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We investigate nonlinear extensions of the holographic soft wall model proposed by Karch et al. [Phys.
Rev. D 74, 015005 (2006)] including nonminimal couplings in the five-dimensional action. The nonminimal
couplings bring a new parameter a0 which controls the transition between spontaneous and explicit symmetry
breaking near the limit of massless quarks (the chiral limit). In the physical region (positive quark mass), we
show that above a critical value of the parameter a0 the chiral condensate hq̄qi is finite in the chiral limit,
signifying spontaneous chiral symmetry breaking. This result is supported by the lightest states arising in the
spectrum of the pseudoscalar mesons, which become massless in the chiral limit and are therefore intrepreted
as Nambu-Goldstone bosons. Moreover, the decay constants of the pseudoscalar mesons also support this
conclusion, as well as the Gell-Mann-Oakes-Renner relation satisfied by the lightest states. We also calculate
the spectrum of scalar, vector, and axial-vector mesons with their corresponding decay constants. We describe
the evolution of masses and decay constants with the increasing of the quark mass, and for the physical mass,
we compare our results against available experimental data. Finally, we do not find instabilities in our model
for the physical region (positive quark mass).
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I. INTRODUCTION

The investigation of spontaneous symmetry breaking
(SSB) is a very interesting subject, essential in condensed
matter and particle physics contexts. It is related with the
symmetry of the quantum field theory (QFT) action and the
vacuum solution of the theory. It is believed that SSB is
realized only in systems with infinite degrees of freedom.
An example of the realization of SSB in QFT is the
emergence of Nambu-Goldstone bosons in the theory,
which are related to the breaking of a global symmetry
breaking via the Goldstone theorem [1]. Moreover, in such
systems, the vacuum expectation value does not have the
same symmetry as the action. In particle physics, the pions
are an example of pseudo Nambu-Goldstone bosons. In
turn, QCD has an approximate Uð2ÞL ×Uð2ÞR symmetry
in the limit of light quark masses, considering just up and

down quarks. The symmetry breaking leads to Uð2ÞL×
Uð2ÞR → Uð2ÞV , and it gives rise to pseudo-Nambu-
Goldstone bosons; see, for instance, Refs. [2,3]. This
symmetry breaking occurs in the low energy regime of
QCD, or strong coupling regime, where perturbative
techniques are not reliable anymore. However, there are
effective theories that one may use in this regime, like QCD
sum rules, chiral effective theories, Dyson-Schwinger
equations, or even numerical methods introduced by lattice
QCD. In the past few years, lattice QCD became a powerful
computational tool for extracting information of QCD at
low energies. Nevertheless, there are still difficulties and
limitations to be overcome for this fascinating subject; for
an investigation of chiral symmetry breaking in lattice QCD
with two light flavors, see, for instance, Ref. [4].
An alternative theoretical framework for investigating

strongly coupled systems was provided by the anti-de
Sitter (AdS)/conformal field theory (CFT) correspondence,
proposed at the end of the 1990s [5]. Using as a guide
the holographic dictionary [6,7], one may map any operator
of a strongly coupled conformal field theory into its dual
classical field in the gravitational side of the duality living in
an AdS space with one dimension greater than the space
where the conformal field theory lives. In the case of four
dimensions, one may break the conformal symmetry and
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introduce symmetries known to be present in QCD so that
the original conformal field theory becomes more similar to
QCD. This is the motivation behind a bottom-up approach
that led to the construction of phenomenological AdS/QCD
models known as the hard wall model [8,9] and the soft wall
model [10]. There has been a lot of progress on this
approach; see, for instance, Refs. [11–27] and references
therein. However, it is worth pointing out that the gravita-
tional background is not obtained solving the Einstein
equations; this means that the metric is fixed being AdS.
Nevertheless, one may consider this naive approximation as
a toy model to gain intuition. A more consistent version of
this approach takes into consideration the gravitational
background obtained solving the Einstein equations; see,
for instance, Refs. [28–34] and the references therein. The
bottom-up approach is complementary to the top-down
approach, whose goal is to find string theory duals to
strongly coupled QCD-like theories; see, for instance,
Refs. [35–39]. For a review of the top-down approach,
see, for instance, Refs. [40–42].
One of the aims of this work is the investigation of

spontaneous chiral symmetry breaking within holographic
models for QCD. The first attempts to describe chiral
symmetry breaking in the bottom-up approach were pro-
posed in Refs. [8,9], in which the quark mass operator is
mapped to a five-dimensional (5D) tachyonic field. These
bottom-up models as well as their top-down counterparts,
see, e.g., Refs. [38,43,44], have provided very useful
insights for the construction of more realistic holographic
models for QCD. There has been recent progress on the
description of spontaneous chiral symmetry breaking in
bottom-up holographic QCD models inspired by string
theory [45–48] and its relation to the violation of the
Breitenlohner-Freedman bound [49,50].
In this paper, we restrict ourselves to the holographic soft

wall model proposed in Ref. [10], in which the dilaton is
quadratic in the radial coordinate leading to meson masses
organized in linear trajectories in the excitation number,
i.e., m2

n ∼ n. It is important to point out that the original
version of the linear soft wall model does not describe
spontaneous chiral symmetry breaking [12]. It was sug-
gested in Ref. [10] that the addition of nonlinear terms in
the action for the tachyonic field would allow for a
nonlinear description of chiral symmetry breaking that
may be compatible with spontaneous symmetry breaking.
Following this suggestion, the authors of Ref. [13] built a
phenomenological model compatible with spontaneous
symmetry breaking in the sense that the quark condensate
is finite in the chiral limit.
In our opinion, this model provides good results, but

there are a few caveats that we point out:
(i) The chiral condensate is given as an input instead of

arising dynamically from solving the tachyon differ-
ential equation.

(ii) The dilaton is nonmonotonic and negative near the
AdS boundary.

(iii) An instability arises in the scalar sector first observed
in Ref. [21]; see also Ref. [31].

Following the ideas of Refs. [45–47], the authors of
Ref. [51] showed that the nonlinear extension of the
original soft wall model [10] based on a quadratic dilaton
and a Higgs-like potential for the tachyonic field indeed
allows for a nonlinear realisation of chiral symmetry
breaking. However, it was shown in Ref. [51] that the
chiral condensate still vanishes in the massless limit and
therefore chiral symmetry breaking is explicit.
An attempt to describe spontaneous chiral symmetry

breaking in the soft wall model was motivated by the
discussion on the sign of an effective dilaton field, respon-
sible for conformal symmetry breaking and the mass
generation in the infrared. A negative dilaton profile was
proposed in Refs. [52,53] as an alternative to describe the
hadronic spectrum and spontaneous chiral symmetry break-
ing. However, there has been a debate about the phenom-
enological consequences of the negative dilaton profile. It
has been shown in Ref. [54] that the negative dilaton drives
to the emergence of an unphysical massless scalar state in the
vectorial sector. Besides that, the negative dilaton leads to
unphysical masses for higher spin mesons [54]. Motivated
by this very interesting discussion, the authors of Ref. [19]
suggested that an interpolation function between an effective
negative dilaton in the UV region and positive in the IR
region might provide a description of spontaneous chiral
symmetry breaking. Nevertheless, the authors of that paper
did not calculate the spectrum of the pseudoscalar mesons at
zero temperature and proved the emergence of the pions as
Nambu-Goldstone bosons. In this paper, we work on the
ideas of Ref. [19] and reinterpret them in terms of non-
minimal dilaton couplings in the 5D action. Following the
techniques used in Ref. [51], we solve the tachyon differ-
ential equation and find that the new parameter a0 control-
ling the nonminimal couplings allows us to describe
spontaneous chiral symmetry breaking in the chiral limit.
We show explicitly that, above a critical value for a0, the
chiral condensate is nonzero in the chiral limit signaling
spontaneous chiral symmetry breaking and that this result is
consistent with the emergence of massless modes in the
pseudoscalar sector, i.e., the pions as Nambu-Goldstone
bosons. As a check of consistency, we also calculate the
decay constants and show that the lightest states in the
pseudoscalar sector satisfy the Gell-Mann-Oakes-Renner
(GOR) relation.
This paper is organized as follows. Section II is a short

review of the holographic soft wall model and its non-
linear extension. In Sec. III, we present the nonlinear
extension of the soft wall model including the non-
minimal couplings. We consider two interpolating func-
tions for those couplings, models of type I and models of
type II. We solve the tachyon differential equation in its
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asymptotic regions, and then we solve it numerically.
Near the chiral limit, we describe the transition between
spontaneous and explicit chiral symmetry breaking
driven by the parameter a0 characterizing the nonminimal
couplings. The free parameters of our model are fixed at
the end of that section. In Sec. IV, we expand the five-
dimensional action up to second order in the fields in
order to get the equation of motions describing the vector,
scalar, axial-vector, and pseudoscalar mesons. The cor-
responding spectrum is calculated and compared against
results available in the literature. In Sec. V, we calculate
the decay constants corresponding to vector, scalar, axial-
vector, and pseudoscalar mesons, showing how they are
related to the normalization constants of the wave
functions. At the end of the section, we derive the
GOR relation. We present our conclusions in Sec. VI.
Additional details about the numerical procedure and
results are displayed in Appendix A. Meanwhile, in
Appendix B, we present the Kaluza-Klein expansion.
Details about the derivation of the decay constants are
presented in Appendix C. Details of the masses and decay
constants in the linear soft wall model are reviewed in
Appendix D. A short discussion about the linear soft wall
model with negative dilaton is presented in Appendix E,
while the nonlinear extension is investigated in
Appendix F. Finally, we derive the GOR relation using
a toy model in Appendix G.

II. SOFT WALL MODELS WITH MINIMAL
DILATON COUPLINGS

A. Original soft wall model

One of the seminal papers considering a bottom-up
approach in holographic QCD is the soft wall model [10].
In Ref. [10], the authors introduced a scalar field, the
dilaton, in a 5d anti-de Sitter space in order to incorporate
effects of conformal symmetry breaking and generate an
infrared mass gap. They showed that a dilaton growing
quadratically in the radial coordinate far from the boun-
dary leads to an approximate linear behavior of the mass
spectrum, i.e., m2 ∝ n. It is worth pointing out that the
dilaton proposed in Ref. [10] was not obtained solving the
Einstein equations. Then, one might think that the con-
finement properties introduced by the dilaton field are
“artificial.” However, it has been shown that the quadratic
behaviour proposed in Ref. [10] is in fact the right
asymptotic behavior for the dilaton in confining holo-
graphic QCD backgrounds found by solving the Einstein-
dilaton equations [29]; see also Ref. [32].
Thus, we consider that the soft wall model as a first step

for a realistic description is good enough, at least to
extract general properties of the dual field theory. Thus,
having identified the fields in the gravitational side of the
duality, one can write the five-dimensional action, which
is given by

S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ΦTr

�
jDmXj2 þm2

XjXj2 þ
1

4g25
FðLÞ
mn

2

þ 1

4g25
FðRÞ
mn

2

�
; ð1Þ

where Φ ¼ ΦðzÞ is the dilaton field, X is the bifunda-
mental scalar field (or tachyonic field) dual to the quark
mass operator q̄q, m2

X ¼ −3 the mass of the tachyonic

field. The field strength FðL=RÞ
nm and covariant derivative

DmX are defined by

FðL=RÞ
mn ¼ ∂mA

ðL=RÞ
n − ∂nA

ðL=RÞ
m − i½AðL=RÞ

m ; AðL=RÞ
n �;

DmX ¼ ∂mX − iAðLÞ
m X þ iXAðRÞ

m ; ð2Þ

where AðL=RÞ
n represent the gauge fields. As usual in the

soft wall model approach, the 5D metric gmn is the AdS
spacetime in Poincaré coordinates. The 5D coupling in the
vectorial sector is fixed as g25 ¼ 12π2=Nc, with Nc the
number of colors, in order to reproduce the perturbative
QCD result for the current correlators at small distances
[8]. The action (1) describes the breaking of the
SUðNfÞL × SUðNfÞR gauge symmetry due to the pres-
ence of a nonzero tachyonic field X. The generators of the
suðNfÞ algebra are normalized as TrðTaTbÞ ¼ δab=2, and
we will focus on the two-flavor case Nf ¼ 2.
A very nice feature of the soft wall model is the

possibility of describing approximate linear trajectories
for the meson spectrum, i.e., m2

n ∼ n, by simply imposing
an asymptotic quadratic behavior for the dilaton field, i.e.,
ΦðzÞ ¼ ϕ∞z2 at large z (far from the boundary). As
realized in Ref. [10], if the dilaton quadratic ansatz is
taken for all z, the effective Schrödinger potential of the
field perturbations dual to the mesons takes the form of an
harmonic oscillator with orbital momentum, and the linear
behavior m2

n ∼ n becomes exact. Appendix D provides a
short review of the results for vector and scalar mesons in
the (linear) soft wall model.
The (linear) soft wall model (1) leads to a linear differ-

ential equation for the tachyonic field X. Regularity of the
action in the infrared region (large z) fixes the source and
vacuum expectation value (VEV) coefficients in the UV,
and it turns out that the chiral condensate is proportional to
the quark mass and vanishes in the chiral limit.

B. Nonlinear soft wall model

Nonlinear extensions of the soft wall model have
been investigated in the literature; see, for instance,
Refs. [13,19,51]. The nonlinearity is carried out by the
tachyon potential. Then, the action is a modified version
of (1),
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S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
e−ΦTr

�
jDmXj2 þ VðjXjÞ þ 1

4g25
FðLÞ
mn

2

þ 1

4g25
FðRÞ
mn

2

�
; ð3Þ

where the non-Abelian field strengths FðL=RÞ
mn and covar-

iant derivative DmX are given by (2), while the tachyon
potential has the Higgs form

VðjXjÞ ¼ m2
XjXj2 þ λjXj4; ð4Þ

where λ is a free parameter. The 5D metric is again
the AdS spacetime in Poincaré coordinates. The form of
the Higgs potential (4) is motivated by the fact that it
provides a minimal description of spontaneous breaking of a
local symmetry in the standard model and may be possibly
extended to AdS space in order to describe the gravity dual
of the spontaneous breaking of a global symmetry. The
potential in (4) seems also a good ansatz if wewant to build a
holographic realization of the Coleman-Witten theorem [55].
The action in (3) was used in the phenomenological

model of Ref. [13] with λ < 0 for the Higgs potential (4).
Instead of solving for the tachyonic field for a given dilaton
field, an inverse method was proposed: given a tachyonic
field compatible with spontaneous chiral symmetry break-
ing, the dilaton field was reconstructed. The ansatz for the
tachyonic field in Ref. [13] is singular at large z, and the
effective dilaton field found in Ref. [13] is quadratic at large
z (far from the AdS boundary) but becomes nonmonotonic
and negative as z approaches zero (near the AdS boundary).
In Ref. [51], the same action in (3) was considered for a
quadratic dilaton field, and the chiral condensate was found
dynamically by solving the tachyonic field differential
equation. The main result in Ref. [51] was that the only
nontrivial solution for the tachyonic field is regular far from
the boundary and leads to a chiral condensate growing
nonlinearly with the quark mass. However, it turns out that
this regular solution vanishes in the chiral limit and there-
fore spontaneous chiral symmetry breaking is absent. It was
found in Ref. [51] that for the case of λ > 0 the model
provides very interesting results in the limit of heavy
quarks. The meson masses and decay constants obtained
in the model for the axial and pseudoscalar sector display a
behavior qualitatively similar to the one found in pertur-
bative QCD.
Note that the tachyonic field in (3) couples minimally

with the dilaton, i.e., the factor e−Φ in front of the trace,
depends on the dilaton field only. In the next section, we
shall investigate how to generalize the form of this dilaton
coupling. We will see that keeping the minimal dilaton
coupling only at large z (where Φ is large) but deviating
from it at small z (where Φ is small) it is possible to
describe spontaneous chiral symmetry breaking in the
chiral limit.

III. NONLINEAR SOFT WALL MODELS WITH
NONMINIMAL DILATON COUPLINGS

The gravitational action (3) can be generalized consid-
ering two nonminimal couplings in the form

S ¼ −
Z

d5x
ffiffiffiffiffiffi
−g

p
Tr

�
e−aðΦÞ

�
jDmXj2 þ VðjXjÞ

�

þ e−bðΦÞ

4g25

�
FðLÞ
mn

2 þ FðRÞ
mn

2

��
: ð5Þ

The fields of this action are the same as presented
previously, and the difference in relation to the previous
action is the addition of the functions: e−aðΦÞ, and e−bðΦÞ,
which are in principle nontrivial functions of the dila-
ton field.
Having specified the gravitational action describing the

quarks of the dual field theory, we now consider the
gravitational background, which is characterised by a
Poincaré invariant metric

ds2 ¼ e2AsðzÞ
�
−dt2 þ dx⃗2 þ dz2

�
; ð6Þ

where AsðzÞ is the warp factor in the string frame. As usual
in soft wall models, we fix the warp factor and dilaton as

AsðzÞ ¼ − ln

�
z
l

�
; ΦðzÞ ¼ ϕ∞z2: ð7Þ

That is, the 5D metric is AdS in Poincaré coordinates, and
the dilaton is quadratic in the radial coordinate z. The
parameter l denotes the AdS radius, and from here on, we
set l ¼ 1. Note that ϕ∞ is a parameter with units of energy
squared. The original soft wall model corresponds to the
particular case aðΦÞ ¼ bðΦÞ ¼ Φ. For that particular case,
as shown in Ref. [10], a quadratic dilaton is sufficient to
guarantee a linear behavior for the meson Regge trajecto-
ries. In this work, we consider more general dilaton
couplings aðΦÞ and bðΦÞ. We consider for simplicity
the case Nf ¼ 2 where the model describes the gauge
symmetry breaking SUð2Þ × SUð2Þ → SUð2Þ, which is the
gravity dual of chiral symmetry breaking in QCD with two
flavors.

A. Background field equations

For the background fields, we take a Lorentz invariant
ansatz,

AðL=RÞ
m ¼ 0; 2XðzÞ ¼ vðzÞI2×2: ð8Þ

Under this ansatz, the action takes the one-dimensional
(1D) form
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S0 ¼ −V4

Z
dze3As−a

�
1

2
ð∂zvÞ2 þ e2AsUðvÞ

�
; ð9Þ

where

UðvÞ ¼ m2
X

2
v2 þ λ

8
v4 ð10Þ

is the potential for the 1D function vðzÞ and V4 ¼
R
d4x.

We remind the reader that As and a depend only on z. The
critical points of the potential are obtained solving the

equation dUðvÞ
dv ¼ 0, with m2

X ¼ −3, and we get three
solutions, two of them corresponding to minimum and
the other to the trivial solution (the local maximum)

v ¼ �
ffiffiffi
6

λ

r
; v ¼ 0: ð11Þ

The Euler-Lagrange equation for vðzÞ can be written as

�
∂z þ ð3A0

s − a0Þ
�
∂zv − e2As

dU
dv

¼ 0; ð12Þ

where 0 denotes d=dz. Note that this equation simplifies
when evaluated at the critical points where the derivative of
the potential is zero,

ðln v0ðzÞÞ0 þ ð3As − aÞ0 ¼ 0;

→ v ¼ C0 þD0

Z
z

0

e−ð3AsðxÞ−aðxÞÞdx: ð13Þ

This means that the tachyon has at least a constant as a
solution and the other solution is divergent. Plugging this
solution in (12), considering the regular solution, we get an
expression for C0 whose solutions are C0 ¼ � ffiffiffiffiffiffiffi

6=λ
p

and
C0 ¼ 0. If we look for solutions in the IR, the corrections to
C0 can be calculated considering corrections in the
form Oðz−1; z−2; � � �Þ.
In turn, considering As ¼ − ln z and the potential UðvÞ

given by (10), the tachyon field equation (12) takes the
form

�
z2∂2

z − ð3þ za0Þz∂z −m2
X

�
v −

λ

2
v3 ¼ 0: ð14Þ

Another interesting property of this differential equation
is the scaling symmetry in

ffiffiffi
λ

p
; this means that the equation is

the same under the transformation
ffiffiffi
λ

p
v → ṽ. One may take

advantage of this property. For example, we may solve the
differential equation for ṽ; then, we get the solution for v
scaling ṽ, i.e., using the relation v ¼ ṽ=

ffiffiffi
λ

p
. We will see the

applicability of this symmetry in the next section.

B. Interpolations for the dilaton coupling

So far, we have the differential equation for the tachyon;
it is lacking the explicit form of the nonminimal coupling
aðΦÞ, and bðΦÞ. In the following, we motivate our choices
for the functions aðΦÞ and bðΦÞ.
The nonminimal couplings aðΦÞ and bðΦÞ were origi-

nally considered to be equal and both interpreted as an
effective dilaton field Φ̃ ¼ aðΦÞ ¼ bðΦÞ so that the effec-
tive dilaton field Φ̃ couples minimally to the tachyon and
gauge fields. An effective negative dilaton field Φ̃ quadratic
in the radial coordinate allows for a description of sponta-
neous chiral symmetry breaking; see Appendix E for a
short review. However, the authors of Ref. [54] showed that
a nonphysical state arises in the vectorial sector when the
dilaton remains negative in the IR. This means that the
dilaton must be positive in the IR in order to avoid
nonphysical states. We believe this was the motivation
of the authors of Ref. [19] for building an interpolation for
the effective dilaton field, whose asymptotic form reduces
to a negative Φ̃ (quadratic in the radial coordinate) in the
UV and a positive Φ̃ in the IR (also quadratic in the radial
coordinate). Following these considerations, we impose
that the nonminimal coupling reduces to the minimal
coupling in the IR regime, namely,

aðΦ → ∞Þ ¼ Φ: ð15Þ

We remind the reader that in our framework the dilaton Φ is
always quadratic in the radial coordinate, i.e.,ΦðzÞ ¼ ϕ∞z2.
It turns out that spontaneous chiral symmetry breaking can
be realized as long as we impose the following UV
asymptotic behavior [19]:

aIðΦ → 0Þ ¼ −a0Φ: ð16Þ

Having fixed the asymptotic form of the function aðΦÞ,
one may build an interpolating function considering these
asymptotic constraints. We consider first the following
simple interpolation1:

models of type I:

aIðΦÞ ¼ Φ
�
−a20 þΦ2

a0 þΦ2

�
: ð17Þ

However, as long as the coupling aðΦÞ becomes minimal
in the IR, the asymptotic form in the UV should not be
necessarily negative. As we will see, it will be sufficient to
impose that aðΦÞ is negative for intermediate values of Φ

1The choice of this function was motivated by the interpolation
presented in Ref. [19]; in our notation, it would take the form
aðΦÞ ¼ Φ½−a0 þ ð1þ a0Þ tanhðΦa0Þ�. Note that the interpolation
using powers of the dilaton field is smoother than the interpo-
lation using hyperbolic function.
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(or equivalently z). This choice will provide improved
results compared to models of type I. Its asymptotic
behavior in the UV is such that

aIIðΦ → 0Þ ¼ Φ: ð18Þ

Considering this case, we build the following interpola-
tion function:

models of type II:

aIIðΦÞ ¼ Φ −
a0Φ3=2

1þΦ2
: ð19Þ

The nonminimal dilaton couplings (17) and (19) are dis-
played in Fig. 1 for selected values of a0. The nonminimal
couplings can be thought of as deformations of the original
soft wall model characterized by a new free parameter a0; we
will show later that we need this additional parameter to
induce a transition between explicit and spontaneous chiral
symmetry breaking.
As regards the dilaton coupling bðΦÞ to the 5D gauge

fields, we will consider the following possibilities:
models of type A:

bðΦÞ ¼ aðΦÞ: ð20Þ

That is, in models of type A, the gauge fields couple
nonminimally to the dilaton in exactly the same way as the
tachyonic field;

models of type B:

bðΦÞ ¼ Φ: ð21Þ

In this case, only the tachyonic field couples non-
minimally to the dilaton.

Table I summarizes the four different models considered
in this work.
At this point, it is important to make some remarks

regarding the nonminimal couplings in models of type A
and type B. First, one should note that the nonminimal
couplings in models IA and IIA are indeed consistent with a
D-brane construction, in which one adds space-time filling
D-branes in the 5D bulk theory.2 In those models, the
nonminimal couplings can be redefined in terms of an
effective dilaton field in a such way that it fixes the
coupling to it as an overall e−Φ̃ in (5), where the effective
dilaton field, Φ̃, now has a nontrivial radial profile in the
UV and IR regimes, in contrast with the pure quadratic
behavior of the original soft wall [10].
On the other hand, the nonminimal couplings in model

IB and IIB employed here seem to be inconsistent with a
D-brane construction in the sense that they do not come
from perturbative string theory. This is because the gauge
fields and the tachyon field couple to the dilaton in
different ways, i.e., bðΦÞ ≠ aðΦÞ. Nevertheless, from
the point of view of an effective holographic model, such
nonminimal couplings are widely used in the context of
Einstein-Maxwell-Dilaton holography in AdS/CMT (con-
densed matter theory) (for a review, see Ref. [57]) and
holographic QCD at finite temperature and density
[30,58–61]. Nonminimal dilaton couplings to tachyon
and gauge fields were considered in the holographic
approach to QCD in the Veneziano limit [48,62].
However, beyond tree-level approximation in string

FIG. 1. The nonminimal dilaton couplings aIðΦÞ (left panel) and aIIðΦÞ (right panel) for the selected values a0 ¼ 1 (blue), a0 ¼ 3
(red), and a0 ¼ 5 (green). The black dashed lines in both panels correspond to the limit a0 → 0where the dilaton couplings reduce to the
minimal form aðΦÞ ¼ Φ.

TABLE I. Nonminimal couplings aðΦÞ and bðΦÞ in models of
type IA, IB, IIA, and IIB.

Model IA IB IIA IIB

Coupling aðΦÞ aIðΦÞ aIðΦÞ aIIðΦÞ aIIðΦÞ
Coupling bðΦÞ aIðΦÞ Φ aIIðΦÞ Φ

2For a more detailed discussion on how this construction
works in AdS=CFT, we refer the reader to Refs. [37,45,56].
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theory, one should be careful since there are higher-order
α0 corrections that could affect the nonminimal couplings
in such way that it might render the theory inconsistent
somehow. Currently, it is not clear if those nonminimal
couplings in effective holographic models can be
embedded in a well-established string theory [29,57,63].

C. Violation of the BF bound

In this subsection, we investigate the violation of the
Breitenlohner-Freedman (BF) lower bound m2

BF ¼ −4 [64]
for the 5D effective mass of a scalar perturbation Sðx; zÞ
around the trivial solution vðzÞ ¼ 0. This scalar perturba-
tion satisfies the linear differential equation

h
∂z þ 3A0

s − a0
i
∂zSþ□S − e2Asm2

XS ¼ 0: ð22Þ

Redefining the scalar field as

S ¼ e
a
2S̄; ð23Þ

the tachyonic differential equation takes the AdS5 form

h
∂z þ 3A0

s

i
∂zS̄þ□S̄ − e2Asm̄2

XðzÞS̄ ¼ 0; ð24Þ

where

m̄2
XðzÞ ¼ m2

X − e−2As

�
a00

2
þ a0

2

�
3A0

s −
a0

2

��
ð25Þ

is an effective 5D running mass. Since As ¼ − ln z is the
AdS warp factor, the evolution of the effective 5D mass m̄2

X
with the radial direction zmay imply the violation of the BF
found for the scalar field Sðx; zÞ; namely, there maybe some
regions in z where m̄2

XðzÞ < −4. The violation of the
BF found indicates the instability of the trivial solution

vðzÞ ¼ 0 which is the gravity dual of a chirally symmetric
vacuum. This is what we expect if we want to describe
spontaneous chiral symmetry breaking because if we con-
sider the limit of massless quarks (chiral limit) the instability
of the trivial solution vðzÞ ¼ 0 indicates the presence of a
nontrivial solution vðzÞ ≠ 0 that breaks the chiral symmetry
spontaneously. In Fig. 2, we plot the 5Deffectivemass m̄2

X as
a function of the dimensionless radial coordinate

ffiffiffiffiffiffiffi
ϕ∞

p
z. The

violation of the BF bound at intermediate values of z
indicates the instability of the trivial vacuum.
In the next subsection, we solve the nonlinear differential

equation (14) for the tachyonic field vðzÞ and find a
nontrivial solution that is consistent with the spontaneous
breaking of chiral symmetry in the chiral limit.

D. Background solution for the tachyonic field

Once the nonminimal coupling was fixed, one may solve
the differential equation (14) in the asymptotic regions.
Below, we describe this procedure for the UV region (near
the boundary) and the IR region (far from the boundary).

1. UV asymptotics

In the UV, or close to the boundary, we consider the
power ansatz for the rescaled tachyon field ṽðzÞ ¼ ffiffiffi

λ
p

vðzÞ.
The asymptotic solution to (14) takes the form

ṽ ¼ c̃1zþ d̃3z3 ln zþ c̃3z3 þ c̃4z4 þ d̃5z5 ln zþ c̃5z5 þ � � �
ð26Þ

It is worth mentioning that the parameter c̃1 is related to the
quark mass mq and chiral condensate Σ ¼ hq̄qi in the dual
field theory through the relations c̃1 ¼ ζm̃q and c̃3 ¼
Σ̃=ð2ζÞ [51], where we have defined m̃q ¼

ffiffiffi
λ

p
mq and

Σ̃ ¼ ffiffiffi
λ

p
Σ. The normalization constant ζ is fixed as

FIG. 2. The evolution of the 5D effective mass m̄2
X with the dimensionless radial coordinate

ffiffiffiffiffiffiffi
ϕ∞

p
z for models of type I (left panel) and

models of type II (right panel). In both panels, the blue, red, and green solid lines correspond to a0 ¼ 1, a0 ¼ 3, and a0 ¼ 5 respectively.
The black dashed line in both panels correspond to the limit a0 → 0 where the dilaton couplings become minimal (original soft wall
model). The horizontal line (orange dotted) represents the BF bound m2

BF ¼ −4.
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ζ ¼ ffiffiffiffiffiffi
Nc

p
=ð2πÞ by large Nc counting rules for the scalar

correlation function [65]. For models of type I, the coef-
ficients d̃3; c̃4; � � � in Eq. (26) are given by

d̃3 ¼
c̃1ϕ∞

4

�
c̃21
ϕ∞

− 4a0

�
; c̃4 ¼ 0;

d̃5 ¼
3c̃1ϕ2

∞

64

�
c̃21
ϕ∞

− 4a0

�
2

;

c̃5 ¼
c̃1ϕ2

∞

256

�
c̃21
ϕ∞

− 4a0

��
48c̃3
c̃1ϕ∞

−
9c̃31
c̃1ϕ∞

þ 20a0

�
; ð27Þ

while for models of type II, they are

d̃3 ¼
c̃1ϕ∞

4

�
c̃21
ϕ∞

þ 4

�
; c̃4 ¼ −a0c̃1ϕ

3=2
∞ ;

d̃5 ¼
3c̃1ϕ2

∞

64

�
c̃21
ϕ∞

þ 4

�
2

;

c̃5 ¼
c̃1ϕ2

∞

256

�
c̃21
ϕ∞

þ 4

��
48c̃3
c̃1ϕ∞

−
9c̃21
ϕ∞

− 20

�
: ð28Þ

2. IR asymptotics

In the IR region, there are two independent solutions; see
Eq. (13). In order to avoid singularities in the action (5), we
choose the regular solution. The subleading terms may be
obtained considering the power ansatz

ṽ ¼ C̃0 þ
C̃2

z2
þ C̃4

z4
þ C̃5

z5
þ � � � : ð29Þ

Thus, plugging them into the differential equation (14) and
solving order by order, we get the coefficients for models of
type I,

C̃2 ¼
C̃0

8ϕ∞
ðC̃2

0 − 6Þ;

C̃4 ¼
3C̃0

128ϕ2
∞
ðC̃2

0 − 10ÞðC̃2
0 − 6Þ;

C̃5 ¼ 0: ð30Þ

While the coefficients for models of type II are

C̃2 ¼
C̃0

8ϕ∞
ðC̃2

0 − 6Þ;

C̃4 ¼
3C̃0

128ϕ2
∞
ðC̃2

0 − 10ÞðC̃2
0 − 6Þ;

C̃5 ¼
a0C̃0

40ϕ5=2
∞

ðC̃2
0 − 6Þ: ð31Þ

It is worth pointing out that the contribution of the
parameter a0 is relevant in the UV regime, while in the IR,
it contributes in terms greater than C̃4. Note also that the
leading term in the IR is constant, while it becomes an exact
solution when C̃0 ¼ 6, which coincides with the minimum
of the tachyon potential.

3. Numerical results

In the sequence, we present and discuss the numerical
results obtained solving the differential equation (14). To
solve the problem numerically, we use as “initial condition”
the asymptotic solution obtained in the IR. Then, we
integrate numerically from the IR to the UV varying the
independent parameter C̃0 once a0 was fixed. Finally, we
read off the values for c̃1 and c̃3 by matching the numerical
solution against the asymptotic solution in the UV. To finish
this section, we plot the tachyon profile for selected values
of the parameter C̃0. In the left panel of Fig. 3, we display
the tachyon obtained in models of type I for C̃0 ¼ 1.5
(blue), C̃0 ¼ 1.648 (red), and C̃0 ¼ 2.0 (black). In the right
panel of this figure, we display the tachyon obtained in
models of type II for selected values of C̃0

FIG. 3. Left: the tachyon ṽ as a function of ϕ1=2
∞ z for models of type I. Right: the tachyon ṽ as a function of ϕ1=2

∞ z for models of type II.
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E. Spontaneous chiral symmetry breaking/chiral limit

Here, we investigate the limit of massless quarks, which
is reached in the limit of zero c̃1 since c̃1 ∝ m̃q, where m̃q is
the rescaled quark mass. In the left panel of Fig. 4, we
display the numerical results of ϕ−3=2

∞ c̃3 as a function of the
parameter a0 obtained in models of type I. As can be seen,
there is a critical value at a0 ¼ a0c ≈ 2.970 where ϕ−3=2

∞ c̃3
starts to increase; see the inset for details. This figure is
showing us that there is a nonzero condensate, ϕ−3=2

∞ c̃3 ≠ 0,
for a0 ≥ a0c. It is also interesting to point out that the
condensate is zero in the region a0 < a0c , where the
symmetry breaking is explicit. Therefore, there is a
transition between explicit and spontaneous symmetry
breaking at ac0. In turn, the right panel of Fig. 4 shows
the same results for models of type II. As can be seen, for
this model, we have ac0 ≈ 5.60.
Furthermore, we display the corresponding results of the

dimensionless chiral condensate ϕ−3=2
∞ Σ̃ as a function of

C̃min
0 in the left panel of Fig. 5 with a solid blue line for

models of type I and a solid red line for models of type II.
Note that C̃min

0 corresponds to each ϕ−3=2
∞ Σ̃ calculated in the

chiral limit; this means that each C̃min
0 corresponds to each

a0, as shown in the right panel of this figure. As can be

seen, the value of ϕ−3=2
∞ Σ̃ goes to zero when C̃min

0 goes to
zero. However, it diverges when C̃min

0 approaches to
C̃max
0 ¼ ffiffiffi

6
p

represented by vertical dashed line. In turn,
in the right panel of this figure, we display the results of
C̃min
0 as a function of a0 for both models I and II. In this

figure, we may identify the physical region where c̃1 > 0.
Therefore, fixing the value of a0, the physical region
belongs to the interval C̃min

0 < C̃0 <
ffiffiffi
6

p
. It is also worth

mentioning that for values of a0 in the interval a0 ≤ 6.954,
one can go continuously from one minimum of the tachyon
potential, −

ffiffiffi
6

p
, to the other,

ffiffiffi
6

p
, passing through the trivial

solution. However, for values larger than a0 ≈ 6.954, C̃0 is
constrained to take values close to the minimum of the
tachyon potential and the trivial solution. We explain
details on the numerical results in Appendix A.
Finally, in order to correctly describe spontaneous

symmetry breaking, these results must be consistent with
the emergence of pseudo-Nambu-Goldstone bosons in the
spectrum. We will calculate the spectrum in the following
section and check if these states are present in the holo-
graphic model.

FIG. 4. Left: the dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of a0 in the chiral limit, i.e., c1 ¼ 0, for models of type I. Right: the

dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of a0 in the chiral limit for models of type II.

FIG. 5. Left: the dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of C̃min

0 in the chiral limit; the blue solid lines are the results for models
of type I, while red solid lines for models of type II. Right: C̃min

0 as a function of a0. In both figures, dashed lines represent the minimum
of the Higgs potential C̃max

0 ¼ ffiffiffi
6

p
.
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F. Chiral condensate in the physical region

Here, we show results for the rescaled chiral condensate
Σ̃ as a function of the rescaled quark mass m̃q, obtained
from the relations c̃3 ¼ Σ̃=ð2ζÞ and c̃1 ¼ m̃q, in units of ϕ∞
in the physical region m̃q > 0. Our numerical results for
models of type I are displayed in the left panel of Fig. 6,
where the blue line represents the results for a0 ¼ 2.8 and
the red line represents the results for a0 ¼ 3.5. As can be
seen, the chiral condensate is nonzero in the chiral limit for
a0 > ac0 ≈ 2.970 (red line). It is worth pointing out that the
chiral condensate becomes negative in the intermediate
region. In turn, our numerical results for models of type II
are displayed in the right panel of Fig. 6. As can be seen, the
chiral condensate becomes a monotonic increasing function
of the quark mass. Analogous to models of type I, we have
nonzero chiral condensate in the chiral limit for a0 >
ac0 ≈ 5.60 (red line).
For a detailed discussion of the numerical procedure and to

see the symmetric behavior of the tachyon, see Appendix A.

G. Fixing the model parameters

To finish this section, we are going to fix the parameters
of the model. The dilaton parameter ϕ∞ is fixed to
ϕ∞ ¼ ð0.388 GeVÞ2, as in the soft wall model [66].
This leads to a good description of the meson spectrum
in the vectorial sector. As described in Sec. III E, models of
type I (type II) lead to spontaneous chiral symmetry
breaking when a0 ≥ 2.97 (a0 ≥ 5.6). For models of type
I (type II), we choose a0 ¼ 3.5 (a0 ¼ 6.5), corresponding
to ϕ−3=2

∞ Σ̃=ð2ζÞ ¼ 8.8988 (ϕ−3=2
∞ Σ̃=ð2ζÞ ¼ 5.4367); see

Fig. 4. In the next section, we will see that these parameter
choices allow us to obtain good results for the meson
spectrum in the scalar sector.
Considering the relation between the parameter c̃3 and the

rescaled chiral condensate, c̃3 ¼ Σ̃=ð2ζÞ [51], where ζ ¼ffiffiffiffiffiffi
Nc

p
=ð2πÞ [65], and recalling the definition Σ̃ ¼ ffiffiffi

λ
p hq̄qi,

we obtain the relation

ϕ−3=2
∞

ffiffiffi
λ

p hq̄qi
2ζ

¼ ϕ−3=2
∞ c̃3: ð32Þ

For fixed ϕ∞ and a0, different choices of the parameter λ
lead to different values for the chiral condensate hq̄qi. We fix
the parameter λ separately for each type of model in order to
obtain good results for the meson spectrum in the axial-
vector and pseudoscalar sector; namely, in order to avoid
crossings between the fundamental and excited states in the
axial and pseudoscalar sector, λ has to be above some critical
value that depends of each model type.
For the models of type IA, IB, IIA, and IIB, we choose

λ ¼ 160, λ ¼ 380, λ ¼ 60, and λ ¼ 413, respectively. These
choices of parameters lead to hq̄qi ¼ ð0.245 GeVÞ3 for
model IA, hq̄qi ¼ ð0.283 GeVÞ3 for models IB and IIA, and
hq̄qi ¼ ð0.205 GeVÞ3 for model IIB. These results are of
the same order as those obtained in lattice QCD; see, for
instance, Refs. [67–70].
Table II summarizes our choice of parameters for the four

different type of models. Finally, the only remaining
parameter in our models is the (current) quark mass mq.
In the next section, we will initially treat mq as a free
parameter so that we can investigate the evolution from the
chiral limit mq ¼ 0 to the heavy quark regime (large mq).
For the scalar, axial-vector and pseudoscalar mesons, it will
be necessary to fix mq close to the physical quark mass in
order to compare our results for the masses and decay
constants against experimental data and other results avail-
able in the literature.

FIG. 6. Left: the dimensionless condensateϕ−3=2
∞ Σ̃ as a function of the dimensionless quark massϕ−1=2

∞ m̃q for models of type I; blue lines
are the results for a0 ¼ 2.8, while red lines are the results for a0 ¼ 3.5. Right: the dimensionless condensate ϕ−3=2

∞ Σ̃ as a function of the
dimensionless quark mass ϕ−1=2

∞ m̃q for models of type II; blue lines are the results for a0 ¼ 5.6, while red lines are the results for a0 ¼ 6.5.

TABLE II. Parameters in the four different models fixed in
order to reproduce the meson spectrum.

Parameter Model IA Model IB Model IIA Model IIB

a0 3.5 3.5 6.5 6.5
ϕ∞ ð0.388 GeVÞ2ð0.388 GeVÞ2ð0.388 GeVÞ2ð0.388 GeVÞ2
λ 160 380 60 413
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IV. MESON SPECTRUM

In this section, we calculate the masses of mesons in the
vectorial, scalar, axial, and pseudoscalar sector. First, we
obtain the 5D differential equations for the tachyonic and
gauge field perturbations. Decomposing these perturba-
tions into irreducible representations of the Lorentz group,
we identify the normalizable solutions with the wave
functions representing mesons in the four-dimensional
(4D) field theory. In the vectorial, scalar, and axial sector,
we recast the differential equations in a Schrödinger form
and find the squared masses as the energy eigenvalues in
the Schrödinger problem. For the pseudoscalar mesons,
the spectrum will be obtained by solving directly the
coupled differential equations satisfied by the normal-
izable modes.

A. Expanding the action

Since the background gauge fields are zero, we can
expand trivially around it and consider the fluctuations

AðL=RÞ
m . It is convenient to rewrite those fluctuations in terms

of vectorial and axial gauge fields

AðL=RÞ
m ¼ Vm � Am: ð33Þ

On the other hand, the tachyon field has a nontrivial
background solution, and we can expand around it as

2X ¼ e2iπðvþ SÞ; ð34Þ

where π ¼ πcTc and S is a real scalar field. Note that the
fields πc transform as a triplet in the adjoint representation
of SUð2Þ. They will give rise to a description of 4D pions,
whereas the field S will correspond to scalar mesons. We

expand the action (5) using (33) and (34). The expansion
can be written as

S ¼ S0 þ S1 þ S2 þ…; ð35Þ

where

S0¼−
Z

d4x
Z

dze3As−a
�
1

2
ð∂zvÞ2þe2AsUðvÞ

�
;

S1¼−
Z

d4x
Z

dze3As−a
�
ð∂zvÞð∂zSÞþe2As

dU
dv

S

�
;

S2¼−
Z

d4x
Z

dz

�
e3As−a

�
1

2
ð∂m̂SÞ2þ

1

2
e2As

d2U
dv2

S2
�

þ 1

g25
eAs−b

�
1

4
vcm̂n̂

2þ1

4
acm̂n̂

2þβ

2
ð∂m̂π

c−Ac
m̂Þ2

��
: ð36Þ

where

β≡ e2Asþb−ag25v
2 ð37Þ

and vcm̂ n̂ ¼ ∂m̂Vc
n̂ − ∂ n̂Vc

m̂ (similarly for acm̂ n̂). The indices
ðm̂; n̂Þ correspond to coordinates in the 5D flat metric ηm̂ n̂,
and the index c ¼ ð1; 2; 3Þ corresponds to the adjoint
representation of the SUð2Þ isospin group. The actions
S0 and S1 become surface terms after replacing the tachyon
field equation in (12).
The action S2 is responsible for the dynamics of the field

fluctuations S, Vm̂;c, Am̂;c, and πc. The variation of S2 can
be written as

δS2 ¼ δSBulk2 þ δSBdy2 : ð38Þ

The bulk term δSBulk2 can be written as

δSBulk2 ¼
Z

d4x
Z

dz

�
e3As−aδS

�
ea−3As∂m̂ðe3As−a∂m̂SÞ − e2As

d2U
dv2

S

�
þ 1

g25
δVc

n̂∂m̂ðeAs−bvm̂ n̂
c Þ

þ 1

g25
eAs−bδAc

n̂

�
eb−As∂m̂ðeAs−bam̂ n̂

c Þ þ βð∂m̂πc − Am̂;cÞ
�
þ 1

g25
δπc∂m̂

�
eAs−bβð∂m̂πc − Am̂;cÞ

��
: ð39Þ

The boundary term δSBdy2 can be written as

δSBdy2 ¼ −
Z

d4x
Z

dz∂m̂

�
e3As−að∂m̂SÞδS

þ 1

g25
eAs−bvm̂ n̂

c δVc
n̂ þ

1

g25
eAs−bam̂ n̂

c δAc
n̂

þ 1

g25
βeAs−bð∂m̂πc − Am̂;cÞδπc

�
: ð40Þ

Imposing periodic boundary conditions in the xμ coordi-
nates, we end up with a boundary term in the z coordinate,

δSBdy2 ¼ −
Z

d4x

�
e3As−að∂zSÞδS

þ 1

g25
eAs−bvẑ μ̂c δVc

μ̂ þ
1

g25
eAs−baẑ μ̂c δAc

μ̂

þ 1

g25
βeAs−bð∂ ẑπc − Aẑ;cÞδπc

�
z→∞

z¼ϵ

: ð41Þ

The quadratic behavior ΦðzÞ ∼ z2 at large z implies that the
terms with couplings exp ð−aÞ and exp ð−bÞ vanish expo-
nentially in the limit z → ∞. Imposing also Dirichlet
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boundary conditions at z ¼ ϵ, one guarantees the vanishing
of (41).
The vanishing of δS2 then implies the condition

δSBulk2 ¼ 0 for the bulk term. This leads to the field
equations

ea−3As∂m̂

�
e3As−a∂m̂S

�
− e2As

d2U
dv2

S ¼ 0;

∂m̂

�
eAs−bβð∂m̂πa − Am̂;aÞ

�
¼ 0;

∂m̂

�
eAs−bvm̂ n̂

a

�
¼ 0;

eb−As∂m̂

�
eAs−bam̂ n̂

a

�
þ βð∂ n̂π − Aa;n̂Þ ¼ 0: ð42Þ

Note that the action and field equations are invariant
under the vectorial gauge symmetry

Vm̂;c → Vm̂;c − ∂m̂λcV ð43Þ

and the (residual) axial gauge symmetry

Am̂;c → Am̂;c − ∂m̂λcA; πc → πc − λcA: ð44Þ

The gauge fields can be decomposed as Vm̂ ¼ ðVz; V μ̂Þ,
Am̂ ¼ ðAz; Aμ̂Þ and also the derivatives ∂m̂ ¼ ð∂z; ∂ μ̂Þ. The
vectorial gauge symmetry in (43) allows us to set Vz ¼ 0,
while the residual axial gauge symmetry in (44) can be used
to set Az ¼ 0. The 4D vectors V μ̂ and Aμ̂ admit also the
Lorentz decomposition

V μ̂;c ¼ V⊥̂
μ;c þ ∂ μ̂ξ

c; Aμ̂;c ¼ A⊥̂
μ;c þ ∂ μ̂φ

c: ð45Þ

The scalar fields ξc are not dynamical and can be set to
zero. Using these results, the 5D equations (42) become the
set of independent field equations

½∂z þ 3A0
s − a0�∂zSþ□S − e2As

d2U
dv2

S ¼ 0 ðscalar sectorÞ; ð46Þ

½∂z þ A0
s − b0�∂zV

μ̂;c
⊥ þ□V μ̂;c

⊥ ¼ 0 ðvectorial sectorÞ; ð47Þ

½∂z þ A0
s − b0�∂zA

μ̂;c
⊥ þ□Aμ̂;c

⊥ − βAμ̂;c
⊥ ¼ 0 ðaxial sectorÞ; ð48Þ

½∂z þ A0
s − b0�∂zφ

c þ βðπc − φcÞ ¼ 0;

− ∂z□φc þ β∂zπ
c ¼ 0 ðpseudoscalar sectorÞ: ð49Þ

Note that the coupled differential equations in (49) for
the pseudoscalar sector can be combined into the single
differential equation

∂z½∂z þ A0
s − b0 þ ðln βÞ0�Πc þ ð□ − βÞΠc ¼ 0; ð50Þ

where we have defined Πc ≡ ∂zπ
c.

B. Vector mesons

Let us start with the equation of motion describing the
vector mesons, i.e., Eq. (47). Considering the Fourier
transform on Vμ, Vμðxμ; zÞ → Vμðkμ; zÞ, then setting
□ → m2

V , the resulting equation may be rewritten in
the Schrödinger-like form through the transformation
Vμ ¼ ημe−BVψvn , where 2BV ¼ As − b and ημ is a (trans-
verse) polarisation vector. The Schrödinger-like equation
reads

−∂2
zψvn þ VVψvn ¼ m2

Vψvn ; ð51Þ

where the potential is given by

VV ¼ ð∂zBVÞ2 þ ∂2
zBV: ð52Þ

First, let us consider model IAwhere b ¼ a. In this case,
the solution of the eigenvalue problem is obtained numeri-
cally. A plot of the potential (52) for different values of a0 is
displayed on the left panel of Fig. 7. In turn, our numerical
results for the masses as a function of a0 are displayed on the
left panel of Fig. 8 with solid lines. As can be seen, the
masses are sensitive to the parameter a0; special attention
requires the mass of the ground state which decreases with
the increasing of a0, while the masses of the other states
increasewith the increasing of a0. It is worth mentioning that
in the limit of zero a0, the results reduce to those obtained in
the linear soft wall model displayed with dashed lines
[10,13,31,51]. Note that the coupling aðΦÞ reduces to
aðΦÞ ¼ −a0Φ for models of type I in the limit of large
a0. This corresponds to an effective negative dilaton profile.
As explained in Ref. [54], the potential of the Schrödinger-
like equation is insensitive to the signal of the dilaton field,
meaning that the spectrum will not change in relation to the
original soft wall model. However, as shown in Ref. [54], the
longitudinal fluctuation of the field Vμ will give rise to a
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massless state. In turn, in the models of type I, a massless
mode arises naturally by solving the Schrödinger-like
equation in the region of large a0. The parameter a0 controls
the minimum of the potential well (see the left panel of
Fig. 7), opening the possibility of the emergence of this state
as can seen on the left panel of Fig. 8. Regardless of what the
origin of the massless mode is, it is a nonphysical state and
must be avoided. In the following analysis, we choose
a0 ¼ 3.5, such that the ground state is not so light.
Now, consider models of type IB where a ≠ b, with b ¼

Φ ¼ ϕ∞z2 and a is given by (17). Note that b is the dilaton
field of the linear soft wall model. Hence, in this case, the
problem has the exact solution [10]

m2
V ¼ 4ϕ∞ð1þ nÞ; n ¼ 0; 1; 2;…: ð53Þ

The free parameter ϕ∞ may be fixed by comparing the first
state with the corresponding experimental result of the ρ
meson [66], providing us with the value ϕ∞ ¼ ð388 MeVÞ2.
In model IB, the potential corresponds to the case a0 ¼ 0 in
the left panel of Fig. 7, while the masses as functions of a0
are displayed in the left panel of Fig. 8 with dashed lines.

The results obtained above for models of type I can be
extended for models of type II, which is described by
Eq. (19). For model IIA, where a ¼ b, the potential is
displayed on the right panel of Fig. 7, while the masses as
functions of a0 are displayed on the right panel of Fig. 8.
The main difference between models of type IIA with
respect to models of type IA is that the mass of the ground
states decreases slowly with a0. Note also that the results
for model IIB (b ¼ Φ ¼ ϕ∞z2) are equivalent to results for
model IB.
Finally, considering a0 ¼ 3.5 for models of type I and

a0 ¼ 6.5 for models of type II, we calculated the mass of
the vector mesons. We display our results and compare
them against some results available in the literature in
Table III. As can be seen from the table, excluding
the ground state, our results for all models are close to
the experimental results available from the Particle Data
Group (PDG) [71]. Note also that the results for the
ground state in models IB and IIB are the same and closer
to the experimental result. This is because they are
equivalent to the original soft wall model and the
parameter ϕ∞ was fixed in that model in order to match
the experimental result for the ρ meson mass.

FIG. 8. Left: masses of vector mesons MV as functions of the parameter a0 for models of type I; solid lines represent the results for
a ¼ b (model IA), while dashed lines represent results for a ≠ b (model IB). Right: masses of vector mesons MV functions of the
parameter a0 for models of type II; solid lines represent the results for a ¼ b (model IIA), while dashed lines represent results for a ≠ b
(model IIB).

FIG. 7. Left: the potential of the Schrödinger-like equation for selected values of a0 for models of type I. As can be seen, increasing a0
the potential becomes negative. Right: the same as left panel for models of type II.
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C. Scalar mesons

Let us move on to the scalar mesons, which are
described by Eq. (46). Considering the Fourier transform
on Sðxμ; zÞ, Sðxμ; zÞ → Sðkμ; zÞ, then replacing □ → m2

s ,
and implementing the transformation S ¼ e−BSψ snðzÞ,
where 2BS ¼ 3As − a, the equation (46) may be rewritten
in the Schrödinger-like form

−∂2
zψ sn þ VSψ sn ¼ m2

sψ sn ; ð54Þ

where the potential is given by

VS ¼ ð∂zBSÞ2 þ ∂2
zBS þ e2As

�
m2

X þ 3λ

2
v2ðzÞ

�
: ð55Þ

Note that the scaling symmetry of the tachyon differential
equation arises here due to the product λv2 in the potential.
This means that the spectrum of scalar mesons depends
only on ṽ ¼ ffiffiffi

λ
p

v which in turn is independent of λ as long
as λ > 0. The masses of scalar mesons depend on the
quark mass due to the presence of the tachyon field in the
potential. For λ ¼ 0, the potential (55) reduces to results
available in the literature for the linear soft wall model;
see, for instance, Ref. [16] (see also Ref. [12]). We find
that, for fixed a0, the masses of scalar mesons are
monotonically increasing functions of the parameter
m̃q ¼

ffiffiffi
λ

p
mq. This means that for fixed mq (λ), they are

increasing functions of λ (mq). This is consistent with the
results found in Ref. [51] for the case a0 ¼ 0, where the
dilaton coupling becomes minimal.
A plot of the masses as functions of a0 is displayed on

the left panel of Fig. 9 for mq ¼ 3.63 × 10−4 MeV (near
the chiral limit), where solid lines are the results for models
IA and IB, while dashed lines represent the result of the
linear soft wall model given by Eq. (D7). Note that the mass
of the ground state decreases with the increasing of a0 up to
ac0; then, it increases with the increasing of a0. Thus, to
avoid any zero mode in the scalar sector of models of type I,
we set a0 ¼ 3.5, represented by the vertical dashed line. In
turn, the numerical results of the masses as functions of the
quark mass, for fixed a0 and λ, are displayed on the left

panel of Fig. 10, where solid lines represent the results for
model IA, while dashed lines display the results for model
IB. As expected, for fixed a0 and λ, the masses of scalar
mesons increase with the increasing of the quark mass mq.
Note that the states obtained in model IA are heavier than
the states obtained in model IB.
The masses as functions of a0 obtained in models of type

II are displayed on the right panel of Fig. 9, for mq ¼
3.63 × 10−4 MeV (near the chiral limit). The results for
model IIA are represented by solid lines, whereas the
results for model IIB are represented by dashed lines.
Again, the mass of the ground state decreases with the
increasing of a0 up to ac0; then, it increases with a0. This
behavior motivated us to the choice a0 ¼ 6.5 to avoid the
zero mode, as we did in models of type I. Finally, for fixed
a0 and λ, the masses as functions of the quark mass are
displayed on the right panel of Fig. 10; results for model
IIA are represented with solid line, while results for model
IIB are represented with dashed lines. As expected, the
masses increase with the increasing of the quark mass.
These results are in agreement with the results obtained in
Ref. [51], where the nonlinear extension of the soft wall
model is investigated. We would like to remark we do not
find instabilities in the physical region, i.e., mq > 0, as was
previously reported in the spectrum of the scalar mesons in
extensions of the linear soft wall model [31] (see also
Refs. [21,51]).
For the fixed set of parameters, described in Table II, we

may calculate the spectrum provided by the holographic
models and compare the results against some results
available in the literature. In Table IV, we show our results
for model IA setting mq ¼ 9 MeV, model IB setting
mq ¼ 4.7 MeV, model IIA setting mq ¼ 9.8 MeV, and
model IIB setting mq ¼ 26.8 MeV. Each particular choice
of the quark masses will be justified below, and we will see
that these values are in agreement with the pion mass in the
pseudoscalar mesons.

D. Axial-vector mesons

The axial-vector mesons are described by Eq. (48).
Considering the Fourier transform on Aμ

⊥ðxμ; zÞ,

TABLE III. Masses of vector mesons (in MeV) obtained in models of type I for a0 ¼ 3.5, models of type II for
a0 ¼ 6.5, compared against the holographic models [13] and experimental results from the PDG [71].

n
Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) GKK [13] ρ experimental [71]

0 327 776 344 776 475 776� 1
1 1280 1097 1208 1097 1129 1282� 37
2 1486 1344 1439 1344 1429 1465� 25
3 1662 1552 1632 1552 1674 1720� 20
4 1823 1735 1802 1735 1884 1909� 30
5 2116 1901 1958 1901 2072 2149� 17
6 2250 2053 2104 2053 2243 2265� 40
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Aμ
⊥ðxμ; zÞ → Aμ

⊥ðkμ; zÞ, then replacing □ → m2
An
, one may

write the Schrödinger-like equation by redefining the axial-
vector field as Aμ ¼ ημe−BAψan , where 2BA ¼ As − b and ημ
is a polarization vector; thus, we get

−∂2
zψan þ VAψan ¼ m2

An
ψan ; ð56Þ

where the potential is given by

FIG. 9. Left: masses of scalar mesons as functions of the parameter a0. Solid lines represent the results for models IA and IB, while
dashed lines represent the results of the linear soft model. Right: masses of scalar mesons as functions of a0. Solid lines represent the
results for models IIA and IIB, while dashed lines represent the results of the linear soft model. These results were obtained setting
mq ¼ 3.63 × 10−4 MeV (near the chiral limit).

FIG. 10. Left: masses of scalar mesons as functions of the quark mass. Solid lines represent the results for model IA (a ¼ b) and
λ ¼ 160, while dashed lines represent results for model IB (a ≠ b) and λ ¼ 380, and we set a0 ¼ 3.5. Right: masses of scalar mesons as
functions of the quark mass. Solid lines represent the results for model IIA (a ¼ b) and λ ¼ 60, while dashed lines represent results for
model IIB (a ≠ b) and λ ¼ 413, and we set a0 ¼ 6.5.

TABLE IV. Masses of scalar mesons (in MeV) obtained in the models of type I and models of type II, compared
against the holographic model of Ref. [51], and experimental data from the PDG [71]. To get these results, we have
considered λ ¼ 160 for model IA and λ ¼ 380 for model IB, while the quark masses are mq ¼ 9 MeV and
mq ¼ 4.7 MeV, respectively. For model IIA, we have considered λ ¼ 60, while the quark mass is mq ¼ 9.8 MeV,
and for model IIB, λ ¼ 413 and mq ¼ 26.8 MeV.

n
Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) BM [51] f0 experimental [71]

0 526 519 539 546 980 990� 20
1 1351 1349 1348 1350 1246 1350� 150
2 1600 1599 1540 1541 1466 1505� 6
3 1755 1755 1718 1719 1657 1724� 7
4 1904 1904 1881 1881 1829 1992� 16
5 2048 2048 2032 2032 1986 2103� 8
6 2185 2185 2174 2174 2132 2314� 25
7 2315 2315 2313 2313 2268
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VA ¼ ð∂zBAÞ2 þ ∂2
zBA þ β; ð57Þ

and β ¼ g25v
2e2Asþb−a. Note that the potential depends

explicitly on the functions a and b and depends on λ and
mq through the tachyonic field v ¼ ṽ=

ffiffiffi
λ

p
. Analogous to

what we have done before, we solve the eigenvalue problem
numerically. Our numerical results for the masses as
functions of a0 at fixed mq ¼ 3.63 × 10−4 MeV (near the
chiral limit) are displayed on the left panel of Fig. 11 for
model IA (a ¼ b) with solid lines andmodel IB (a ≠ b) with
dashed lines. Similarly to the vectorial case, the mass of the
ground state decreases with a0. In the limit ða0; mqÞ → 0,
the function β and the field v go to zero. Hence, the
Schrödinger potentials for the vectorial and axial sector
coincide in that limit, i.e., VA ¼ VV , meaning that the vector
and axial-vector states are degenerate (chiral symmetry is
restored). The masses as functions of a0 for models of type II
are displayed on the right panel of Fig. 11, where solid lines
are results for model IIA, while dashed lines are results
for model IIB. Those results were also obtained setting

mq ¼ 3.63 × 10−4 MeV (near the chiral limit) and are
similar to the ones found for models of type I.
Having fixed the parameter a0 ¼ 3.5 for models of type

I, one may calculate the mass solving the eigenvalue
problem numerically. The masses of axial-vector mesons
as functions of the quark mass, for fixed a0 and λ, are
displayed in the left panel of Fig. 12, results for model IA
are represented with solid lines, while results for model IB
are represented with dashed lines. As expected, the masses
increases with the increasing of the quark mass. However,
note that the resonances become less sensitive to the quark
mass in the heavy quark regime. These conclusions are also
true for the results obtained in models of type II, displayed
on the right panel of Fig. 12 for a0 ¼ 6.5 and selected
values of λ. These results are in qualitative agreement with
the results obtained in Ref. [51].
Finally, for the set of parameters displayed in Table II,

we may calculate the spectrum provided by our models
and compare them against the results available in the
literature. In Table V, we write our results for model IA
setting mq ¼ 9 MeV, model IB setting mq ¼ 4.7 MeV,
model IIA setting mq ¼ 9.8 MeV, and model IIB setting

FIG. 11. Left: masses of axial-vector mesons as functions of a0. Solid lines represent the results for model IA (a ¼ b) and λ ¼ 160,
while dashed lines represent results for model IB (a ≠ b) and λ ¼ 380. Right: masses of axial-vector mesons as functions of a0. Solid
lines represent the results for model IIA (a ¼ b) and λ ¼ 60, while dashed lines represent results for model IIB (a ≠ b) and λ ¼ 413.
These results were obtained setting mq ¼ 3.63 × 10−4 MeV (near the chiral limit).

FIG. 12. The mass of the axial-vector mesons as a function of the quark mass. Solid lines represent the results for model IA (a ¼ b)
and λ ¼ 160, while dashed lines represent results for model IB (a ≠ b) and λ ¼ 380, and we set a0 ¼ 3.5. Right: the mass of the axial-
vector mesons as a function of the quark mass. Solid lines represent the results for model IIA (a ¼ b) and λ ¼ 60, while dashed lines
represent results for model IIA (a ≠ b) and λ ¼ 413, and we set a0 ¼ 6.5.
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mq ¼ 26.8 MeV. Each particular choice of the quark
masses will be justified bellow, and we will see that these
values lead to a pion mass in agreement with experimental
data. We observe that the results provided by models IB
and IIB are closer to experimental data compared with the
results provided by models IA and IIA.

E. Pseudoscalar mesons

We now focus in the pseudoscalar sector. As we did in
previous subsections, we may rewrite the coupled differ-
ential equations (50) in the Schrödinger-like form. However,
we realized that the ground state is very sensitive numeri-
cally; for that reason, we change our strategy and solve the
coupled differential equations (50) directly. Introducing the
Fourier transform πðx; zÞ → πðk; zÞ and φðx; zÞ → φðk; zÞ,
then replacing □ → m2

πn in Eq. (50), we get

½∂z þ A0
s − b0�∂zφþ βðπ − φÞ ¼ 0;

−m2
πn∂zφþ β∂zπ ¼ 0; ð58Þ

where β ¼ g25v
2e2Asþb−a. The eigenvalue problem is solved

numerically using the shooting method. Our results for the
masses as functions of a0 are displayed in the left panel of
Fig. 13, where results for model IA are represented with
solid lines, while results for model IB are represented with
dashed lines, and we set mq ¼ 3.63 × 10−4 MeV (near the
chiral limit). Note that the mass of the ground state decreases
with the increasing of a0 up to ac0; then, it lies very close to
zero, representing the Nambu-Goldstone boson arising for
a0 ≥ ac0 with ac0 ≈ 2.97 the same value found in Sec. III E
from the analysis of the chiral condensate. In turn, the
masses of pseudoscalar resonances display a different
behavior with increasing of a0. The same conclusions are
true for models of type II, displayed on the right panel of
Fig. 13, where solid lines represent results for model IIA,
while dashed lines represent results for model IIB. The
Nambu-Goldstone state appears for a0 ≥ ac0 with ac0 ≈ 5.6,
the same value found in Sec. III E from the analysis of the
chiral condensate.
Therefore, the choice of the parameter a0 ¼ 3.5 for

models of type I and a0 ¼ 6.5 for models of type II is well

TABLE V. The masses of the axial-vector mesons (in MeV) obtained in the models of type I and models of type II,
compared against the holographic model of Ref. [13] and experimental data [71]. We have considered λ ¼ 160 for
model IA and λ ¼ 380 for model IB, while the quark masses aremq ¼ 9 MeV andmq ¼ 4.7 MeV, respectively. For
model IIA, we have considered λ ¼ 60, while the quark mass is mq ¼ 9.8 MeV, and for model IIB, λ ¼ 413 and
mq ¼ 26.8 MeV.

n
Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) GKK [13] a1 experimental [71]

0 409 1098 525 1105 1185 1230� 40
1 1296 1231 1242 1261 1591 1647� 22
2 1494 1423 1463 1431 1900 1930þ30

−70
3 1669 1625 1651 1625 2101 2096� 122
4 1828 1797 1817 1798 2279 2270þ55

−40
5 1978 1950 1970 1954
6 2316 2092 2114 2100

FIG. 13. Left: the mass of the pseudoscalar mesons as a function of a0. Solid lines represent the results for model IA (a ¼ b) and
λ ¼ 160, while dashed lines represent results for model IB (a ≠ b) and λ ¼ 380. Right: the mass of the pseudoscalar mesons as a
function of a0. Solid lines represent the results for model IIA (a ¼ b) and λ ¼ 60, while dashed lines represent results for model IIB
(a ≠ b) and λ ¼ 413. These results were obtained setting mq ¼ 3.63 × 10−4 MeV.
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justified by the scalar sector and pseusoscalar sectors. This
choice allowed us to avoid a zero mode in the scalar sector
and find a Nambu-Goldstone boson in the pseudoscalar
sector in the chiral limit. Masses of pseudoscalar mesons as
functions of the quark mass, for fixed a0 and λ, are displayed
on the left panel of Fig. 14, where results for model IA are
represented with solid lines, while results for model IB are
represented with dashed lines. As expected, the mass of the
ground state approaches zero near the chiral limit, while
the masses of the resonances approach finite values. All the
masses increase with the increasing of the quark mass.
However, note that the masses of pseudoscalar resonances
are less sensitive to the quark mass in the heavy quark
regime. These conclusions are also true for results obtained
in models of type II, displayed on the right panel of Fig. 14.
Finally, for the set of parameters displayed in Table II, we

calculate the spectrum provided by our models and compare
them against the results available in the literature. In Table VI
we show our results for model IA setting mq ¼ 9 MeV,
model IB setting mq ¼ 4.7 MeV, model IIA setting
mq ¼ 9.8 MeV, and model IIB setting mq ¼ 26.8 MeV.
Each particular choice of the quark masses is justified by the

fact that it allowed us to reproduce the experimental result for
the pion mass.
So far, we have found a consistent description of

spontaneous chiral symmetry breaking because the chiral
condensate is nonzero in the chiral limit, and a Nambu-
Goldstone state arises in the spectrum of pseudoscalar
mesons, which is consistent with the pion. There are other
important tests of consistency that we want to show, the
behavior of meson decay constants and the GOR relation.
This is done in the next section.

V. DECAY CONSTANTS

To complement the analysis presented above, we now
calculate the decay constants of vector, axial-vector, scalar,
and pseudoscalar mesons. Details on the derivation of the
holographic dictionary are presented in Appendix C (see
also Refs. [24,51]). We will be particularly interested in
the pseudoscalar sector where we expect to confirm the
presence of Nambu-Goldstone bosons in the chiral limit.
We will fulfill this expectation and will also reproduce the
GOR relation near the chiral limit.

FIG. 14. Left: masses of pseudoscalar mesons as functions of the quark mass. Solid lines represent the results for model IA (a ¼ b)
and λ ¼ 160, while dashed lines represent results for model IB (a ≠ b) and λ ¼ 380, and we set a0 ¼ 3.5. Right: masses of pseudoscalar
mesons as functions of the quark mass. Solid lines represent the results for model IIA (a ¼ b) and λ ¼ 60, while dashed lines represent
the results for model IIB (a ≠ b) and λ ¼ 413, and we set a0 ¼ 6.5.

TABLE VI. Masses of pseudoscalar mesons (in MeV) obtained in models of type I and models of type II,
compared against the soft wall model [10], the holographic model of Ref. [72], and experimental data [71]. We have
considered λ ¼ 160 for models of type I and λ ¼ 380 for models of type II, while the quark masses aremq ¼ 9 MeV
and mq ¼ 4.79 MeV, respectively. For model IIA, we have considered λ ¼ 60, while the quark mass is
mq ¼ 9.8 MeV, and for model IIB, λ ¼ 413 and mq ¼ 26.8 MeV.

n
Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) KBK [72] π experimental [71]

0 140 140 140 140 144 140
1 1301 1539 1338 1675 1557 1300� 100
2 1582 1626 1533 1819 1887 1816� 14
3 1739 1794 1713 1945 2090 2070
4 1890 1945 1877 2183 2270 2360
5 2036 2083 2028 2301 2434
6 2175 2212 2170 2422 2586
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A. Vector mesons

In holographic models for QCD, the decay constants are
related to the normalization constants arising from the
normalization solutions of the eigenvalue problems. The
normalization condition for the vector mesons is given by

Z
dzψvmðzÞψvnðzÞ ¼

Z
dzeAs−bvmðzÞvnðzÞ ¼ δmn; ð59Þ

where As ¼ − ln z is the AdS warp factor, b is the dilaton
coupling to the gauge fields, ψvn is the wave function of
the Schrödinger equation (51), and vn is the normalizable
solution in the vectorial sector related to ψvn by
vnðzÞ ¼ e−BVψvnðzÞ. As described in Appendix C, the
meson decay constants are given by Eq. (C7). For the
vectorial sector, the decay constants reduce to the follow-
ing formula,

Fvn ¼ lim
ϵ→0

eAs−b

g5
∂zvn

				
z¼ϵ

¼ 2

g5
Nvn; ð60Þ

where we have defined the normalization constant Nvn , as
the coefficient which appears in the UV expansion of the
vector mode, i.e., vnðzÞ ¼ Nvnz

2 þ � � �. Hence, the decay
constants are proportional to the normalization constants.
Therefore, solving numerically the Schrödinger-like equa-
tion and using the normalization condition, we are able to
calculate the decay constants of the vector mesons. We
display our numerical results for the vector meson decay
constants as functions of a0 on the left panel of Fig. 15,
where solid lines represent results for model IA, while
dashed lines represent results for model IB. As illustrated by
the figure, the results for model IA have a peculiar behavior
changing the hierarchy with the increasing of a0. In contrast,
the results provided by model IB do not change with a0. In
fact, the results for model IB are the same as obtained in the
linear soft wall model because in that case the dilaton
coupling b is minimal. In that particular case, we find an

analytic solution for the decay constants in the linear soft
wall model, derived in Appendix D.
Our numerical results for models of type II are displayed

on the right panel of Fig. 15, where solid lines represent
results for model IIA, while dashed line represent results for
model IIB. From the figure, we note that the decay constants
obtained in model IIA are smoother than those obtained in
model IA, meaning that the decay constants are sensitive to
the form of the interpolation functions (17) and (19). Finally,
for the set of parameters displayed in Table II, although in the
vectorial case the results are independent of λ, we calculate
the corresponding values of the vector meson decay con-
stants. The results are displayed in Table VII, compared with
experimental results of Ref. [73]. Note that there is a change
in the hierarchy of vector meson decay constants FVn in
model IA. The other models display the ordinary hierarchy
FV0 < FV1 < FV2 found in previous works.

B. Scalar mesons

As we did in our previous subsection, we start with the
normalization condition. For the scalar sector, it is given by
the kinetic term related to scalar fluctuation of the
Lagrangian (B6), which is

Z
dzψ smðzÞψ snðzÞ ¼

Z
dze3As−aSmðzÞSnðzÞ ¼ δmn: ð61Þ

Considering the UV expansion of the normalizable sol-
ution of SnðzÞ, which is given by SnðzÞ ¼ Nsnz

3 þ � � �,
here Nsn is the normalization constant calculated by
plugging the solution in (61). Thus, the decay constants
are given by (C7)

Fsn ¼ ζze3As−a∂zSnjz¼ϵ ¼ 3ζNsn: ð62Þ

As expected, the meson decay constants are proportional to
the corresponding normalization constants. We display the
results for the scalar meson decay constants as functions of
a0 on the left panel of Fig. 16, for mq ¼ 3.63 × 10−4 MeV

FIG. 15. Left: decay constants of the vector mesons as a function of a0 obtained in models of type I, where solid lines represent results
obtained in model IA (a ¼ b), while dashed lines represent results obtained in model IB (a ≠ b). Right: the same as left panel for models
of type II.
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(near the chiral limit). In fact, in the scalar sector, the results
for model IA and model IB are the same, represented with
solid lines in the figure. The figure also shows that the
hierarchy in certain intervals of the parameter a0 changes.
We highlight the vertical dashed line at a0 ¼ 3.5, the fixed
value used in this paper in models of type I. We also plot the
analytic results obtained in the linear soft wall model (see
Appendix D) with dashed lines. The corresponding results
for models of type II are displayed on the right panel of
Fig. 16. Interestingly, the hierarchy does not change with a0,
and the results are smoother than those obtained in models of
type I; we also highlight the vertical dashed line for
a0 ¼ 6.5, the fixed value used for models of type II.
The scalar meson decay constants as functions of the

quark mass are displayed on the left panel of Fig. 17, where
solid lines represent results for model IA, while dashed
lines represent results for model IB. Note the change in the
hierarchy of decay constants near the chiral limit; this is
consistent with the left panel of Fig. 16 (see the vertical
dashed line). In both models of type I, the scalar meson
decay constants decrease with the increasing of the quark
mass, and the hierarchy is restored in the regime of heavy
quarks. The corresponding results for models of type II are
displayed on the right panel of Fig. 17, where solid lines
represent results for model IIA, while dashed lines re-
present results for model IIB. As the figures illustrates, the
scalar meson decay constants for models of type II decrease

with the increasing of the quark mass, and there is a change
in the hierarchy in the regime of heavy quarks.
Finally, we show our results for the decay constants at

the specific values of the parameters given in Table II. The
results are displayed in Table VIII. The quark masses were
fixed as mq ¼ 9 MeV, mq ¼ 4.7 MeV, mq ¼ 9.8 MeV,
and mq ¼ 26.8 MeV for models IA, IB, IIA, and IIB,
respectively.

C. Axial-vector mesons

We follow the same procedure described above this time
for the axial-vector mesons, where the normalization
condition is given by

Z
dzψamðzÞψanðzÞ ¼

Z
dzeAs−bamðzÞanðzÞ ¼ δmn; ð63Þ

where anðzÞ ¼ e−BAψanðzÞ is the axial-vector normaliz-
able solution and ψanðzÞ is the corresponding wave
function of the Schrödinger-like equation (56).
Plugging the UV expansion of anðzÞ, which is given by
anðzÞ ¼ Nanz

2 þ � � �, where Nan is the normalization
constant, in (C7), we obtain the axial-vector meson decay
constants

TABLE VII. The decay constants (in MeV) obtained in the models of type I and II, compared against the result
obtained in the linear soft wall model [10] and experimental results of [73]. These results were found for the set of
parameters displayed in Table II.

Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) SW [10]

Experimental [73]
(FVa ¼ gρÞ

F1=2
V0

235 260 226 260 261 346.2� 1.4

F1=2
V1

357 310 265 310 433� 13

F1=2
V2

337 343 314 343

FIG. 16. Left: decay constants of scalar mesons as functions of a0 for models of type I. Right: decay constants of scalar mesons as
functions of a0 for models of type II. We get these results for mq ¼ 3.63 × 10−4 MeV (near the chiral limit) in both type of models.
Horizontal dashed lines represent the analytic results obtained in the linear soft wall model; see Appendix D. Vertical dashed lines
represent the fixed values a0 ¼ 3.5 and a0 ¼ 6.5 for models of type I and II, respectively.
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Fan ¼ lim
ϵ→0

eAs−b

g5
∂zan

				
z¼ϵ

¼ 2

g5
Nan: ð64Þ

Thus, the problem of finding decay constants has been
reduced to the calculation of normalization constants. Our
numerical results for the axial-vector meson decay constants
for mq ¼ 3.63 × 10−4 MeV (near the chiral limit) as func-
tions of a0 are displayed on the left panel of Fig. 18, where
solid lines represent results for model IA, while dashed lines
represent results for model IB. As illustrated by the figure,
the decay constants in model IA have a peculiar behavior
changing the hierarchy when a0 increases. The decay
constants in model IB do not change with a0 up to
a0 ¼ ac0; then, they vary with a0 faster than the decay
constants in model IA. The results provided by models of
type II are displayed on the right panel of Fig. 18, where
results for model IIA (IIB) are represented by solid lines
(dashed lines). Note that the variation of decay constants
with a0 in model IIA is smoother than the variation in model
IA. On the other hand, the decay constants in models IB and
IIB change rapidly for a0 ≥ ac0.
Having fixed the parameter a0 ¼ 3.5 for models of type I,

we calculated the decay constants of axial-vector mesons as
for different values of the quark mass. Our numerical results
are displayed in the left panel of Fig. 19, where solid lines
(dashed lines) represent results for model IA (IB). As shown

in the figure, the behavior of the decay constants is different
for each state in the region of small quark mass. There is a
change in hierarchy between the second and third states near
the chiral limit, which is consistent with the results displayed
on the left panel of Fig. 18 (see the vertical dashed line). The
hierarchy is restored in the regime of heavy quarks, where
we have F1=2

A0
< F1=2

A1
< F1=2

A2
; this result is in qualitative

agreement with the results reported in Ref. [51]. The results
obtained in models of type II are displayed on the right panel
of Fig. 19, where solid lines (dashed lines) represent results
for model IIA (IIB). In model IIA, the hierarchy between
decay constants is preserved near the chiral limit but slightly
changes in the heavy quark regime. In model IIB, the
hierarchy is not preserved near the chiral limit, but it is
restored in the regime of heavy quarks, where we
have F1=2

A0
< F1=2

A1
< F1=2

A2
.

For the fixed set of parameters displayed in Table II, we
calculate the corresponding values of axial-vector meson
decay constants and display the results in Table IX. The
quark masses were fixed as mq ¼ 9 MeV, mq ¼ 4.7 MeV,
mq ¼ 9.8 MeV, and mq ¼ 26.8 MeV for models of type
IA, IB, IIA, and IIB, respectively.

D. Pseudoscalar mesons

For the pseudoscalar mesons, the normalization condition
in terms of the normalizable solution φnðzÞ is given by

FIG. 17. Left: decay constants of scalar mesons as functions of mq in models of type I with a0 ¼ 3.5; solid lines represent the results
for model IA (λ ¼ 160), while dashed lines represent results for model IB (λ ¼ 380). Right: decay constants of scalar mesons as
functions ofmq for models of type II with a0 ¼ 6.5; solid lines represent the results for model IIA (λ ¼ 60), while dashed lines represent
results for model IIB (λ ¼ 413).

TABLE VIII. Decay constants of scalar mesons (in MeV) obtained in models of type I and II for the set of
parameters given in Table II, compared against the result obtained in the linear soft wall model [10] and the result
obtained in QCD [74]. The quark masses were fixed as mq ¼ 9 MeV, mq ¼ 4.7 MeV, mq ¼ 9.8 MeV, and mq ¼
26.8 MeV for models IA, IB, IIA, and IIB, respectively.

Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) SW [10]

QCD
results [74]

F1=2
s0 532.7 533.2 470.4 426.6 420 425.3

F1=2
s1 779.7 780.1 561.1 465.7 499

F1=2
s2 582.5 582.5 595.8 544.5 552
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Z
∞

ϵ
dz

eAs−b

βðzÞ ð∂zφmÞð∂zφnÞ ¼
δmn

m2
πn

: ð65Þ

We follow in this work the prescription for calculating decay
constants for the pion and their resonances developed in
Refs. [23,51]. Details on the derivation are given in
Appendix C. The decay constants of pseudoscalar mesons
are calculated using the following holographic dictionary,
cf. Eq. (C7):

fπn ¼ −lim
ϵ→0

eAs−b

g5
∂zφnðzÞ

				
z¼ϵ

: ð66Þ

Considering the UV expansion of the field φnðzÞ, which is
given by φn ¼ −Nπnðz2 þ � � �Þ, where Nπn is the normali-
zation constant obtained from (65), and plugging this
expression into (66), we get the result

FIG. 18. Left: decay constants of axial-vector mesons as functions of a0 for models of type I, where solid lines represent model IA
(λ ¼ 160), while dashed lines represent model IB (λ ¼ 380). Right: decay constants of axial-vector mesons as functions of a0 for models
of type II, where solid lines represent model IIA (λ ¼ 60), while dashed lines represent model IIB (λ ¼ 413). We obtained these results
for mq ¼ 3.63 × 10−4 MeV in all the models (near the chiral limit).

FIG. 19. Left: decay constants of axial-vector mesons as functions ofmq in models of type I with a0 ¼ 3.5, where solid lines represent
the results for model IA (λ ¼ 160), while dashed lines represent results for model IB (λ ¼ 380). Right: decay constants of axial-vector
mesons as functions of mq in models of type II with a0 ¼ 6.5, where solid lines represent the results for model IIA (λ ¼ 60), while
dashed lines represent results for model IIB (λ ¼ 413).

TABLE IX. Decay constants of axial-vector mesons (in MeV) obtained in models of type I and II, compared
against the result obtained in the linear soft wall model [10] and experimental results of [75]. These results were
obtained for the set of parameters displayed in Table II, and the quark masses were fixed as mq ¼ 9 MeV,
mq ¼ 4.7 MeV, mq ¼ 9.8 MeV, and mq ¼ 26.8 MeV for models of type IA, IB, IIA, and IIB, respectively.

Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b) SW [10]

Experimental
(FAc ¼ fa1=

ffiffiffi
2

p
) [75]

F1=2
A0

141.82 241 226.07 224.24 261 433� 13

F1=2
A1

324.10 395 257.12 386.50

F1=2
A2

295.17 322 310.91 348.54
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fπn ¼
2

g5
Nπn : ð67Þ

Once again, the problem of finding decay constants has
been reduced to the calculation of normalization constants.
Our numerical results for the decay constants in models of
type I as functions of a0 are displayed on the left panel of
Fig. 20, where solid lines (dashed lines) represent results
for model IA (IB). Similarly, the results in models of type II
are displayed on the right panel of Fig. 20, where solid lines
(dashed lines) represent results for model IIA (IIB). All
these results were obtained fixing the quark mass as mq ¼
3.63 × 10−4 MeV (near the chiral limit).
Note that the decay constants of the excited states in all

models are close to zero for a0 < ac0. This is consistent with
the interpretation of these excited states in terms of pion
resonances and is in qualitative agreement with the results
obtained in Ref. [51], where no Nambu-Goldstone boson
was found. Note, however, that the decay constant of the
ground state starts to grow up for values close to the critical
value a0 ∼ ac0, meaning that it becomes finite for a0 ≥ ac0.
This is true for models I and II. These results support our

choice of a0 ¼ 3.5 for models of type I and a0 ¼ 6.5 for
models of type II.
The decay constants of pseudoscalar mesons in models

of type I, with a0 ¼ 3.5, as functions of the quark mass,
are displayed on the left panel of Fig. 21, where results for
model IA (IB) are represented by solid (dashed) lines. As
expected, the decay constant of the ground state is finite in
the chiral limit, which supports our conclusion that the
ground state is the pion. Note also that the decay constants
of the resonances are zero in this limit. This result was
previously observed in the holographic hard wall model
[23]. We observe from the figure that the decay constants
are nonmonotonic functions of the quark mass, growing in
the regime of light quarks and then decreasing in the
regime of heavy quarks. We also observe that the
hierarchy between decay constants changes to fπ0 >
fπ1 > fπ2 in the regime of light quarks and becomes fπ0 >
fπ2 > fπ1 in the regime of heavy quarks. The results
obtained for the resonances are in qualitative agreement
with the results obtained in Ref. [51]. The results obtained
for models of type II, displayed on the right panel of
Fig. 21, are qualitatively similar to the results obtained in
models of type I.

FIG. 20. Left: the decay constants of the pseudoscalar mesons as a function of a0 for models of type I, where solid lines represent
model IA (λ ¼ 160), while dashed lines represent model IB (λ ¼ 380). Right: the decay constants of the pseudoscalar mesons as a
function of a0 for models of type II, where solid lines represent model IIA (λ ¼ 60), while dashed lines represent model IIB (λ ¼ 413).
We get these results for mq ¼ 3.63 × 10−4 MeV in both models.

FIG. 21. Left: decay constants of pseudoscalar mesons as functions of mq, where solid lines represent the results for model IA
(λ ¼ 160), while dashed lines represent results for model IB (λ ¼ 380). Right: decay constants of pseudoscalar mesons as functions of
mq, where solid lines represent the results for model IIA (λ ¼ 60), while dashed lines represent results for model IIB (λ ¼ 413).
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So far, we have observed that the decay constant of the
ground state can be related to the pion. To support this
statement, we need the pion arising in the spectrum, as in
fact we observed in Table VI. Having fixed the model
parameters in Table II, we calculate the corresponding
values of the pseudoscalar meson decay constants and
display the results in Table X. The quark masses were fixed
as mq ¼ 9 MeV, mq ¼ 4.7 MeV, mq ¼ 9.8 MeV, and
mq ¼ 26.8 MeV for models of type IA, IB, IIA, and
IIB, respectively.

E. GOR relation

We have identified the lightest sate arising in the pseu-
doscalar sector with the pion. As a final check, we show in
this section that it satisfies the GOR relation. In the following
analysis, we follow the procedure implemented in Ref. [14],
adapted to the holographic model we are working with. The
idea is to use the normalization condition (65) together with
the definition of the decay constant (66). It is worth
mentioning that the functions aðΦÞ and bðΦÞ are subleading
close to the boundary, where the leading term is the warp
factor As ¼ − ln z. Thus, we may rewrite (65) in the form
(setting m ¼ n)

g25m
2
πn

Z
∞

ϵ
dz

e−As−b

βðzÞ
�
eAs

g5
∂zφn

��
eAs

g5
∂zφn

�
¼ 1 ð68Þ

or

m2
πn

Z
∞

ϵ
dz

e−3As−b

v2ðzÞ ðea−bÞ
�
eAs

g5
∂zφn

��
eAs

g5
∂zφn

�
¼ 1;

ð69Þ

where β was defined in (37). Near the chiral limit, i.e.,
mq → 0, it can be shown that the term e−3As−b=v2ðzÞ in the
integral becomes highly peaked near the boundary z ¼ ϵ.
If the terms in parentheses are nonzero in that limit, they can
be moved outside of the integral. This is true only for the
ground state because it is the only state that has a nonzero
decay constant in the chiral limit; see Eq. (66) and Fig. 21.
Then, for the ground state, we find the following result near
the chiral limit:

f2π0m
2
π0

Z
∞

ϵ

e−3As−b

v2ðzÞ dz ¼ 1: ð70Þ

Near the chiral limit, the integrand e−3As−b=v2ðzÞ has its
relevant contribution close to the boundary, i.e.,
e−3As−b=v2ðzÞ ∼ z=ðc1 þ c3z2Þ2. Hence, the integral pro-
vides the result

Z
∞

ϵ

e−3As−b

v2ðzÞ dz ≈
1

2c1c3
: ð71Þ

This result is valid only for small c1. Then, plugging (71) in
(70), and considering that c1 ¼ mqζ and c3 ¼ Σ=ð2ζÞ, we
get the GOR relation

f2π0m
2
π0 ¼ mqΣ: ð72Þ

One may rewrite the last equation using the relation
Σ ¼ 2σ, where σ is the up and down quark condensates
hūui ¼ hd̄di ¼ σ,

f2π0m
2
π0 ¼ 2mqσ: ð73Þ

To support the last procedure, we calculated the GOR
relation numerically. Our results are displayed in Fig. 22.
As can be seen, the ground state satisfies the GOR relation
in the region of light quarks.
To understand better the approximation we have done in

the integral (71), we refer the reader to Appendix G, where
we discuss the derivation of the GOR relation using a
toy model.

VI. CONCLUSIONS

In this paper, we have extended the original soft wall
model, considering a Higgs potential for the tachyonic
field and nonminimal dilaton couplings expðaðΦÞÞ and
expðbðΦÞÞ for the tachyonic and gauge field, respectively.
As in the original soft wall model, the 5D metric was fixed
as the AdS spacetime in Poincaré coordinates, and the
dilatonΦwas fixed to be quadratic in the radial coordinate
z. In order to guarantee good properties for the meson
spectrum, such as approximate linear behavior with the

TABLE X. Decay constants (in MeV) obtained in models of type I and models of type II for the set of parameters
given in Table II, compared against the experimental results of the PDG [71]. The quark masses were fixed as
mq ¼ 9 MeV, mq ¼ 4.7 MeV, mq ¼ 9.8 MeV, and mq ¼ 26.8 MeV for models of type IA, IB, IIA, and IIB,
respectively.

Model IA
(a ¼ b)

Model IB
(a ≠ b)

Model IIA
(a ¼ b)

Model IIB
(a ≠ b)

Experimental
ðfπþ=

ffiffiffi
2

p Þ [71]
fπ0 104.3 60.9 118.3 138.68 92.1� 0.8
fπ1 2.05 0.95 3.94 1.04
fπ2 0.79 0.42 3.37 2.97

BALLON-BAYONA, MAMANI, and RODRIGUES PHYS. REV. D 104, 126029 (2021)

126029-24



excitation number and absence of spurious massless
modes, we imposed that at large Φ (far from the boun-
dary), the nonminimal couplings reduce to the minimal
case; i.e., aðΦÞ and bðΦÞ reduce to Φ.
Our work was inspired by previous works on soft wall

models such as Refs. [13,19,52,53] that realized that con-
sidering an effective dilaton field, which in our notation
corresponds to a particular choice for the nonminimal
couplings aðΦÞ ¼ bðΦÞ ¼ Φ̃, that is negative in some
region, it is possible to incorporate spontaneous chiral
symmetry. In order to avoid the massless mode found in
Ref. [54] and instabilities in the background, we considered
dilaton couplings aðΦÞ and bðΦÞ that satisfy the IR
constraint aðΦÞ ¼ bðΦÞ ¼ Φ. To simplify the analysis,
we considered two possibilities for the dilaton coupling
bðΦÞ, namely, bðΦÞ ¼ aðΦÞ (models of type A) and
bðΦÞ ¼ Φ (models of type B). For the dilaton coupling
aðΦÞ, we considered two interpolations, namely, aIðΦÞ
(models of type I) and aIIðΦÞ (models of type II). The
two interpolations aIðΦÞ and aIIðΦÞ, displayed in Fig. 1,
share the feature that are nonmonotonic and become negative
in some region. The main difference between them is that
aIðΦÞ reduces to −a0Φ at small Φ (near the boundary),
whereas aIIðΦÞ reduces to Φ. The four different types of
models IA, IB, IIA, and IIB are described in Table I. We have
also stressed the fact that models IA and IIA could be
embedded in a D-brane construction in string theory
recasting the nonminimal couplings in terms of a global
minimal coupling to an effective dilaton in a way similar to

the original soft wall model [10]. We also pointed out that
models IB and IIB do not seem to be consistent with a
D-brane construction in perturbative string theory because
the gauge fields and the tachyon field couple to the dilaton in
different ways. Although it is not clear how these non-
minimal couplings could arise from string theory (there may
be inconsistencies at the quantum level), they are motivated
by a bottom-up approach, such as that considered in AdS/
CMT [57], holographic QCD models at finite temperature
and density [30,58–61], and holographic QCD models in the
Veneziano limit [48,62].
It is worth pointing out that soft wall models introduce an

“artificial” confinement because the 5D metric is fixed to
AdS spacetime and therefore the warp factor in the string
frame does not have a minimum, required by confinement
[76]. It turns out, however, that, taking into account the
backreaction of the dilaton field into the 5D metric within
the framework of Einstein-dilaton theories, the dilaton
quadratic behavior predicted by the soft wall model at
large z remains intact; see, e.g., Refs. [29,32].
The nonminimal couplings introduced in this work

brought a new parameter a0 which controls the emergence
of spontaneous chiral symmetry breaking, as shown in Fig. 4.
We realized that the addition of a Higgs potential for the
tachyonic field was not enough to induce spontaneous
symmetry breaking, i.e., the emergence of the pion as a
Nambu-Goldstone boson, as was previously shown in
Ref. [51]. It seems to us that the reason behind the require-
ment of nonminimal couplings is due to the fact that the

FIG. 22. The product f2πnm
2
πn and 2mqσ as a function of the quark mass for models of type I (top panel) and models of type II (bottom

panel). As can be seen, the GOR relation arises for the ground state in the regime of light quarks.
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Higgs potential, usually introduced in 4D Minkowski space-
time to describe spontaneous symmetry breaking, has been
extended to 5D AdS spacetime. The nonminimal dilaton
couplings somehow compensate the deviations from the
Mexican hat potential due to AdS spacetime. Moreover,
we have verified that a scalar perturbation around the trivial
solution vðzÞ ¼ 0 can be written in an AdS form where the
effective 5D mass m2

X evolves with the radial direction z
violating the BF bound for some values of z. This BF
violation was caused by the presence of the nonminimal
dilaton couplings and signifies the instability of the trivial
solution. This, in turn, indicates the presence of a nontrivial
solution for vðzÞ that is stable. This is the solution that we
find in this work, and it is the gravity dual of a non-
perturbative vacuum that breaks chiral symmetry spontane-
ously. We conclude that the addition of nonminimal
couplings with an additional parameter is well justified in
order to induce spontaneous chiral symmetry breaking in the
chiral limit and the emergence of pions as Nambu-Goldstone
bosons.
Once the nonminimal couplings were fixed, the tachyon

profile was obtained numerically. We noticed a scaling
symmetry for the tachyon solution that allowed us to find
the solution vðzÞ for any value of the Higgs coupling λ in
terms of the rescaled field ṽðzÞ ¼ ffiffiffi

λ
p

vðzÞ. By solving the
differential equations of the field perturbations, we were
able to find the spectrum of vector, scalar, axial-vector, and
pseudoscalar mesons. It turns out that the differential
equation for the scalar sector depends only on ṽðzÞ, and
therefore in the chiral limit, the scalar meson masses
depend only on the parameter a0 associated with the
nonminimal coupling. Interestingly, the lightest scalar
meson becomes massless exactly at the same critical value
ac0 where the transition between explicit and spontaneous
chiral symmetry breaking takes place. This strongly sug-
gests that conformal symmetry was also spontaneously
broken for that critical value. For a0 > ac0, we are in the
regime of spontaneous chiral symmetry breaking, and the
lightest scalar meson grows monotonically, as shown in
Fig. 9. Considering these results, we fixed the parameter a0
at some value above ac0 in order to guarantee the absence of
a massless scalar meson and the presence of spontaneous
chiral symmetry breaking. We fixed a0 ¼ 3.5 in models of
type I and a0 ¼ 6.5 in models of type II. In turn, the
parameter λ of the Higgs potential was fixed separately for
each model in order to guarantee axial-vector meson
masses mAn

and pseudoscalar meson masses mπn that do
not present any crossing between the fundamental and
excited states. Finally, the parameter ϕ∞ of the dilaton field
was fixed to the usual value used in soft wall models. The
choices of parameters in the four different type of models
considered in this work are summarized in Table II. For
those particular parameter choices, we analyzed the evo-
lution of meson masses with the quark mass in the scalar,
axial, and pseudoscalar sector (the vectorial sector is

independent of the quark mass in this framework). We
found that all the meson masses grow monotonically with
the quark mass and that, as we approach the chiral limit,
massless modes emerge in the pseudoscalar sector, iden-
tified as the Nambu-Goldstone bosons of spontaneous
chiral symmetry breaking. Finally, fixing the quark mass,
we were able to compare our results for the meson masses
against experimental data and previous results in soft wall
models.
We also calculated the decay constants for all the mesons.

We found a peculiar behavior for the decay constants of
vector, scalar, and axial-vector mesons, changing the hier-
archy in certain intervals of a0. This peculiar behavior is
almost absent in models of type II; see Figs. 15, 16, and 18.
The decay constants of the pseudoscalar sector as a function
of a0 shows the emergence of the pion for a0 ≥ ac0; see
Fig. 20. For the fixed values of a0, λ, and ϕ∞ given in
Table II, we investigated the evolution of the decay constants
of axial-vector, scalar, and pseudoscalar mesons with the
quark mass. We found that the hierarchy between funda-
mental and excited states change as the quark mass evolves
from the near chiral limit to the heavy quark limit. In any
case, all the decay constants decrease with the quark mass as
we approach the heavy quark limit, which is in qualitative
agreement with expectations from perturbative QCD. We
showed that the emergence of the pions as Nambu-Goldstone
bosons associated with spontaneous chiral symmetry break-
ing is supported by the decay constants in the pseudoscalar
sector, obtained in Fig. 21. The results near the chiral limit are
qualitatively similar to the results obtained in the hard-wall
model [23]. As a check of consistency, we showed that our
models satisfy the GOR relation; see Fig. 22. Finally, fixing
the quark masses, we were able to compare our results for the
decay constants against experimental data and previous
results in the literature.
In conclusion, we have shown in this work that

spontaneous chiral symmetry breaking can be described
using a holographic setup that extends the original soft
wall model by including a Higgs potential for the tachyon
and nonminimal dilaton couplings for the tachyon and
gauge fields. Our numerical results show no instabilities in
the spectrum. We realized that an additional parameter
was needed in order to control the transition between
spontaneous and explicit chiral symmetry breaking. The
nonminimal dilaton couplings can be justified by the fact
that we are describing the dynamics of a Higgs potential
for a scalar field (the tachyon) in a curved space (AdS).
These nonminimal couplings, combined with the Higgs
potential, allowed us to find solutions for the tachyonic
field with a VEV coefficient that remains finite in the limit
where the source coefficient goes to zero (chiral limit). It
is possible that the requirement of nonminimal couplings
for describing spontaneous chiral symmetry breaking is an
artifact of soft wall models in the sense that the back-
ground is not obtained by solving the Einstein’s equations.
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We will test this hypothesis investigating chiral symmetry
breaking in backgrounds obtained by solving the Einstein-
dilaton equations; see, for instance, Refs. [29,31–33].
Since those backgrounds describe color confinement in a
consistent way, it would be interesting to investigate the
connection between confinement and spontaneous chiral
symmetry breaking.
Further extensions of this project include finite temper-

ature effects of mesons and quarks in a nonconformal
plasma [77–81] as well as its relation to the spectrum of
quasinormal modes. Backreaction effects of the tachyonic
and gauge fields would also be an interesting problem in
order to find the quark contribution to the thermodynamics
and transport coefficients of a nonconformal plasma (for
related work in the top-down approach, see Refs. [82,83]).
We will address some of these problems in the future.
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APPENDIX A: NUMERICAL ANALYSIS

Here, we write details on the numerical procedure. We
realized that the numerical results obtained solving the
tachyon differential equation (14) can be split up in three
regions depending on the value for the parameter a0.
First, for 0 ≤ a0 < ac0, one may vary C̃0 continuously in

the interval −
ffiffiffi
6

p
≤ C̃0 ≤

ffiffiffi
6

p
. In this region, there is

explicit chiral symmetry breaking because c̃3 is zero in

the chiral limit, i.e., m̃q ¼ 0; note that m̃q ∝ C̃0 in this
region. Moreover, ac0 depends on the form for the inter-
polation function. Here, we work with models I and II. The
numerical results for ϕ−3=2

∞ Σ̃ as a function of ϕ−1=2
∞ m̃q are

displayed in Fig. 23 with blue lines for both models. As can
be seen, the parameter ϕ−3=2

∞ Σ̃ goes to zero in the chiral
limit for a0 < ac0.
Second, for ac0 ≤ a0 ≤ amax

0 , C̃0 still vary in the interval
−

ffiffiffi
6

p
≤ C̃0 ≤

ffiffiffi
6

p
. Nevertheless, there is spontaneous chiral

symmetry breaking because ϕ−3=2
∞ Σ̃ is nonzero in the chiral

limit. amax
0 ∼ 5.954 for models of type I. In this region, the

parameter a0 controls the value of the condensate. Our
numerical results for models I and II are displayed in Fig. 23
with red lines, and left panel shows ϕ−3=2

∞ Σ̃ as a function of
ϕ−1=2
∞ m̃q for light quarks. However, as can be seen in the

right panel of this figure, ϕ−3=2
∞ Σ̃ becomes negative in the

intermediate region. Maybe this behavior is suggesting that
the model with negative dilaton in the UV is not enough to
describe a monotonic increasing function for ϕ−3=2

∞ Σ̃
expected in real world QCD. In turn, models of type II
provide improved results compared against the results
obtained in models of type I, as can be seen in the right
panel of Fig. 23. This means that the negative dilaton in the
intermediate region is enough to guarantee a monotonic
increasing function for ϕ−3=2

∞ Σ̃ as a function of ϕ−1=2
∞ m̃q.

Third, for a0 > amax
0 , C̃0 is constrained to take values only

close to the minimum of the Higgs potential C̃0 <
ffiffiffi
6

p
− δ1,

C̃0 > −
ffiffiffi
6

p þ δ1, and close to the trivial solution
−δ2 ≤ C̃0 ¼ 0 ≤ δ2, where δ1 and δ2 are small numbers.
This means that the solution splits up into three branches.
The numerical results for models of type I, where
a0 ∼ 5.954, are displayed in the left panel of Fig. 23 with
black lines. As can be seen, each branch corresponds to the
solutions mentioned above. Note again that the results for
models of type I show a negative condensate in the

FIG. 23. Left: dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of the dimensionless quark mass ϕ−1=2

∞ m̃q for models of type I with
different values of a0: a0 ¼ 2.8 (blue line), a0 ¼ 3.5 (red line), and a0 ¼ 6 (black lines). Right: dimensionless condensate ϕ−3=2

∞ Σ̃ as a
function of the dimensionless quark mass ϕ−1=2

∞ m̃q for models of type II with different values of a0: a0 ¼ 5.6 (blue line), a0 ¼ 6.5 (red
line), and a0 ¼ 10 (black line).
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intermediate region. In turn, numerical results for models of
type II are displayed in the right panel of this figure. Note
also that the condensate ϕ−3=2

∞ Σ̃ is a monotonically increas-
ing function of ϕ−1=2

∞ m̃q; see the right panel.
On the other hand, a complementary analysis for models

of type I shows the evolution of the dimensionless quark
mass ϕ−1=2

∞ m̃q as a function of C̃0 in the left panel of
Fig. 24. As can be seen, C̃0 is constrained to take values
close to the minimum of the Higgs potential, as well as
close to the trivial solution for a0 > amax

0 . In turn, the right
panel of this figure shows the results for models of type II.
Finally, we also get the dimensionless condensate

ϕ−3=2
∞ Σ̃ as a function of C̃0. Our numerical results for

models of type I are displayed in the left panel of Fig. 25.
As can be seen, C̃0 is constrained to take values close to the
minimum of the Higgs potential, as well as close to the
trivial solution for a0 > amax

0 . In turn, the right panel of this
figure shows the corresponding results for models of
type II.

APPENDIX B: THE KALUZA-KLEIN EXPANSION

The starting point is the 5D action

S2¼−V4

Z
dz

�
e3As−a

�
1

2
ð∂m̂SÞ2þ

1

2
e2As

d2U
dv2

S2
�

þ 1

g25
eAs−b

�
1

4
vcm̂n̂

2þ1

4
acm̂n̂

2þβ

2
ð∂m̂π

c−Ac
m̂Þ2

��
; ðB1Þ

that dictates the dynamics of the field perturbations. We
decompose the 5D gauge fields Vm̂ ¼ ðVz; V μ̂Þ, Am̂ ¼
ðAz; Aμ̂Þ and also the derivatives ∂m̂ ¼ ð∂z; ∂ μ̂Þ. The
vectorial gauge symmetry and the residual axial gauge
symmetry allow us to set Vz and Az to zero, respectively.
Then, the action (B1) takes the form

S2¼−V4

Z
dz

�
e3As−a

�
1

2
ð∂ μ̂SÞ2þ

1

2
ð∂zSÞ2þ

1

2
e2As

d2U
dv2

S2
�

þ 1

g25
eAs−b

�
1

4
vcμ̂ ν̂

2þ1

2
ð∂zVc

μ̂Þ2þ
1

4
acμ̂ ν̂

2þ1

2
ð∂zAc

μ̂Þ2

þβ

2
ð∂ μ̂π

c−Ac
μ̂Þ2þ

β

2
ð∂zπ

cÞ2
��

: ðB2Þ

Implementing the Lorentz decomposition

V μ̂;a ¼ V⊥̂
μ;a þ ∂ μ̂ξ

a; Aμ̂;a ¼ A⊥̂
μ;a þ ∂ μ̂φ

a; ðB3Þ

the action (B2) becomes

S2¼−V4

Z
dz

�
e3As−a

�
1

2
ð∂ μ̂SÞ2þ

1

2
ð∂zSÞ2þ

1

2
e2As

d2U
dv2

S2
�

þ 1

g25
eAs−b

�
1

4
v⊥;c
μ̂ ν̂

2þ1

2

�
∂zV

⊥;c
μ̂ þ∂ μ̂∂zξ

c

�
2

þ1

4
a⊥;c
μ̂ ν̂

2þ1

2

�
∂zA

⊥;c
μ̂ þ∂ μ̂∂zφ

c

�
2

þβ

2
ð∂ μ̂π

c−∂ μ̂φ
c−A⊥;c

μ̂ Þ2þβ

2
ð∂zπ

cÞ2
��

: ðB4Þ

The fields ξc can be set consistently to zero, and we do that
in the following.3

FIG. 24. Left: dimensionless quark mass ϕ−1=2
∞ m̃q as a function of C̃0 for models of type I with different values of a0: a0 ¼ 2.8 (blue

line), a0 ¼ 3.5 (red line), and a0 ¼ 6 (black line). Right: dimensionless quark mass ϕ−1=2
∞ m̃q as a function of C̃0 for models of type II

with different values of a0: a0 ¼ 5.6 (blue line), a0 ¼ 6.5 (red line), and a0 ¼ 10 (black line).

3Nonzero ξc would correspond to scalar mesons in the 3
representation with zero mass, not expected in QCD.
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Now, we introduce the Kaluza-Klein expansions

V⊥;c
μ̂ ðx; zÞ ¼ g5vcnðzÞV̂c;n

μ̂ ðxÞ;
A⊥;c
μ̂ ðx; zÞ ¼ g5acnðzÞÂc;n

μ̂ ðxÞ;
Sðx; zÞ ¼ snðzÞŜnðxÞ;
φcðx; zÞ ¼ g5φc

nðzÞΠ̂c
nðxÞ;

πcðx; zÞ ¼ g5πcnðzÞΠ̂c
nðxÞ; ðB5Þ

where the sum
P∞

n¼0 is implicit. Plugging (B5) into (B4),
with ξc ¼ 0, we arrive at the 4D action S2 ¼ −

R
d4xL2

with

L2 ¼
1

2
ΔðSÞ

mnð∂ μ̂ŜmÞð∂ μ̂ŜnÞ þ
1

2
MðSÞ

mnŜmŜn

þ 1

4
ΔðVÞ

mn;cdv̂
c;m
μ̂ν v̂μ̂ ν̂d;n þ

1

2
MðVÞ

mn;cdV̂
c;m
μ̂ V̂ μ̂

d;n

þ 1

4
ΔðAÞ

mn;cdâ
c;m
μ̂ν âμ̂ ν̂d;n þ

1

2
MðAÞ

mn;cdÂ
c;m
μ̂ Âμ̂

d;n

þ 1

2
ΔðΠÞ

mn;cdð∂ μ̂Π̂c
mÞð∂ μ̂Π̂d

nÞ þ
1

2
MðΠÞ

mn;cdΠ̂
c
mΠ̂d

n

þGðAΠÞ
mn;cdÂ

c;m
μ̂ ∂ μ̂Π̂d;n; ðB6Þ

and we have defined the 4D coefficients

ΔðSÞ
mn ¼

Z
dze3As−asmsn; MðSÞ

mn ¼
Z

dze3As−a
�
ð∂zsmÞð∂zsnÞ þ e2As

d2U
dv2

smsn

�
;

ΔðVÞ
mn;cd ¼ δcd

Z
dzeAs−bvcmvdn; MðVÞ

mn;cd ¼ δcd
Z

dzeAs−bð∂zvcmÞð∂zvdnÞ;

ΔðAÞ
mn;cd ¼ δcd

Z
dzeAs−bacmadn; MðAÞ

mn;cd ¼ δcd
Z

dzeAs−b
h
ð∂zacmÞð∂zadnÞ þ βacmadn

i
;

ΔðΠÞ
mn;cd ¼ δcd

Z
dzeAs−b

h
ð∂zφ

c
mÞð∂zφ

d
nÞ þ βðπcm − φc

mÞðπdn − φd
nÞ
i
;

MðΠÞ
mn;cd ¼ δcd

Z
dzeAs−bβð∂zπ

c
mÞð∂zπ

d
nÞ;

GðAΠÞ
mn;cd ¼ δcd

Z
dzeAs−b

h
ð∂zacmÞð∂zφ

d
nÞ − βacmðπdn − φd

nÞ
i
: ðB7Þ

The Lagrangian (B6) becomes the standard Lagrangian for mesons if we impose the conditions

ΔðSÞ
mn¼δmn; ΔðVÞ

mn;cd¼ΔðAÞ
mn;cd¼ΔðΠÞ

mn;cd¼δcdδmn ðB8Þ

for the normalization coefficients and conditions

FIG. 25. Left: dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of C̃0 for models of type I with different values of a0: a0 ¼ 2.8 (blue

line), a0 ¼ 3.5 (red line), and a0 ¼ 6 (black lines). Right: dimensionless condensate ϕ−3=2
∞ Σ̃ as a function of C̃0 for models of type II

with different values of a0: a0 ¼ 5.6 (blue line), a0 ¼ 6.5 (red line), and a0 ¼ 10 (black lines).
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MðSÞ
mn ¼ m2

snδmn; MðVÞ
mn;cd ¼ m2

vnδ
cdδmn

MðAÞ
mn;cd ¼ m2

anδ
cdδmn; MðΠÞ

mn;cd ¼ m2
πnδ

cdδmn

GðAΠÞ
mn;cd ¼ 0 ðB9Þ

for the mass coefficients and couplings. In fact, the conditions (B9) are automatically satisfied if the Kaluza-Klein modes
satisfy the following differential equations,

�h
∂z þ 3A0

s − a0
i
∂z − e2As

d2U
dv2

�
sn ¼ −m2

snsn ðscalar sectorÞ;
h
∂z þ A0

s − b0
i
∂zvcn ¼ −m2

vnv
c
n ðvectorial sectorÞ;nh

∂z þ A0
s − b0

i
∂z − β

o
acn ¼ −m2

ana
c
n ðaxial sectorÞ;h

∂z þ A0
s − b0

i
∂zφ

c
n ¼ −βðπcn − φc

nÞ;
β∂zπ

c
n ¼ m2

πn∂zφ
c
n ðpseudoscalar sectorÞ; ðB10Þ

and are normalized according to (B8). The differential
equations (B10) satisfied by the Kaluza-Klein modes are
compatible with the field equations (46)–(49) for the 5D
fields. The main difference between those equations is that
(B10) are on-shell conditions involving only the z depend-
ence of the 5D fields whereas (46)–(49) are on-shell
conditions for the z and x dependence. We see that the
Kaluza-Klein expansions allows us to consider the 4D
fields in (B6) off shell.
Note that the normalization conditions for the scalar,

vectorial, and axial sectors can be written as

ΔðSÞ
mn ¼

Z
dzψ smψ sn ¼ δmn;

ΔðVÞ
mn ¼

Z
dzψvmψvn ¼ δmn;

ΔðAÞ
mn ¼

Z
dzψamψan ¼ δmn; ðB11Þ

where ψ sn , ψvn , and ψan are the wave functions associated
with the Schrödinger problem in the scalar, vectorial, and
axial sectors defined previously. For simplicity, we have
omitted the flavor index in the vectorial and axial sector. We
conclude that the Schrödinger problem in those sectors is
well posed in the sense that the wave functions form an
orthonormal basis.

APPENDIX C: MESON OPERATORS AND
DECAY CONSTANTS

From (41), we find that the on-shell variation of S2 can
be written as

δSo−s2 ¼
Z

d4x
�
e3As−a∂zSδSþ

1

g25
eAs−bvẑ μ̂c δVc

μ̂

þ 1

g25
eAs−baẑ μ̂c δAc

μ̂ þ
1

g25
βeAs−bð∂ ẑπc −Aẑ;cÞδπc

�
z¼ϵ

;

ðC1Þ

where all the 5D fields satisfy the equations of motion. The
5D scalar field Sðx; zÞ behaves near the boundary as

Sðx; zÞ ¼ S1ðxÞzþ T3ðxÞz3 ln zþ S3ðxÞz3 þ…; ðC2Þ

where S1ðxÞ ¼ ζ−1mqðxÞ is the source coefficient. The
VEVof the scalar operator responsible for creation of scalar
mesons can be obtained from the holographic dictionary:

hq̄ðxÞqðxÞi ¼ δSo−s2

δmqðxÞ
¼ ζ

δSo−s2

δS1ðxÞ
¼ ζ

h
ze3As−a∂zS

i
z¼ϵ

: ðC3Þ

The vectorial and axial gauge fields behave near the
boundary as

V μ̂;cðx; zÞ ¼ Vð0Þ
μ̂;cðxÞ þWð2Þ

μ̂;cðxÞz2 ln zþ Vð2Þ
μ̂;cðxÞz2 þ…;

Aμ̂;cðx; zÞ ¼ Að0Þ
μ̂;cðxÞ þ Bð2Þ

μ̂;cðxÞz2 ln zþ Að2Þ
μ̂;cðxÞz2 þ…;

ðC4Þ

with Vð0Þ
μ̂;cðxÞ and Að0Þ

μ̂;cðxÞ 4D external sources. The corre-
sponding vectorial and axial currents are then given by
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hq̄ðxÞγμTcqðxÞi ¼ δSo−s2

δVð0Þ
μ̂;cðxÞ

¼ 1

g25

�
eAs−bvẑ μ̂c

�
z¼ϵ

hq̄ðxÞγμγ5TcqðxÞi ¼ δSo−s2

δAð0Þ
μ̂;cðxÞ

¼ 1

g25

�
eAs−baẑ μ̂c

�
z¼ϵ

: ðC5Þ

Plugging the Kaluza-Klein expansions (B5) into (C3) and
(C5), we obtain a mode expansion for the scalar operator
and currents,

hq̄ðxÞqðxÞi ¼ FsnŜnðxÞ;
hq̄ðxÞγμTcqðxÞi ¼ Fvc;n V̂

c;n
μ̂ ðxÞ;

hq̄ðxÞγμγ5TcqðxÞi ¼ Fac;n Â
c;n
μ̂ ðxÞ − fπc;n∂ μ̂π̂c;nðxÞ; ðC6Þ

where the sum
P∞

n¼0 is implicit and the Kaluza-Klein
coefficients are given,

Fsn ¼ ζ
h
ze3As−a∂zsn

i
z¼ϵ

;

Fvc;n ¼
1

g5

h
eAs−b∂zvc;n

i
z¼ϵ

;

Fac;n ¼
1

g5

h
eAs−b∂zac;n

i
z¼ϵ

;

fπc;n ¼ −
1

g5

h
eAs−b∂zφc;n

i
z¼ϵ

: ðC7Þ

The coefficients Fsn , Fvc;n , Fac;n , and fπc;n are identified
with the decay constants of the scalar, vectorial, axial, and
pseudoscalar mesons.

APPENDIX D: VECTOR AND SCALAR MESONS
IN THE LINEAR SOFT WALL MODEL

In the limit a0 → 0 (minimal coupling), the differential
equation for the vectorial mode vn;c in all models (IA, IB,
IIA, and IIB) reduces to

½∂z þ A0
s −Φ0�∂zvcn ¼ −m2

vnv
c
n: ðD1Þ

Since As ¼ − ln z and ΦðzÞ ¼ ϕ∞z2, this is the equation
found in the original linear soft wall model [10]. This
equation can be solved in terms of the associated Laguerre
polynomials. The normalized solutions can be written
as [10]

vnðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
ϕ∞z2L1

nðϕ∞z2Þ n ¼ 0; 1;…; ðD2Þ

and the corresponding masses take the form

m2
vn ¼ 4ϕ∞ðnþ 1Þ n ¼ 0; 1;…; ðD3Þ

which organize into a linear Regge trajectory. The vector
meson decay constants in the linear soft wall model take the
form

Fvn ¼
1

g5

�
eAs−Φ∂zvc;n

�
z→0

¼ ϕ∞

g5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðnþ 1Þ

p
: ðD4Þ

Note that F2
vn also organize into a linear Regge trajectory.

For the differential equation of the scalar mode snðzÞ, all
the models reduce to the linear soft wall model if we take
the limits a0 → 0 (minimal coupling) and mq → 0 (chiral
limit). The resulting differential equation can be written as

��
∂z þ 3A0

s −Φ0
�
∂z þ 3e2As

�
sn ¼ −m2

snsn; ðD5Þ

with normalized solutions [12]

snðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

nþ 1

r
ϕ∞z3L1

nðϕ∞z2Þ n ¼ 0; 1;… ðD6Þ

and masses

m2
sn ¼ ϕ∞ð4nþ 6Þ n ¼ 0; 1;…; ðD7Þ

also organized into a linear Regge trajectory. The scalar
meson decay constant in the linear soft wall model takes the
form

Fsn ¼ ζ

�
ze3As−Φ∂zsn

�
z→0

¼ ζϕ∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18ðnþ 1Þ

p
: ðD8Þ

Note that F2
sn also organize into a linear Regge trajectory.

APPENDIX E: LINEAR SOFT WALL MODEL
WITH NEGATIVE DILATON

The negative dilaton, proposed in Refs. [52,53], was
introduced as an alternative to describe hadronic spectrum
and spontaneous chiral symmetry breaking in the holo-
graphic soft wall model for QCD. However, there is a
debate about the consequences arising with the negative
dilaton profile. It was shown by the authors of Ref. [54],
that the negative dilaton will drive to the emergence of one
massless scalar (unphysical) state in the spectrum of the
vector mesons; outside of that, the negative dilaton does not
allow us to get the generalized relation valid for higher spin
fields

m2
n;S ¼ 4ϕ∞ðnþ SÞ; ðE1Þ

where n is the radial excitation number and S is the spin. In
the negative dilaton scenario, Φ ¼ Θϕ∞z2, where Θ is a
negative number. For higher spin fields, the corresponding
results with negative dilaton become
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m2
n;S ¼ 4jΘjϕ∞ðnþ 1Þ; ðE2Þ

representing unphysical states. Despite these caveats, in the
following, we present the derivation of the solution of the
tachyon field considering the negative dilaton; then, we will
show that the description of spontaneous chiral symmetry
breaking is possible within this scenario. The negative
dilaton is given by

Φ ¼ −ϕ∞z2; ðE3Þ

where we have set Θ ¼ −1. To calculate the solution of the
tachyon differential equation (14), we write it in the form
(setting a ¼ Φ and λ ¼ 0)

ðz2∂2
z − ð3 − 2ϕ∞z2Þz∂z −m2

XÞvðzÞ ¼ 0: ðE4Þ

Introducing the new variable x ¼ ϕ∞z2, the last equation
becomes

�
x2∂2

x − ð1 − xÞx∂x −
m2

X

4

�
vðxÞ ¼ 0: ðE5Þ

This equation can be rewritten in a convenient form using
the transformation vðxÞ ¼ xβVðxÞ,

�
x∂2

xþð2β− 1þ xÞ∂xþ βþ β2− 2β−m2
X
4

x

�
V ¼ 0: ðE6Þ

The last differential equation becomes a Kummer-like
differential equation under the condition

β2−2β−
m2

X

4
¼0; → β¼1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

X

4

r
¼Δ�

2
: ðE7Þ

To get the standard form of Kummer’s differential equation,
we must introduce an additional transformation in (E6),
v̂ðxÞ ¼ e−αxVðxÞ, such that the differential equation
becomes

ðx∂2
x þ ð2β − 1þ ð1 − 2αÞxÞ∂x þ β þ αð1 − 2βÞ
þ αðα − 1ÞxÞv̂ðxÞ ¼ 0: ðE8Þ

Kummer’s differential equation is obtained by setting
α ¼ 1,

ðx∂2
x þ ð2β − 1 − xÞ∂x þ 1 − βÞv̂ðxÞ ¼ 0: ðE9Þ

Then, the general solution is a linear combination of
Uða; b; ; xÞ and x1−bMð1þ a − b; 2 − b; xÞ, the Tricomi
and Kummer functions, respectively. From Eq. (E9), we

identify a ¼ β − 1 and b ¼ 2β − 1
4; after restoring the

original function and variable, vðzÞ, we get the complete
solution

v ¼ e−ϕ∞z2ðC1z2βUðβ − 1; 2β − 1;ϕ∞z2Þ
þ C3z2ð2−βÞMð1 − β; 3 − 2β;ϕ∞z2ÞÞ; ðE10Þ

where C1 and C3 are constants. Plugging m2
X ¼ −3 in

Eq. (E7), we get Δ− ¼ 1, Δþ ¼ 3, and β ¼ 1=2. Thus, we
may expand the solution close to the boundary and read off
the leading coefficients, i.e., the source and vacuum
expectation value,

v ¼ c1zþ
� ffiffiffi

π
p

C0ϕ
3=2
∞ −

c1ϕ∞

2
ð1þ γÞ

�
z3

−
c1ϕ∞

2
z3 log

�
ϕ∞z2

4

�
þ � � � ; ðE11Þ

where we have defined C1 ¼
ffiffiffi
π

p
c1, C3 ¼ ϕ3=2

∞ C0, and γ is
Euler’s constant. In turn, considering the asymptotic form
of the Tricomi and Kummer functions in the IR,
Uða; b; xÞ ∼ x−a and Mða; b; xÞ ∼ exxa−b, the leading
terms are U ∼ z and M ∼ eϕ∞z2z−3; then, expanding vðzÞ
in the IR,

v ¼ C0

�
1þ 3

4ϕ∞z2
þ 45

32ϕ2
∞z4

þ � � �
�

þ C2e−ϕ∞z2
�
ϕ∞z2 þ

1

4
−

3

32ϕ∞z2
þ � � �

�
; ðE12Þ

where we have introduced the parameter C2 ¼ c1ffiffiffi
π

p
=

ffiffiffiffiffiffiffi
ϕ∞

p
. In AdS=CFT, the asymptotic expansion of

the field close to the boundary gives us the source and
vacuum expectation value of the corresponding dual
operator. Thus, the general form of the asymptotic expan-
sion of the tachyon is given by v ¼ c1zþ c3z3, where c1 ∝
mq (quark mass) and c3 ∝ hq̄qi (chiral condensate). From
Eq. (E11), we may extract the constant c3,

c3 ¼ C0

ffiffiffi
π

p
ϕ3=2
∞ −

c1ϕ∞

2
ð1þ γÞ: ðE13Þ

As can be seen, the parameter c3 depends on two
independent parameters C0 and c1. In the chiral limit,
c1 ¼ 0, and c3 ≠ 0 because C0 ≠ 0; hence, hq̄qi ≠ 0.
Therefore, the scenario with a negative dilaton allows a
description of spontaneous chiral symmetry breaking.

4Do not confuse the constants a and b with the nonminimal
couplings defined in previous sections.
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However, there is, at least, one issue that called our
attention. The Hamiltonian depends on the derivative of
the tachyon field in the IR (see, for instance, Ref. [51]), and
it will diverge because of the presence of C0 in Eq. (E12).
This suggest that C0 must be zero in order to get an finite
Hamiltonian in the IR. Finally, it is worth mentioning that a
solution equivalent to Eq. (E10) was obtained in Ref. [53].

APPENDIX F: NONLINEAR SOFT WALL WITH
A NEGATIVE DILATON

Let us solve the nonlinear differential equation of the
tachyon considering a negative dilaton,

�
z2∂2

z − ð3− 2ϕ∞z2Þz∂z−m2
X −

λ

2
v2ðzÞ

�
vðzÞ ¼ 0: ðF1Þ

It is expected that the presence of the nonlinear term will
change the solutions obtained in Eq. (E10). However, we
may solve the nonlinear differential equation asymptoti-
cally. Thus, the asymptotic solution close to the boundary
may be determined through the ansatz

v ¼ c1zþ d3z3 ln

�
ϕ∞z2

4

�
þ c3z3 þ d5z5 ln

�
ϕ∞z2

4

�

þ c5z5 þ � � � ; ðF2Þ

where

d3 ¼
c1
8
ðc21λ − 4ϕ∞Þ; d5 ¼

3c1
128

ðc21λ − 4ϕ∞Þ2;

c5 ¼
1

256
ðc21λ − 4ϕ∞Þð48c3 − 9c31λþ 20c1ϕ∞Þ: ðF3Þ

As can be seen, the nonlinear term contributes to the
coefficient d3, while c1 and c3 are independent parameters.
Note that form c1 ¼ ð4ϕ∞=λÞ1=2, the logarithm contribu-
tions and higher-order coefficients in (F3) vanish, reducing
the asymptotic solution to

v ¼
ffiffiffiffiffiffiffiffiffi
4ϕ∞

λ

r
zþ c3z3: ðF4Þ

This asymptotic solution suggests that the parameter c1 is
fixed once we know the parameters ϕ∞ and λ. Nevertheless,
this result is strange since c1 is related to the quark mass in
the dual field theory, c1 ∝ mq.
In turn, the asymptotic solution in the IR may be

calculated by changing the variable y ¼ 1=z. Then,
Eq. (F1) becomes

�
ðy∂yÞ2 þ 2ð2 − ϕ∞y−2Þðy∂yÞ þ 3

�
v −

λ

2
v3 ¼ 0: ðF5Þ

Considering the power series ansatz, the asymptotic sol-
ution is given by

v ¼ C0 þ
C2

z2
þ C4

z4
þ � � � ; ðF6Þ

where

C2¼
C0

8ϕ∞
ð6−C2

0λÞ; C4¼
3C0

128ϕ2
∞
ðC2

0λ−10ÞðC2
0λ−6Þ:

ðF7Þ

It is interesting to realize that when C0 ¼
ffiffiffiffiffiffiffi
6=λ

p
, the

coefficients C2; C4; � � �, reduce to zero, with v ¼ ffiffiffiffiffiffiffi
6=λ

p
remaining as the exact solution. This solution is also an
exact solution of the differential equation (F5). The
complete expansion in v should be considered for arbitrary
C0. After implementing the numerical solution, using as the
“initial condition” the asymptotic solution in the IR, then
integrating to the UV, we obtained unstable solutions,
highly sensitive to the change of the domain of integration.
As we are looking for stable solutions, we do not present
those results in this paper.

APPENDIX G: HOLOGRAPHIC DERIVATION OF
THE GOR RELATION: TOY MODEL

In this section, we propose a toy model to get the Gell-
Mann-Oakes-Renner relation. We start by building a
simple function for the tachyon which takes into account
the asymptotic solutions in the UV and IR. To simplify
the analysis, we consider b ¼ ϕ∞z2 with ϕ∞ ¼ 1. Then,
we consider the most simple smooth function interpolat-
ing between the asymptotic solution in the UV,
v ¼ c1zþ c3z3, and IR, v ¼ C0, which is given by

v ¼ c1zþ c3z3

1þ c3
C0
z3

: ðG1Þ

As can be seen, this simple function contains the relevant
parameters arising in the UVand IR. We can check the UV
expansion, which is given by

v ¼ c1zþ c3z3 þOðz4Þ; z → 0; ðG2Þ

while its IR expansion is given by

v ¼ C0 þOðz−2Þ; z → ∞: ðG3Þ

Then, plugging (G1) in Eq. (71), one can integrate
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Z
∞

0

u3e−u
2

vðuÞ2 du¼
1

2c1c3
þ
�

c31
2C2

0c
2
3

þ 1

2c23
−

3c21
2C2

0c
2
3

�
ec1=c3Ei

�
−
c1
c3

�
−

c21
2C0c23

þ 1

2C2
0

−
c1

C2
0c3

þc1
ffiffiffi
π

p
C0c23

þ
ffiffiffi
π

p
C0c3

−
�
3c3=21 c3=23

2C0c1c33
þ2c5=21 c1=23

2C0c1c33

�
πec1=c3Erfc

� ffiffiffiffiffi
c1
c3

r �
; ðG4Þ

where EiðxÞ is the exponential integral function and ErfcðxÞ
the complementary error function. So far, we did not say
anything about the parameters c1, c3, and C0; this means
that the last results is valid for arbitrary values of these
parameters. However, as we want to investigate the GOR
relation, we must consider the regime of small c1 param-
eter. Thus, the leading term of Eq. (G4) is

Z
∞

0

u3e−u
2

vðuÞ2 du ¼ 1

2c1c3
; ðG5Þ

which is equal to Eq. (71). Plugging this result in (70),

f2πm2
π

2c1c3
¼ 1; ðG6Þ

yields to the GOR relation.
An alternative way to show that the result (G5) is

consistent is plotting the kernel function of the integral,
left side of Eq. (G5), and investigating the behavior of this
function in the region of small c1. Thus, we define

fðuÞ ¼ u3e−u
2

vðuÞ2 : ðG7Þ

The plot of this function compared against the Gaussian
function u3

ðc1uþc3u3Þ2 is displayed in Fig. 26. As can be seen,

in the left panel, we compare the behavior of these
functions by changing the value of c1, while the right
panel shows the same functions for small values of c1.
From Fig. 26, we may conclude that the kernel of the

integral is approximately equal to the Gaussian function in
the regime of small c1,

u3e−u
2�

c1uþc3u3

1þc3
C0
u3

�
2
≈

u3

ðc1uþ c3u3Þ2
: ðG8Þ

This approximation gets better decreasing c1. Therefore,
we can replace the Gaussian function in the integral, getting

Z
∞

0

u3du
ðc1uþ c3u3Þ2

¼ 1

2c1c3
; ðG9Þ

which is the result we got previously in (G5) and (71).

FIG. 26. Left: the kernel of the integral (solid lines) against the Gaussian function (dashed lines) for selected values of c1, c1 ¼ 0.7
(blue), 0.5 (red), 0.3 (black). Right: the kernel of the integral (solid lines) against the Gaussian function (dashed lines) for selected values
of c1 ¼ 0.1 (blue), 0.05 (red), 0.03 (black).
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