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We show that constraints on scalar field potentials and towers of light massive states in asymptotic limits
of scalar field space (as posited by the de Sitter conjecture and the swampland distance conjecture,
respectively) are correlated with the prospects for defining asymptotic observables in expanding
Friedmann-Robertson-Walker cosmologies. The observations of a “census taker” in an eternally inflating
cosmology are further related to the question of whether certain domain walls satisfy a version of the weak
gravity conjecture. This suggests that answers to fundamental questions about asymptotic observables in
cosmology could help shed light on the swampland program, and vice versa.
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I. INTRODUCTION

The past few years have seen significant advances in
our understanding of the physics of black holes. Recent
computations of the Page curve [1–3] have shed light on
the black hole information paradox [4] and led to a con-
crete realization of black hole complementarity [5–7].
Meanwhile, strong evidence has been provided for the
absence of global symmetries in quantum gravity [8–14]
and the weak gravity conjecture (WGC) [15–19]—two
conjectures motivated by demanding consistent black hole
decay—as well as the swampland distance conjecture
(SDC) [20–26]. The consequences of these conjectures
have been studied extensively.
At the same time, there has been a revival of interest in

questions about de Sitter space and inflation, though as of
yet these questions have not been clearly answered. Various
works have considered bounds on scalar field potentials in
quantum gravity [27–32], called into question the existence
of de Sitter vacua in quantum gravity [27,33,34], and
advocated for alternative models of dark energy [35–38].
Yet at the same time, other works have made progress in
putting claimed de Sitter constructions in string theory on
more solid footing [39–44]. Similarly, various works have
proposed constraints on inflation in quantum gravity
[35,45–49], while other works have attempted to evade
these constraints [50–52].

The goal of this paper is to draw parallels between the
physics of black holes and the physics of de Sitter cosmol-
ogies, which ideally may allow us to translate some of the
recent lessons learned in the former area into progress in the
latter. At the same time, we will also highlight connections
between semiclassical analyses of black holes and cosmol-
ogy and recent developments in the “swampland program.”
In particular, we will argue that older studies on the
difficulties of defining asymptotic observables in an expand-
ing universe may shed light on recent studies of scalar field
potentials in string theory, and in turn, recent progress on the
weak gravity conjecture and black hole complementarity
may shed light on asymptotic observables in de Sitter space.
The remainder of this paper is structured as follows. In

Sec. II, we review the difficulties of defining asymptotic
observables in expanding spacetimes. In Sec. III, we review
the difficulties of defining asymptotic observables, and
making predictions, in an eternally inflating cosmology. In
Sec. IV, we connect the problem of defining asymptotic
observables to the deSitter conjecture [27].We advocate for a
particular “strong form” of the de Sitter conjecture, recently
proposed by the author in [53], and we explain why this
strongdeSitter conjecturemaybe thought of as a sort ofweak
gravity conjecture [15]. In Sec. V, we connect the thermal
fluctuations that occur in quintessence models to the swamp-
land distance conjecture [20]. In Sec. VI, we emphasize that
the experiences of observers in an eternally inflating cos-
mology are dictated by whether domain walls satisfy a
version of the weak gravity conjecture, which suggests a
parallel between black hole decay (which involves the
ordinary weak gravity conjecture for charged particles)
and de Sitter vacuum decay (which involves this version
of the weak gravity conjecture for domain walls). We
conclude with a discussion of our results and remaining
questions in Sec. VII.
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II. ASYMPTOTIC OBSERVABLES IN AN
EXPANDING UNIVERSE

To date, all precise formulations of quantum gravity
involve either anti–de Sitter (AdS) spacetimes or asymp-
totically flat spacetimes. This is related to the fact that such
spacetimes allow us to define asymptotic observables: in
the former, such observables are represented by correlation
functions of a conformal field theory (CFT) living at the
boundary of AdS, through the AdS=CFT correspondence.
In the latter, observables are represented by S-matrix
elements.
In cosmology, on the other hand, it is not nearly so

simple to define asymptotic observables. In many cosmol-
ogies, the presence of an initial singularity precludes the
existence of an S-matrix, though this issue may perhaps be
sidestepped by assuming a unique initial state and writing
down an S-vector that describes only the final state
amplitudes [54,55]. However, an even larger issue looms:
as emphasized in e.g., [56,57], Friedmann-Robertson-
Walker (FRW) cosmologies do not have a property known
as “asymptotic coldness”; the energy density of these space-
times does not tend to zero at spatial infinity on a fixed
Cauchy slice, and related fluctuations of the geometry extend
indefinitely. Any observer looking into the past at finite time
can access only a finite portion of such a universe, whereas
the unobserved region of space contains an infinite amount of
energy and (perhaps) an infinite amount of information. This
prevents the observer from accessing the global state of the
universe nomatter how long they wait, and it precludes an S-
matrix or S-vector description.
It is possible that exact asymptotic observables simply do

not exist in cosmology, and trying to define them is nothing
but a fool’s errand. But on the other hand, it is possible that
the above issues could be partially circumvented, and some
sort of asymptotic observables could be defined even in the
absence of asymptotic coldness. The prospects for this
depend strongly on the type of cosmology under consid-
eration. Following [56], we review three such possibilities:
de Sitter space (with equation of state parameter w ¼ −1),
Q-space (−1 < w < −1=3), and a decelerating universe
(w > −1=3).
For future reference, let us write down the metric of a

(spatially flat) four-dimensional (4D) FRW cosmology,

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2
2Þ; ð1Þ

where aðtÞ is the scale factor, which we assume evolves
according to

aðtÞ ¼
�
t

2
3ðwþ1Þ w > −1
eHt w ¼ −1

: ð2Þ

Here we define the Hubble parameter H ≔ _a=a, which is
constant for w ¼ −1 but vanishes in the t → ∞ limit for

w > −1. The energy density is then given by ρ ¼ H2=3,
and the pressure is given by p ¼ wρ. Throughout this paper
we set 8πG ¼ 1.

A. De Sitter

De Sitter space (dS) has equation of state parameter
w ¼ −1: the scale factor aðtÞ expands exponentially at a
constant rate for all time. The maximal extension of de
Sitter has the metric

ds2 ¼ 1

H2 sin2 η
ð−dη2 þ dχ2 þ sin2 χdΩ2

2Þ; ð3Þ

and its Penrose diagram is shown in Fig. 1. The spatial
sections at constant η are 3-spheres, so there is no notion of
spatial infinity or null infinity: the only asymptotic regions
are I�. A comoving observer has both past and future
horizons of radius H−1. The region limited by these
respective horizons is called the causal diamond.
Several factors preclude the existence of asymptotic

observables in de Sitter space. To begin, de Sitter space
has a future horizon: there are regions of spacetime that are
forever out of contact of a comoving observer, so no
observer can ever witness the final state of the entire
universe. Second, de Sitter has a finite entropy,

SdS ¼
8π2

H2
; ð4Þ

and the Hilbert space of quantum gravity in de Sitter is
(likely) finite-dimensional, which puts a limit on the
complexity of any sort of measurement apparatus that
could exist in de Sitter space [54]. Finally, as noted in [56],
de Sitter has a constant temperature,

TdS ¼ H
2π

; ð5Þ

and the resulting thermal fluctuations, if sufficiently ener-
getic, may destroy any observers. Such high-energy

FIG. 1. The Penrose diagram of de Sitter space.
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thermal fluctuations are Boltzmann suppressed by a factor
of expð−E=TdSÞ, but if one waits long enough such
fluctuations are bound to occur, and thus no observers
can exist eternally in de Sitter space.
For practical purposes in our own universe, these issues

are not so important: the de Sitter entropy is enormous, of
order 10123, and the temperature is minuscule, of order
10−61, so observables can be defined to very good approxi-
mation. In addition, one might also entertain the possibility
of “meta-observables” [54], which are exact quantities that
could be determined by a “meta-observer” who has access
to the entirety of Iþ and I− (see Fig. 1). However, neither of
these approaches quite addresses the conceptual problem at
hand: no observer living in de Sitter space can perform a
measurement with arbitrary precision, so exact observables
do not exist in de Sitter.

B. Q-space

Q-space (−1 < w < −1=3) describes a quintessence-
dominated universe, which accelerates indefinitely into the
future but with decreasing Hubble parameter H ¼ _a=a. Its
associated Penrose diagram is shown in Fig. 2. An observer’s
causal diamond is boundedby a lightlike big bang singularity
and a future event horizon of radius

RE ¼ −
3ðwþ 1Þ
3wþ 1

t ¼ −
2

3wþ 1
H−1: ð6Þ

There is also an apparent horizon of radius

RA ¼ H−1 ¼ 3

2
ðwþ 1Þt: ð7Þ

Note that the size of these horizons grows without bound in
the limit t → ∞, and correspondingly there is no bound on
the amount of entropy that can exist within a comoving
observer’s causal diamond. Indeed, such an observer will
experience a thermal heat bath with temperature

TQ ¼ H
2π

¼ 3

πðwþ 1Þt ; ð8Þ

and although this temperature decreases indefinitely with
time, arbitrarily high-entropy fluctuations will occur even at
late times. However, unlike in de Sitter, the Boltzmann
suppression of high-energy fluctuations increases with time,
and shortly after the Hubble scale H drops below a given
energy E, the probability of ever again observing a thermal
fluctuation of energy E drops quickly to zero [56].
Thus, life is not quite as bad for an observer in Q-space

as it is for an observer in de Sitter: although there is still a
future cosmic horizon, there is no limit on the entropy
contained within such a horizon, and correspondingly there
is no inherent limit on the precision of a measurement.
Furthermore, observers in Q-space are rarely destroyed by
high-energy thermal fluctuations, whereas in de Sitter this
will eventually occur with probability 1.
Nonetheless, an important problem faces any observer in

Q-space who wants to measure some observable with ever-
greater precision: although the maximal entropy allowed
within the horizon may increase indefinitely, the only
source of such entropy is the thermal fluctuations of
massless (or nearly massless—see Sec. V) particles from
the horizon. Even in a more realistic cosmology with a
period of matter/radiation domination preceding acceler-
ated expansion, the entropy of conventional matter/radia-
tion that enters the causal diamond of the observer by
classical evolution is finite: eventually, a pair of comoving
objects will exit one another’s horizons and cease to
interact. Thus, constructing an experimental apparatus of
arbitrarily large complexity would require the observer to
somehow harness the entropy of thermal radiation from the
horizon, and it is not clear that this is possible [56].
In summary, while the prospects for defining asymptotic

observables are more promising in Q-space than in de
Sitter, there are nonetheless some important difficulties that
must be overcome. We will now see that some of these
difficulties are avoided in a decelerating universe.

C. Decelerating universes

The Penrose diagram of a decelerating universe w >
−1=3 is shown in Fig. 3: essentially, it is obtained by
turning the Penrose diagram of Q-space upside down. A
decelerating universe does not have a future horizon:
eventually, any two coming objects will enter one another’s
past light cones, and correspondingly the entropy accessible

FIG. 2. The Penrose diagram of Q-space. FIG. 3. The Penrose diagram of a decelerating FRW cosmology.
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to a given observer diverges in the asymptotic future. There is
therefore no limitation on the complexity of a possible
experimental apparatus, and there is no limit on the size
of space visible to a late-time observer. The theory at late
times approaches that of particles interacting in flat space: in
short, the conditions for observers are as ideal as they could
be in a universe without asymptotic coldness.

III. ASYMPTOTIC OBSERVABLES
IN ETERNAL INFLATION

Our universe is experiencing accelerated expansion, and
thus far dark energy has no observed departure from
w ¼ −1. This is difficult to square with the aforementioned
difficulties facing de Sitter space (among other difficulties
[58–60]), but string theory may point us in the right
direction: in string theory, de Sitter vacua are generally
expected to be metastable, decaying via bubble nucleation
to other vacua in the string landscape [61]. These vacua
may in turn decay via bubble nucleation, and this process
continues until a terminal vacuum is reached [62,63]:
presumably either a Λ < 0 AdS vacuum (which promptly
crunches) or a Λ ¼ 0 vacuum. In the latter case, the vacuum
in question may lie in an asymptotic limit of scalar field
space, in which case bubble nucleation may produce either
an accelerating or a decelerating universe, depending on the
shape of the potential—we will elaborate on the details of
this point in the next section.
The upshot of this is that the difficult task of defining

asymptotic observables in de Sitter space has been
exchanged for the difficult task of defining asymptotic
observables in an eternally inflating cosmology.1 In such a
cosmology, anything that can happen does happen an
infinite number of times, raising the difficult question of
how to define a measure on the landscape of all possible
universes. For a nice review of the measure problem in
eternal inflation, see [70].
One approach to the measure problem, notably advo-

cated by Susskind [57], is to introduce a comoving observer
who looks back into the past and collects data. The
expected observations of this observer then define a
measure on the landscape: namely, the probability pi of
outcome i is given in terms of the number of measurements
NðtÞ in the past light cone of the observer at time t and the
number of times NiðtÞ the observer measures i by [71]

pi ≔ lim
t→∞

NiðtÞ
NðtÞ : ð9Þ

Such an observer is called a “census taker.”
Of course, there are different possible census takers one

could choose, i.e., different locations where the “census

bureau” could be located. Some census takers will end their
lives in an AdS vacuum, which ends with a singular crunch.
Such a census taker only has access to a finite amount of
entropy before meeting their demise, so they cannot
measure any observable to arbitrary precision. Other census
takers may end up in a bubble of Q-space, in which the
acceleration of the universe asymptotes to zero. This is a
much more promising location for a census bureau, but the
challenges of defining asymptotic observables here are just
as thorny here as they were in Q-space: in particular, a pair
of comoving objects will eventually exit one another’s
horizons, and no observer can see all the way to spatial
infinity.
The most promising location for a census bureau is in a

“hat region”: a bubble containing a decelerating universe,
so named because of the hatlike feature it introduces to the
Penrose diagram (see Fig. 4). Such a region has many of the
nice features of a decelerating universe: a census taker in
the hat region will observe an infinite amount of entropy if
she waits long enough, any two comoving objects in the hat
region will eventually come into causal contact, and
physics at late times can be described by an effective field
theory in flat space.
Some preliminary but noteworthy progress has been

made in understanding the physics in such regions. In
particular, the authors of [72] proposed that the physics in a
hat region has a dual description in terms of a CFT coupled
to Liouville gravity living at spatial infinity Σ (see Fig. 4).
In [73], Harlow and Susskind further conjectured that the
maximum precision of a dual description of a cosmological
geometry is determined by the maximal entropy bound on
the past light cone of a census taker, and they argued that
this description can be exact, i.e., ultraviolet complete, only
if there exists a census taker with an infinite entropy bound
(also known as a “maximal” census taker). In principle, a
census taker in a bubble of Q-space fits this description as
well, since they too have an infinite entropy bound, but to
date there has been little to no work in understanding the
dual descriptions of such universes.
One issue facing a census taker in the hat region, which

is absent in the case of a decelerating FRW universe, is the
existence of a cosmic horizon: as shown in Fig. 4, such a
census taker can see all the way to spatial infinity Σ in her
own bubble, but there are other parts of spacetime hidden
beyond the cosmic horizon. This issue, however, is prob-
ably not devastating from the perspective of defining

FIG. 4. A hat region of an eternally inflating cosmology.

1A number of works have questioned the plausibility of eternal
inflation [31,33,64–69], though at present there is no sharp no-go
result which forbids it.
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asymptotic observables: indeed, black hole horizons exist
in asymptotically AdS spacetimes. Here, a crucial role is
played by the notion of black hole complementarity [5–7]:
the physics of the black hole interior is encoded in the
radiation emitted by the black hole horizon. It is plausible
that a similar notion of cosmic horizon complementarity is
relevant here, so that the global structure of the eternally
inflating spacetime is encoded in the radiation emitted from
the cosmic horizon [57,74], ostensibly allowing the census
taker to define a global measure on the spacetime beyond
her horizon [71]. Similarities between de Sitter cosmic
horizons and black hole horizons have recently been
investigated in [75–77].

IV. ASYMPTOTIC OBSERVABLES AND THE DE
SITTER CONJECTURE

While the difficulties of constructing de Sitter vacua in
string theory are not new, they have drawn renewed interest
since the publication of what is now referred to as the “de
Sitter conjecture (dSC)” [27]. In this work, the authors
proposed a bound on the gradient of scalar field potentials
V in quantum gravity in d spacetime dimensions of the form

j∇Vj ≥ cdV; ð10Þ

where cd is an Oð1Þ constant in d-dimensional Planck units
to be determined later. This bound is almost surely violated at
the maximum of the standard model Higgs potential, so it is
very unlikely that it applies universally in quantum gravity
[78]. However, it is quite plausible that a bound of this form
applies in asymptotic regions of scalar field space [29,79],
and indeed many examples in string theory satisfy this
criterion [27,80,81]. In the following section, we will review
one general argument for the validity of this bound in
asymptotic regions of scalar field space, originally given
in [82].
In order to determine the domain of validity of the dSC

bound (10), it is crucial to fix the precise value of the Oð1Þ
constant cd, and relatedly to understand the physical
principle underlying this bound. As an analogy, the precise
Oð1Þ coefficient γd appearing in the WGC bound jqj=m ≥
γd is fixed by the physical principle that nonsupersym-
metric black holes must be able to decay. We would like a
similar statement here to fix the value of cd.

A. Review: Sharpening the dSC

In [53], it was noted that the dSC is exactly preserved
under dimensional reduction if we set

cd ¼ cstrongd ≔
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p : ð11Þ

In other words, a theory which saturates the bound (10)
with this value of cd will still saturate the bound after
dimensional reduction. Of course, it is not obvious that

every valid swampland conjecture must be exactly pre-
served under dimensional reduction, but it is worth noting
that some of the most well-supported Swampland con-
jectures are, including the weak gravity conjecture and the
absence of global symmetries [83,84].
The value cd ¼ cstrongd is also special from the perspective

of the late-time expansion of the universe: a scalar field
rolling in a potential of the form

V ∝ expð−λϕÞ ð12Þ

will drive expansion of the universe with equation of state

w ¼ −1þ 1

2

d − 2

d − 1
λ2; ð13Þ

which for λ > cstrongd implies

w ≥ −
d − 3

d − 1
: ð14Þ

This is precisely the strong energy condition in d dimen-
sions, which is precisely the condition that forbids accel-
erated expansion of the universe. Consequently, we define
the “strong de Sitter conjecture” as the statement that the
strong energy condition should be satisfied at late times2 in
asymptotic limits of scalar field space, which is equivalent
to the de Sitter bound (10) with cd ¼ cstrongd ≔ 2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
if

we suppose that the energy density is dominated by the
scalar field condensate. Note that we do not expect this
condition to hold outside of such asymptotic regions of
scalar field space: indeed, the strong energy condition is
violated even in our own universe.

B. Supersymmetry and the strong dSC

String vacua with vanishing vacuum energy V ¼ 0 are
expected to be supersymmetric, except in certain asymp-
totic limits of scalar field space [73] such as the weak
coupling limit of nonsupersymmetric, SOð16Þ × SOð16Þ
heterotic string theory [85].3 Many string vacua in asymp-
totic limits of scalar field space are supersymmetric,
however, and in this context compelling evidence for the
strong dSC was given in [55]: the authors of that paper
argued that within an accelerating cosmology in four
dimensions, a scalar field cannot asymptote to a zero-
energy supersymmetric minimum, and their argument can
be extended trivially to general spacetime dimensions. In
particular, the potential around a stable supersymmetric
minimum in d dimensions must take the form [86,87]

2The “late times” condition is necessary to exclude the
possibility that a scalar field in an asymptotic region is given
a kick of kinetic energy so that it violates the strong energy
condition for a brief time. We thank Thomas Van Riet for pointing
out this possibility to us.

3We thank Irene Valenzuela for explaining this example to us.
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VðϕiÞ ¼ 2ðd − 2Þððd − 2Þð∇WÞ2 − ðd − 1ÞW2Þ; ð15Þ

where W is the superpotential. If we then assume that the
potential takes the asymptotic form V ∝ expð−λϕÞ as
ϕ → ∞, we must impose W ≈W0 expð−λϕ=2Þ, which
leads to

VðϕÞ ≈ 2ðd − 2ÞW2
0e

−λϕ
�
ðd − 2Þ λ

2

4
− ðd − 1Þ

�
: ð16Þ

This is positive only if

λ > 2

ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 2

r
; ð17Þ

which immediately implies λ > 2=
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
, thereby satisfy-

ing the strong dSC.

C. Asymptotic observables and the strong dSC

From the discussion in the previous section, we see that
the strong dSC may also be motivated by a more physical
principle: the existence of asymptotic hat regions, which
may be necessary for the existence of well-defined observ-
ables in spacetimes with positive vacuum energy, requires
not only that V → 0 limits exist in scalar field space but
also that these limits occur in regions with decelerating
expansion. Conversely, the difficulty of defining exact
observables in asymptotic Q-space may signal an incon-
sistency with such spacetimes, implying that a scalar field
potential which violates the strong dSC bound in asymp-
totic regions of scalar field space must reside in the
swampland. Note that the existence of V → 0 regions with
decelerating expansion is uncontroversial: the existence of
N ¼ 2 Minkowski vacua in string theory is beyond
dispute. The radical suggestion here is the converse: the
nonexistence of asymptotic Q-space in string theory would
be surprising.
In a decelerating universe (in contrast to Q-space),

physics at late times is governed by an effective theory
of interacting particles in flat space. In a sense, the strong
dSC should therefore be thought of as a type of weak
gravity conjecture: just as the ordinary WGC holds that
gravity can be decoupled from electromagnetism at low
energies and the scalar WGC [88] holds that gravity can be
decoupled from interactions mediated by a scalar field at
low energies, the strong dSC holds that gravitational
expansion of the universe can be decoupled from other
interactions at late times.

D. String theory and the strong dSC

Many examples in string theory satisfy the strong dSC,
such as the Kachru-Kallosh-Linde-Trivedi (KKLT) sce-
nario and the Large Volume Scenario (LVS). More exam-
ples are discussed in [53].

Here, we instead focus on a pair of caveats: apparent
counterexamples to the strong dSC in string theory. The
first class of apparent counterexamples come from string
compactifications which saturate the “transplanckian cen-
sorship conjecture” bound [32]:

jV 0j ≥ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp V: ð18Þ

String compactifications saturating this bound were studied
in e.g., [80,81,89]. Since the coefficient on the right-hand
side of this inequality is smaller than cstrongd , these examples
naively seem to violate the strong dSC.
However, as previously discussed in [53], this conclu-

sion is premature: the expression V 0 appearing in (18) is the
derivative of the potential with respect to the geodesic
distance along certain geodesics in field space. The
expression ∇V appearing in the strong dSC is instead
the gradient of the potential, which receives contributions
from all the scalar fields in the theory. Once these additional
contributions are included, it is conceivable that the strong
dSC may be satisfied even while (18) is saturated. Indeed,
one can check that this happens in e.g., heterotic string
theory compactified to four dimensions [53].
Finally, let us note a second class of claimed counter-

examples, which arise from compactifications of super-
critical string theory.4 Supercritical string theories actually
saturate the strong dSC bound [90], but certain compacti-
fications of supercritical string theories have been argued to
violate the bound [91]. The validity of supercritical string
theories is controversial, so it is not entirely clear what to
make of these constructions at present. It is possible that the
strong dSC bound does not apply to supercritical string
theories, or that it must be modified in some way [92]. We
leave further analysis of this issue to future work.

V. THERMAL FLUCTUATIONS AND THE
SWAMPLAND DISTANCE CONJECTURE

We have argued that the strong dSC value cstrongd ¼
2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
is a particularly natural choice for the Oð1Þ

constant cd appearing in the dSC bound, motivated both by
dimensional reduction and by the improved prospects for
defining asymptotic observables in a decelerating universe.
Nonetheless, it is worthwhile to consider the alternative
possibility of an observer who ends their life in Q-space.
Recall from our discussion above that the prospects for

asymptotic observables in Q-space are not completely
hopeless: perhaps the greatest difference between a census
taker in Q-space and a census taker in a hat region is that
the Q-space observer cannot access arbitrarily large
amounts of information through classical evolution: the

4We are grateful to Miguel Montero and Irene Valenzuela, as
well as Eva Silverstein, for independently bringing this example
to our attention.
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only way to build a measuring device of arbitrary complex-
ity is through low-energy, high-entropy thermal fluctua-
tions coming from the cosmic horizon. To assess the
possibility of asymptotic observables in Q-space, we must
therefore investigate the thermal fluctuations that occur in
such cosmologies.
At late times, the temperature of the future horizon in

Q-space tends to zero, so the thermal fluctuations become
softer and softer. Eventually, one expects that only massless
modes will be emitted unless there are states whose energy
decreases appropriately with time. Indeed, the existence of
such states is a stipulation of another well-tested swamp-
land conjecture called the SDC [20],5 which holds that in
any asymptotic limit ϕ → ∞ in scalar field space, there
must exist a tower of particles, each labeled by a positive
integer n, whose masses scale with ϕ and n as

mn ∼ nm0e−αϕ; ð19Þ

for m0 an arbitrary mass scale and α some Oð1Þ constant in
Planck units. Like the value of cd appearing in the dSC
bound (10), the question of what values of α are allowed in
quantum gravity is a topic of ongoing research.
Motivated by the SDC, let us now consider thermal

emission from the Q-space horizon in four dimensions. As
discussed in [56], the probability of thermal emission per
unit time of a state of energy E is given roughly by

PE ∼
1

RA
exp ½SðEÞ − 2πERA�; ð20Þ

where RA ¼ H−1, expðSðEÞÞ is the number of states of
energy E, and we are assuming that there are only Oð1Þ
states of energy below the Q-space temperature
TQ ¼ H=ð2πÞ. According to Bousso’s Q-bound [94],
which generalizes the Bekenstein bound [95,96] to de
Sitter space, the term in the exponent in (20) is necessarily
negative.
Integrating this result over all time t > t0, we find

the probability of a thermal fluctuation of energy E after
time t0:

PðEÞ ¼
Z

∞

t0

dtPEðtÞ

¼
Z

∞

t0

dt
1

RAðtÞ
exp ½SðEÞ − 2πERA�: ð21Þ

For constant E ≫ R−1
A ðt0Þ, the Boltzmann suppression

expð−2πERAðt0ÞÞ dominates, and the total probability
PðEÞ is small. However, in a theory satisfying the SDC,
the energy of a single-particle state in the tower itself
changes with time, E ¼ EðtÞ. In particular, if we have

mn ∼ nm0e−αϕ; VðϕÞ ∼ V0e−λϕ; ð22Þ

for ϕ a canonically normalized scalar field, then the energy
of such a state behaves as E ∼ Eðt0Þ expð−αϕÞ, whereas the
radius RA scales as RA ∼ RAðt0Þ expðλϕ=2Þ. This means
that if

α ¼ λ

2
; ð23Þ

then the Boltzmann suppression factor expð−2πERAÞ
remains roughly constant over time, and the total proba-
bility is bounded from below by

PðEÞ≥
Z

∞

t0

dt
1

RAðtÞ
exp ½−2πEðtÞRAðtÞ�

≳ 2

3ðwþ 1Þexp ½−2πEðt0ÞRAðt0Þ�
Z

∞

RAðt0Þ

dRA

RA
; ð24Þ

where we have used the fact that RA ¼ 3ðwþ1Þ
2

t. This
integral diverges logarithmically, so we see that thermal
emission of particles in the SDC tower continues indefi-
nitely when α ≥ λ=2.
Let us make a few remarks on how this result fits with

existing literature. Reference [89] proposed precisely the
relationship α ≥ cd=2 between the exponent of the SDC
tower α and the coefficient of the dSC bound (10), based on
the fact that many examples in string theory seem to satisfy
or saturate this bound [21,89] if one sets

cd ¼ cTCCd ≔
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ; ð25Þ

which is the value of cd specified by the “transplanckian
censorship conjecture (TCC)” [32]. We see here that the
bound α ≥ λ=2 follows from the requirement that states in
the SDC tower are thermally produced at late times, which
together with the dSC bound λ ≥ cd implies α ≥ cd=2.
Whether such a requirement should hold—and whether
asymptoticQ-space can even occur in quantum gravity—is
a topic for future research.
Under the assumption of the SDC, the authors of [82]

presented a compelling argument for the validity of the dSC
in asymptotic regions of scalar field space: in the limit
ϕ → ∞, the SDC implies the existence of a large number of
light species N, which in turn lead to a UV cutoff on
effective field theory that is parametrically below the 4D
Planck scale [97–100]:

5Strictly speaking, the swampland distance conjecture applies
only to massless scalar field moduli in supersymmetric theories,
whereas we are concerned here with a “refined version” of the
conjecture, which holds that this conjecture should apply in
asymptotic limits of scalar field space in nonsupersymmetric
theories as well [93]. Compelling, general arguments for both the
SDC and its refinement have been given in [21,22], and we will
not distinguish the two conjectures in this work.
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ΛUV ∼
MPlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðΛUVÞ

p : ð26Þ

According to the SDC, the number of light species is
given by

NðΛUVÞ≳ ΛUV

m0e−αϕ
; ð27Þ

so

ΛUV ∼ e−αϕ=3: ð28Þ

On the other hand, the Hubble scale H acts as an IR cutoff
on effective field theory, and this scales with ϕ as

H ∼ V1=2 ∼ e−λϕ=2: ð29Þ

Requiring that the UV cutoff ΛUV is larger than the IR
cutoff H as ϕ → ∞ therefore implies

α ≤
3

2
λ; ð30Þ

which is consistent with the condition α ≥ λ=2.
It is worth emphasizing that the relationship α ≥ λ=2 we

have found here assumes that we are in Q-space, so the
universe is accelerating at late times, i.e.,0 < λ < 2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
.

Our calculation tells us nothing about the coefficient α of an
SDC tower in a decelerating universe (λ > 2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
) or a

supersymmetric theory in flat space (V ≡ 0), so in particular
the bound α ≥ cd=2 is not applicable if one assumes the
strong dSC.

VI. VACUUM DECAY AND THE
WEAK GRAVITY CONJECTURE

So far, we have seen how the experiences of different
observers in an expanding universe point toward the strong
de Sitter conjecture and perhaps the swampland distance
conjecture: census takers have helped shed light on the
swampland. We now present an instance of the opposite:
the WGCmay help shed light on the observations of census
takers in a hat region.
Consider a maximal census taker, i.e., a census taker who

begins her life in a de Sitter phase and ends her life in a hat
region. Such a census taker is maximal in the sense that she
will eventually have access to infinite entropy. However, in
the standard description of eternal inflation, her past light
cone will not contain the entirety of the expanding universe
(see Fig. 4): her observations are limited by a cosmic
horizon. As discussed in Sec. III, this issue could be
circumvented by a suitable notion of cosmic horizon
complementarity, in which the region behind the observer’s

horizon is somehow encoded in the radiation she receives
from this horizon.6

Nonetheless, there is a somewhat surprising aspect of
this picture: not all decays from de Sitter space into the
Λ ¼ 0 vacuum can occur in the past light cone of a
maximal census taker [70]. This is due to the counterin-
tuitive fact that the domain wall separating a Λi > 0
vacuum from a Λf ¼ 0 vacuum may appear to recede
from the perspective of both the inside observer and the
outside observer. (This fact can be visualized by analogy
with a stereographic projection of the 2-sphere, as shown in
Fig. 5.) The radius of curvature of concentric shells inside/
outside a spherical bubble at constant time decreases away
from the bubble wall on both sides. In this case, observers
on both sides of the bubble believe that they are actually on
the inside of an expanding bubble, and the Λf ¼ 0 bubble
never grows to encompass the observer in the Λi > 0
region. As a result, the observer in the Λi > 0 region never
enters the past horizon of the Λf ¼ 0 census taker, so he
will never be counted in her census.
The question of whether the observer in the Λi > 0

region sees the domain wall approaching or receding
depends on the relative sizes of Λi and the tension T of
the domain wall. In particular, the qualification requirement
for the census is given in 4D reduced Planck units by [102]

T ≤
2ffiffiffi
3

p ð
ffiffiffiffiffi
Λi

p
−

ffiffiffiffiffiffi
Λf

p Þ; ð31Þ

FIG. 5. Stereographic projection of the 2-sphere. Latitudes in
the southern hemisphere map to circles in the interior of the unit
disk, and their radius of curvature on the 2-sphere grows with
increasing size in the stereographic plane. Latitudes in the
northern hemisphere, on the other hand, map to circles outside
the unit disk, and the radius of curvature of these latitudes on the
2-sphere actually decreases while the size of the associated
circles in the plane increases.

6Some support of this idea may come from recent work [101],
which found islands in a dS2 spacetime with a hat region,
indicating that an observer in the hat region has access to
information about the inflating region, analogous to the way
islands in black hole spacetimes indicate that an asymptotic
observer has access to information about the black hole interior
[1–3]. It is unclear at present if this story can be extended to de
Sitter spacetimes in more than two dimensions, however.
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where in the case at hand, Λf ¼ 0. If this bound is satisfied,
the Λi > 0 observer will eventually enter the past light cone
of the maximal census taker. If it is violated, the Λi > 0
observer will remain forever beyond her horizon, and
information about the Λi > 0 observer can reach the
maximal census taker only in a highly scrambled form
through the radiation she receives from her horizon [71].
This bound is familiar from the classic paper on vacuum

decay by Coleman and de Luccia [61]: when (31) is
satisfied comfortably, gravitational effects are weak and
can be largely neglected from the computation of the decay
rate. When it is violated, gravitational effects are strong.
Indeed, for a decay from a Λi ¼ 0 vacuum to a Λf < 0
vacuum, these gravitational effects become so strong that
bubble nucleation shuts off entirely. Bogomol'nyi–Prasad–
Sommerfield (BPS) domain walls in the supersymmetric
Λi ¼ 0 vacuum saturate this bound [103], and their decay
rate vanishes, so the supersymmetric vacuum is (margin-
ally) stable.
An upper bound on the tension of a brane which is

saturated by a BPS brane smells an awful lot like a weak
gravity conjecture, and indeed this connection was dis-
cussed at length by Freivogel and Kleban in [104], who
conjectured that for every vacuum in the landscape with
vacuum energy Λi, there should exist another vacuum of
energy Λf < Λi and a domain wall between them whose
tension satisfies (31). If true, this conjecture would imply
that the lifetime of any de Sitter vacuum must be shorter
than its Poincaré recurrence time, and it would imply that
any nonsupersymmetric anti–de Sitter vacuum will decay
in finite time (see also [105]).
The relationship between this conjecture and the usual

weak gravity conjecture for p-form gauge fields can be
made more concrete in the case of domain walls separating
vacua distinguished by different values of flux [104,105].
In particular, consider the 4D description of axion mono-
dromy inflation [106,107] pioneered in [108,109], which
has a Lagrangian of the form

L ¼ 1

2
ð∂μϕÞ2 −

1

2
jF4j2 þ gϕF4; ð32Þ

withF4 ¼ dC3. The 3-form field has no propagating degrees
of freedom in 4D, so it can be integrated out to produce a
quadratic, multibranched potential for the axion ϕ,

V ¼ 1

2
ðnf0 þ gϕÞ2: ð33Þ

Here, n ∈ Z, and f0 is the coupling constant of C3. The
potential is preserved under shifts ϕ → ϕþ 2πf, n → n − 1
after imposing the consistency condition 2πfg ¼ f0. The
difference of vacuum energies between a pair of neighboring
flux vacua is given roughly by nf20, so for n of order 1,
Eq. (31) becomes

T ≲ f0: ð34Þ

Up to an unspecifiedOð1Þ prefactor, this is simply theWGC
bound for a domainwall charged under a 3-form gauge field.
Why is this significant? In past discussions, the fact that

the observations of a census taker in a hat region could
depend on “arcane details” such as the tension of a
particular domain wall was viewed as an unwelcome
surprise, and potentially even as an indication that such
a census taker is not well-suited to making predictions in
eternal inflation [70]. However, recent work on the WGC
suggests a very different perspective: we have seen in many
contexts that the violation/observation of a WGC bound is
not an arcane detail, but rather a crucial consistency
condition of quantum gravity. In a theory which violates
the ordinary WGC bound q=m ≥ γd, nonsupersymmetric
extremal black holes cannot decay. Analogously, we see
here that a Λi > 0 vacuum decay to a Λf ¼ 0 vacuum
cannot occur in the past light cone of a census taker in the
latter vacuum if no domain wall between them satisfies the
WGC-like bound (31).
Perhaps, as the ordinary WGC, this should be interpreted

as a consistency condition on the effective field theory of
the Λi > 0 vacuum: given a Λi > 0 vacuum, there neces-
sarily exists aΛf ¼ 0 vacuum and a domain wall separating
the two vacua whose tension satisfies (31). Such a con-
dition would represent a strengthening of the conjecture of
[104], which demands the existence of a domain wall with
tension satisfying (31) for everyΛi > 0, but does not demand
Λf ¼ 0. This is also related to the conjecture of McNamara
and Vafa that there should be no nontrivial cobordisms in
quantum gravity [110], which implies that there must exist a
domain wall between any two vacua but does not impose a
constraint on the tension of this domain wall.
On the other hand, it is quite hard to imagine that such a

decay channel should exist for any Λi > 0 vacuum: it
seems very unlikely, for instance, that our standard model
vacuum can decay to a Λf ¼ 0 vacuum via a domain wall
whose tension satisfies (31), though it is difficult to rule out
this possibility without a better understanding of the
quantum gravity landscape. In addition, it is worth noting
that the condition (31) is not satisfied by the domain wall
interpolating between the Λi > 0 vacuum and the asymp-
totic region of scalar field space in the KKLT proposal
[111] (though the strong dSC is satisfied in the asymptotic
regime of scalar field space in that example). Whether this
is due to an inconsistency in the KKLT proposal indicates
the existence of some domain wall not considered in the
original KKLT paper, or represents a counterexample to the
supposal of the preceding paragraph remains to be seen.

VII. DISCUSSION

In this paper, we have established a connection between
various swampland conjectures and the difficulty of
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defining asymptotic observables in expanding and eternally
inflating cosmologies. We have seen that a strong version
of the dSC in asymptotic regions of scalar field space—
previously distinguished by dimensional reduction—would
offer the best prospects for defining asymptotic observables
in eternal inflation, as it implies the existence of hat regions
(i.e., decelerating bubble universes) and rules out the
possibility of terminal quintessence vacua in asymptotic
regions of scalar field space. We have seen that the
observations of a census taker in a hat region depends
on whether a WGC-like bound is satisfied, and we have
considered the possibility that this may be a consistency
condition on dS vacuum decay in quantum gravity, similar
to how the ordinary WGC is a consistency condition on
black hole decay. We also saw, however, that a recently
proposed, sharpened version of the SDC implies that a
tower of light states are thermally produced at late times in
Q-space. This may be related to the definition of precise
asymptotic observables in such spacetimes, which neces-
sarily depend on thermal fluctuations, since these light
massive particles may perhaps be better candidates than
massless modes for the construction of an arbitrarily
precise measuring device.
On the other hand, we have not tackled the most

important questions: do asymptotic observables exist in
expanding spacetimes? If so, what are they, and how are
they computed? Can census takers in an eternally inflating
universe be used to define a measure on the string land-
scape, and if so, what is it? It is very possible that these
questions will ultimately lead us in directions orthogonal to
the ones we have pursued in this paper: as discussed, even a
decelerating cosmology suffers from asymptotic warmness,
and in light of this it is not clear that even the strong dSC is

sufficient to guarantee the existence of well-defined observ-
ables. Another possibility is that our semiclassical descrip-
tion of expanding cosmologies must be modified
significantly in the full quantum gravity, so that distant
regions of space contain little new information, and
asymptotic coldness is restored. This possibility is worth
exploring further, especially in light of the recent realiza-
tion of black hole complementarity in terms of islands
[1–3]. Ultimately, our current cartoon picture of de Sitter
and/or eternal inflation may be subject to serious revision.
Clearly, the correct picture of quantum gravity in

cosmology is still coming into focus, and the ground rules
are not yet clear. Nonetheless, it is heartening to think that
progress in the swampland program may shed light on the
problem of asymptotic observables in cosmology, and vice
versa. Certainly, these are beautiful times to ponder the
mysteries of quantum gravity.
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