M
spanned by {D, } (see [38]). Expanding I}, with respect to
Z, at the leading order one finds that

A 0
F?O) 7 p( 7/”/’ + avyﬂﬂ - p7/<w))

- (a}, &, + &, + a)y ). (30)

We can see that (30) gives exactly the connection coef-
ficients of a torsion-free connection with Weyl metricity
[see (A12) in Appendix A, where A, and g, correspond to

a,(,o) and yf,?,)]. That is, on the boundary with z — 0 we have

a connection V© satisfying
0) (0 0) (0
Vi'riy =247y (31)

This indicates that although a,, is pure gauge in the bulk, its

(0)

leading order a,” serves as a Weyl connection at the

conformal boundary. Together with the induced metric y,(,(,)),

they provide a Weyl geometry at the boundary [13]. Under
a boundary Weyl transformation

2,,(0) (0)

v = Bx) Y, al ~9,InB(x), (32)

—>a;,

for any tensor 7' (with indices suppressed) with Weyl
weight wy on the boundary, we have

T - B""T,
(VT +wra'T) — B (V0T + wra'T).  (33)

One can also absorb the Weyl connection and define v
such that

@S»T = V,(,())T + wTa,(,O)T, (34)

which renders @fto)T Weyl covariant. Particularly, Eq. (31)

indicates that V' is metricity-free, which makes it
convenient for boundary calculations.

Now that we have the Weyl geometry on the boundary,
the geometric quantities there are promoted to the “Weyl
quantities.” More precisely, for any geometnc quantity
constructed by the boundary metric y,(,y) and the LC
connection in the FG case, we now have a Weyl-covariant

counterpart of it constructed by yfg), af,()), and V% in the
WEG case. For instance, we have the Weyl-Riemann tensor

RF ,(,(2,2,, Weyl-Ricci tensor IAQ,E?,), and Weyl-Ricci scalar RO,
In addition, f,, induces on the boundary a tensor
£ =0,a
connection a?), which is obviously Weyl invariant. We can
also define the Weyl-Schouten tensor P , and Weyl-Cotton

tensor Cm,/,

A 1 A(O) 1 A (0)
P,=— (RO~ _RO,0 35
)24 d—2< 12 2<d—1) yﬂ ’ ( )

- (36)

- aya}}’), namely the curvature of the Weyl

on the boundary as follows.

<
|
<
NS
~

One should notice that the symmetry of the indices of a
“Weyl quantity” is not necessarily the same as the corre-
sponding quantity defined with the LC connection. For
instance, the Weyl-Ricci tensor is not symmetric with its

antisymmetric part R[(ﬂ) —(d-2) o P )/2, and hence the

Weyl-Schouten tensor P,w also contains an antisymmetric

part ISW =—f ,(,(,),)/ 2. In the next section, we will see that
the obstruction tensors also have their Weyl-covariant
counterparts. More details of the above Weyl quantities
are exhibited in Appendix A.

IV. WEYL-OBSTRUCTION TENSORS

In the previous section we saw that the WFG gauge in the
bulk induces a Weyl geometry on the boundary. Now we
would like to determine the higher order terms in the
expansion (22) and find the obstruction tensors with the
Weyl connection turned on. The method is exactly analo-
gous to that in Sec. II for the FG gauge. By solving the bulk
Einstein equations order by order in the WFG gauge, we
find that y,(,%k) still has the same form as (4), except that the
obstruction tensor O,(ﬁ,k) is now promoted to the Weyl-
obstruction tensor @ﬁ”. Unlike O,(,%,k), which is only Weyl-
covariant in a 2k dimension, the Weyl-obstruction tensors
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@f,%k) are Weyl covariant with a weight 2k —2 in any

dimension; that is, under a Weyl transformation (32) it
transforms in any d as O — B(x)%*-2020.

In principle, yf,zyk) at any order can be obtained from the
Einstein equations by iteration. In this section, we will

show solutions of y,(f,k) obtained from Einstein equations up
to kK = 3 and read off the corresponding Weyl-obstruction
tensors from them. Some detailed expansions of Einstein
equations can be found in Appendix B.

First, the leading order of the pur components of the
Einstein equations gives

)
2 1 /-
Yu _ <R(0)

oL (po 1 Ro,0) 37
2 Td—2\"w Tog—q (37)
We notice that this is the symmetric part of the Weyl-
Schouten tensor defined in (35) with a minus sign, i.e.,

2
V/(w)

L2

) 1
=Py =—Py - Ef;w)- (38)

Similar to the FG gauge, one can check that the residue of
the pole in (37) vanishes identically when d = 2. Hence,
there is no Weyl-obstruction tensor for d = 2,and so no
logarithmic term will appear in the metric expansion in the
d — 27 limit.

Then, solving the O(z?) order of the v components of
the Einstein equations yields

4)
i L @ Ly, 1 &0 @
L* 4(d-4) Ow + 3P bn =5 V0ay ()

where @,(ﬁ,) is the Weyl-obstruction tensor for d =4,
namely the Weyl-Bach tensor EW, given by

N A 0 A
AW P (40)
If we compare (39) with the corresponding result (7) in the
FG case, we see that the form of the expression stays almost
the same, with all the LC quantities now being promoted to

the corresponding Weyl quantities. Besides, in the WFG

gauge y,(i) also has an additional term involving a,(,2>, which

does not contribute to the pole at d = 4.
Moving on to the O(z*) order of the Einstein equations
we get

7}<46) 1 (6) 1 o
s = O +———B,, P’
L5~ T24(d—6)(d—4) " Tea—a)

Lo w_1 o @, 1 ©)
—37a Ve d) —pad @ +eza® -y

1 0 2 1 o 2
+@v§”)(})ﬁv) /(?))""FY 2),41/05:), (41)

A

where 70, = —%2 (@20)131,, + @50)13/ - @’(10)
is the Weyl-obstruction tensor for d = 6:

) and (AQ,(,?)

N

A6) _ &1 &) 5 37(0) A Y "I
O/(w) - V(O)vﬂ B, - 2WpuuﬂB/1p _4PB/w + 2PP(DB/)#)

N

—ZBP(”ﬁD)/,+2(d—4)(@(O) i/)(ﬂppv)

~
>

-P ,1,;@(2) Cu)pi +2P (4) @510) C(ﬂv)ﬂ + @/(10)}3 & C(lﬂ/)ﬂ

P &1 Dy P 4,(0)
- Cupt v(O)P ’ WCoypa— Wﬂ(vﬂ)

PP (42)
It is easy to verify that (41) and (42) go back to the FG
expressions (9) and (10) when we turn off the Weyl
structure a,,. Note that when the Weyl connection is turned
off, the first term inside the parentheses of (42) vanishes
due to (A33), and the second term there vanishes since the

LC Schouten tensor P,, is symmetric. Once again, we

observe that all the a,(,z) and a,(,4) terms that appear in y,(fy) do

not contribute to the pole at d = 6 and thus are not part of

the obstruction tensor @ffv). We will discuss this more
in Sec. VL.

Just as (’),(,%k) derived in the FG gauge, all the @,(ik) are
also symmetric traceless tensors, and they are divergence-
free when d = 2k. These properties can either be verified
by using the result from the yr components of the Einstein
equations (“evolution equations”) or read off from the zz
and zu components of the Einstein equations (“constraint

equations”). More specifically, plugging y,(,zyk)

into the zz
component of the Finstein equations we can see that @f}ﬁ
is traceless in any dimension, and the same result can also
be obtained by taking the trace of the yr components of
the Einstein equations. To see that @,(ﬁk) is divergence-free

when d = 2k, we can plug y,(,%k) into the zu components of

the Einstein equations. For instance, the O(z*) order of the
Zu equations gives

vI(JO)EW = (d - 4)13”/)(6/)144 =+ C/wp)’ (43)

and so the divergence of B;w vanishes when d = 4. In the
FG gauge where the Schouten tensor is symmetric, the
second term in the bracket vanishes and so (43) goes back

to (12). On the other hand, the divergence of @f,zf) can also
be derived from a direct calculation by using repeatedly the
Weyl-Bianchi identity

A

Vi Py = VOP, (44)

which can be read off from the O(z?) order of the zu
equation. The above discussion indicates that the zz and zu

components of the Einstein equations do not contain more

information about y,ﬁk) than the uv components of Einstein

equations. Note that here we only talk about the equations
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of motion for y,(w ) At O(z%) order the zz and zu equations

do provide new constraints on 77,',(,(,]/), while the uv equations

0 ..
on n,(,,) become trivial.

It is also convenient to define the extended Weyl-
obstruction tensor Q,(w) as the Weyl-covariant version of
the extended obstruction tensor defined in (14). For
example, for k = 1 and k = 2 we have

1 N "(2) 1 ’\(6)
-—B,, QJ)=——+0% (45
d—4" " (d—-6)(d—4) " (45)

Similar to the FG case, the Weyl-obstruction tensor
@ﬁ,"“) is also proportional to the residue of the extended

Weyl-obstruction tensor ij? Both the Weyl-obstruction
tensors and the extended Weyl-obstruction tensors can be
defined following [7,8] by promoting the ambient metric to
the “Weyl-ambient metric.” We will discuss this in detail in
a separate publication.

V. HOLOGRAPHIC WEYL ANOMALY
A. Weyl-Ward identity

In this section, we first discuss the anomalous Weyl-
Ward identity for a general field theory on a background
Weyl geometry following [5], and then we focus on
holographic theories in the WFG gauge. Later, we will
compute the Weyl anomaly for a holographic theory in the
WEFG gauge up to d = 8.

Essentially, for a d-dimensional field theory1 coupled to

a background metric y,s(,)) and a Weyl connection a,(,o), the

Weyl anomaly comes from an additional exponential
factor arising in the path integral after applying a Weyl
transformation:

Z[y\0), 0] = e=AB):.a] 7], (0)

/B(x)%, a9 —dInB(x))].

(46)

The anomaly A[B(x);
condition [39,40]

g, a] should satisfy the 1-cocycle

A[B//B/;}’<0),a<0)] :A[B/;},(O)’a(())]

+A[B 70/ (B)?,a9 —dInB].  (47)

For any nonexact Weyl-invariant d-form A[y ),

can check that A[B(x);7?,a®] = [(InB)A satisfies the
cocycle condition, and thus it is a possible candidate for
the Weyl anomaly. However, if A is exact, A would
be cohomologically trivial since it can be written as
the difference of a Weyl-transformed local functional.

aq), one

"From now on, we will work in the Euclidean signature. We
also adopt natural units where ¢ = 2 = 1.

The linearly independent choices of A in nontrivial
cocycles correspond to different central charges.

In general, the background fields 7/,(4,,) and af,) are the
sources of the energy-momentum tensor operator 7 and
the Weyl current operator J¥, respectively:

2 oS
<Tﬂy(x)> = 07 < (0)
\/—dety© 8y (X)
1 oS
<Jﬂ(x)> - 07 < (0) (48)
Vv —dety 5a,” (x)
Expanding the quantum effective action S = —InZ to the

first order under an infinitesimal Weyl transformation and
integrating by parts, for a theory with a Weyl anomaly we
obtain

\/%ty«» 51;S é(x) = (T (x)yy) (x) + Vi J#(x)). (49)

This is the (anomalous) Weyl-Ward identity. As we can see,
besides the trace of the energy-momentum tensor that
appears in the usual case, the divergence of the Weyl
current also contributes to the Ward identity when the Weyl
connection is turned on.

Let us now focus on a holographic field theory dual to
the vacuum Einstein theory in the (d + 1)-dimensional
bulk. The holographic dictionary provides the relation
between the on-shell classical bulk action Sy, and
quantum effective action Spy, of the field theory on the
boundary [27]:

exp (—Spui[9; Y(0)> a(o)]) = exp (—Spar [J’(o)v a(o)])» (50)
where y ) and a) are the boundary values of & and a as

shown in (22) and (23). Since a,, is pure gauge in the bulk,

af,o) could be gauged away, and hence it is not expected to

source any current on the boundary. The role of the a,(,o),

however, is important since it makes the energy-momentum
tensor along with all the geometric quantities on the

boundary Weyl covariant. On the other hand, the p,(,o) also

plays arole in the Weyl-Ward identity. In the FG gauge, zr;(,(l),)
corresponds to the expectation value of T,,; the Ward

identity for the Weyl symmetry shows that the trace of ﬂf,(i)
vanishes, which can be read off from the O(z?) order of the
zz component of the Einstein equations [6]. In the WFG

gauge, this equation now gives

2L2 I(‘”) 122 +v () (51)

Besides ﬂf,(z), there is an additional term V©) Po) which
represents a gauge ambiguity of a,. This suggests that the
energy-momentum tensor in the WFG gauge acquires an
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extra piece, which now can be considered as an “improved”
energy-momentum tensor Tﬂy (a la [41,42)):

= d 0 [ &0 ©

(T = 5 zme + Vi pl). (52)
where k2 = 87G.” It is easy to see that the trace of this
energy-momentum tensor gives the right-hand side of (51).
One can also find that the zu components of the Einstein
equations at the O(z?) order give exactly the conservation
law (V{;T,) =0 [see (BI6)], which is the Ward
identity corresponding to the boundary diffeomorphisms.
Therefore, in the holographic case we can write the
anomalous Weyl-Ward identity (49) as

O6A

1
£/ — dety(o) 6ln B(.X)

Notice that one should distinguish p,(,0> and the Weyl

current J,,. Unlike 7[,(,(,1) which is sourced by y,g?,), pl(40) is

= (T (x).  (53)

L\ ¢ 1 2
V—deth = <> \/—dety(0)<1 +2(i> x®M
Z

one can expand (54) as

L2 L\4 d(z7\? d
=——_ = d+=(2) x 2
s == [, (2) (45 (F) %0 +5

where voly = /—dety@dx' A --- A dx?.

When the bulk action transforms under a Weyl diffeo-
morphism, the corresponding boundary theory undergoes a
Weyl transformation. However, the diffeomorphism invari-
ance of the bulk Einstein theory does not imply the Weyl
invariance on the boundary when there is an anomaly [43],
since it follows from (46) that

0 = Spu[9]7, *'] = Spunlglz, x]
= der[y/(())v a’(0)|x] — Sbdr [Y(o)» a o) Ix] + A[B],  (57)

w/here (¢.«") = (z/B.x) for the bulk and y(, = Y0)/ B
() = @o) = dIn B for the boundary.

Normally, to compute the Weyl anomaly first one needs
to regularize the bulk on-shell action (56) by introducing a
cutoff surface at some small value of z = ¢, and then add
counterterms to cancel the divergences when ¢ — 0 [24].
This is essentially how the Weyl anomaly arises since
the regulator breaks the Weyl symmetry and causes the

The energy-momentum tensor (52) in the WFG gauge can be
verified using the prescription introduced in [37].

not sourced by a,(,o) since a,, is pure gauge in the bulk. In the

boundary field theory, the Weyl current J, vanishes
identically, while p/go) contributes to the expectation value
of TW as an “improvement.” In a generic nonholographic
field theory defined on the background with Weyl geom-
etry, there may exist a nonvanishing J,, sourced by the Weyl
connection af,()) (see [5] for an example).

Using the basis {e?, e# = dx*} in (26), the bulk on-shell
Einstein-Hilbert action with negative cosmological con-
stant can be written as

1
Sbu]kzﬁ/w /—detg(R—2A)e Adx! A - A dx.

(54)

Note that y/—detg = v/ —deth. Considering the vacuum
Einstein equation in the bulk and the expansion

1/z\* 1/z\4
S(EY x@ p o (2 04, 55
+2<L) + +2<L> + (55)

4 z\ 4
_> X 4. 42 (-) Yy 4+ .. -)ez A voly, (56)

appearance of a logarithmically divergent term. However,
since we do not assume that we have an integrable
distribution when the Weyl structure is turned on, the
cutoff regularization scheme is inconvenient for the WFG
gauge. It has been elucidated in [5] using dimensional
regularization that the Weyl anomaly can be extracted from
the pole of Sy, that arises in an even dimension. By
evaluating the difference of the pole term in Sy, under a
Weyl diffeomorphism, one finds that the Weyl anomaly A,
of the 2k-dimensional boundary theory is

k *)
Ak = ](‘Z—L/ In BXd:ZkVOIZ' (58)

Therefore, to find the Weyl anomaly in a 2k dimension, we
only have to compute X*) coming from the expansion

of v—deth.

B. Weyl anomaly in 2d and 4d

Now let us apply (58) to 2d and 4d. Here we first go over
the WFG results presented in [5], and then make a few
important remarks. To find the holographic Weyl anomaly
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in 2d and 4d all we have to do is plug in the expressions of
XM and X obtained from the zz components of the
Einstein equations (see Appendix B), that is,

L .
xM = — R
2d-1)""
L* R d .
X =-_——- (R R*——— _R?
4(d—2)2< e 4(d-1) )
L? 4

[From now on we will drop the label “(0)” for the boundary
curvature quantities and derivative operator when there is
no confusion.] First we look at the Weyl anomaly in d = 2:

1
A= Kz—L/ln BXE;:)zVOlZ

L A
— (0) g2
16ﬂG/1n BR \/—dety? d°x, (60)

where in the second equality we used (59). Then, it follows
from (53) that the Weyl-Ward identity now reads

~ L .

() = —1 k. (61)

We can see that the right-hand side of this result has exactly
the same form as what we get from the standard calculation
in the FG gauge, except that the curvature scalar now is
Weyl covariant. Similarly, plugging (59) into (58), we find
that the Weyl anomaly in d = 4 can be written as

2
A, —ﬁ/lnBX(dz)4volz
L L? [~ . l. -
=—— [ |=(R,R*"—=R*) +V-a?

872G { (”” 3 >+ “ ]

8

x In By/—det yOd*x. (62)

Again, one can immediately tell that the right-hand side of
this result matches the standard FG result (e.g., [24]) if we
turn off the Weyl structure.

There are a few things worth paying attention to: first, in
the 2d Weyl anomaly (60), the Weyl-Ricci scalar is also the
Weyl-Euler density E?) in 2d, i.e., the Euler density Weyl
covariantized by the Weyl connection. Furthermore, we can
rewrite the 4d Weyl anomaly (62) as

L L - Aoy _ F(4) VA
AZI—% E(WW,GW —-F )+Va
x In By/—det y(Od*x, (63)

where E@ is the Weyl-Euler density in 4d:

EW =R, R — 4R, R" + R*. (64)
Traditionally, the Euler density EY without the Weyl
connection is called the type A Weyl anomaly, which is
topological in a 2k dimension and not Weyl invariant, while
the type B Weyl anomaly is the Weyl-invariant part of the
anomaly [23]. Here we find that in the WFG gauge, this
classification of the Weyl anomaly is still available, with the
Weyl-Euler density now Weyl-invariant since the curvature
quantities in this setup are endowed with Weyl covariance.

Also, notice that the subleading term a,(,z) of a, only
makes an appearance in the anomaly through a cohomo-
logically trivial term; i.e., we can express it as a Weyl-
transformed local functional as follows:

/ d4)€, /—det 7(0) In Bvﬂaé)
= /d“x1 /—dety’(o)a’,(,o)a”('z)
- / d4x\/—‘de§(_0‘)a,(40)a’(’2), (65)

where a”é) = B4a’(‘2) and the boundary term due to inte-

grating by parts is ignored. We will see that this is a generic
feature of the Weyl anomaly in the WFG gauge for any
dimension.

Although in (60) and (62) we expressed the holographic
Weyl anomaly in 2d and 4d in terms of curvature to match
the corresponding familiar results in the FG gauge, we can
also express them alternatively in terms of the Weyl-
Schouten tensor:

x® .

PR
X® 1. 1. 1 =

s = (P +-PP——V.a?, 66
= gt PP o5 Va (66)

Then (60) and (62) can be written as

L .
A = —= [ d®x\/—dety® In BP, 67
(= [ /-ty (67)
L3
Ay, = —p/d“x\/—dety(o)

1 . 1. 1 -
xlnB(Etr(Pz)—EPz—l—ﬁan)) (68)

In higher dimensions, X®) can be expressed in terms of
y,&?,slszk) (see Appendix C). By solving the Einstein
equations we have seen that these terms can all be
expressed in terms of 13W and @ﬁq <2) " Therefore, we

will use the Weyl-Schouten tensor and Weyl-obstruction
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tensors as the building blocks for the Weyl anomaly in even
dimensions.

C. Weyl anomaly in 6d

After revisiting the results in 2d and 4d, we will now
present our computations for 64 and 8d. In principle,
X&) can be obtained by solving Einstein equations as we
have done for 2d and 4d. However, as the dimension
goes higher, computing the curvature will become
extremely tedious. To facilitate the computation in higher
dimensions, we can use a more efficient way of organizing
the Einstein equations which helps us avoid the curvature
tensors, namely to use the Raychaudhuri equation of the
congruence generated by D, The details of the
Raychaudhuri equation and its expansions are given in
Appendix C.

To solve for X, we need to expand v/—h to the order

0(z64). Using (C12) and plugging the results we have got
for y'2, 7\ and X1, X® into (C15), we obtain
x3) 1 . 1 1
(P +-tw(P)P-—P+ t QW
16 12 r(P7) + 8 r(P%) 24 12 t )

1 1 e

— V-a®
6L4(d 6) ap) 3L4V a
1 2 2 DSuv DU DY
- ==Y, [a 3Pm + P — 3Py, (69)

where we used the extended Weyl-obstruction tensor Q},‘J

defined in (45). Notice first that the a,(,z) quadratic term in
X©) vanishes in 6d, and thus does not contribute to the
Weyl anomaly. Then, it follows from (58) that the Weyl
anomaly in 6d is

A; = 2L/IHBXd ¢Voly

A[afk3ﬁw'+ﬁWt-3ﬁﬂgn).
(70)

Just as what we have shown for the 4d case, the subleading
terms in the expansion of a, appear only in total derivatives

and thus only contribute to cohomologically trivial terms in

the 64 Weyl anomaly. When we turn off a,(, ) and a,(, ), this

result agrees with the holographic Weyl anomaly in the FG
gauge computed in [24].

Usually, the Weyl anomaly in 6d is written as a linear
combination of the 6d Euler density and three conformal
invariants in 6d (see [21,23,24]), which represents the four
central charges in 6d. The result we obtained can also be
written in this way, which means the classification of type
A and type B anomalies still holds for the WFG gauge in
6d. However, as we will discuss shortly, the expression we

have in (69) in terms of f’,w and Q,(}J reveals some
interesting aspects of the Weyl anomaly.

D. Weyl anomaly in 8d

Expanding \/— det /1 to the order O(z%~¢), we have X¥)

in (C16). Using (C13) and plugging the results up to yfg)

and X©®) into (C16), we have

S L B S5y S SO By Sy SR Y
L8 32 24 64 32 192
1 ays 1 1 A | R
——ta(QUP)P + —tu(QVP?) - —a(QVQW) - —tr(QP P
23 T(QTPIP A5 ) =96t TS
d—8 d—8 S o
+ 1L6 @ . q@ 4 2L° a,(, 'al? )(P”” Py’(’o)) + total derivatives. (71)

2) @)

As expected, all the terms in (71) that involve a,”, a,”, ay

() either vanish when d = 8 or contribute only to the total

derivatives. The details of the total derivatives are given in (C17). Plugging (71) into (58), we obtain the holographic Weyl

anomaly in 8d:

4
Ay = L/lnBXd ¢Voly

/d8 xy/—dety® lnB<

6

A N A (1) A 1 N
T Lw@p )P——tr(Q 'P?) + QM) 4 —tr(QF)

PR | 1 A 1 .
By _ Np_ 2\)2 2\ p2 _ L opa
r(P*) (P )P 16(tr(P ))* +ste(P)P 48P
P) + total derivatives (72)
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Once again, we can see that the subleading terms in a,, only
have cohomologically trivial contributions. If we go back to
the FG gauge, then this result agrees with the renormalized
volume coefficient for kK = 4 shown in [8]. One can also
write the FG version of the above result in the traditional
way as a linear combination of the type A and type B
anomalies; i.e., the Euler density and Weyl invariants (the
list of Weyl invariants in 8d can be found in [44]). We
naturally expect that this classification can also be applied
to the holographic Weyl anomaly in the WFG gauge for
higher dimensions.

E. Building blocks of the Weyl anomaly

As we have seen, if we ignore the total derivatives that
depend on the subleading terms of the a, expansion, X M
corresponds to the Weyl-Ricci scalar (i.e., the 2d Weyl-
Euler density) and X(?) corresponds to the classic “a = ¢”
result. For the Weyl anomaly in 64 and 8d both X®) and
X® can also be written as linear combinations of the Weyl-
Euler density and type B anomalies. This is true for both the
FG and the WFG cases; just the quantities in the latter are
Weyl covariant. One just needs to substitute the Weyl
quantities with their LC counterparts (i.e., set a,, to zero) to
get the Weyl anomaly in the FG case. However, when
expressing them in terms of the Weyl-Schouten tensor and
extended Weyl-obstruction tensors (or Schouten tensor and
extended obstruction tensors in the FG case), we observe
that the polynomial terms of X®¥)/L2* (without the total
derivative terms) in 2k dimensions, denoted by X¥), have
the following structures:

J O (73)

2XO = Lot b, (74)
6X0) = — ot P, B, P,

R T (75)

- 1 S DU DU >
24X(4) _ g%:fgﬁ;ﬁp 1M1P Zﬂzp 3#3PD4M4

1 A N N
+§5/1j:522{/?98) “ Pyzﬂzf’”3ﬂ3

1 A A 1 N
Fhauman  an oo

4 Hi Pyzllz ’ (76)

where the Kronecker 6 symbol is defined as

St = 1oy, - O (77)

VS].

From (73)—(76) we can see that X¥) contains all kinds of

Q(2<j<2k)

possible combinations of Pﬂ,, and €, whose Weyl

weights add up to be 2k, i.e., the Weyl weight of X(¥). Using
this pattern, one can directly write down the terms in the
holographic Weyl anomaly in any dimension. For instance,
we can easily predict without explicit calculation that X©)

is the linear combination of the following terms:
Ui fopspalls DUy DU, DUy DUy DU
5”1”2”3”4”5 P 1#1P 7/42P 3M3P 4M4P 5/45’

1 oz (YL DUy DUz Puy
6”1’/2”3”491)/411) I42P #3P Ha?

(

1 H2 M3 V1 DLy Dus 1M V1 AV2 D
51/]D21/3 Q(z) MP ,42P Huz» 5”1”2”3 Q(1) MlQ(l) ﬂzP H3?
Uik Y1 AV 1H2 Y1 DU,
5”1V2 Q(2) mg(l) M2 ‘%lll'z Q(3) MlP Mot

These terms represent the independent central charges that
appear in the holographic Weyl anomaly in d = 10.
Based on the above pattern, it is natural to expect
a general expression that can generate the holographic
Weyl anomaly in any dimension, which is an analog of
the exponential structure given by the Chern class that
generates the chiral anomaly in any dimension (see, e.g.,
[45-47]). It has been suggested in [23] that the type A Weyl
anomaly can be generated by a mechanism similar to that
for the chiral anomaly. The expressions for the Weyl
anomaly in terms of the (Weyl-)Schouten tensor and the
extended (Weyl-)obstruction tensors suggest a similar
mechanism for the holographic Weyl anomaly.

VI. THE ROLE OF WEYL STRUCTURE

Now that we have obtained the Weyl-obstruction tensors
and Weyl anomaly, let us provide some observations on
how the a, mode (23) is involved. We have already
mentioned that according to the FG theorem, this mode
is pure gauge in the bulk. Now we have a few clear
manifestations of this from our calculations.

The first one is that the subleading terms a,(,2k> withk > 0
in the expansion of a, cannot be determined from the

(0)

Einstein equations when a,,’ is given. This is different from

the expansion of £, where the subleading terms y,(f,k) can

be solved (on-shell) in terms of y,(t(,),).

The second one is that a, appears only inside total
derivatives in XX, and thus represents cohomologically

trivial modifications of the boundary Weyl anomaly. For
afk) with k > 2, this can easily be seen from the expres-
sions (68), (70), and (72). What is not explicit in these
formulas is that a,(,o) also appears inside a total derivative.
This can be verified by separating the LC quantities out of

the Weyl quantities in X¥). For instance, denote the LC

Schouten tensor as ;)/w and the LC connection as V, and
then X(V) in 24 and X® in 4d can be written as

o (1 o
L2x\, = 12X\, 4+ V. ), (78)
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RVAPOL S ;
_Zvﬂ(ay V. ay) = dip)V - a())
12 e
=3 Vulaoafy) =55V -a?, 79)
o (1 o o (2 °2 °2
where L‘QX( - —P and L_4X< = %P —%tr(P ).?

Notice that although the terms involving a,(,o) are total

derivatives, they are not Weyl covariant, and so one cannot
naively assume that they are trivial cocycles. However, by
finding suitable local counterterms, we have checked that
all the terms involving a,(,o) are indeed part of a trivial
cocycle for 2d and 4d. As a,, is pure gauge, we expect this
to be generally true.

In principle, the Weyl connection a,(lo) on the boundary
brings new Weyl-invariant objects, such as tr( ffo)), which
could lead to new central charges in the Weyl anomaly.
However, up to d = 8 we find the classification of type A
and type B anomalies is still available, and in such a basis
the nonvanishing central charges are still the same as those
in the FG case. Once this can be carried over to higher
dimensions, then a,(,o) appearing in total derivatives in X¥)
can also be deduced by considering the Weyl anomaly as
the sum of the type A and type B anomalies. In the FG
gauge, under a Weyl transformation the type B anomaly is
invariant while the type A anomaly, i.e., the Euler density,
gets an extra total derivative involving In B. Since the Weyl
connection makes the Weyl anomaly in the WFG gauge

Weyl invariant, the terms with af,m in the Weyl-Euler

density should exactly compensate the extra total deriva-

tive, and hence they must form a total derivative.
Another observation we have mentioned is that although

the subleading terms in the expansion of a, make an

appearance in y,(,zyk>, they do not appear in the Weyl-

obstruction tensors. Up to k = 3, we have seen explicitly

in (37), (39), and (41) that the terms with a,(f) and af,4) do

not contribute to the pole at d = 2k in y,(f,k>. What is also

true but not as obvious, is that the terms with a,(,o) do not
contribute to the pole at d —2 in the Weyl-Schouten
tensor and are proportional to d — 2k in Weyl-obstruction
tensors. For instance, one can separate the a,(,o)

and get

from P,

T 1
Pﬂl/ = Pﬂl/ —+ vya,(,o) + a/(40>al<,0) - Ea%())y/(l(l)/)v (80)

SNote that V-a® is equivalent to V-a®), since in 2k

dimension V and V give the same result when acting on a
vector with Weyl weight +2k (see Appendix A).

while the only pole on the right-hand side is in the LC

Schouten tensor P,,. Similarly, expressing the Weyl-Bach
tensor in terms of LC quantities we have

o o

Cpup+ a’(l())afo) W)

(81)

N

B,

B, + (d— 4)(a?0) Coup— 2(1/(10)

Thus, when d = 4, a,(,o) does not contribute to the pole in

yff,t) , and the Weyl-Bach tensor Bm, is equivalent to the LC

Bach tensor }_}W One should naturally expect that this is

also true for any Weyl-obstruction tensors; i.e., @ﬁk) is
. . o (2k)
equivalent to the LC obstruction tensor O,,  when d = 2k.

Note that when d > 2k, the a,(lo) terms are included in the
Weyl-obstruction tensor so that @,(,Zf) is always Weyl
covariant.

The statement that any term in the expansion of a, does
not appear in the pole of 77,(,%]‘) is consistent with the
following claim: when d = 2k, the Weyl-obstruction tensor

@’g Y satisfies

o 1 1)
A / dlxy/— detyOx® . (82)
(2k) [ det dety© 57’9

The FG version of this relation for (’)Zk) was proved in [7]
(see also [37]). If the claim above can be proved for the
WEFG gauge, then the reason that none of the terms in the
expansion of a, contributes to @,ﬁk) at d =2k will be
straightforward: as they only appear in total derivative
terms in X®), they will be dropped in the variation above.
Hence, this can be viewed as another manifestation of a,
being pure gauge in the bulk. We have verified by brute
force that for k = 2 the variation in (82) indeed gives the
Weyl-Bach tensor when d = 4, and a rigorous proof for any
k is worth further study.

Based on the FG version of relation (82), there is another
approach of finding the (LC) obstruction tensors and Weyl
anomaly in even dimensions called the dilatation operator
method [34]. As a consistency check, we also computed the
8d Weyl anomaly in the FG gauge using this method. We
will briefly introduce this method in Appendix D and show
there that the result in 8d agrees with what we have in (72)
when the Weyl structure is turned off.

VII. CONCLUSIONS

In this work, we first derived the obstruction tensor
from the pole at d = 2k of the (on-shell) 72 in the FG
expansion of an AIAdS spacetime using dimensional
regularization. Under an appropriate analytical continu-
ation when d approaches an even integer, this approach is
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equivalent to the one with a logarithmic term in [4,7]. We
defined the pole term in the expansion to be Graham’s
extended obstruction tensor, whose residue is the obstruc-
tion tensor (up to a constant factor). Then, after introducing
the WFG ansatz, we generalized the Schouten tensor and
obstruction tensors in the FG gauge to the Weyl-Schouten
tensor and Weyl-obstruction tensors in the WFG gauge,
which are now Weyl covariant in any dimension. By
solving the bulk FEinstein equations, we computed the
Weyl-obstruction tensors in 4d (i.e., the Weyl-Bach tensor)
and 6d explicitly, and found that they have almost the same
form as the corresponding obstruction tensors, with every-
thing Weyl-covariantized and some extra terms due to the
Weyl-Schouten tensor being not symmetric. This is a
natural manifestation of the fact that the WFG gauge
Weyl covariantizes the boundary geometry. We observed
that all the subleading terms in the expansion of a, do not
contribute to the Weyl-obstruction tensor. We also found

that when d = 2k, the Weyl-obstruction tensor (9,(3,” is

equivalent to its LC counterpart, and so a,(,o) does not

contribute to the obstruction either. When d > 2k, the a}f”

terms are included in the O,(f,k) to make it Weyl covariant.

As the main result of this paper, we computed the Weyl
anomaly in 64 and 8d in the WFG gauge by using the
Weyl-Schouten tensor and extended Weyl-obstruction ten-
sors as the building blocks. The Weyl anomaly shown in
(70) and (72) indeed go back to the corresponding FG
results when the Weyl structure a,, is turned off, but now
they become Weyl covariant. In addition, we also reex-
pressed the Weyl anomaly in 2d and 4d in terms of the
Weyl-Schouten tensor. By observing the pattern of the
Weyl anomaly in different dimensions, we suspect there
exists a general formulation that can generate the holo-
graphic Weyl anomaly in any dimension, which will be
explored in future work. ©

In the boundary field theory, both the induced metric y,,(,),

(0)

and the Weyl connection a,’ are nondynamical back-

ground fields. However, only y,(,(p is sourcing a current

operator, namely the energy-momentum tensor, while a,(,o)

does not source any current since @, is pure gauge in the
bulk. From the Weyl-Ward identity (53), we can see that the
trace of the energy-momentum tensor obtains a contribu-
tion from p,(,o) due to the gauge freedom of WFG. Together
we can regard it as an improved energy-momentum tensor
TW For nonholographic field theories with background
Weyl geometry the corresponding Weyl current J# of the
Weyl connection does not need to vanish. The Weyl current
in the general case deserves further investigation.

An important corollary in our analysis is that the Weyl
structure a, only appears as a trivial cocycle in the Weyl
anomaly, and thus only contributes cohomologically trivial
modifications. From the Weyl anomaly up to 8d we can

directly see this for the subleading terms of a, as they

appear only in total derivative terms in X(¥). For the leading
term ai,o) this is less obvious since it plays the role of the
boundary Weyl connection, but one can verify that by
writing the anomaly in terms of the boundary LC con-
nection, the terms involving a,(,o) also represent trivial
cocycles. This indicates a striking feature of the WFG
gauge, namely a,(,o) manages to make the expressions Weyl
covariant without introducing new central charges, which,
once again, is consistent with the fact that a,, is pure gauge
in the bulk. Nonetheless, these cohomologically trivial
terms might have significant effects in the presence
of corners, i.e., spacelike codimension-2 surfaces.* The
recent construction proposed in [48,49] may be useful for
the analysis of these effects.

In this paper we introduced the obstruction tensor and
extended obstruction tensor as the pole of yﬁm. However,
as we have mentioned, they can also be defined using the
ambient construction. What we have found but not dem-
onstrated in this paper is that the Weyl-obstruction tensors
and extended Weyl-obstruction tensors can be defined in a
similar way by promoting the ambient metric to the Weyl-
ambient metric. We expect to discuss the Weyl-ambient
construction in detail in a future publication.

Finally, although this paper focuses on the holographic
Weyl anomaly, we believe that the (Weyl-)Schouten tensor
and extended (Weyl-)obstruction tensors can also be used
as the building blocks for the Weyl anomaly of other
theories in general. How can these building blocks arise in a
nonholographic context requires a deep understanding of
the Lorentz-Weyl structure of a frame bundle, which
encodes all the local Lorentz and Weyl transformations.
To achieve this, the picture of Atiyah Lie algebroids
introduced in [50] for gauge theories can be used to
organize the Weyl and Lorentz anomalies in a geometric
fashion. By means of this geometric picture, we look
forward to carrying over the holographic results obtained in
this paper to the construction of Weyl anomaly in the
general case.
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APPENDIX A: WEYL GEOMETRY

This Appendix provides a brief review of Weyl geometry
[13,14]. We will mainly introduce the geometric quantities
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equipped with Weyl connection as well as some useful
relations we used in the previous sections. We use a, b, ...,
to label the internal Lorentz indices and y,v, ..., to label
the spacetime indices. For clarity, we also put o on the top

of LC quantities, e.g., Rabcd, P, etc.

Given a generalized Riemannian manifold (M, g) with a
connection V, in an arbitrary basis {e,}, the connection
coefficients I'°,;, are defined as

vgagb = Fcuhgc" (Al)

The torsion tensor and Riemann curvature tensor of V in
this basis are given by

Tcabgc = Vgagb - vgbga - [ga’ gb]’ (AZ)

Riyaea =V Vet =Ve Ve ey = Vi o e (A3)

When V is associated with ¢ and is torsion-free, it is called

a LC connection, denoted by V. Using I" to denote the LC

connection coefficients, we have V, ¢, =T ;.. By
definition, the conditions satisfied by the LC connection

°c
coefficients I ,;, are

0= (Vg)(es 5 e.)
o od od
= vg_g(ga’ gb) -T cag<§d’ gb) - cbg(gd’ga)’ (A4)
0= T, = 1Ci‘Cab - licba - Cu, (AS)

where C,,” are the commutation coefficients defined by
[eqs ep] = Cope,.. Denote g, = gle,,e,) as the compo-
nent of the metric in the frame {e, }. From these conditions

°c
I' ,, can be derived as

°c

I
= Eng(ga (9an) + €5(Gaa) = €4(Gan))

1
- _ng(Cadegeh + deegae - Cabeged)' (A6)

2
Now we will work in a coordinate basis {Qﬂ}.5 Consider

a Weyl transformation
g— B72g. (A7)
The metricity tensor Vg will not transform covariantly
under (A7). To restore the Weyl covariance, one can

*Note that e, = €40, and e = efdx* have Weyl weights +1
and —1, respectively, while Qﬂ and dx* have no Weyl weights.
This is because the Weyl transformation of the frame only comes
from the soldering of the vector bundle associated with the frame
bundle to the tangent space of M.

introduce a Weyl connection A = A,dx* which transforms
under a Weyl transformation as

A, = A, -V, InB. (AB)
Then, we obtain an object that is Weyl covariant:
(vﬂgy/) - 2Augy/)) - B_z(vﬂgup - 2Aﬂgbp)' (Ag)

More generally, for a tensor 7 of an arbitrary type (with
indices suppressed) that transforms under a Weyl trans-
formation with a specific Weyl weight wr, i.e., T — B*1T,
we can define

VT =V, T +wrA,T. (A10)

In this way, \Y acting on 7 will also transform Weyl
covariantly as @MT - B‘”T@MT.

Now we choose the connection V by setting the Weyl
metricity as follows:

0=V,9,-24,9, = V,9,,. (A11)
We will also require V defined in the above equation to be
torsion-free. With the existence of the Weyl metricity, the
connection coefficients of V in the coordinate basis become

1
Fp/,w = Egog(aygav + augua - aag;w)

- (Aué/)u + Auéf’” - g/’”AGgW). (A12)
We can see that this is different from the familiar Christoffel
symbols due to the extra terms involving the Weyl con-

nection. When V and V act on a vector, their difference can
be reflected by

V0" =V, 0" — (A8, +A,8°, — ¢°As9,,) 0" (A13)
It is worthwhile to notice that if »* has Weyl weight
d = dim M, then it follows from (A10) and (A13) that

@” v =V, vk,
Now one can compute the Riemann tensor of V and its
contractions. Denoting the coordinate components of the

o

Riemann tensor of V as Rﬂyp,,, one finds from (A3) that

ou o o o o
R =R )+ VA, =V A8+ (ngp - VPA,,)(S"V

+ v/)AMgw; - vﬂA”gl//) +A1/ (A(Féﬂ[) - A/)éﬂﬂ)

+Ax (gzzo-A/J - gppA(r) +A2(gy/)6”o' - gynéﬂp)’ (A14)
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o o

R, =R, ;l,w +(d=2) (VA +AA,)
+ (VA= (d=2)A%g,. (A15)
R=R+2d-1)V-A—(d=1)(d=2)A%, (Al6)

where R, =R’,,,, R= Rﬂ,/g/“’ and we defined the cur-
= V A, VUAﬂ. It is easy to see from

(Al4) that, unlike R wo» the R¥ . of V now is not
antisymmetric in the first two indices, and it does not
have the interchange symmetry for the two index pairs.
Also, the R, of V is not symmetric due to the appearance
of the F,, term.

On the other hand, from (A1) we have the connection
coefficients I, for V:

vature of A, as F,

A

Fabe —V Eb V €b+A( )

=TI ab€c +A(§a)€bv (A17)
where we used the fact that the basis vector e, has Weyl
weight +1. Plugging this into (A3), we find that the

Riemann tensor of V and its contractions satisfy

N

Rt o =R+ F (A18)

o R,=R,+F,. R=R.

We refer to I?“Wm, IAQM,,, and R as the Weyl-Riemann
tensor, Weyl-Ricci tensor, and Weyl-Ricci scalar, respec-
tively.6 Similar to the curvature tensors for V, the Weyl-
Riemann tensor is not antisymmetric in the first two indices
and does not have the interchange symmetry for the two
index pairs, and the Weyl-Ricci tensor is not symmetric.
Also notice that the Weyl-Weyl tensor, namely the traceless
part of the Weyl-Riemann tensor, is equal to the LC Weyl
tensor, i.e.,

Wypo = W (A19)

Unlike the LC curvature quantities, which transform in a
noncovariant way under the Weyl transformation, the
Weyl-Riemann tensor, Weyl-Ricci tensor, and Weyl-Ricci
scalar transform under the Weyl transformation as

N N N

R, . — R* R, — R,

vpo vpos uv ie g sz (AZO)

Furthermore, we can define the Weyl-Schouten tensor Puv
and Weyl-Cotten tensor CW,

®Note that this is different from [5], in which the quantities
defined using V instead of V are called Weyl quantities.

N 1 A 1 A
P,=——|R,———=R , A21
v d—2( Hv Z(d—l) gﬂu) ( )

=V,P,—-V,P, (A22)
Although the LC Schouten tensor IODW defined by substitut-
and R in (A21) with R,, and R is a symmetric
tensor, 13”,, has an antisymmetric part IA’W] =-F,/2. In
terms of the LC connection, the Bach tensor is defined by
(the indices of the components are raised and lowered by g)

b P

v up ovpp

ing IAQW

v

o

~V'v,p, - (A23)

which satisfies loi’ﬂy - Bzém,
Weyl-Bach tensor

in 4d. Now we can define the

B, =V'V,P,-V'V, P, -W,, P".

oupp

(A24)

Similar to the LC Bach tensor, the Weyl-Bach tensor is also
symmetric and traceless; however, it is Weyl covariant in
any dimension. Following (A14)-(A16), here we list the
above-mentioned Weyl quantities in terms of their corre-
sponding LC quantities:

N ° ° 1
le = P/w + VDAﬂ +A/4AI./ —EAzg/w, (A25)
A~ ° °c
Cuvp = Cup = AW ppus (A26)
B, =B, + (d-4)(A’C,,, —24° CW, + A/’A”W(,W,,,).
(A27)
The Bianchi identity for V reads
VR s+ VR, +VRY,, =0 (A28)

Noticing that @”g,,/, =0, the contraction of the above
equation gives

V*G,, =0, (A29)

where we defined the Weyl-Einstein tensor G,w =

R, —iRg,. Using (A21), this identity can also be

expressed using the Weyl-Ward identity as

ViP,, =V, P, (A30)

where P is the trace of f’,w. Starting from (A24) and using
(A30) repeatedly, one obtains

S A

V*B,, = (d—4)P"(C,,, + C,,). (A31)
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TABLE I. Weyl weights of Weyl-covariant quantities.

A N

€a e’ g;u/ g/w R”y/m R;w R F;w P;w C/w/) B/w

+1 -1 -2 +2 0 0 +2 0 0 0 42

Note that since P is symmetric, the above equation in the
LC case becomes

Ouo o up ©
VB, =(d-4P"C

puv-

(A32)

It is also useful to notice that in the LC case, the divergence
of the Cotton tensor vanishes

opo

vV C,,=0, (A33)
while for the Weyl-Cotton tensor we have instead
V*Cpp = Wy F (A34)

In the end of this Appendix, we list the Weyl weights of the
above-mentioned Weyl quantities: see Table I.

APPENDIX B: SOLVING THE BULK
EINSTEIN EQUATIONS

To solve for yﬁk) in the WFG gauge from the Einstein

equations, we first introduced the following notations:

¢, =D.a,, Sw=D,a,—D,a,,
1 L
p/w EEDZhﬂD’ GEtrp’ Wﬂv Epuy+§f;4w
1
y’lﬂy = F‘W = Eh/lp(Dﬂhﬂv +D,h,, - Dphw). (BI1)

Since the integral curves of D, form a congruence, some of
these quantities can be interpreted as the properties of this
congruence: ¢* is the acceleration, f,, is the twist, 0 is the
expansion, and 6, = p,,, — éeh}w is the shear. By plugging
in the expansions (22) and (23), one can obtain the
expansions of the quantities above. A list of these expan-
sions enough for capturing the first two leading orders of
the Einstein equations can be found in the Appendix of [5].
Using the connection coefficients I'*,, in the bulk, one
can compute the curvature tensors and the Einstein tensor.
Then, the vacuum Einstein equations can be written as

0=0G, +g.A
1 312 1. 1
= —= - ——R+-60*+A B2
Stlpp) = —-u(ff) 3R +56*+ A (B2)
0= GZ/A + gz,uA = Vul//yﬂ - Due + szv,u(pb’ (B3)

0= G;w + g/u/A
= G;n/ - (DZ + Q)Wﬂv - va(py + 2puppp/4
L2
+ Tfl/pfpﬂ - Lz(py(pv

1 L2
(L0 4 .0+ Juaop) = )

2
1
+ L2p* + 592 + A) . (B4)
where A = —d(z‘l;) is the cosmological constant and

R = mR,, with

Ry = Dpy’ vy = Doy oy + 1 0¥ "o = ¥V 067 - (B5)

2k 2k .
Denote m’ék)y = y’(’g)y;w ) and n’(‘zk)” = y’(‘(’)’)ﬂ,(,y ), Expanding
(B2)—(B4) using (22) and (23), one can solve the Einstein

equations order by order. First, the zz component of the
Einstein equations gives

d(d-1) 2 RO d-1
= Al - T x(
o= [ - H T

4

| d 2(d-1) 1
13 e K0 =2 oy
3L?

1, &0
=ty =5 (i VI Valmey, = tr(me))3*,)

74 d

where X(1), X®)_ and YV are given in expansion (55),
which can be expressed in terms of the expansion of 4, as

X(l) = tr(m(z)),
1 1
X(Z) = tr(m(4>) - Etr(mé)) -+ Z (tr(m(z)))Z, ey

Y = tr(ng)). ... (B7)

At the O(1) order, the zz equation is trivially satisfied, and
at the O(z?) order, we can find that

RO = —L2P. (B8)

Then, using the above result we can obtain from the O(z*)
order that
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1 1 L? - L* d 2
=— vy vy.
L* . L*,., L?
p2 p? V-aq® B
— - u(P) 4+ PV, (BY)

. 4 . Now we look at the puv components of the Einstein
where we used (38). Also notice that the O(z¢) order gives

tions:
the Weyl-Ward identity equations
|
0 d 0 d-2 0 d—2 72 ) o .
0= |Gl + 571 - xO) + o5+ 5 vl( E 2 19,02 - )

L og & w vyl @ (0) (2 0
— 51w Vs - XOr) =3V ,,vy>x<1> +(d =4V e — 7V -a®)

2d—-4) w 2 ) o (1 i L?
+ 12 Yo + f ( )ﬂ}’py + fvp fo‘;t / Etr(m@)y(()l)R(o) - ?tr(f«))f(o))
2(d - 4) d-3 1 0
=73 xX® 4 T <X<1))2 + mtr(mé)))y,ﬁu)] 4 (B11)

Note that y’('g) = (y(‘ol)y(z)y(‘ol) )# is not the inverse of y,(ﬁ). Plugging in the results we got from the zz equation, we obtain from

the first two leading orders of (B11) that

7;(42v) =~ dL_22 <R$i) - Q(dl_ 1) R(0>yf3)>, (B12)
i = _4(dL—i4) <Nﬁ(um<2>ﬁp> =V V7 =V, Y, x 0 érfg)tr(m%z)) + %m’(’z) W
RN AU Bcn ®13)
Furthermore, expanding (B11) to the O(z*) order one obtains
) _ L? 5 ly ¢ /(50 p 5o 2
Y 3(d 5 [ W layw =5 Vo tr(ma) = Vilit),,mi) o) + Vo, o)
3 X, = il = 2 (V1S9 + 27l ) = 2 7iXO
- %zféi)f%’;;’) + L2 f o fon e — éyﬁ? (tr<m<4>m<2)> - %tr(mﬁzp - %tr(m@)ﬁo))
_%4%“‘(’2)]0 0 =5 VX apy +o Vl( e )> + 2V my way)) = 210 a6ty

s R L2 . L? L
— 29, X0 —V(,,(X(l)a&))} L) el B a0

R R A L% -~ R PN
00075+ Vg =) = =5 (WP, + VIR - Vi P,). (B15)

(In the second step we used V f + V fp,, + V f w =0.) The y,(“,) and yﬁ(w) above can be organized in to (39) and
(41), respectively.
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Finally, the zu component of the Einstein equations gives

— Ziy v +le [@(m — (m%)%,) + 5 m VXD
d—21*"0 L
+%<V%}(})_@ﬂva<z) (Rfy, +4f)vibas’ = Vol iimes v6)
— L v Vamly  + f,,,ﬂ “ﬁ@axm) —N,,X(Z)+%@”(x<1>)2—%@ﬂtr(mfz>) 4+
+£—i {%@an‘(’o)ﬂ +%(V®p,§°) +©ﬁﬂpgo))] R (B16)

One can observe that the O(z?) order of the above equation is exactly the contraction of the Weyl-Bianchi identity as shown
in (A29). By plugging in the results we got from the zz equation, the O(z*) order can be organized into the identity (43),
which demonstrates the divergence of the Bach tensor. Also, the O(z%) order gives the conservation law of the improved
energy-momentum tensor defined in (52).

APPENDIX C: EXPANSIONS OF THE RAYCHAUDHURI EQUATION AND v — deth

Using the components of Einstein equations (B2)-(B4), one can construct the following equation [5]:

"™ (Gyy + Agun)

0= d—1

+ (GZZ + AgZZ)

d
L*
where the indices M and N represent the bulk components as M = (z,u). This equation can be recognized as the
Raychaudhuri equation of the congruence generated by D,. Expanding each term in the above equation, we can write down
a general expansion of this equation to any order. This combination of the components of the Einstein equations contains all
the information we need for deriving X*). We here provide some details of deriving X®) and X*) by means of the
Raychaudhuri equation.
First, it is useful to expand the inverse of £,

LZ
= D0+ LV,¢" + L*¢ + te(pp) + - u(ff) = (C1)

2 Ay 2,
i) = S [0+ Sart 0| + S 0 + Syt 4+
2w 2 0w A T
=12 |10/ = 22 ), (o) (%) = L2 My, (o)) + | + 3 [y Vg () + -, (C2)
where 1 ’(‘ = —y’(‘g 0 yf,g), Mory, = —ﬂ” ? yp,, The above expansion can be solved order by order in terms of m( W and ”?2 W
v (0) ~ _ ~ _
V() ()70 iy, =iy, Gy, = my, =) m
o = Mow Aoy = Mo = M), Moy = Moy Moy - (€3)
Also by taking the inverse of the metric, one finds the following relation
p—1
Mp) = Map) = D MryMp-k)- (C4)
=1
Specifically, we have
moy =iy =0, m) =iy =m. M) = e = ma)ma) + igme). (C5)

Now we expand the quantities defined in (B1) to an arbitrary order by plugging the expansions (22), (23), and (C2) into their
definitions. For the purpose of finding the Weyl anomaly, here we only keep the m,,) and a ;) terms in the first series of 7,,,
and a, and neglect the n(,,) and p(y,) terms. The expansions of these quantities are
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1SS 2\ ) S . g d
Pl ==&, += 7)) | Plman + ) + (k= p)iaymay, |+ 0(),
217:1 L k=1 v
d 1 & Z 2p - = -~ d
==L S (5 [t s+ S pih ey + 00
1N (z\2 _
®, = Zz (Z) Zpa,(,ZP) +0(z97?),
p=0

2\ [ e 2p-2q) (2 2p-2q) (2 _
fuw = Z <Z> [ I(wp) T 2126](61/(4 p=2q) p(24) _ 20 q>p;(4 q))} L 0(z4?),
q:

2p—2q-2k) (2k 2p—2q-2k) (2k 2p—2q-2k) (2k _
x (alP27R0, 30 | 0r=24-20, (20 _ [ 0p=2 >y/(w>)) 0@,

where

fi =0a" -0,a". i =V0a? -V (k> 0),

L 0)_ip (0
}’/(10),” = 27<p) (8;47’11/) + 81/}’;40 - apyﬂl/ ) — (aﬂ 5/1 + af, )5 a;, )7(8)7’/(41/))’

N A N

1 5
yézk) —7 A/ (V ” +Vy ﬂﬂ V 2k>) (k> 0).

Expanding everything in (C1) using (C6)—(C10), we obtain the following equation:

1 3 1 & 8
0= 5 p(p = Dte(mpy) + ) + L_Z( = 1)(29 = p)uinagm,-ag)
a=1

p—1 p—1 g-1
2 (2g)1~ 1w (2p—2q) (2k)1 ~ 1w

- 2(]Vﬂa,(, q>[m(2p—2q—z)7(ol)]” - (2p - 2Q+2k) k - q)a£ )[m(zq—zk—z))}’(ol)]”

g=1 =1 k=0

p=1 g=1 p—g—1 (2n)

)= =1 [ 74 5

- Z na, [m(Zp—Zq—2n—2)7(o)]ﬂ (m(Zk) pV/(qu—zk)m

g=1 k=0 n=0

q—k—1
- _ 2g—2k-2m) (2m 2q—2k-2m) (2m 2qg—2k=2m) (2m
= ooy > (2= 2m)(a?t 2 yg o g O g Ry ))>

u
m=0
1 p-1 g—1
+i (p—q)tr |:(m(2p—2q) + apap)la(meg) + ipg) + > 2(2k = Q)m(Zk)m(Zq—Zk)]:|
1 p=1 g-1 p—g-1
tiz (2k = q)(2m — p + q)tr [t 1) M 2g—2k) Tt (2m) P (2p—29—2m)]
g=1 k=1 m=1
LPENE oy & 2%=2m) (2m 2U=2m) (2m)\ |7~
+L Mmym>wwnmmwww
g=1 k=0 =1
p—
2n 2s 2s 2n-2s 2s ~ —110,
X Z |:fwr + 22 —at(; )a,(, )>:| [m(2p—2q—2n—2)7(01)} “,
n=0

From this equation, one can find tr(m(zp) + rh(zp)) in terms of my,) and 1y, for all g < p.
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Taking p = 3 we get the Raychaudhuri equation at the O(z%) order:

6 ~ 4 4 3 L’ o ora B
0= Ptr(m(G) + g )) +— e tr(m m(z)) - ﬁtr<m(2)) - 7’"( af ﬁf
4 a® — oty ) -2 0 —2(d - 6)a, + o f/w . (C12)

And for p = 4, we have the Raychaudhuri equation at the O(z%) order:

12 - 9 22 6 4
0= FH‘( @®) + I’)’l(g)) + ﬁtr(m(@m(z)) - Ftr(m@)m%z)) + ﬁtr(m‘(‘z)) —l—ﬁtr(m(‘t))

Lty ity 10 0 o A0 i o 69 -0
— 4%, alyy + 12V a) = 4aVyie 97 4 - 6(d = 8)al®) - a® =2V 0Pyl
— 24 )y( o lay o+ ’AY ay (m(zz))” ’(”' + Lzﬁwa(z)@[paﬂ] - 2L2@Lua(2)fﬂ” .
+2a 7897 o + 200V Ml 9y + 2(d — 8)a al ) +2X Va0, (C13)
Now let us look at the expansion of /— det /. Using the fact that @ = D, (In v/~ det &), we can write down the expansion
of v/—deth to any order as

—d
V—deth = A /—dety(o) (%)

12\ 21 _ k1N, "
X |:§mz:l (z) [Etr(m(zm) + Momy) + 2 (Z - 5) tf(m(Zk)m(zm—Zk))” : (C14)
Comparing with (55), at the O(z%) order and the O(z%) order, the above equation gives, respectively,
@ 1 Loy Lxmyx@ Z L gy
x 1 . 1 2y ooy L hvexn _ye oy L Loy 2 Loy (et
= Etr(m(g) + I’H(g)) - Etr(m(4)m<2)) + Ztr(mm) + E - Z ( ) + Z( ) + ﬁ( ) . ( )

Now solving tr(m(6) + ﬁ%)) from (C12) and plugging (37), (39), and (66) into (C15), we can organize all the m ;) and f ()
terms in X©) and get (69). Similarly, plugging tr(m(g) + ﬁ1<8)) obtained from (C13) into (C16), the expression for X*) can
be organized in terms of the Weyl-Schouten tensor and extended Weyl-obstruction tensors as

24 1oy 3 a0y 3. R A as .

PX“) =1L° <8P4 - Ztr(lﬂ)lﬂ +3 [tr(P?)]* + te(P?)P - Ztr(P‘*) tr(QyP)P + tr(Q)P?)
1. 1o s S R
‘ztr@%n)—ztr@(zw))+2<d—8>[3a a® + af a? (P - Pyly)] - 6V - a®

- L2V, [0} (4P" 4 2P — 413y';”)>]——V[ '3Vl + Viaty =3V - apyrly)]

. ) o 3LA . .
+ L4V, [al) (3PHP + P P)] +—v”[ 2 (tr(P2) — P2)] - = Vila P
L4 v 2 Doy pu DOUD v DUP D U DuUp pr
=~ VulaZ 3PP, = SPPP,Y 1 TPP, 9P ). (C17)

which leads to (71).
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APPENDIX D: DILATATION
OPERATOR METHOD

In this Appendix we will derive the holographic Weyl
anomaly in 8d using the recursive algorithm of [34] which
we will refer to as the dilatation operator method. We point
out that this method uses the usual FG gauge where the
Weyl connection is turned off. This alternative way of
finding the Weyl anomaly will provide a nontrivial con-
sistency check of the results presented in Sec. V. For
completeness we start with a brief review of the algorithm
of the dilatation operator method. We then apply the
algorithm one step further than [34] and compute the
holographic Weyl anomaly in 8d.

1. Review of the algorithm
We start by using the metric in the FG gauge (2)

ds? =drt + hy, (r;x)dx*dx*, p,v=1,....d, (DIl)
where we changed the coordinates by setting r =
—L1n (z/L). The Einstein-Hilbert action in the bulk mani-

fold M with a Gibbons-Hawking boundary term is

1
SEH—GH = ?/A;] d}’ddX\/ - detg(R - 2A)

1
+ / d?xV/—dethK, (D2)
K= Jom,,

where x? = 871G, A = —%, and OM, is a cutoff

surface at some large value of rc.7 Taking a metric variation
and evaluating the result on-shell one gets

0.5 _ d v
AT /d dxa**5h,,,

c

o = %ﬁv—deth(l(h”” — K"), (D3)
where K, = %8,%1#,, is the extrinsic curvature tensor in the
FG gauge and h,, is the induced metric on OM, . The
boundary tensor density #*¥ appears in many different
contexts; it was first defined in [51] and was later used in
[52] to define a boundary stress tensor in an asymptotically
AdS spacetime (with the inclusion of necessary counter-
terms to cancel divergences). It also appears as the con-
jugate momenta in the ADM formalism [53].8

The rr and ru components of the Einstein equations, i.e.,
G + Ag"”" = 0 and G = 0, can be written in terms of the
conjugate momenta as follows:

"We abuse notation and call the cuttof surface OM, even
though it is not necessarily the boundary of M.

The sign difference in the definition of #** in [53] arises
because here we consider the radial evolution which is in a
spacelike direction.

2K2 1 1 °
\/% <ﬂﬂyﬂyﬂ —ﬂﬂl) +F Vv —deth(R —2/\) = O,
—_— e -

(D4)

o

V =* =0,

(D5)

P

where 7 = h,, 7", V is the LC connection of the induced

metric h,, on OM, , and R is the LC Ricci scalar of h,,.
Note that the indices are raised and lowered using the
induced metric h,,. Equations (D4) and (D5) are the
well-known Hamiltonian and momentum constraints in
the ADM language [53].

The dilatation operator method of solving the constraint
equations uses an asymptotic expansion of the conjugate
momenta in terms of the induced metric. One assumes a
Hamilton-Jacobi functional S[h] such that

o =S g = / dxChl,  (D6)
oh,, oM,
where S[h] is a local diffeomorphic invariant functional of
the induced metric.”
The momentum constraint (D5) is now trivially satisfied.
The Hamiltonian constraint (D4) can be solved asymptoti-
cally by writing

L= Zﬁ(zk) [h],  SpLw[h] = (d—2k) L lh], (D7)
=0

where Jp is the dilatation operator [35] (acting on metric
functionals), defined as

13}
5D = /ddx |:2h;w W] .
v

It is useful to keep in mind that for an AIAdS spacetime the
radial derivative 0, asymptotes the dilatation operator, i.e.
op N% (see [34]). We can view the dilatation operator
expansion as another asymptotic expansion near the con-
formal boundary since #,, ~ e/ L}/,(,(,i) + -

The expansion (D7) together with (D6) implies an
expansion of z# in terms of the dilatation weight:

(D8)

v 6 d
Tiopy = oh, [)M dxLp

Te

w = "y (DY)
k=0

The L[] are defined only up to total derivative terms in
OM, . To set up the recursive algorithm we need the
following relation:

°In [34] the functional S[h] is used to derive the boundary
terms for a well-defined bulk variational problem. Since these are
tangential remarks for the calculation of the Weyl anomaly, we
simply neglect them and refer the reader there for more details.
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L v
TR =7 Qo) (k) = iy, (D10)
where we defined the Q curvature
d—-2k
Q(zk) = T E(zk)- (Dl 1)

The Q curvature is the main quantity we are interested in,
since it is proportional to the Weyl anomaly in a specific
even dimension [see (D14)]. Plugging (D9) into (D4) and
making use of (D10) we find

Q 2 i( u v
Y TTom)" T (2k=2m
(2k) V/—deth “—~ @m)" 7 (2k=2m)

1
T4 177:(2m)7[(2k—2m)>7 (D12)
where we used the initial values
0. — v—deth IOQ
(2) — 21(‘2 ’
v (d - 1) v
ﬂ’(‘()) = L vV —det hh*. (D13)

v o (d_ ]) v
) = S v/ = dethh,

v —dethL

2
V—dethL? o jj

C232(d—4)(d-2) [

o

v o v
) = (P - ),

”j<l4) -

and

v/ —det hL?

(9] (9]
2K2 [tr<P ) -P ]’

ou °Av
B” +(d-4) (P”ﬁP

(P B) + (d — 4) (tr(P3) - %i)tr(if) + %133” .

Equations (D12), (D9), and the initial values (D13) are
enough to fix the iterative algorithm of the dilatation
operator method. Expanding on this a little more, given
the value of Q) we can use (D9) to find 71"(’2”) Since we now
have n"(‘;) and zr’(‘(')'), we can find Q) from (D12). The

process can then be iterated to compute ﬂ’(‘z”k) and Q) to

any order. The recursive algorithm has been solved up to
JTlZZ) and Q) in [34]. In the next section we will push the

calculation one step further for finding ﬂ’(‘g) and Qg). This
will enable us to find the Weyl anomaly in 8d.

2. Results and anomaly in 84

We have explained the algorithm for solving the
Hamiltonian and momentum constraints. We now focus
on the Q curvature, which is expressed in terms of the
conjugate momenta in (D12). The Weyl anomaly in d-
dimension corresponds to the Q curvature for d = 2k [34]:

Ay =L / dfx1n BQUZH. (D14)

We now present the results of the algorithm presented in
lk) 1.3First, we review the results for ﬂ’(’zyk) and Q) up to

° ouy

_ PP - %hﬂ»(tr(if) - i)z)ﬂ , (D15)

o

(D16)

We can see that Q(z), Q(4), and Q(ﬁ) correspond to the LC counterparts of the Weyl anomaly shown in (67), (68),
and (70), respectively. Using Q¢ in (D16) we can calculate ﬂ’(‘g> from (D9) by taking a metric variation of Q¢). The resultis as

follows:
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L’ o o ou)d  eow o ©lo(u)p
v = — (@) d-6)|P , B —-PB -2P .,V C
© K2<d—6><d—4><d—2>2{ CR )< : Z

o o (uv)A 10 v 1 Alou ° o )0 o oo
—w,pc"t el - c’“’ o PW P VVA(PMP/} _pP")

(d=2) epey °2 1 w 2y _ 52 °ou oafe u

~id- )vva( e P) =" V', ()~ P') + (d—- 4P PP,
—(3d24(_d1_2‘i)+ 8) P (P = P)) = (d—4) PP " —;hﬂv<tr(ﬁ§)+(d—4)tr(i33)

B> = 14d+10) s o2 (d?—4d+2) =3
Sty ) )] P

where (’)} is the LC obstruction tensor defined in (10). We have also checked that 7r” " 1s divergence-free in any dimension, as is

required by (D5)."°
By plugging (D17) and (DI5) into (DI12) we find after some reorganization the expression of Qg as
follows:

2L5/—deth (d=2) o 3 o2 54—16 o20
tr(PO d—6) ——tr(B —tr(P B
5d—16 o oo 5d*=20d +8°4 16—=5d° 3 15d%> —62d +40 22 o2

Qs) =

- Pu(PB) - Pt P u(P
T R A T R B COV AR Ty f(F)
13d*> —44d +24 o2 7d—20 ©4
-~ (r(P))? vV, K* DI18
P+ T R ) + vk D18
where K# = 2(51—_% Kl @0 gy (@0 g (@ ()( = 2 K", with
K= P"V'By - B,V P” + B'V,P - PV, B
opulop o o ° o o © o o o o
K" = (PP, - PP”’)vﬂP PV, (PP - PP,
o 0” oqj ©° ﬂ o 0 o o . o o O(Xﬂ
K/; = (lﬂv (P Pﬂ - PP ) ( (1/3)(P Pﬂ - PP )
Sk} o2 ©%puo ” o o o)
K’;::(tr(P)—P)VP V,(tr(P )—P).
If we plug d = 8 into (D18), we find that the holographic Weyl anomaly .4, in 8d is
Ay = —L/dgxlnBQfg_)8
d t]/l 1 [39) 02 o o o o
S A Vf t 1(POg)) + = tr(B") + 2tr(P B) — 2Ptr(P B)
48k 8
04 02 03 o4 O
+6tr(P ) — 3tr( ) + 6P tr( ) — 8Ptr( )—P +V,Kt|. (D19)

This result agrees with the Weyl anomaly we obtained in (72) when the Weyl structure is turned off, up to total
derivatives.

"“This calculation was done thanks to the Mathematica package diffgeo.m by Matthew Headrick.
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