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Unimodular gravity (UG) is an important theory which may explain the smallness of the cosmological
constant. To get insight into the covariant quantization of UG, we discuss the BRST quantization of general
relativity (GR) with a cosmological constant in the unimodular gauge. We develop a novel way to gauge fix
the transverse diffeomorphism (TDiff) and then further to fulfill the unimodular gauge. This process
requires the introduction of an additional pair of BRST doublets which decouple from the physical sector
together with the other three pairs of BRST doublets for the TDiff. We show that the physical spectrum is
the same as GR in the usual covariant gauge fixing. We then study a theory derived by making “Fourier
transform” of GR in the unimodular gauge with respect to the cosmological constant as a candidate of
“quantum UG.” We clarify the difference from GR and point out problems in this theory.
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I. INTRODUCTION

General relativity (GR) well describes gravitational low-
energy phenomena. The action is given by

SGR ¼ ZN

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ; ð1:1Þ

where ZN ¼ 1
16πGN

with the Newton constant GN . Here we
have also included the cosmological constant, and we refer
to this theory simply as GR. Making variation of this
theory, we get the Einstein equation with the cosmological
constant:

Rμν −
1

2
ðR − 2ΛÞgμν ¼ 0: ð1:2Þ

Classical GR has several equivalent formulations. An
important example is the unimodular gravity (UG) [1–6],
which is defined as a theory of gravity with the constraint

ffiffiffiffiffiffi
−g

p ¼ ω; ð1:3Þ

where ω is a fixed volume form. This constraint can be
imposed by using a Lagrange multiplier field λ:

SUG ¼ ZN

Z
d4x½ ffiffiffiffiffiffi

−g
p ðR − 2ΛÞ þ λð ffiffiffiffiffiffi

−g
p

− ωÞ�: ð1:4Þ

This theory is considered to give a solution to the
cosmological constant problem. Making the variation of
the action with respect to the metric, we obtain

Rμν −
1

2
ðR − 2Λþ λÞgμν ¼ 0; ð1:5Þ

together with the unimodular condition (1.3). Taking the
trace of this equation, we get

λ ¼ 2Λ −
R
2
: ð1:6Þ

Plugging this into the field equation (1.5), we find

Rμν −
1

4
Rgμν ¼ 0; ð1:7Þ

which is the traceless part of the Einstein equation. Thus the
“cosmological constant” drops out of our field equation. In
this theory, we cannot get the trace part of the usual Einstein
equation, but this can be recovered using the Bianchi
identity. By taking the covariant derivative of (1.7), we get
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∂μR ¼ 0; ð1:8Þ

which, upon integration yields

R ¼ 4Λ0: ð1:9Þ

Then Eq. (1.7) can be rewritten as

Rμν −
1

2
Rgμν þ Λ0gμν ¼ 0; ð1:10Þ

recovering the Einstein equation with the cosmological
constant Λ0. Thus the cosmological constant appears as an
integration constant. Note that Λ0 has nothing to do with
the constant term in the action. In the presence of matter,
this could be repeated together with the conservation of
energy-momentum tensor.
The constant term Λ in (1.4) can be absorbed into the

definition of the Lagrange multiplier field λ:

SUG ¼ ZN

Z
d4x½ ffiffiffiffiffiffi

−g
p

Rþ λð ffiffiffiffiffiffi
−g

p
− ωÞ�: ð1:11Þ

Using the unimodular condition, our action can also be
written as

SUG ¼ ZN

Z
d4x½ωRþ λð ffiffiffiffiffiffi

−g
p

− ωÞ�: ð1:12Þ

This is the standard formulation of UG, and this shows that
the classical gravity is equivalent to UG modulo the above-
mentioned global property.
At the classical level, GR and UG are almost equivalent

in the sense that (1.3) can be seen as a gauge fixing
condition in GR. However when this condition is present,
the identity for the global quantity,

Z
d4x

ffiffiffiffiffiffi
−g

p ¼
Z

d4xω; ð1:13Þ

follows, which is a gauge (GC transformation) invariant
relation and cannot be regarded merely as a gauge con-
dition. Thus classical UG may be considered to be
equivalent to the classical GR with the fixed spacetime
volume. Conversely GR may be considered to be obtained
by summing over the spacetime volume.
The fact that the “cosmological constant” in the action

does not have any physical meaning is an important
advantage of UG. If we consider the history of the universe,
our universe underwent phase transitions before it settles
down to the spontaneous broken phase of various sym-
metries including the electroweak symmetry, and this must
have produced huge vacuum energy. In addition, the
quantum fluctuation of the gravity and matter also produces
huge vacuum energy. Both must be canceled out by fine
tuning in GR, but it is not necessary in UG.

The price we have to pay is that the action (1.11) or
(1.12) is no longer invariant under the full diffeomorphism,
but only under the transverse (or, volume-preserving)
diffeomorphism (TDiff):

δgμν ¼ ∇μϵ
T
ν þ∇νϵ

T
μ ; ∇μϵTμ ¼ 0: ð1:14Þ

This gives a source of confusion as to the question if this
theory is equivalent to GR or not at the quantum level. At
first sight, since this theory could be regarded as just a
partially gauge fixed theory of GR, one would expect that it
is equivalent to GR, but there has been lots of debate on the
equivalence [7–22]. In fact upon further consideration,
this may not be so trivial. Since the theory has invariance
only under TDiff, we expect that this invariance removes
degrees of freedom one less than the full diffeomorphism.
This reduction of degrees of freedom could be done by
the Faddeev-Popov (FP) ghosts. In GR, we have the full
diffeomorphism with 4 coordinate parameters, and this
introduces 4 sets of FP ghosts and antighosts, leaving
10 − 8 ¼ 2 degrees of freedom, properly. In UG, however,
the gauge fixing can be done only for the transverse modes,
with 3 sets of ghosts. The additional condition is provided
by the unimodularity condition (1.3), but this condition
does not seem to require Faddeev-Popov ghosts. This
leaves the question how the remaining degrees of freedom
are removed.
On the other hand, we can use the reparametrization

invariance in GR to partially gauge fix to satisfy the
unimodular gauge condition (1.3). It is then an interesting
problem how the above problem on degrees of freedom is
resolved in this gauge, since the remaining reparametriza-
tion invariance is only TDiff. Once understood properly,
this is expected to cast light on how to quantize UG.
In this respect, Baulieu [21] has recently proposed an

interesting way of gauge fixing which seems to realize this
unimodular gauge in a manifestly covariant manner. He
introduces a new set of “BRST quartet” fields consisting of
an additional scalar field together with ghosts and a scalar.
The reasoning is, however, not very clear and it is difficult
to understand the nature and the role of the added scalar
field as well as the origin of the additional BRST symmetry.
Here we propose a novel and general way of decom-

posing a d-vector condition into a scalar plus d − 1 (i.e.,
transverse-vector) conditions in a manifestly covariant and
local manner, which naturally leads to the introduction of a
scalar field and the emergence of a new gauge symmetry.
This reproduces essentially the same unimodular gauge-
fixed Lagrangian as Baulieu’s one. Naively one might
expect that the newly introduced four fields would be a
“BRST quartet” and decouple by themselves. We find that
this is not the case, and the BRST multiplets rearrange
themselves in a very subtle way. We show that after all they
completely decouple and this covariant theory gives the
correct number of degrees of freedom in GR.
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Our key observation is that when we gauge fix TDiff, we
have to deliberately impose the gauge condition such that
we impose it only on the transverse modes. In doing this,
we introduce an additional longitudinal mode and then
there appears additional invariance, which removes the
remaining degrees of freedom. Since this is the quantization
of GR, the cosmological constant is present in the field
equation even though we fix the theory to unimodular
gauge with

ffiffiffiffiffiffi−gp ¼ ω. We expect that our new way of
describing GR in the unimodular gauge is useful for
understanding the formulation of quantum theory of UG.
Our discussion is valid in the presence of matter fields.
We then discuss what implications this formulation of

GR may have to the problem of quantization of UG.
The unimodularity condition (1.3) is imposed as a con-
straint in UG whereas it is just a gauge choice in GR.
Similarly the spacetime volume is fixed in UG whereas the
cosmological constant is fixed in GR. Considering the dual
role of these [23], it would be natural to consider that the
quantum theory of UG may be obtained by the Fourier
transform of GR in the unimodular gauge with respect to
the cosmological constant. Unfortunately we find that such
a formulation has problem with unitarity, but we hope that
our discussions clarify the problems in the covariant
quantization of UG.

II. BRST QUANTIZATION OF GR IN THE
UNIMODULAR GAUGE

A. Covariant unimodular gauge fixing in GR

Now let us consider the unimodular gauge fixing in GR.
Using the reparametrization invariance, we can partially
gauge fix the theory to the unimodular gauge with the
condition (1.3).
In order to quantize the theory, we have to gauge fix the

theory. In the usual GR, we introduce the usual gauge
fixing condition called de Donder gauge:

fμ ≡ ∂ρg̃ρμ ¼ 0. ðg̃μν ≡ ffiffiffiffiffiffi
−g

p
gμνÞ: ð2:1Þ

This contains d ¼ 4 conditions and completely fixes all the
diffeomorphism transformations. In our theory where we
will take the unimodular gauge condition (1.3) as a partial
gauge fixing, however, Eq. (2.1) imposes too many con-
ditions, and we have to remove one condition from this.
If we gave up manifest covariance, we could take only
d − 1 ¼ 3 conditions for the spacial components fi ¼ 0
(i ¼ 1, 2, 3) of the de Donder gauge (2.1). However, we
want to keep manifest covariance here.
Now comes our first crucial step. Instead of imposing the

d-vector condition (2.1), we introduce an additional field S
and impose the condition

g̃μνfν ¼ ∂μS: ð2:2Þ

The meaning of this gauge fixing is as follows: The right-
hand side (rhs) of this equation is a derivative of the scalar
field S, and so the condition (2.2) requires the transverse
component of the left-hand side (lhs) should vanish. The
longitudinal component simply defines the scalar field S,
which is left arbitrary. It is important that we consider full
diffeomorphism transformation here, but this condition
(2.2) imposes the gauge condition only on the transverse
modes in g̃μνfν.
Our second crucial observation is the following. Our

unimodularity condition means that the remaining longi-
tudinal mode should be removed from the spectrum of the
theory. We then notice that the new field S does not appear
at all in the original action of our GR theory, and hence the
action is trivially invariant under an arbitrary shift of the
scalar field S:

δSðxÞ ¼ dðxÞ: ð2:3Þ

Note that this is a (hidden) gauge-invariance. (Such a
gauge-invariance under the arbitrary change of the fields
not appearing in the action, is trivial but was recognized
useful by Izawa [24] in the context of BRST gauge-fixing.)
We can lift this new gauge invariance as well as the original
GC transformation invariance to those under the BRST
transformation defined by

δBgμν ¼ gμρ∂νcρ þ gνρ∂μcρ þ cρ∂ρgμν;

δBcμ ¼ cρ∂ρcμ;

δBc̄μ ¼ ibμ; δBbμ ¼ 0;

δBS ¼ d; δBd ¼ 0;

δBd̄ ¼ ib; δBb ¼ 0; ð2:4Þ

where cμ and c̄μ are the anticommuting ghosts corresponding
to the diffeomorphism transformations, bμ and b are the
Nakanishi-Lautrup (NL) fields [25], and d and d̄ are anti-
commuting ghosts corresponding to the invariance (2.3).
Given the invariance and BRST transformation, we have a

systematic method to give the gauge fixing and ghost terms
[26,27]. Thus our gauge-fixing and ghost terms are given by

LGFþFP ¼ −iδB
�
c̄μð∂νg̃μν − g̃μν∂νSþ α

2
ημνbνÞ

þ d̄

� ffiffiffiffiffiffi
−g

p
− ωþ β

2
b

��

¼ bμð∂νg̃μν − g̃μν∂νSÞ þ
α

2
ημνbμbν

þ bð ffiffiffiffiffiffi
−g

p
− ωÞ þ β

2
b2

þ ic̄μð∂νδBðg̃μνÞ − δBðg̃μνÞ∂νS − g̃μν∂νdÞ
þ id̄ð ffiffiffiffiffiffi

−g
p ∇μcμÞ; ð2:5Þ
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where BRST transform of g̃μν ¼ ffiffiffiffiffiffi−gp
gμν is

δBðg̃μνÞ ¼ −∂ρcμ · g̃ρν − ∂ρcν · g̃μρ þ ∂ρðcρg̃μνÞ; ð2:6Þ

and α and β are gauge parameters, and ω is an arbitrary
gauge function fixing the “unimodularity.” We see that the
first term in (2.5) only fixes the transverse coordinate
transformations, and d and d̄ restricts the reparametrization
ghost cμ, c̄μ to transverse components. The additional set of
fields ðS; d; d̄; bÞ apparently looks to form a BRST quartet
but actually they do not. We are now going to show that they
rearrangewith other ghosts into sets of BRST quartets and all
of them completely decouple.

B. Propagators

Let us check in more detail if we get nonsingular fully
gauge fixed action with the correct degrees of freedom on
the flat background with ω ¼ 1. For the GR theory with
Λ ¼ 0, setting the gauge parameters α ¼ β ¼ 0 for sim-
plicity, our total action is given as

LGR ¼ ffiffiffiffiffiffi
−g

p
Rþ bμð∂νg̃μν − g̃μν∂νSÞ þ bð ffiffiffiffiffiffi

−g
p

− 1Þ
þ ic̄μð∂νδBðg̃μνÞ − δBðg̃μνÞ∂νS − g̃μν∂νdÞ
þ id̄ð ffiffiffiffiffiffi

−g
p ∇μcμÞ: ð2:7Þ

The fluctuation is defined by

g̃μν ¼ ημν þ h̃μν; ð2:8Þ

with ημν ¼ diagð−1;þ1;þ1;þ1Þ and then to the linear
order we have

gμν ¼ ημν − h̃μν þ
1

2
ημνh̃þ � � � ;

ffiffiffiffiffiffi
−g

p ¼
ffiffiffiffiffiffi
−g̃

p
¼ 1þ 1

2
h̃þ � � � ; ð2:9Þ

where h̃≡ h̃μμ is the trace of the fluctuation.
The quadratic terms of LGR are given by

LGRjquadr ¼ Lboson þ Lghost;

Lboson ¼
1

4
h̃μν□h̃μν þ 1

2
ð∂νh̃

μνÞ2 − 1

8
h̃□h̃

þ bμð∂νh̃
μν − ∂μSÞ þ 1

2
bh̃;

Lghost ¼ ic̄μ½∂νð−∂νcμ − ∂μcν þ ∂ρcρημνÞ − ∂μd�
þ id̄∂μcμ

¼ ic̄μ½−□cμ − ∂μd� þ id̄∂μcμ; ð2:10Þ

which are written in the matrix form

1

2
ðh̃μν;S;bμ;bÞΓð2Þ

boson

0
BBB@
h̃ρσ
S

bρ
b

1
CCCAþðc̄μ; d̄ÞΓð2Þ

ghost

�
cν

d

�
; ð2:11Þ

in terms of the 2-point vertex matrices Γð2Þ
boson and Γ

ð2Þ
ghost, the

inverses of which give the propagators. If the gauge is fixed
properly by the present gauge, then the inverses exist and
the propagators are determined unambiguously.
Let us begin with the simpler ghost sector. The 2-point

vertex Γð2Þ
ghost in momentum space reads

Γð2Þ
ghost ¼ −i ×

c̄μ

d̄

cν d�
−p2δμν ipμ

−ipν 0

�
; ð2:12Þ

the inverse of which surely exists and is given by

Γð2Þ −1
ghost ¼ i

1

−p2
×

cμ

d

c̄ν d̄�
δμν − pμpν=p2 −ipμ

ipν −p2

�
:

ð2:13Þ

That is, we find the ghost propagators i × Γð2Þ−1
ghost:

F:T:h0jTcμc̄νj0i ¼
δμν − pμpν

p2

p2
; ð2:14Þ

F:T:h0jTcμd̄j0i¼−ipμ

p2
; F:T:h0jTdc̄νj0i¼

ipν

p2
;

ð2:15Þ

F:T:h0jTdd̄j0i ¼ −1; ð2:16Þ

where the F.T. means

F:T:h0jTϕ1ϕ2j0i≡
Z

d4xe−ipðx−yÞh0jTϕ1ðxÞϕ2ðyÞj0i:

ð2:17Þ

Next is the boson sector: We find the 2-point vertex

Γð2Þ
boson in momentum space
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Γð2Þ
boson ¼

h̃μν
S

bμ
b

h̃ρσ S bρ b0
BBB@

−p2½1
2
Iμν;ρσ − 1

12
dμνdρσ − 1

4
ðdμνeρσ þ eμνdρσÞ − 3

4
eμνeρσ� 0 −iηρðμpνÞ 1

2
ημν

0 0 ipρ 0

iημðρpσÞ −ipμ 0 0

1
2
ηρσ 0 0 0

1
CCCA

;
ð2:18Þ

by using the projection operators

dμν ¼ ημν −
pμpν

p2
; eμν ¼

pμpν

p2
; ð2:19Þ

Iμν;ρσ ¼
1

2

�
dμρdνσ þ dμσdνρ −

2

3
dμνdρσ

�
: ð2:20Þ

Noting their projection properties

pμdμν ¼ 0; dμνημν ¼ 3; eμνημν ¼ 1; ð2:21Þ

dμαdαν ¼ dμν; eμαeαν ¼ eμν; dμαeαν ¼ 0; ð2:22Þ

Iμν;αβdαβ ¼ 0; Iμν;αβeαβ ¼ 0; Iμν;αβIαβ;ρσ ¼ Iμνρσ; ð2:23Þ

we can straightforwardly compute the inverse of this matrix, Γð2Þ−1
boson, with a little effort:

Γð2Þ−1
boson ¼

1

−p2
×

h̃μν
S

bμ
b

h̃ρσ S bρ b0
BBB@

½2Iμν;ρσ − 1
3
dμνdρσ þ ðdμνeρσ þ eμνdρσÞ − 3eμνeρσ� dμν − 3eμν 2ipðμdνÞρ −p2ðdμν − eμνÞ

dρσ − 3eρσ −3 −ipρ p2

−2ipðρdσÞμ ipμ 0 0

−p2ðdρσ − eρσÞ p2 0 0

1
CCCA

:

ð2:24Þ

Thus, we explicitly confirmed that the inverse also exists in the boson sector and hence that our gauge fixing is complete.
The propagators given by i × Γð2Þ−1

boson read e.g.,

F:T:h0jTh̃μνh̃ρσj0i ¼ i
2Iμν;ρσ − 1

3
dμνdρσ þ ðdμνeρσ þ eμνdρσÞ − 3eμνeρσ

−p2
;

F:T:h0jTh̃μνSj0i ¼ i
dμν − 3eμν

−p2
; ð2:25Þ

etc. Note that the graviton propagator has not only a dipole but also a tripole part.

C. Mode counting

For completeness, let us also confirm in this gauge that the physical modes are only two transverse modes with helicity
j ¼ �2 and all the other modes properly fall into the unphysical BRST quartets.
To do so, consider the free field equations of motion following from the quadratic terms of SGR ¼ R

d4xLGR, which are
also the equations of motion of the asymptotic fields:

δSGR
δh̃μν

∶
1

2
□h̃μν − ∂ρ∂ðνh̃μÞρ −

1

4
ημν□h̃ − ∂ðμbνÞ þ

1

2
ημνb ¼ 0; ð2:26Þ
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δSGR
δS

∶ ∂μbμ ¼ 0; ð2:27Þ

δSGR
δbμ

∶ ∂νh̃
μν − ∂μS ¼ 0; ð2:28Þ

δSGR
δb

∶ h̃ ¼ 0; ð2:29Þ

δSGR
δc̄μ

;
δSGR
δd̄

∶ □cμ þ ∂μd ¼ 0; ∂μcμ ¼ 0; → □d ¼ 0;

ð2:30Þ

δSGR
δcμ

;
δSGR
δd

∶ □c̄μ þ ∂μd̄ ¼ 0; ∂μc̄μ ¼ 0; → □d̄ ¼ 0;

ð2:31Þ

where the bracket () attached to the indices means
the weight 1 symmetrization; e.g., AðμBνÞ ¼ ð1=2Þ×
ðAμBν þ AνBμÞ. Taking the ημν-trace of (2.26) and using
(2.28) and (2.29), we find

−□Sþ 2b ¼ 0: ð2:32Þ

The divergence of the gravity equation (2.26), combined
with (2.27)–(2.29), yields

−
1

2
ð□∂μSþ□bμ − ∂μbÞ ¼ 0

→ □bμ þ ∂μb ¼ 0 → □b ¼ 0; ð2:33Þ

where in the first step, we have used (2.32), and in the
next step, we took the divergence and used (2.27). These
equations (2.32) and (2.33) imply that S and bμ fields
satisfy dipole equations □

2S ¼ 0 and □
2bμ ¼ 0, and

their dipole parts are supplied by the simple pole b field.
The gravity field equation (2.26) is rewritten by using
Eqs. (2.28) and (2.29) into

1

2
□h̃μν − ∂μ∂νS − ∂ðμbνÞ þ

1

2
ημνb ¼ 0: ð2:34Þ

Applying □ to this and using Eqs. (2.32) and (2.33), we
find

1

2
□

2h̃μν − ∂μ∂νb ¼ 0: ð2:35Þ

So, we see that h̃μν field is now a tripole field, and the
tripole part is supplied by the simple pole b field and the
dipole parts are supplied by simple pole parts of S and bμ.
The conventional method to count the number of

independent modes for such a system containing multipole

fields, is to redefine such multipole fields into simple pole
fields by subtracting the mixed simple pole fields. Since it
is quite cumbersome to do so, however, we here adopt the
4-dimensional Fourier expansion [25] defined as

ϕðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3

p
Z

d4pθðp0Þ½ϕðpÞeipx þ ϕ†ðpÞe−ipx�:

ð2:36Þ

Namely, we treat the multipole fields as they stand; the
4-dimensional operators ϕðpÞ and ϕðpÞ† annihilate and
create the multipole particles as they stand. The BRST
singlet physical modes must of course be simple pole fields.
Multipole fields are necessarily unphysical and so will fall
into the BRST quartet. We will see that the members of a
BRST quartet have a common multipole structure to
decouple among them. We note that, when ϕðxÞ is a simple
pole field, ϕðpÞ is given in terms of the usual annihilation
operator ϕðpÞ by 3-dimensional Fourier transform as

ϕðpÞ ¼ θðp0Þδðp2Þ
ffiffiffiffiffiffiffiffi
2jpj

p
ϕðpÞ: ð2:37Þ

Now the counting the number of modes by 4-dimensional
Fourier modes ϕðpÞ and ϕ†ðpÞ is very easy and the same as
the number of field’s components. We have 10ðh̃μνÞ þ
1ðSÞ þ 4ðbμÞ þ 1ðbÞ ¼ 16 component fields in the boson
sector, and 4ðcμÞ þ 1ðdÞ ¼ 5 and 4ðc̄μÞ þ 1ðd̄Þ ¼ 5 com-
ponents in the ghost and antighost sectors, respectively. But
they are subject to the constraint equations of motion which
reduce the number of independent modes.
First h̃μν field is subject to 4 constraints by Eq. (2.28) and

1 traceless constraint (2.29). Thus, h̃μν contains 10 − 4 −
1 ¼ 5 independent modes. The bμ field obeys the trans-
verse equation (2.27), so leaving 4 − 1 ¼ 3 independent
modes. S and b each gives an independent mode. Similarly,
in the ghost sector, cμ and c̄μ fields each have 3 independent
modes by Eqs. (2.30) and (2.31) and d and d̄ each gives an
independent mode.
Now recall the BRST transformation at the linearized

level (which is also the BRST transformation of the
asymptotic fields under the perturbative assumption).

½iQB; h̃μνðpÞ� ¼ −ipμcνðpÞ − ipνcμðpÞ ð∵ ∂ρcρ ¼ 0Þ;
ð2:38Þ

fiQB; c̄μðpÞg ¼ ibμðpÞ; ð2:39Þ

½iQB; SðpÞ� ¼ dðpÞ; fiQB; d̄ðpÞg ¼ ibðpÞ: ð2:40Þ

As for the 5 independent modes among 10 gravity fields
h̃μν, we first define the following 6 linear combinations of
h̃μν, choosing the x3 axis along p:
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h̃T1ðpÞ ¼
1

2
ðh̃11ðpÞ − h̃22ðpÞÞ;

h̃T2ðpÞ ¼ h̃12ðpÞ;

χ0ðpÞ ¼
1

2p0

�
h̃00ðpÞ −

1

2
ðh̃11ðpÞ þ h̃22ðpÞÞ

�
;

χiðpÞ ¼
1

p0

h̃i0ðpÞ for i ¼ 1; 2;

χ3ðpÞ ¼
1

2p3

�
h̃33ðpÞ þ

1

2
ðh̃11ðpÞ þ h̃22ðpÞÞ

�
: ð2:41Þ

These fields have very simple properties under the BRST
transformation (2.38): The transverse states are BRST
singlets,

½iQB; h̃TiðpÞ� ¼ 0; ði ¼ 1; 2Þ; ð2:42Þ

and χμðpÞ’s satisfy

½iQB; χμðpÞ� ¼ −icμðpÞ; ðμ ¼ 0; 1; 2; 3Þ: ð2:43Þ

They also satisfy the transversality condition pμχμðpÞ ¼ 0

so that they have only 3 components. Together with h̃Ti,
they give the 5 independent components from h̃μν.
Other than these 5 modes ðh̃TiðpÞ; χμðpÞÞ from h̃μν, we

only have 5 bosons SðpÞ, bμðpÞ, bðpÞ and 4 ghosts ðcμ; dÞ
plus 4 antighosts ðc̄μ; d̄Þ. We now see that aside from two
physical transverse modes h̃TiðpÞ, all the other modes fall
into eight BRST doublets:

vector BRSTdoublets∶ ðχμ; cμÞ; ðc̄μ; bμÞ;
scalar BRST doublets∶ ðS; dÞ; ðd̄; bÞ: ð2:44Þ

Recall that these vectors χμ, cμ, c̄μ, bμ are all transversal and
we count each of them as d − 1 ¼ 3 modes, so we have
ðd − 1Þ × 2þ 1 × 2 ¼ 8 BRST doublets in total. They
indeed have the following BRST transformation laws:

�
iQB;

�
χμ

S

��
¼
�−icμ

d

�
;

�
iQB;

�
c̄μ

d̄

��
¼ i

�
bμ
b

�
:

ð2:45Þ

These eight BRS doublets fall into four BRST quartets
which decouple from the physical subspace, and we are left
with the two physical transverse modes with helic-
ity j ¼ �2.
It is, however, worth noting that the metric structure of

these eight BRST doublets is slightly unfamiliar one. In
particular, it is not correct to say that the following pair of
the BRST doublets gives a BRST quartet:

½ðSðpÞ; dðpÞÞ; ðd̄ðpÞ; bðpÞÞ�: ð2:46Þ

This is because h0jdðpÞd̄†ðqÞj0i ¼ −ih0jSðpÞb†ðqÞj0i ¼ 0,
as is seen shortly in Eq. (2.51), which implies that the
BRST doublet ðSðpÞ; dðpÞÞ does not have nonvanishing
inner-product with the other BRST doublet ðd̄ðpÞ; bðpÞÞ
and so they do not constitute a BRST quartet in the proper
sense of the terminology.
The 4-dimensional commutation relations for these

asymptotic fields can be derived from the expressions
for the propagator i × Γð2Þ−1 in Eqs. (2.24) and (2.13)
by the standard procedure and are explicitly given in
Eq. (A5) in the Appendix. From Eq. (A5), we can see
the following commutation relations for the present inde-
pendent modes:

½h̃TiðpÞ; h̃†TjðqÞ� ¼ δijθðp0Þδðp2Þδ4ðp − qÞ; ð2:47Þ

½h̃TiðpÞ;ϕ†ðqÞ� ¼ 0; for ϕ ¼ χμ; S; bμ; b; ð2:48Þ

½χμðpÞ; b†νðqÞ� ¼ fcμðpÞ; c̄†νðqÞg
¼ iημνθðp0Þδðp2Þδ4ðp− qÞ
− ipμpνθðp0Þð−δ0ðp2ÞÞδ4ðp− qÞ; ð2:49Þ

½χμðpÞ; b†ðqÞ� ¼fcμðpÞ; d̄†ðqÞg ¼ pμθðp0Þδðp2Þδ4ðp− qÞ;
ð2:50Þ

½SðpÞ; b†ðqÞ� ¼ ifdðpÞ; d̄†ðqÞg ¼ 0; ð2:51Þ

½SðpÞ; b†μðqÞ� ¼ ifdðpÞ; c̄†μðqÞg
¼ −ipμθðp0Þδðp2Þδ4ðp − qÞ: ð2:52Þ

The first Eq. (2.47) means that the transverse modes h̃Ti
really are simple pole fields and have positive norms,
and the second (2.48) show that they are orthogonal
to all the other modes. Equation (2.51) shows the vani-
shing inner-product h0jdðpÞd̄†ðpÞj0i¼0mentioned above.
Equations (2.50) and (2.52) show the cross inner-product
relations between the scalar and vector BRST doublets;
Eq. (2.50) shows that the partner BRST doublet of the
scalar BRST doublet ðd̄; bÞ is the longitudinal component
ðχL; cLÞ of the vector BRST doublet ðχμ; cμÞ (Here, the
longitudinal means the mode whose polarization vector is
proportional to pμ):

h0jcLðpÞd̄†ðqÞj0i ¼ h0jχLðpÞQBd̄†ðqÞj0i
¼ h0jχLðpÞb†ðqÞj0i ≠ 0: ð2:53Þ

In the same way, Eq. (2.52) means that the BRST doublet
ðSðpÞ; dðpÞÞ has nonvanishing innerproduct with the
ðc̄LðpÞ; bLðpÞÞ. Thus we can identify the following four
BRST quartets (pairs of BRST doublets) in the present
case, in the proper sense of terminology of BRST quartet:
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transverse quartets ði ¼ 1; 2Þ∶ ðχiðpÞ; ciðpÞÞ ↔ ðc̄iðpÞ; biðpÞÞ;
longitudinal χ quartet∶ ðχLðpÞ; cLðpÞÞ ↔ ðd̄ðpÞ; bðpÞÞ;
longitudinal c̄ quartet∶ ðSðpÞ; dðpÞÞ ↔ ðc̄LðpÞ; bLðpÞÞ; ð2:54Þ

with↔ indicating the mutual partner doublets with which nonvanishing inner-products exist like Eq. (2.53). These four sets
of fields are the real BRST quartets and completely decouple from the physical sector, leaving only 2 transverse modes
in GR.

D. Cosmological constant in GR in the unimodular gauge

Before closing this section, we should comment on the crucial difference on the cosmological constant between GR in the
unimodular gauge and UG.
Our total action (1.1) + (2.5) in the present unimodular gauge GR yields the field equation for the metric

Rμν −
1

2
gμνðR − 2Λþ bÞ − ð∂ðμbνÞ þ bðμ∂νÞSÞ þ

1

2
gμνgρσð∂ρbσ þ bρ∂σSÞ

þ ðterms involving the FP ghost fields cμ; c̄μ; d; d̄Þ ¼ 0: ð2:55Þ

Let us consider the classical vacuum solution of this gravity
equation as the background field configuration of the
quantum theory. If we look for the solution with vanishing
vector NL field bμ ¼ 0, then this Eq. (2.56) reduces to the
form

Rμν −
1

2
gμνðR − 2Λþ bÞ ¼ 0; ð2:56Þ

which is identical to the field equation (1.5) in UG if
we identify b here with the multiplier field λ there. One
might then be tempted to conclude that the cosmological
constant in the action has no physical meaning in GR in the
unimodular gauge, just like UG.
However, in GR, there is a crucial physical state

condition [28]

QBjphysi ¼ 0; ð2:57Þ

and the NL field b is a BRST exact field, BRST transform
of the antighost field d̄; fQB; d̄g ¼ b. Since the vacuum
must be a physical state, the NL field b must always have
vanishing vacuum expectation value:

h0jbðxÞj0i ¼ h0jfQB; d̄ðxÞgj0i ¼ 0: ð2:58Þ

This is also true for bμ. At the tree level, the vacuum
expectation value (VEV) of the field operator product
equals the product of the VEV of each field. So all the
terms containing FP ghost fields vanish. Therefore, the
above field equation (2.55) correctly reproduces the classi-
cal Einstein equation with the cosmological constant (1.2).
This is to be expected since physical contents should be
independent of the gauge fixing, and in GR in covariant
gauge like de Donder gauge, the cosmological constant is

really a physical quantity which determines the scalar
curvature of the vacuum.
Then, what is the difference between UG and GR in the

unimodular gauge? It is the field properties of the multiplier
field λ in UG and the NL field b in GR that make the
difference. For the multiplier field λ in UG, unlike b, there
is no constraint that its VEV should vanish or any other
matrix element. So, we have the gravity field equation (1.5)
and λ is a field that should be eliminated by using the field
equation. This requires the manipulation described in the
introduction, and we can get only the traceless part of
the field equation (1.7). We see that λ gets VEV to cancel
the cosmological constant.

III. IMPLICATIONS FOR UNIMODULAR
GRAVITY

Wewould like to discuss if and how the above formulation
of GR in the unimodular gauge may cast any light on the
problem of covariant quantization of UG with the action
(1.4). One notable fact is that, as we have discussed in the
preceding section, the condition (1.3) is imposed as a gauge
fixing inGRby one of themember b of the BRST quartet but
here it is imposed as a constraint by the Lagrange multiplier
field λ independent of the BRST transformation. This
restricts the invariance of the theory to TDiff.
Since UG has fixed spacetime volume, it appears natural

to consider that the usual GR is recovered by summing
over the spacetime volume in UG. This reminds us of the
suggestion made long time ago by Hawking that the
partition function for the theory with Λ are related by
“Laplace transform” with that with spacetime volume V
and vice versa [23]. In the Minkowski space, the trans-
formation should be Fourier transformation. So let us
consider what happens if we make Fourier transformation
of the partition function of GR in the unimodular gauge.
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The partition function for GR in the unimodular gauge is
given by

ZGR½Λ;ω�¼
Z

½Dgμν�½DS�½Dbμ�½Dcμ�½Dc̄μ�½Dd�½Dd̄�½Db�

×exp

�
i

1

16πG

Z
d4xf ffiffiffiffiffiffi

−g
p ðR−2ΛÞþLGFþFPg

�
:

ð3:1Þ

If we multiply this by

exp

�
iΛ
8πG

Z
d4xω

�
; ð3:2Þ

and integrate over Λ first, we get δðR d4x
ffiffiffiffiffiffi−gp −

R
d4xωÞ.

This is the global relation (1.13), which is a consequence
in UG, but this does not immediately lead to the local
constraint

ffiffiffiffiffiffi−gp − ω ¼ 0. This is close to the UG, and it
may be instructive to study the theory with this condition
changed into a local one:

ZUG

≡
Z

½Dλ�
Z

½Dgμν�½DS�½Dbμ�½Dcμ�½Dc̄μ�½Dd�½Dd̄�½Db�

×exp

�
i

1

16πG

Z
d4xf ffiffiffiffiffiffi

−g
p

RþLGFþFPþλð ffiffiffiffiffiffi
−g

p
−ωÞg

�
:

ð3:3Þ

The fact that we obtain this by summing over cosmological
constant would be consistent with the fact that the cosmo-
logical constant is not determined in UG.
Recall that we have the term of the same form

bð ffiffiffiffiffiffi−gp − ωÞ as this constraint in the gauge fixing terms
(2.5), and then this term may be absorbed into λ. The
integral over b may be performed and yields a trivial
constant

Z
Db exp

�
i

16πG

Z
d4x

β

2
b2
�
¼ const

Y
x

1ffiffiffi
β

p : ð3:4Þ

Absorbing this constant into the definition of the partition
function, we find the transformed partition function

ZUG

¼
Z

½Dgμν�½DS�½Dbμ�½Dcμ�½Dc̄μ�½Dλ�½Dd�½Dd̄�

×exp

�
i

1

16πG

Z
d4xf ffiffiffiffiffiffi

−g
p

RþL0
GFþFPþλð ffiffiffiffiffiffi

−g
p

−ωÞg
�
;

ð3:5Þ

where

L0
GFþFP ¼ bμð∂νg̃μν − g̃μν∂νSÞ þ

α

2
b2μ

þ ic̄μð∂νδBðg̃μνÞ − δBðg̃μνÞ∂νS − g̃μν∂νdÞ
þ id̄ð ffiffiffiffiffiffi

−g
p ∇μcμÞ: ð3:6Þ

This looks like the same as GR in the unimodular gauge.
Since it has the same structure as GR in the unimodular
gauge, one would naively expect that the analysis in the
preceding section goes through and the remaining degrees
of freedom are the same as GR. In fact, the Feynman rules
for both theories are the same, and any scattering ampli-
tudes calculated in both theories agree.
Considering all these circumstances, it appears that this

theory may be a possible candidate for the quantum theory
of UG. Then what is the difference between GR in the
unimodular gauge and this theory? The difference lies in
the fundamental difference in the nature of the field b and λ,
as we have discussed in Sec. II D. In GR, the field b giving
the unimodular constraint is the NL field, a member of
BRST quartet, and the theory has the BRST invariance. As
a consequence, it does not have VEV. In contrast, in the
current theory, λ is BRST singlet and can have VEV, and
may cancel the cosmological constant. However, since the
action in (3.5) is no longer invariant under the BRST
transformation because λ ≠ b, we do not have the same
physical state condition as in GR. If we defined another
new BRST transformation under which our λ field were the
BRST transform of the anti-ghost d̄, fQB; d̄g ¼ λ, and then
we would have the physical state condition but the VEVof
λ would have to vanish, reproducing GR in the unim-
odular gauge.
As stated above, we have the same Feynman rules and get

the same amplitudes in both theories. For the transverse
gravitons, these give amplitudes without any problem. The
problem manifests itself when we calculate the amplitudes
for the longitudinal modes. In the BRST invariant theory, the
physical state condition forbids them to appear by themselves
but must come together with the FP ghosts, and their
contributions vanish. Without the physical state condition,
nothing tells us such amplitudes should be absent.
Another point to be noticed is that in the present theory,

the invariance under TDiff

δBgμν ¼ ∇μcTν þ∇νcTμ ; ∇μcTμ ¼ 0; ð3:7Þ

is realized only on shell. We can see that this constraint is
imposed by the field equations for the ghosts d and d̄. If
one started with the UG with the action (1.11), we would
have the invariance only under (3.7) off shell, but then we
could not see the necessity of introduction of the additional
fields ðS; d; d̄Þ, which are necessary for the decoupling of
the modes other than those in GR. It is plausible that the
formulation of quantum UGmust be realized by fixing only
TDiff. This should be related to the question how to specify
the physical states in this theory.
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To summarize, as far as the Feynman rules and other
properties are concerned, both theories describe the same
theory except for the treatment of the cosmological con-
stant, but here the criterion for choosing our physical
asymptotic states is lacking in the above theory. We may
get the same scattering amplitudes among the same set of
particles in both theories, but it is not specified in this
theory which scattering amplitudes are physical. These
problems of identifying physical asymptotic states and
gauge fixing the invariance under TDiff off shell in the
theory are under study. We hope to report on this in the near
future.

ACKNOWLEDGMENTS

We thank Roberto Percacci for valuable discussions.
T. K. is supported in part by the JSPS KAKENHI Grant
No. JP18K03659. N. O. is supported in part by the Grant-in-
Aid for Scientific Research Fund of the JSPS (C)
No. 16K05331, No. 20K03980, and Taiwan MOST
No. 110-2811-M-008-510.

APPENDIX: 4-DIMENSIONAL COMMUTATION
RELATIONS FROM PROPAGATORS

The propagators, or the inverse of the 2-point vertices
i × Γð2Þ−1 of the boson fields and FP ghost fields in
the present system are computed in Eqs. (2.24) and
(2.13), respectively. We can rewrite those expression for
F:T:h0jTϕiðxÞϕjð0Þj0i ¼ i × Γð2Þ−1

ij in x-space in terms of
the invariant functions

DFðxÞ ¼ ΔFðx;m2Þjm2¼0

EFðxÞ ¼ −
∂

∂m2
ΔFðx;m2Þjm2¼0

FFðxÞ ¼
1

2

� ∂
∂m2

�
2

ΔFðx;m2Þjm2¼0 ðA1Þ

ΔFðx;m2Þ ¼
Z

d4p
ið2πÞ4

eipx

m2 þ p2 − iϵ

Δðx;m2Þ ¼
Z

d4p
ið2πÞ3 ϵðp

0Þδðm2 þ p2Þeipx ðA2Þ

with suffix F meaning Feynman’s causal functions.
Then, for any free theory, the commutation relations
½ϕiðxÞ;ϕjð0Þ� can be obtained simply by replacing the
invariant functions by the same invariant functions without
the suffix F multiplied by i; that is, replacing ΔFðx;m2Þ by
iΔðx;m2Þ, DFðxÞ by iDðxÞ etc. (This rule actually holds
even for interacting Heisenberg fields if we use the spectral
function representation.)
Applying this rule to the x-space representation of the

propagators obtained in Eqs. (2.24) and (2.13), we find
the following 4-dimensional commutation relations for our
asymptotic fields:

½h̃μνðxÞ; h̃ρσðyÞ� ¼ ðημρηνσ þ ημσηνρ − ημνηρσÞiDðx − yÞ
þ fAμν;ρσ − 2Bμν;ρσgiEðx − yÞ
− 4∂μ∂ν∂ρ∂σiFðx − yÞ

½h̃μνðxÞ; SðyÞ� ¼ ημνiDðx − yÞ þ 4∂μ∂νiEðx − yÞ;
½h̃μνðxÞ; bρðyÞ� ¼ ðημρ∂ν þ ηνρ∂μÞiDðx − yÞ

þ 2∂μ∂ν∂ρiEðx − yÞ;
½h̃μνðxÞ; bðyÞ� ¼ −2∂μ∂νiDðx − yÞ;
½SðxÞ; SðyÞ� ¼ −3iDðx − yÞ;
½SðxÞ; bρðyÞ� ¼ −∂ρiDðx − yÞ;
½bμðxÞ; bνðyÞ� ¼ ½bμðxÞ; bðyÞ� ¼ ½bðxÞ; bðyÞ� ¼ 0

fcμðxÞ; c̄νðyÞg ¼ −ημνDðx − yÞ − ∂μ∂νEðx − yÞ;
fcμðxÞ; d̄ðyÞg ¼ ∂μDðx − yÞ;
fdðxÞ; c̄μðyÞg ¼ −∂μDðx − yÞ;
fdðxÞ; d̄ðyÞg ¼ 0; ðA3Þ

where

Aμν;ρσ ¼ ημρ∂ν∂σ þ ημσ∂ν∂ρ þ ηνρ∂μ∂σ þ ηνσ∂μ∂ρ;

Bμν;ρσ ¼ ημν∂ρ∂σ þ ηρσ∂μ∂ν: ðA4Þ
The Fourier transforms of these give the commutation
relations of the “creation-annihilation” operators ϕðpÞ and
ϕ†ðpÞ defined by 4-dimensional Fourier expansion in
Eq. (2.36). We find

½h̃μνðpÞ; h̃†ρσðqÞ� ¼ ðημρηνσ þ ημσηνρ − ημνηρσÞθðp0Þδðp2Þδ4ðp − qÞ
þ fAμν;ρσjp − 2Bμν;ρσjpgθðp0Þð−δ0ðp2ÞÞδ4ðp − qÞ
− 2pμpνpρpσθðp0Þδ00ðp2Þδ4ðp − qÞ;

½h̃μνðpÞ; S†ðqÞ� ¼ ημνθðp0Þδðp2Þδ4ðp − qÞ − 4pμpνθðp0Þð−δ0ðp2ÞÞδ4ðp − qÞ;
½h̃μνðpÞ; b†ρðqÞ� ¼ ðημρipν þ ηνρipμÞθðp0Þδðp2Þδ4ðp − qÞ − 2ipμpνpρθðp0Þð−δ0ðp2ÞÞδ4ðp − qÞ;
½h̃μνðpÞ; b†ðqÞ� ¼ 2pμpνθðp0Þδðp2Þδ4ðp − qÞ;
½SðpÞ; S†ðqÞ� ¼ −3θðp0Þδðp2Þδ4ðp − qÞ;
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½SðpÞ; b†ρðqÞ� ¼ −ipρθðp0Þδðp2Þδ4ðp − qÞ;
½bμðpÞ; b†νðqÞ� ¼ ½bμðpÞ; b†ðqÞ� ¼ ½bðpÞ; b†ðqÞ� ¼ 0

fcμðpÞ; c̄†νðqÞg ¼ iημνθðp0Þδðp2Þδ4ðp − qÞ − ipμpνθðp0Þð−δ0ðp2ÞÞδ4ðp − qÞ;
fcμðpÞ; d̄†ðqÞg ¼ pμθðp0Þδðp2Þδ4ðp − qÞ;
fdðpÞ; c̄†μðqÞg ¼ −pμθðp0Þδðp2Þδ4ðp − qÞ;
fdðpÞ; d̄†ðqÞg ¼ 0; ðA5Þ

where Xjp indicates that all the derivative factors ∂μ contained in X should be replaced by ipμ.
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