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Lie algebra valued equations translating the integrability of a general two-dimensional Wess-Zumino-
Witten model are given. We found a simple solution to these equations and identified a new integrable
nonlinear sigma model. This is a two-parameter deformation of the Wess-Zumino-Witten model.
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I. INTRODUCTION

The search for integrable two dimensional nonlinear sigma
model has known various developments. The early attempts
dealt mostly with deformations of the principal chiral sigma
model and examples based on the Lie algebra SUð2Þ were
found [1,2]. Later other integrable Wess-Zumino-Witten
models, involving the Lie algebra SUð2Þ, were constructed
[3–5]. The revival of the subject came after the work of
Klimčík on the so-called Yang-Baxter deformation of the
principal chiral model [6]. More recently Sfetsos presented a
method for constructing integrable deformation of the Wess-
Zumino-Witten model [7]. Various issues were treated later in
the literature [8–31] and a nice account of these can be found
in [32] and references within. Our interest in integrable
nonlinear sigmamodels is motivated by their relation to string
theories [33]. The hope is to find more solvable string
theories and their spectrum in nontrivial backgrounds along
the lines in [34–36].
In [37,38] we have given the conditions for the most

general nonlinear sigma model to be integrable. These were
specified in terms of the geometry and the structure of the
target space manifold. A general two-dimensional nonlinear
sigma model is given by the action1

S ¼
Z

dzdz̄½GijðφÞ þ BijðφÞ�∂φi∂̄φj: ð1:1Þ

The invertible metric Gij and the antisymmetric tensor Bij

are the backgrounds of the bosonic string theory. The
equations of motion of this theory are

∂̄∂φl þ Ωl
ij∂φi∂̄φj ¼ 0; Ωk

ij ¼ Γk
ij −Hk

ij; ð1:2Þ

where Γk
ij and Hk

ij ¼ 1
2
Gklð∂lBij þ ∂jBli þ ∂iBjlÞ are,

respectively, the Christoffel symbols and the torsion.
The equations of motion can be cast, for all values of the

parameter μ, in the form of a zero curvature relation�
∂þ 1

1þμ
ðKi−LiÞ∂φi; ∂̄þ 1

1−μ
ðKjþLjÞ∂̄φi

�
¼0 ð1:3Þ

if the space manifold is equipped with two sets of matrices
KiðφÞ and LiðφÞ satisfying

∂iKj þ ∂jKi − 2Γl
ijKl ¼ 0;

∂iLj − ∂jLi þ 2Hl
ijKl ¼ 0;

∂iLj þ ∂jLi − 2Γl
ijLl ¼ ½Li; Kj� þ ½Lj; Ki�;

∂iKj − ∂jKi þ 2Hl
ijLl ¼ ½Li; Lj� − ½Ki; Kj�: ð1:4Þ

The last two equations determine the structure of the space
manifold of the nonlinear sigma model. On the other hand,
the first two relations indicate that the nonlinear sigma
model is symmetric under a global isometry transforma-
tion [39,40] with J ¼ ðKi − LiÞ∂φi and J̄ ¼ ðKi þ LiÞ∂̄φi

being the conserved currents. The zero curvature relation
is then the same as the two equations ∂J̄ þ ∂̄J ¼ 0

and ∂J̄ − ∂̄J þ ½J; J̄� ¼ 0.
Although the conditions (1.4) specify the geometry of the

manifold [38], their general solutions are not yet known. In
this paper, we continue this program and consider simpler
nonlinear sigma models. Namely, the most general integrable
deformation of the Wess-Zumino-Witten (WZW) model.
The conditions (1.4) are now more tractable. They are in
the form of a Lie algebra valued relation which generalizes
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1The two-dimensional coordinates are ðτ; σÞ with ∂0 ¼ ∂
∂τ and∂1 ¼ ∂

∂σ. In the rest of the paper, however, we will use the
complex coordinates ðz ¼ τ þ iσ; z̄ ¼ τ − iσÞ together with ∂ ¼
∂
∂z and ∂̄ ¼ ∂

∂z̄. Our conventions are such that the alternating tensor
is ϵzz̄ ¼ þ1.

PHYSICAL REVIEW D 104, 126028 (2021)

2470-0010=2021=104(12)=126028(12) 126028-1 Published by the American Physical Society

https://orcid.org/0000-0003-2452-2682
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.126028&domain=pdf&date_stamp=2021-12-27
https://doi.org/10.1103/PhysRevD.104.126028
https://doi.org/10.1103/PhysRevD.104.126028
https://doi.org/10.1103/PhysRevD.104.126028
https://doi.org/10.1103/PhysRevD.104.126028
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the Yang-Baxter equation used in [6] and the integrable
deformations of the principal chiral model [41]. We are able
to find a solutions to this integrability condition. This leads to
an integrable two-dimensional nonlinear sigma model in the
form of a two-parameter family of integrable deformations of
the Wess-Zumino-Witten model. Our result might be a
generalization of the two-parameter integrable deformations
of the WZW model found in [42]. Indeed, the two con-
structions coincide for a special case and we conjecture that
our work contains more integrable models.
The paper is organized as follow: In the next section we

give in details the steps leading to the equivalent relation
to (1.4) for the case of the general Wess-Zumino-Witten
model with a summary of the results at the end. For
completeness, we show in Sec. III how the Yang-Baxter
integrable sigma model is obtained as a particular case of
our construction. In Sec. IV, we construct the solution to
the integrability conditions and give, in Sec. V, the
corresponding integrable nonlinear sigma models.

II. THE GENERAL CONSTRUCTION

We consider the two-dimensional nonlinear sigma model
as defined by the action

SðgÞ ¼
Z
∂M

dzdz̄hg−1∂g; ðM þ NÞg−1∂̄giG
þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG; ð2:1Þ

where M is a three-dimensional ball having xμ, with
μ ¼ 1, 2, 3, as coordinates and ∂M is the boundary of this
ball with coordinates z and z̄. The bilinear form h; iG is the
Killing-Cartan form on the Lie algebra G and the field
gðz; z̄Þ is an element of the Lie group corresponding to G.
The Lie algebra is of dimension n. The Wess-Zumino-
Witten term comes with a parameter λ.
The Lie algebra G is defined by the commutation

relations ½Ta; Tb� ¼ fcabTc. For a semi-simple Lie algebra
the Killing-Cartan form is ηab ¼ fdacfcbd and we have
hTa; TbiG ¼ ηab ¼ TrðTaTbÞ. However, for a non semi-
simple Lie algebra the bilinear form is such that
hTa; TbiG ¼ ηab with ηab an invertible matrix satisfy-
ing ηabfbcd þ ηcbfbad ¼ 0.
The two quantitiesM and N are linear operator acting on

the generators of the Lie algebra G. They are required to
satisfy the relation

hX; ðM þ NÞYiG ¼ hðM − NÞX; YiG ð2:2Þ

for any two elements X and Y in the Lie algebra G. In other
words, M is symmetric while N is antisymmetric with
respect to h; iG.

Putting indices, the action of M and N on the generators
fTag of the Lie algebra G is MTa ¼ Mb

aTb and NTa ¼
Nb

aTb and (2.2) is equivalent to

ηacMc
b ¼ ηbcMc

a;

ηacNc
b ¼ −ηbcNc

a; ð2:3Þ
where ηab is the bilinear form corresponding to the Lie
algebra G as stated above.
It is useful to introduce the two quantities

A ¼ g−1∂g;
Ā ¼ g−1∂̄g: ð2:4Þ

In terms of A and Ā, the equations of motion of the model
take the form

∂½ðM þ N þ λIÞĀ� þ ∂̄½ðM − N − λIÞA�
þ ½A; ðM þ NÞĀ� þ ½Ā; ðM − NÞA� ¼ 0: ð2:5Þ

Multiplying this equation by g on the left and g−1 on the
right, we get the conservation equation

∂J̄ þ ∂̄J ¼ 0; ð2:6Þ

where we have defined the two currents J and J̄ as

J ¼ gðP−1AÞg−1;
J̄ ¼ gðQ−1ĀÞg−1: ð2:7Þ

Here the two linear operators P−1 andQ−1, acting on A and
Ā only, are defined as

P−1 ¼ M − ðN − λIÞ;
Q−1 ¼ M þ ðN − λIÞ; ð2:8Þ

where I is the identity operator on the elements of the Lie
algebra G.
The conservation equation (2.6) is a result of to the

global symmetry of the action (2.1) under the left multi-
plication

g → hg; ð2:9Þ

where h is a constant group element.
It is, of course, assumed that the two linear operators P

and Q are invertible. Hence, the inversion of (2.7) gives

A ¼ Pðg−1JgÞ;
Ā ¼ Qðg−1J̄gÞ: ð2:10Þ

However, the two currents A and Ā satisfy the Cartan-
Maurer identity
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∂Ā − ∂̄Aþ ½A; Ā� ¼ 0: ð2:11Þ

In terms of the currents J and J̄, after a use of (2.10) and
(2.11), one finds the identity

1

2
ðQ − PÞ½g−1ð∂J̄ þ ∂̄JÞg�

þ 1

2
ðQþ PÞ½g−1ð∂J̄ − ∂̄J þ ε½J; J̄�Þg�

−
ε

2
ðQþ PÞ½g−1Jg; g−1J̄g� −Q½Pðg−1JgÞ; g−1J̄g�

þ P½Qðg−1J̄gÞ; g−1Jg� þ ½Pðg−1JgÞ; Qðg−1J̄gÞ�
¼ 0: ð2:12Þ

We have added and subtracted the term proportional to the
constant ε. At this stage ε is just a bookkeeping device but
will later join the constant λ to form one of the deformation
parameters λε.
In order to have an identity that is suitable for the concept

of integrability, we demand that the linear operators P and
Q are such that the last four terms in (2.12) vanish. That is,

−
ε

2
ðQþ PÞ½g−1Jg; g−1J̄g� −Q½Pðg−1JgÞ; g−1J̄g�

þ P½Qðg−1J̄gÞ; g−1Jg� þ ½Pðg−1JgÞ; Qðg−1J̄gÞ� ¼ 0:

ð2:13Þ

Since the quantities g−1Jg and g−1J̄g take values in the Lie
algebra G, this last equation is equivalent to requiring that

½PX;QY�−P½X;QY�−Q½PX;Y�¼ ε

2
ðPþQÞ½X;Y� ð2:14Þ

for any two Lie algebra elements X and Y. Notice that the
constant ε can be absorbed by a rescaling of the two
operators P andQ [which amounts to a rescaling of the two
currents J and J̄ in (2.7)].
When this last relation holds, the currents obey the

identity

1

2
ðQ − PÞ½g−1ð∂J̄ þ ∂̄JÞg�

þ 1

2
ðQþ PÞ½g−1ð∂J̄ − ∂̄J þ ε½J; J̄�Þg� ¼ 0: ð2:15Þ

If in addition, the operator (Qþ P) is invertible then the
two currents J and J̄ obey the two relations

∂J̄ þ ∂̄J ¼ 0;

∂J̄ − ∂̄J þ ε½J; J̄� ¼ 0: ð2:16Þ

Therefore, in addition of being on-shell conserved, the
currents J and J̄ have zero curvature.

These last two equations are the consistency conditions
of the linear differential system

8><
>:

�
∂ þ ε

1þμ J
�
Ψ ¼ 0�

∂̄ þ ε
1−μ J̄

�
Ψ ¼ 0

: ð2:17Þ

Here Ψðz; z̄; μÞ is a matrix valued field. The requirement
that this linear differential system is consistent, for all
values of the spectral parameter μ, leads to the equations of
motion of the nonlinear sigma model (2.16). This is
precisely the statement of the classical integrability of a
two-dimensional nonlinear sigma model [43].
Finally, in terms of the linear operators P and Q, the

relation (2.2) involving the bilinear form h; iG becomes
upon using (2.8)

hX;Q−1YiG ¼ hP−1X; YiG − 2λhX; YiG: ð2:18Þ

By writing X ¼ PZ and Y ¼ QW, where X, Y, Z, and W
are in the Lie algebra G, this last relation becomes

hPZ;WiG ¼ hZ;QWiG − 2λhPZ;QWiG: ð2:19Þ

Summary: Given two linear operators P and Q (we
assume that P,Q and PþQ are invertible) on a Lie algebra
G and satisfying, for any two elements X and Y in G, the two
relations

hPX; YiG ¼ hX;QYiG − 2λhPX;QYiG; ð2:20Þ

½PX;QY� − P½X;QY� −Q½PX; Y�
¼ ε

2
ðPþQÞ½X; Y� ð2:21Þ

then the two-dimensional nonlinear sigma model defined
by the action

SðgÞ ¼ λ

Z
∂M

dzdz̄hg−1∂g; g−1∂̄giG
þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG

þ
Z
∂M

dzdz̄hg−1∂g;Q−1ðg−1∂̄gÞiG ð2:22Þ

is classically integrable. We have used (2.8) to write
M þ N ¼ Q−1 þ λI. The equations of motion stemming
from this action are written in (2.16) in terms of two the
currents J and J̄

J ¼ g½P−1ðg−1∂gÞ�g−1;
J̄ ¼ g½Q−1ðg−1∂̄gÞ�g−1 ð2:23Þ
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and are equivalent to the consistency conditions of the
linear system (2.17).

III. THE YANG-BAXTER SIGMA MODEL

The so-called Yang-Baxter nonlinear sigma model is
obtained as a special case of our construction. Indeed, let us
first assume that the two linear operators are of the form

P ¼ κI þ ζR;

Q ¼ κI − ζR; ð3:1Þ

where R is a linear operator acting on the generators of the
Lie algebra G and κ and ζ2 ¼ −κðκ þ εÞ > 0 are two
constants. The parameters κ and ε are such ζ2 is strictly
positive. We also put the Wess-Zumino-Witten term in the
action to zero. That is,

λ ¼ 0: ð3:2Þ

When ζ2 ¼ −κðκ þ εÞ, the two relations in (2.20) and
(2.21) become then respectively

hRX; YiG þ hRY; XiG ¼ 0;

½RX;RY� − Rð½RX; Y� þ ½X;RY�Þ ¼ ½X; Y�: ð3:3Þ

The last relation is known as the modified Yang-Baxter
equation while the first equation says that the linear
operator R is antisymmetric with respect to the bilinear
form. A solution to these relations is given in [6,44] and is
briefly recalled in the next section.
The corresponding action is obtained upon replacing

Q−1 in (2.22) and is given by

SðgÞ ¼
Z
∂M

dzdz̄hg−1∂g; ðκI − ζRÞ−1ðg−1∂̄gÞiG;
ζ2 ¼ −κðκ þ εÞ > 0: ð3:4Þ

This is precisely the action found in [6].

IV. CONSTRUCTING A SOLUTION

Our main concern now is to find solutions to (2.20) and
(2.21). We start by recalling the commutation relations of a
Lie algebra in the Cartan-Weyl basis

½Hi;Hj� ¼ 0; i; j ¼ 1…r;

½Hi; Eα� ¼ αiEα;

½Eα; E−α� ¼ αiHi;

½Eα; Eβ� ¼
�
N α;βEαþβ if αþ β ∈ Σ;
0 if αþ β ∉ Σ:

ð4:1Þ

Here Σ is the set of roots.2 The generators are normalized
such that the Killing form (the bilinear form) is

hHi;Hji¼δij; hHi;Eαi¼0; hEα;Eβi¼δαþβ;0: ð4:2Þ

Since we will use the linear operator R, defined in (3.3),
we start by giving its action on the generators of the Lie
algebra in the Cartan-Weyl basis as found in [6,44]. This is

8<
:

RHi ¼ 0;
REα ¼ −iEα if α ∈ Σþ;
RE−α ¼ iE−α if α ∈ Σþ;

ð4:3Þ

where Σþ is the set of positive roots and i2 ¼ −1 (not to be
confused with the index i used above). The action of the
linear operator R on the generators of the Lie algebra in the
basis fTag is specified by

RTa ¼ 0 if Ta ∈ H;

RTa ¼ Taþ1;

RTaþ1 ¼ −Ta;

�
with

Eαa ¼ Ta þ iTaþ1 and such that αa ∈ Σþ: ð4:4Þ

Here H is the Cartan subalgebra of the Lie algebra G.
It is instructive to illustrate the action of the linear

operator R on the generators of the Lie algebra SUð3Þ. The
generalization to other Lie algebras can be figured out in a
similar manner. The SUð3Þ Cartan-Weyl basis is consti-
tuted as

E�αð1Þ ¼ T1 � iT2; E�αð2Þ ¼ T4 � iT5;

E�αð3Þ ¼ T6 � iT7; H1 ¼ T3; H2 ¼ T8: ð4:5Þ

Using (4.4), one finds that the operator R acts on the SUð3Þ
generators fTag as

R

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

: ð4:6Þ

It is then clear that the matrix R2 is diagonal with entries
equal to either −1 or 0 (zero corresponds to the action of R2

2We use the conventions and notations of Ref. [45].
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on the elements of the Cartan subalgebra). The operator R2

will be needed later.
Let us now return to the linear operators P and Q. We

assume that they act on the generators of the Lie algebra in
the Cartan-Weyl basis as

8>><
>>:

PHi ¼ σiHi;

PEα ¼ pEα if α ∈ Σþ;

PE−α ¼ p�E−α if α ∈ Σþ;8>><
>>:

QHi ¼ ξiHi;

QEα ¼ qEα if α ∈ Σþ;

QE−α ¼ q�E−α if α ∈ Σþ;

ð4:7Þ

where no summation over the repeated index i is implied.
The constants σi and ξi are real while p and q are complex.
In the basis ðHi; Eα; E−αÞ, the matrices associated to the
operators P and Q are diagonal.
Using the commutation relations (4.1), the Killing form

(4.2) and the action of the linear operators as in (4.7), the
relations (2.20) and (2.21) are satisfied if

−pq ¼ ε

2
ðpþ qÞ; ð4:8Þ

pq� − q�σi − pξi ¼
ε

2
ðσi þ ξiÞ; ð4:9Þ

σi ¼ ξi − 2λσiξi; ð4:10Þ

p ¼ q� − 2λpq�: ð4:11Þ

The last two equations give simply σi in terms of ξi and p in
terms of q

σi ¼
ξi

1þ 2λξi
; ð4:12Þ

p ¼ q�

1þ 2λq�
: ð4:13Þ

Upon reporting (4.12) and (4.13) in (4.9) and (4.8) one
finds

q� ¼ τj � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τj

	
τj þ

ε

1þ λε


s
; j ¼ 1…r;

ð1þ λεÞq�qþ ε

2
ðq� þ qÞ ¼ 0: ð4:14Þ

Here i2 ¼ −1 and τj is defined as

τj ¼ ξjð1þ λξjÞð1þ λεÞ; j ¼ 1…r: ð4:15Þ

We have therefore determined q in terms of ξj. The two
equations in (4.14) are always compatible. Next, the
parameter p is calculated from (4.13).
Now two paramaters ξi and ξj, say, must lead to the same

value of q according to (4.14). This means that we must
have also

ξið1þ λξiÞð1þ λεÞ ¼ ξjð1þ λξjÞð1þ λεÞ;
i; j ¼ 1…r: ð4:16Þ

Therefore, the parameters ξi are such that

ξi ¼ ξj or ξi ¼ −
1þ λξj

λ
; i; j ¼ 1…r: ð4:17Þ

This means that they fall into two sets fξ1;…; ξr−lg and
fξr−l−1;…; ξrg, 0 ≤ l ≤ r, and the members of a set are
identical. A set could be empty (if l ¼ 0). The correspond-
ing expressions for the parameters σi are found from (4.12).
These two choices for the constants ξi suggests the

splitting of the Cartan subalgebra of G as

H ¼ Hr−l ∪ Hl; 0 ≤ l ≤ r; ð4:18Þ

where Hr−l contains the first r − l elements of H and Hl
the remaining l elements (0 ≤ l ≤ r).
We have now all the ingredients to put forward the full

solution to the Eqs. (4.8)–(4.11). This is given by

ξ1 ¼ ξ2 ¼ � � � ¼ ξr−l ¼ ξ; ξr−lþ1 ¼ ξr−lþ2 ¼ � � � ¼ ξr ¼ −
1þ λξ

λ
;

σ1 ¼ σ2 ¼ � � � ¼ σr−l ¼
ξ

1þ 2λξ
; σr−lþ1 ¼ σr−lþ2 ¼ � � � ¼ σr ¼

1þ λξ

λð1þ 2λξÞ ;

q ¼ τ ∓ iω;

p ¼ τ0 � iω0; ð4:19Þ
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where ξ is a free parameter. The constants τ, ω, τ0, and ω0
are given by

τ ¼ ξð1þ λξÞð1þ λεÞ;

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ

	
τ þ ε

1þ λε


s
;

τ0 ¼ ξð1þ λξÞð1 − λεÞ
ð1þ 2λξÞ2 ;

ω0 ¼ 1

ð1þ 2λξÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−τ

	
τ þ ε

1þ λε


s
: ð4:20Þ

The only restriction on the free parameter ξ is that the
argument of the square root in the expression of ω is
positive or zero. This is equivalent to demanding that

τ ¼ ξð1þ λξÞð1þ λεÞ ∈
�
−

ε

1þ λε
; 0

�
: ð4:21Þ

The domain of parameters is therefore quite vast.

V. THE INTEGRABLE NONLINEAR SIGMA
MODEL

The linear operators P and Q acting on the basis fTag
of the Lie algebra G are deduced from (4.7) and the
solution (4.19). It might be helpful to work out their action
on the Lie algebra SUð3Þ first. For instance, QEαð1Þ ¼
qEαð1Þ ¼ ðτ ∓ iωÞEαð1Þ implies that QT1 ¼ τT1 � ωT2 and
QT2 ¼ τT2 ∓ ωT1, and so on. If we partition the SUð3Þ
Cartan subalgebra as H ¼ Hr−l ∪ Hl ¼ T3 ∪ T8 then
we have

Q

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

τ �ω 0 0 0 0 0 0

∓ω τ 0 0 0 0 0 0

0 0 ξ 0 0 0 0 0

0 0 0 τ �ω 0 0 0

0 0 0 ∓ω τ 0 0 0

0 0 0 0 0 τ �ω 0

0 0 0 0 0 ∓ω τ 0

0 0 0 0 0 0 0 − 1þλξ
λ

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

: ð5:1Þ

The matrix corresponding to the operator P can be
determined in a similar manner.
For the sake of condensing the expressions, we introduce

the notation

γ ¼ ξ− τ ¼ −λξ½εþ ξð1þ λεÞ�;

ρ¼ −
1þ λξ

λ
− τ ¼ −

ð1þ λξÞ
λ

½1þ λξð1þ λεÞ�;

γ0 ¼ ξ

1þ 2λξ
− τ0 ¼ λξ

ð1þ 2λξÞ2 ½εþ ξð1þ λεÞ�;

ρ0 ¼ 1þ λξ

λð1þ 2λξÞ− τ0 ¼ ð1þ λξÞ
λð1þ 2λξÞ2 ½1þ λξð1þ λεÞ�: ð5:2Þ

The operators P and Q are given by

P ¼ τ0I ∓ ω0Rþ γ0Zr−l þ ρ0Zl;

Q ¼ τI � ωRþ γZr−l þ ρZl: ð5:3Þ

The linear operator R is still that in (4.4), I is the identity
operator and the action of the linear operators Zr−l and Zl
on the basis fTag is

8>><
>>:
Zr−lTa ¼ Ta only if Ta ∈Hr−l;0≤ l≤ r;

ZlTa ¼ Ta only if Ta ∈Hl;0≤ l≤ r;

Zr−lTa ¼ZlTa ¼ 0 otherwise:

ð5:4Þ

The operators Zr−l and Zl act only on the elements of the
Cartan subalgebra H ¼ Hr−l ∪ Hl with 0 ≤ l ≤ r.
The next step in our construction is the computation of

the inverses of the two operators P and Q. These are block
diagonal matrices having either 2 × 2 or 1 × 1 matrices
along the diagonal and are easily inverted. Indeed, we have

P−1 ¼ τ0

τ02 þω02 I�
ω0

τ02 þω02Rþ
	

1

τ0 þ γ0
−

τ0

τ02 þω02



Zr−l

þ
	

1

τ0 þ ρ0
−

τ0

τ02 þω02



Zl;

Q−1 ¼ τ

τ2 þω2
I ∓ ω

τ2 þω2
Rþ

	
1

τþ γ
−

τ

τ2 þω2



Zr−l

þ
	

1

τþ ρ
−

τ

τ2 þω2



Zl: ð5:5Þ

Explicitly, these expressions give
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P−1 ¼ −
1

ε
½ð1 − λεÞI �

ffiffiffiffiffiffiffiffiffi
−αβ

p
Rþ αZr−l þ βZl�;

Q−1 ¼ −
1

ε
½ð1þ λεÞI ∓ ffiffiffiffiffiffiffiffiffi

−αβ
p

Rþ αZr−l þ βZl�: ð5:6Þ

The two constants α and β are defined as

α¼−
1

ξ
½εþξð1þλεÞ�; β¼−

½1þλξð1þλεÞ�
ð1þλξÞ : ð5:7Þ

By eliminating the parameter ξ between α and β, we find
that

β ¼ −
�
1 −

ðλεÞ2
1þ α

�
: ð5:8Þ

In terms of the parameters α and β, the operators P andQ
are as given in (5.3) where

τ¼−
εð1þαÞð1þλεÞ
ð1þαþλεÞ2 ; τ0 ¼−

εð1þαÞð1−λεÞ
ð1þα−λεÞ2 ;

ω¼ εð1þαÞ ffiffiffiffiffiffiffiffiffi
−αβ

p
ð1þαþλεÞ2 ; ω0 ¼ εð1þαÞ ffiffiffiffiffiffiffiffiffi

−αβ
p

ð1þα−λεÞ2 ;

γ¼ λε2α

ð1þαþλεÞ2 ; γ0 ¼−
λε2α

ð1þα−λεÞ2 ;

ρ¼−
ð1þαÞ½1þα−ðλεÞ2�

λð1þαþλεÞ2 ; ρ0 ¼ ð1þαÞ½1þα−ðλεÞ2�
λð1þα−λεÞ2 :

ð5:9Þ

We notice that the parameters ðτ0;ω0; γ0; ρ0Þ are obtained
from ðτ;ω; γ; ρÞ by the change λ → −λ.
There is another way of writing the operators P−1 and

Q−1. Let Zr be the operator that acts as

�
ZrTa ¼ Ta only if Ta ∈ H;

ZrTa ¼ 0 otherwise:
ð5:10Þ

That is, Zr acts on all the generator in the Cartan
subalgebra H. It satisfies the relation

Zr ¼ I þ R2: ð5:11Þ

Furthermore, it can be seen that

Zr−l ¼ Zr − Zl ¼ ðI þ R2Þ − Zl: ð5:12Þ

Using this last relation, we can write the operators P−1 and
Q−1 in the form

P−1 ¼ −
1

ε
½ð1− λεþ αÞI�

ffiffiffiffiffiffiffiffiffi
−αβ

p
Rþ αR2 þ ðβ − αÞZl�;

Q−1 ¼ −
1

ε
½ð1þ λεþ αÞI ∓ ffiffiffiffiffiffiffiffiffi

−αβ
p

Rþ αR2 þ ðβ − αÞZl�:
ð5:13Þ

Aword of caution is necessary here. The operators P−1 and
Q−1 are not invertible if either ð1 − λεþ αÞ ¼ −ðβ − αÞ or
ð1þ λεþ αÞ ¼ −ðβ − αÞ. In this case the operators
ð1 − λεþ αÞI þ αR2 þ ðβ − αÞZl or ð1þ λεþ αÞI þ
αR2 þ ðβ − αÞZl will have zeros as entries along the
diagonal whenever acting on the generators in Hl. The
expression of β in (5.7) gives ð1þ 2λξÞ ¼ 0 and λ ¼ 0 as
solutions to ð1 − λεÞ ¼ −β and ð1þ λεÞ ¼ −β. These are
precisely the two situations which are not allowed as can be
seen from the solution (4.19).
Using the expression of Q−1 in (5.13), our action (2.22)

takes then the form

SlðgÞ¼−
1

ε

Z
∂M

dzdz̄hg−1∂g; ½ð1þαÞI∓ ffiffiffiffiffiffiffiffiffi
−αβ

p
RþαR2

þðβ−αÞZl�ðg−1∂̄gÞiG
þ λ

6

Z
M
d3xϵμνρhg−1∂μg; ½g−1∂νg;g−1∂ρg�iG: ð5:14Þ

The parameters α and β are related by (5.8) and λε is
another free parameter (1ε is an overall factor). This is the
main result of this paper. The above two dimensional
nonlinear sigma model is integrable. The two current J ¼
g½P−1ðg−1∂gÞ�g−1 and J̄ ¼ g½Q−1ðg−1∂̄gÞ�g−1, with P−1

and Q−1 as given in (5.13), are conserved and have a
vanishing curvature on-shell.
At this stage a remark is due: In the case when l ¼ 0, that

is when the set Hl ¼ H0 is an empty set (consequently
Z0Ta ¼ 0 for all Ta in the Lie algebra G), the action S0ðgÞ
is precisely that constructed in ref. [42]. Their parameters,
in this case, are related to ours as

η2 ¼ α; A¼∓ ffiffiffiffiffiffiffiffiffi
−αβ

p
; k2 ¼ðλεÞ2; K¼ 1

ε
: ð5:15Þ

With this identification, their relation A ¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

1þη2

q
is

exactly that written in (5.8).
In order to explore the novelty of our construction, we

find it convenient to rewrite our final action as
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SlðgÞ ¼ −
1

ε

Z
∂M

dzdz̄hg−1∂g; ½I þ αZr−l þ βZl ∓
ffiffiffiffiffiffiffiffiffi
−αβ

p
R�ðg−1∂̄gÞiG

þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG: ð5:16Þ

In reaching this simplified version we have made use of (5.11) and (5.12) and the action of the linear operators Zl and Zr−l
is as defined in (5.4). The Cartan subalgebra is split as H ¼ Hr−l ∪ Hl with 0 ≤ l ≤ r and H0 is the empty set.
As mentioned above, the case l ¼ 0 is already treated in Ref. [42] and their integrable nonlinear sigma model is given by

the action

S0ðgÞ ¼ −
1

ε

Z
∂M

dzdz̄hg−1∂g; ½I þ αZr ∓
ffiffiffiffiffiffiffiffiffi
−αβ

p
R�ðg−1∂̄gÞiG

þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG: ð5:17Þ

The linear operatorZr ¼ I þ R2, given in (5.10), acts on all
the generators in the Cartan subalgebra H.
In the next sectionwewill point out, by considering specific

examples, that the action SlðgÞ, for Lie algebras with rank
r ≥ 2, contains deformations of the Wess-Zumino-Witten
model that are not accounted for by the action S0ðgÞ (the
nonlinear sigma model of Ref. [42]). Hence, this article is a
generalization of the work of Ref. [42].

VI. THE DEFORMED SUð2Þ WZW MODEL
AND BEYOND

It is instructive to illustrate our construction by first con-
sidering the Lie algebras SUð2Þ. For this purpose, let us call

Dl ¼ αZr−l þ βZl ∓
ffiffiffiffiffiffiffiffiffi
−αβ

p
R ð6:1Þ

the deformation operator.Wewill also consider α and β as our
free parameters instead of α and λε. In terms of α and β, (5.8)
gives

ðλεÞ2 ¼ ð1þ αÞð1þ βÞ: ð6:2Þ

The deformed WZWaction (5.16) is then written as

SlðgÞ ¼ −
1

ε

Z
∂M

dzdz̄hg−1∂g; ½I þDl�ðg−1∂̄gÞiG
þ 1

6

1

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞð1þ βÞ

p Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG: ð6:3Þ

Notice that the coefficient of the WZW term is symmetric under the exchange α ↔ β.
In the case of the SUð2Þ Lie algebra, with generators fT1; T2; T3g and H ¼ fT3g, there are two deformation operators

and their action is given by

D0

0
BB@

T1

T2

T3

1
CCA ¼

0
BB@

0 ∓ ffiffiffiffiffiffiffiffiffi
−αβ

p
0

� ffiffiffiffiffiffiffiffiffi
−αβ

p
0 0

0 0 α

1
CCA
0
BB@

T1

T2

T3

1
CCA:

D1

0
BB@

T1

T2

T3

1
CCA ¼

0
BB@

0 ∓ ffiffiffiffiffiffiffiffiffi
−αβ

p
0

� ffiffiffiffiffiffiffiffiffi
−αβ

p
0 0

0 0 β

1
CCA
0
BB@

T1

T2

T3

1
CCA: ð6:4Þ

These differ by their action on the generator T3. However, by the parameter redefinition α ↔ β, the deformation operatorsD0

and D1 are mapped to each other3 and, therefore, lead to the same integrable nonlinear sigma model.

3I thank an anonymous referee for this remark.
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Despite the fact that we have established that the deformations operator D0 and D1 are the same (up to a parameter
redefinition), we will for completeness give the action for the deformed SUð2ÞWZWmodel. The SUð2Þ group element g is
parametrized as

g ¼
	
cosðφ1Þe−iφ2 − sinðφ1Þe−iφ3

sinðφ1Þeiφ3 cosðφ1Þeiφ2



: ð6:5Þ

For the bilinear form we take h; i ¼ Tr. The nonlinear sigma model corresponding to the deformation operatorD0 is given,
up to a total derivative, by the action

S0 ¼
2

ε

Z
∂M

dzdz̄f∂φ1∂̄φ1 þ ½1þ αcos2ðφ1Þ�cos2ðφ1Þ∂φ2∂̄φ2

þ ½1þ αsin2ðφ1Þ�sin2ðφ1Þ∂φ3∂̄φ3 − αcos2ðφ1Þsin2ðφ1Þð∂φ2∂̄φ3 þ ∂φ3∂̄φ2Þ
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞð1þ βÞ

p
sin2ðφ2 − φ3Þcos2ðφ1Þð∂φ2∂̄φ3 − ∂φ3∂̄φ2Þg: ð6:6Þ

The deformation operator D1 yields the same action with the replacement α → β.
Next, we consider the Lie algebra SUð3Þ. Its Cartan subalgebra is H ¼ fT3; T8g. The three deformation operators are 6

D0

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

0 A 0 0 0 0 0 0

−A 0 0 0 0 0 0 0

0 0 α 0 0 0 0 0

0 0 0 0 A 0 0 0

0 0 0 −A 0 0 0 0

0 0 0 0 0 0 A 0

0 0 0 0 0 −A 0 0

0 0 0 0 0 0 0 α

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

;

D1

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

0 A 0 0 0 0 0 0

−A 0 0 0 0 0 0 0

0 0 α 0 0 0 0 0

0 0 0 0 A 0 0 0

0 0 0 −A 0 0 0 0

0 0 0 0 0 0 A 0

0 0 0 0 0 −A 0 0

0 0 0 0 0 0 0 β

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

;

D2

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

¼

0
BBBBBBBBBBBBBBB@

0 A 0 0 0 0 0 0

−A 0 0 0 0 0 0 0

0 0 β 0 0 0 0 0

0 0 0 0 A 0 0 0

0 0 0 −A 0 0 0 0

0 0 0 0 −0 0 A 0

0 0 0 0 0 −A 0 0

0 0 0 0 0 0 0 β

1
CCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBB@

T1

T2

T3

T4

T5

T6

T7

T8

1
CCCCCCCCCCCCCCCA

; ð6:7Þ
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where A ¼ ∓ ffiffiffiffiffiffiffiffiffi
−αβ

p
as in the dictionary (5.15). We see that

D2 andD0 are related by the parameter redefinition α ↔ β.
However, D1 and D0 cannot be related by any parameter
redefinition. It seems, therefore, that there are two inde-
pendent deformations of the SUð3Þ WZW model, namely
S0ðgÞ and S1ðgÞ. This remains though to be verified by an
explicit calculation.
In general, one may decompose the Maurer-Cartan one-

form along the Cartan-Weyl basis (4.1) as

g−1dg¼½eγaEγþe−γa E−γþe
iðr−lÞ
a Hiðr−lÞ þe

iðlÞ
a HiðlÞ �dφa: ð6:8Þ

Here φaðz; z̄Þ are the n local fields and the index γ runs over
the positive roots Σþ. The Cartan subalgebra is partitioned
as H ¼ Hr−l ∪ Hl with 0 ≤ l ≤ r. The indices iðr−lÞ ¼
0;…; l and iðlÞ ¼ lþ 1;…; r are such that Hiðr−lÞ ∈ Hr−l

and HiðlÞ ∈ Hl. The vielbiens are functions of φaðz; z̄Þ
and e

ið0Þ
a ¼ 0.

Using the bilinear form h; i as given in (4.2) and the
action of the operator R in (4.3) together with the action of
the operators Zr−l and Zl as defined in (5.4), we find that

SlðgÞ ¼ −
1

ε

Z
∂M

dzdz̄½eγae−γb þ e−γa eγb þ ð1þ αÞeiðr−lÞa e
iðr−lÞ
b

þ ð1þ βÞeiðlÞa e
iðlÞ
b �∂φa∂̄φb

� i

ffiffiffiffiffiffiffiffiffi
−αβ

p
ε

Z
∂M

dzdz̄½eγae−γb − e−γa eγb�∂φa∂̄φb

þ 1

6

1

ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞð1þ βÞ

p
×
Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG: ð6:9Þ

We see that the nonlinear sigma models defined by SlðgÞ,
l ¼ 0…r, share the same antisymmetric tensor field (com-
ing from the last two terms) but differ by their target space
metric (coming from the first term). It is clear that the two
models S0ðgÞ and SrðgÞ are related by the parameter
redefinition α ↔ β. Apart from this, we are inclined to
conjecture that there are r different integrable models given
by SlðgÞ, l ¼ 0…r − 1.

VII. CONCLUSIONS AND OUTLOOK

We have presented in this work an integrable two-
dimensional nonlinear sigma model. It is a two-parameter
deformation of the Wess-Zumino-Witten model. We have
found a simple solution to the main integrability equa-
tions (2.20) and (2.21) of this article. It remains to see if
these relations admit other solutions. The renormalizabil-
ity of the sigma model studied here and its possible
connection to string theories is another interesting subject
to be explored.

There is a strong link between integrability and gauging
as shown in [7,46]. This property is not very neat here.
Indeed, the general WZWmodel (2.22) is related to another
theory as follows: The nonlinear sigma model as defined by
the action

Sðg;hÞ ¼ λ

Z
∂M

dzdz̄hg−1∂g; g−1∂̄giG
þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG

−
Z
∂M

dzdz̄hh−1∂h;Qðh−1∂̄hÞiG
þ
Z
∂M

dzdz̄ðhh−1∂h;g−1∂̄giG þhh−1∂̄h;g−1∂giGÞ
ð7:1Þ

is invariant under the constant left multiplication h → lh.
This can be gauged by introducing a two components
gauge field Bμ, with μ ¼ z; z̄, transforming as
Bμ → lBμl−1 − ∂μll−1. The gauging is carried out by
replacing h−1∂μh with h−1ð∂μ þ BμÞh. The choice of
the gauge h ¼ 1 leads then, after the use of (2.18), to
the action

Sðg; BμÞ ¼ λ

Z
∂M

dzdz̄hg−1∂g; g−1∂̄giG
þ λ

6

Z
M

d3xϵμνρhg−1∂μg; ½g−1∂νg; g−1∂ρg�iG

þ
Z
∂M

dzdz̄hg−1∂g;Q−1ðg−1∂̄gÞiG
−
Z
∂M

dzdz̄hB − ðP−1 − 2λIÞðg−1∂gÞ;
×Q½B̄ −Q−1ðg−1∂̄gÞ�iG: ð7:2Þ

The equations of motion of the nondynamical fields B and
B̄ are B ¼ ðP−1 − 2λIÞðg−1∂gÞ and B̄ ¼ Q−1ðg−1∂̄gÞ.
Substituting these into (7.2) we recover our general
WZW action (2.22).
Now, the equations of motion corresponding to the

original action (7.1) are

∂½gāg−1� þ ∂̄½gðaþ 2λAÞg−1� ¼ 0;

∂½hðQā − ĀÞh−1� þ ∂̄½hððP−1 − 2λIÞ−1a − AÞh−1� ¼ 0;

ð7:3Þ

where a ¼ h−1∂h and ā ¼ h−1∂̄h and A and Ā are as
defined in (2.4). The operator ðP−1 − 2λIÞ is obtained from
the expression of P−1 by simply changing λ to −λ as can be
seen from (2.8). These equations of motion, assuming that
P andQ obey (2.20) and (2.21), do not seem to derive from
some zero curvature conditions. Yet, the gauge fixed action
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(7.2) leads to integrable nonlinear sigma model. This issue
deserves to be investigated. As a matter of fact, this remark
is true for most of the integrable sigma models found in the
literature.

Note added.—After the completion of this work we became
aware of the existence of Ref. [47] where (2.21) was also
established. Their construction makes the formulations in
[42,48] more compact and is inspired by the works of

Klimčík [49–51]. Their assumption on the antisymmetric
operatorR is that it solves thehomogeneousor inhomogeneous
classical Yang-Baxter equation. In the case of the usual
Drinfel’d-Jimbo solution, the R matrix satisfies the important
relation R3 ¼ −R. They showed, in this particular case, that
their integrable nonlinear sigma model is precisely that found
in [42] (see their Sec. 3.2). Since our R matrix obeys also
R3 ¼ −R,we conjecture that ourmodelswith l ¼ 1;…; r − 1
are not covered by the construction of Ref. [47].
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