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We study a systematic derivation of four-dimensional N ¼ 1 supersymmetric effective theory from a
ten-dimensional non-Abelian Dirac-Born-Infeld action compactified on a six-dimensional torus with
magnetic fluxes on the D-branes. We find a new type of matter Kähler metric, while gauge kinetic function
and superpotential are consistent with previous studies. For the ten-dimensional action, we use a
symmetrized trace prescription and focus on the bosonic part up to OðF4Þ. In the presence of the
supersymmetry, four-dimensional chiral fermions can be obtained via index theorem. The new matter
Kähler metric is independent of flavor but depends on the fluxes, 4D dilaton, Kähler moduli, and complex
structure moduli and will be always positive definite if an induced Ramond-Ramond charge of the D-
branes on which matters are living are positive. We read the superpotential from an F-term scalar quartic
interaction derived from the ten-dimensional action and the contribution of the new matter Kähler metric to
the scalar potential which we derive turns out to be consistent with the supergravity formulation.
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I. INTRODUCTION

Superstring theory is an attractive candidate for a unified
theory consistent with quantum gravity. The theory can
provide us with a theoretical framework to describe all the
interactions and chiral matters such as quarks and leptons
as well as the Higgs field. The string theory can predict the
existence of extra dimensions and D-branes. Dynamics of
low energy excitations on D-branes is described by gauge
theories. Compactification of string theory on tori is one of
simple ways to obtain four-dimensional (4D) effective field
theories but these are nonchiral, while the Standard Model
is chiral. The chiral nature of matter fields is realized by
introducing magnetic fluxes on the world volume of
D-branes in the compact extra dimensions [1–4]. Even
in toroidal compactifications, magnetic fluxes realize 4D
chiral theory. Orbifold compactification with magnetic
fluxes is also studied in Refs. [5–7]. The number of chiral
generations is determined by the size of the magnetic flux

on compact extra dimensions.1 Three-generation models
have been classified in Refs. [8–10]. Moreover, as the zero-
mode functions of the Dirac (Laplace) operator are qua-
silocalized in compact space and Yukawa couplings as
well as higher order couplings are written by overlap
integration among their zero mode functions, hierarchical
couplings can be realized [11,12]. The realization of quark
and lepton masses and their mixing angles was studied in
Refs. [13–16]. Furthermore, their flavor structure is con-
trolled by modular symmetry [17–23]. Thus, compactifi-
cation with magnetic background fluxes is one of practical
methods to derive realistic particle physics from string
theory.
4D low energy effective theories have often been

constructed through compactification of higher-dimen-
sional super Yang-Mills (SYM) theory with the canonical
kinetic term [11,24]. On the other hand, the Dirac-Born-
Infeld (DBI) action [25,26] with the Chern-Simons (CS)
terms [27–33] describes the dynamics of massless open
string modes on the D-branes. At the lowest order of the
gauge field strength F, the DBI action reduces to Yang-
Mills theory. However, the DBI action can describe more
stringy D-brane natures, e.g., T duality. For non-Abelian
DBI action, higher order terms of the gauge field strength
are less known owing to its noncommutativity [34–40], and
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1The number of chiral generations also depends on twisted
boundary conditions, discrete Wilson lines, and Scherk-Schwarz
phase in orbifold models.
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it is also less known to compute explicitly 4D effective
theories via compactification on a magnetized torus. This
naturally motivates us to study dimensional reduction of the
non-Abelian DBI action for including higher order correc-
tions. Our purpose in this paper is to compute 4D N ¼ 1
supersymmetric effective action from ten-dimensional
(10D) non-Abelian DBI action compactified on the mag-
netized six-dimensional torus with focus on terms up to
OðF4Þ,

L4D ¼
Z
T6

d6yLnon-AbelianDBI

∼
Z
T6

d6yðtrF2 þ trF4Þ; where F̂yiyj ≠ 0: ð1:1Þ

Here, yiði ¼ 1; 2;…; 6Þ denote the coordinates in the extra
six dimensions, and F̂ is the background flux. Hereafter, we
drop the Neveu–Schwarz-Neveu–Schwarz (NSNS) two-
form potential for simplicity throughout this paper. We
ignore also CS terms in the D-brane action since they
mainly contribute to topological terms and supersymmetry
(SUSY) breaking terms which vanish for supersymmetric
vacua with canceled tadpoles. We focus on the bosonic part
of non-Abelian DBI action in this paper, since fermions can
be naturally introduced with SUSY.
In 4D action, we show the matter Kähler metric,

gauge kinetic function, and superpotential in supergravity
(SUGRA) through a systematic study of dimensional
reduction. The DBI correction of OðF4Þ contributes only
to the matter Kähler metric and gauge kinetic function. It
turns out that there exists a new flux contribution to the
matter Kähler potential, while gauge kinetic functions and
holomorphic Yukawa couplings in the superpotential are
consistent with previous works. Such a new flux correction
to the Kähler metric has been often neglected, although a
flux contribution to gauge coupling is frequently discussed
for the coupling unification. We take flux corrections into
account consistently in this sense and show a concrete
dependence on fluxes in the Kähler potential of chiral
matters. Also, that of open string moduli, which was
discussed in Refs. [41–43], is shown in the Appendix A.
Such consistent treatment may become important to study
swampland conjectures [44] with effective field theories
(see [45] for a review). The new matter Kähler metric is
independent of flavor but depends on the fluxes, 4D
dilaton, Kähler moduli, and complex structure moduli
and will be always positive definite if an induced
Ramond-Ramond (RR) charge of the D-branes on which
matters are living are positive. The contribution of the
matter Kähler metric to the scalar potential is shown to be
consistent with the SUGRA formulation, and the super-
potential is read from scalar quartic interaction.
The paper is organized as follows. In Sec. II, we give a

brief review of the non-Abelian DBI action and a mag-
netized torus. In Sec. III, we derive 4D supersymmetric low

energy effective action from the DBI action compactified
on a magnetized torus. The results turn out to be consistent
with 4D SUGRA formulation. Section IV is devoted to the
summary and discussion. In Appendixes A and B, we give
the details of the calculations.

II. NON-ABELIAN DBI ACTION ONMAGNETIZED
EXTRA DIMENSIONS

In this section, we introduce the DBI action and
summarize our setup of flux compactification of the DBI
action on a six-dimensional torus.
The dynamics of massless open string modes on the Dp-

brane is described by the DBI action with the CS terms. The
DBI action for Abelian gauge theory is expressed as

SDBI½gMN;φ; AM�

¼ −Tp

Z
dpþ1ξe−φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det
pþ1

ðgMN þ 2πα0FMNÞ
r

; ð2:1Þ

where M;N ¼ 0; 1;…; p stand for the indices of the
(pþ 1)-dimensional world volume of Dp-brane, and
gMN is the pull back of the bulk metric on the D-brane.
α0 denotes the Regge slope, and FMN is the gauge field
strength on the Dp-brane, FMN ¼ ∂MAN − ∂NAM. φ
denotes the 10D dilaton field, and Tp is the brane tension

given by Tp ¼ 2π=lpþ1
s ¼ 2π=ð2πα01=2Þpþ1, where ls ¼

2πα01=2 is the string length. The superpartner fermions are
dropped here for simplicity. The DBI action (2.1) is known
to be robust for an Abelian gauge theory living on a single
D-brane.
A non-Abelian gauge theory is realized on a stack of

D-branes. The author of Ref. [46] proposed the non-
Abelian version of the DBI action with a prescription of
the symmetrized trace, while terms higher than OðF6Þ in
the non-Abelian DBI (NDBI) action are still ambiguous
owing to its noncommutativity [34–40]. As the extension of
Eq. (2.1), NDBI action is given by [46]

SNDBI ¼−Tp

Z
dpþ1ξe−φstr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det
pþ1

ðgMN þ 2πα0FMNÞ
r

:

ð2:2Þ

Here, FMN is field strength of the non-Abelian gauge field,
FMN ¼ ∂MAN − ∂NAM þ i½AM; AN �, and “str” denotes the
symmetrized trace,

strðT1 � � �TnÞ ¼
1

n!
tr½T1 � � �Tn þ ðpermutationsÞ�: ð2:3Þ

Hereafter, we consider space-filling D9-branes (p ¼ 9)
for concreteness because the Lagrangian in the bosonic part
consists only of the gauge field. We focus on terms up
to OðF4Þ.
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A. Magnetized D9-branes on the
six-dimensional torus

We introduce background fluxes on a stack of D9-branes
compactified on a six-dimensional torus. Let us consider a
six-dimensional torus consisting of three two-dimensional
tori as the extra dimension T 6 ¼ Q

3
i¼1 T

2
i . The 10D metric

of M4 ×
Q

3
i¼1 T

2
i is given by

ds210 ¼ e2Φημνdxμdxν þ l2
s

X3
i¼1

gðiÞmndymi dy
n
i ;

gðiÞmn ¼ e2σi
�

1 τðiÞR

τðiÞR jτðiÞj2
�
; ð2:4Þ

where μ, ν ¼ 0, 1, 2, 3, ημν ¼ diagð−1; 1; 1; 1Þ is the

Minkowski metric, and τðiÞ ¼ τðiÞR þ iτðiÞI (i ¼ 1, 2, 3) is
the complex structure modulus on the ith torus T2

i . y
m
i

(m ¼ 1, 2) denotes the coordinate on T 2
i and 0 ≤ ymi ≤ 1,

where y’s are normalized by the string length. The volume
of the ith torus in the string length unit reads

VolðT 2
i Þ ¼

ffiffiffiffiffiffiffi
gðiÞ

q
¼ AðiÞ ¼ e2σiτðiÞI : ð2:5Þ

Hence, e2σi is regarded as a volume modulus of T 2
i . For the

4D Einstein frame, we have introduced the 4D dilaton Φ,

Φ ¼ φ −
1

2
log

Y
i

AðiÞ ¼ φ −
1

2
logVolðT 6Þ; ð2:6Þ

where VolðT6Þ ¼ Að1ÞAð2ÞAð3Þ is the volume of T6. With
the complex coordinate on the ith torus

dzi ¼ dy1i þ τðiÞdy2i ; i ¼ 1; 2; 3; ð2:7Þ

the 10D metric is rewritten as

ds210 ¼ e2Φημνdxμdxν þ l2
s

X3
i¼1

e2σidzidzi: ð2:8Þ

Thus, the metric on the T2
i in the complex basis is given by

gij̄ ¼ l2
s
e2σi

2
δij̄: ð2:9Þ

We focus on a stack of the space-filling D9-branes on the
factorized torus

Q
3
i¼1 T

2
i with nontrivial background fluxes

on the D-branes. The NDBI action (2.2) expanded up to
OðF4Þ is given by [46]

SNDBI ≈ −T9

Z
d10X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det gMN

p
e−φ

ð2πα0Þ2
4

tr

�
FMNFMN −

ð2πα0Þ2
3

�
FKLFLMFNKFMN

þ 1

2
FKLFLMFMNFNK −

1

4
FKLFKLFMNFMN −

1

8
FKLFMNFKLFMN

�
þOðF6Þ

�
; ð2:10Þ

where the metric is omitted in contracting indices of the
gauge field strength, e.g., FMNFMN ≔ gMKgNLFMNFKL. X
denotes the bulk coordinate in 10D. The normalization of
the gauge group generator is assumed to be given by
trðTaTbÞ ¼ δab. The quadratic term trF2

MN can reduce to
the well-known Yang-Mills action with the canonical
kinetic term.
With respect to the background fluxes on the D9-branes,

it is assumed that only the fluxes on the extra six dimension
have nonzero values,

FMN ∋ F̂ymi y
n
j
; where F̂y1i y

2
i
≠ 0: ð2:11Þ

Here, the background flux F̂ is taken to be diagonal with
respect to the torus index, i.e., F̂y1i y

2
i
≠ 0 for i ¼ 1, 2, 3 and

F̂ymi y
n
j
¼ 0 for i ≠ j. In the complex basis, nonvanishing

components of the fluxes are given by

F̂ziz̄i ¼
∂ymi
∂zi

∂yni
∂z̄i F̂ymi y

n
i
; i ¼ 1; 2; 3: ð2:12Þ

See Appendix A for details. This is consistent with the
SUSY condition as discussed later.

B. Flux and matter zero modes

Although fermions are neglected so far, they exist in the
presence of the SUSY. We briefly review a zero (massless)
mode solution of the Dirac equation on the T 2 with Uð1Þ
magnetic flux [11]. A generalization of the solution to the
T6 case is discussed later.
The background magnetic flux on T 2 in the string length

unit is given by

Z
T2

F̂
2π

¼ M → F̂ ¼ πiM
τI

dz ∧ dz̄; M ∈ Z: ð2:13Þ

Then, the gauge potential can be written as

ÂðzÞ ¼ πM
τI

Imðz̄dzÞ: ð2:14Þ

A large gauge transformation associated with translations
on the torus is given by
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Âðzþ 1Þ ¼ ÂðzÞ þ d

�
πM
τI

ImðzÞ
�
;

Âðzþ τÞ ¼ ÂðzÞ þ d

�
πM
τI

Imðτ̄zÞ
�
: ð2:15Þ

Let us consider the spinor ψ on the T2 with unit charge
q ¼ 1, where

ψ ¼
�
ψþðzÞ
ψ−ðzÞ

�
: ð2:16Þ

Here, � denotes the eigenvalue of SOð2Þ spinor algebra
associated with the torus (chirality). The gauge trans-
formation acts on the spinor as

ψðzþ 1Þ ¼ exp

�
i
πM
τI

ImðzÞ
�
ψðzÞ;

ψðzþ τÞ ¼ exp

�
i
πM
τI

Imðτ̄zÞ
�
ψðzÞ: ð2:17Þ

With these two boundary conditions, we solve the Dirac
equation i=Dψ ¼ 0 on the T 2. It is noted that the spinor
becomes a single-valued function up to the gauge trans-
formation when M ∈ Z. For M > 0, only ψþ is a normal-
izable zero modes, which is jMj-fold degenerate; similarly,
only ψ− is a normalizable jMj-fold degenerate zero mode
for M < 0. Hence, the effective theory becomes chiral
in the low energy limit. Explicitly, for M > 0 the ψþ is
written as

ψA;M
T2 ¼ ΘA;MðzÞ ≔ NM exp

�
πiMz

ImðzÞ
τI

�
ϑ

� A
M

0

�
ðMz;MτÞ;

A ¼ 0; 1;…;M − 1: ð2:18Þ

Here, NM is the normalization constant, A labels the
number of degeneracy, i.e., flavor, and ϑ is the Jacobi
theta function,

ϑ

�
a

b

�
ðν; τÞ ≔

X
l∈Z

eπiðaþlÞ2τe2πiðaþlÞðνþbÞ: ð2:19Þ

The normalization of ψþ reads

Z
T2

d2y
ffiffiffiffiffi
g2

p
ΘA;MðzÞΘB;MðzÞ ¼ δAB

ðNMÞ2Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τIjMjp ; ð2:20Þ

and we choose the following condition2:

ðNMÞ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τIjMjp
A

; ð2:21Þ

such that
R
T2 d2y

ffiffiffiffiffi
g2

p ΘA;MðzÞΘB;MðzÞ ¼ δAB. Here, we
used dimensionless coordinate z. For M < 0, the normal-
izable solution of ψ− is written as

ψA;M
T2 ¼ ΘA;jMjðzÞ; A ¼ 0; 1;…; jMj − 1; ð2:22Þ

where the normalization constant is the same as that for
M > 0. Thus, a signature of M is associated with the
chirality of fermion.

1. Symmetry breaking of Uð3Þ → Uð1Þa × Uð1Þb × Uð1Þc
and degeneracy

It is easy to extend the above solution to a 10D theory
compactified on T6 ¼ Q

3
i¼1 T

2
i with non-Abelian gauge

symmetries of our interest. In the 10D SYM theory, there
exist gauge fields AM and their superpartner gluinos λð10Þ.
It is necessary to take into account of background fluxes

to identify which zero modes survive in 4D theory. We give
the following background fluxes in a non-Abelian gauge
theory:

F̂ziz̄i ≕ F̂iī ¼
iπMðiÞ

τðiÞI
; i ¼ 1; 2; 3: ð2:23Þ

Here, MðiÞ is a matrix-valued constant and gives the gauge
symmetry which can survive in the 4D theory through
½MðiÞ; Aμ� ¼ 0. Otherwise, gauge fields become massive.
For simplicity, we hereafter focus on the case in which the
Uð3Þ gauge group in 10D is broken to Uð1Þa ×Uð1Þb ×
Uð1Þc in 4D by the diagonal background fluxes,

1

2π

Z
T2
i

dzi ∧ dz̄iF̂iī ¼ MðiÞ ¼

0
B@

MðiÞ
a

MðiÞ
b

MðiÞ
c

1
CA;

MðiÞ
a;b;c ∈ Z; ð2:24Þ

where the fluxes are similarly quantized for a charged zero
mode to have a single-valued function on the each T2 up to
gauge transformation. Replacing unity with the identity
matrix in Eq. (2.24) can realize 4D non-Abelian gauge
symmetries. It is noted that gauge fields and gluinos in 10D
are both adjoint representations, in which they are coupled
to the fluxes with a commutator through their covariant
derivatives. Hence, the degeneracy of fermion zero modes
Iαβ depends on the difference of fluxes between two gauge
groups on each torus [11],

Iαβ ≔
Y3
i¼1

IðiÞαβ ; IðiÞαβ ≔ MðiÞ
α −MðiÞ

β ðα; β ¼ a; b; cÞ;

ð2:25Þ2The normalization factor for M ¼ 0 is N ¼ 1=
ffiffiffiffi
A

p
.
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for matter with a charge of ð1;−1Þ against aUð1Þα ×Uð1Þβ
gauge group. It is noted that the definition of Iαβ gives

IðiÞab þ IðiÞbc þ IðiÞca ¼ 0: ð2:26Þ

This equation can determine a relative signature among
Iαβ’s. Next, we show the SUSY condition for avoiding
tachyons and visit concrete zero mode functions.

2. Supersymmetry conditions on the background fluxes

We consider the condition for background fluxes to
preserve 4DN ¼ 1 SUSY for realizing chiral theories. The
SUSY transformation of 10D fermions should vanish to
preserve the 4D SUSY. Then, the condition of the back-
ground fluxes at OðF̂2Þ on the complex manifold reads
[11,41,47–50]

gij̄F̂ij̄ ¼ 0; ð2:27Þ

F̂ij ¼ F̂ij ¼ 0: ð2:28Þ

It is noted that an additional term of F̂z1 z̄1F̂z2 z̄2F̂z3 z̄3 to the
rhs of Eq. (2.27) is required for the calibration condition
of magnetized D-branes with DBI action. However, the
above condition is sufficient to us since we focus on the
terms of OðF4Þ ∋ F̂2 × ðfluctuationsÞ in the Lagrangian.
Higher order corrections in OðF6Þ ∋ F̂4 × ðfluctuationsÞ
neglected in this paper can modify the condition to the
terms involved in F4. In our case, the former condition
(2.27) is satisfied when

X3
i¼1

MðiÞ
α

AðiÞ ¼ 0. ðα ¼ a; b; cÞ: ð2:29Þ

The latter condition on the vanishing holomorphic flux
condition (2.28) is satisfied when we consider the diagonal
fluxes in the torus index. Then, tachyons are absent in the
effective theories since their mass squared is proportional to
[5,11,51]

X3
i¼1

MðiÞ
α −MðiÞ

β

AðiÞ ¼
X3
i¼1

IðiÞαβ
AðiÞ ¼ 0: ð2:30Þ

This equation can also determine a relative signature

among IðiÞαβ’s with fixed α and β on the top of Eq. (2.26).
For later convenience, we introduce the notation of the flux
divided by the torus area as

mðiÞ
α ≔

MðiÞ
α

AðiÞ ðα ¼ a; b; cÞ: ð2:31Þ

3. Matter zero modes in SUSY theories

We consider zero mode functions on T6 in the presence
of 4D SUSY. Let us take 10D chirality of the gluino λð10Þ
as [24]

Γλð10Þ ¼ þλð10Þ: ð2:32Þ

Then, the gluino is decomposed into the irreducible spinor
representation with SOð2Þ3 that is the Cartan subalgebra of
SOð6Þ,

λ0 ≔ λþþþ; λ1 ≔ λþ−−; λ2 ≔ λ−þ−; λ3 ≔ λ−−þ;

ð2:33Þ

where � denotes the eigenvalues of SOð2Þ3 spinor algebra
(chiralities). 10D gauge fields AM can be decomposed
similarly into

Aμ; Az1 ; Az2 ; Az3 ; ð2:34Þ

where Azi ¼ i
2τðiÞI

ðτðiÞAy1i
− Ay2i

Þ. In 4D N ¼ 1 SUSY the-

ories, a vector multiplet V consists of Aμ and λ0, whereas
chiral multiplets Φi can consist of fluctuations of Azi and λi
(i ¼ 1, 2, 3). When the background fluxes preserve the 4D
SUSY in flat spacetime, bosonic partners have the same
zero mode function as fermions [11,24]. Then, the zero
mode function of the massless gauge multiplet V is
independent of coordinates y since there exists no coupling
to the fluxes in the zero mode equation, i.e., ½MðiÞ; Aμ� ¼ 0.
For the chiral multiplets ΦiðxÞ, the zero mode functions
ϕiðyÞ are given by products of those on each torus,

Φ10D
i ðx;yÞ ¼

X
A

ΦA;Iαβ
i ðxÞ⊗ ϕ

A;Iαβ
i ðyÞþ ðmassive modesÞ;

ð2:35Þ

ϕ
A;Iαβ
i ðyÞ ¼

�Y3
r¼1

ϕ
AðrÞ;IðrÞαβ

i;T2
r

ðyrÞ
�
: ð2:36Þ

Here, for Iαβ ≠ 0,

ϕ
AðrÞ;IðrÞαβ

i;T2
r

¼

8>>><
>>>:

ΘAðrÞ;IðrÞαβ ðzrÞ with τðrÞ ðr ¼ i& IðrÞαβ > 0Þ

ΘAðrÞ;jIðrÞαβ jðzrÞ with τðrÞ ðr ≠ i& IðrÞαβ < 0Þ
0 ðother casesÞ

:

ð2:37Þ

This is consistent with chiralities in Eq. (2.33). AðrÞ is the
index of flavor on each torus, AðrÞ ¼ 0; 1;…jIðrÞαβ j − 1, and
hence, the total flavor index is A ¼ 0; 1;…; jIαβj − 1. It is
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noted that matter ΦA;Iαβ
i has a charge of ð1;−1Þ against the

Uð1Þα ×Uð1Þβ gauge group.
Without loss of generality, we assume that

Ið1Þab > 0; Ið2Þ;ð3Þab < 0;

Ið2Þbc > 0; Ið1Þ;ð3Þbc < 0;

Ið3Þca > 0; Ið1Þ;ð2Þca < 0; ð2:38Þ

to satisfy Eqs. (2.26) and (2.30). This is also consistent
with decomposition of Eq. (2.33) as below. As noted, we
have the gauge symmetry breaking of Uð3Þ → Uð1Þa ×
Uð1Þb ×Uð1Þc. Then, the fluctuations of 10D gauge fields
are decomposed into 4D zero (massless) modes, which are,
namely, gauge fields and complex scalars charged under the
4D gauge symmetries,

aμ ¼

0
B@

aaμ

abμ
acμ

1
CA; ð2:39Þ

azi ¼

0
B@

aabi
abci

acai

1
CA

≕

0
B@

Aiϕ
ab
i δi1

Biϕ
bc
i δi2

Ciϕ
ca
i δi3

1
CA; ð2:40Þ

where aM denotes fluctuations of the 10D gauge fields.
aa;b;cμ are the 4D gauge fields associated with Uð1Þa;b;c
symmetries. Ai, Bi, and Ci denote 4D complex scalars.
ðϕab

i ;ϕbc
i ;ϕca

i Þ ≔ ðϕIab
i ;ϕIbc

i ;ϕIca
i Þ show zero mode func-

tions relevant to each complex scalar, and we suppressed
the flavor index. These scalars have bifundamental charges
against Uð1Þa ×Uð1Þb × Uð1Þc symmetries, QðAiÞ ¼
ð1;−1; 0Þ, QðBiÞ ¼ ð0; 1;−1Þ, and QðCiÞ ¼ ð−1; 0; 1Þ,
respectively, where QðscalarÞ denotes the Uð1Þ charges
of the scalar. According to Eqs. (2.37) and (2.38), the
surviving zero modes in 4D are only

AA
1 ; BB

2 ; and CC
3 : ð2:41Þ

Here, A, B, and C are the flavor indices, and their zero
mode functions surviving in 4D are written as

ϕA;ab
1 ¼ ΘAð1Þ;Ið1Þab ðz1Þ ⊗ ΘAð2Þ;jIð2Þab jðz2Þ ⊗ ΘAð3Þ;jIð3Þab jðz3Þ;

ϕB;bc
2 ¼ ΘBð1Þ;jIð1Þbc jðz1Þ ⊗ ΘBð2Þ;Ið2Þbc ðz2Þ ⊗ ΘBð3Þ;jIð3Þbc jðz3Þ;

ϕC;ca
3 ¼ ΘCð1Þ;jIð1Þca jðz1Þ ⊗ ΘCð2Þ;jIð2Þca jðz2Þ ⊗ ΘCð3Þ;Ið3Þca ðz3Þ;

ð2:42Þ

where AðrÞ ¼ 0; 1;…jIðrÞab j − 1, BðrÞ ¼ 0; 1;…; jIðrÞbc j − 1,

and CðrÞ ¼ 0; 1;…; jIðrÞca j − 1 (r ¼ 1, 2, 3): A ¼ 0; 1;
…jIabj − 1, B ¼ 0; 1;…; jIbcj − 1, and C ¼ 0; 1;…;

jIcaj − 1. The normalization factor of ΘAð1Þ;Ið1Þab ðz1Þ is
denoted as N 1

Ið1Þab

, for instance. From Eq. (2.21), these zero

mode functions are normalized as

Z
T6

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕA0;ab

1 ¼ δA;A0 : ð2:43Þ

ϕ’s are zero mode solutions for 10D SYM with the
canonical kinetic term. In the case with the NDBI action,
there are corrections of fluxes to this zero mode solution.
Since the flux is constant to the coordinates of a six-
dimensional torus, the corrections are expected to change
the normalization of the matter Kähler metric. In this
paper, for simplicity, we neglect higher order interactions
with derivatives in 4D theories such as jAj2j∂Aj2 or
j∂Aj4, where A is a 4D complex scalar in a chiral matter
multiplet.

III. SUSY EFFECTIVE ACTION OF
Uð1Þa × Uð1Þb × Uð1Þc THEORY

In this section, we exhibit 4D SUSY effective action
derived from the 10D NDBI action, focusing on the
bosonic sector. As noted already, we assume to start with
10D Uð3Þ gauge symmetry which is broken to Uð1Þa ×
Uð1Þb ×Uð1Þc by the background flux of Eq. (2.24).
We can read the 4D gauge couplings, Kähler metrics of

the chiral matters, and scalar quartic couplings, after
substituting the fields of Eqs. (2.39), (2.40), and the metric
(2.8) into the NDBI action (2.10). For later convenience, we
define closed string moduli [11],

s ≔ e−φAð1ÞAð2ÞAð3Þ ¼ e−φVolðT6Þ; ð3:1Þ

ti ≔ e−φAðiÞ ¼ e−φVolðT2
i Þ; ð3:2Þ

Ui ≔ iτðiÞ; ui ≔ ReðUiÞ ¼ τðiÞI ; ð3:3Þ

where s is the 4D dilaton, and ti are the Kähler moduli. Ui

stand for the complex structure moduli of T 2
i in the SUGRA

basis. In combination with axions descended from RR
tensors, the above moduli constitute the complexified
dilaton S and the Kähler moduli Ti. The Kähler potential
of these closed string moduli Kð0Þ is given by

Kð0Þ ¼ − logðSþ S̄Þ −
X3
i¼1

logðTi þ TiÞ

−
X3
i¼1

logðUi þ UiÞ: ð3:4Þ
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4D effective action of chiral matters is written with these
closed string moduli as seen below. See Appendix A for
details of the computation.

A. Gauge couplings

The gauge couplings ofUð1Þa × Uð1Þb ×Uð1Þc are read
from the coefficient of the gauge kinetic term. The
canonical kinetic term L4D ∋

R
d6y

ffiffiffiffiffi
g6

p
e−φtrðfμνÞ2 gives

the leading contribution without fluxes, whereas the flux-
corrected contributions come from3 L4D ∋

R
d6y

ffiffiffiffiffi
g6

p
e−φ ×

tr½ðF̂ij̄F̂
j̄iÞðfμνÞ2�. Here, fμν is the fluctuation of the 10D

gauge field strength of the Uð3Þ gauge symmetry with the
4D subscripts. The former kinetic term depends on
e−φVolðT6Þ ¼ s, and the latter includes s ×m2, where m
is the moduli-dependent flux defined in Eq. (2.31). Thus,
we find

SNDBI ∋ −
1

2π

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p 1

4g2a
ðfaμνÞ2; ð3:5Þ

where faμν ¼ ∂μaaν − ∂νaaμ is the field strength for the
Uð1Þa, and the gauge coupling for the Uð1Þa group is

1

g2a
¼ s

�
1þ 1

2

X3
i¼1

ðmðiÞ
a Þ2

�
ð3:6Þ

¼ s − t1M
ð2Þ
a Mð3Þ

a − t2M
ð1Þ
a Mð3Þ

a − t3M
ð1Þ
a Mð2Þ

a : ð3:7Þ

In the second line, the SUSY condition (2.29) is used. The
results for Uð1Þb and Uð1Þc symmetries are similar to that
of the Uð1Þa. This is a well-known result of the D-brane
models [41–43,50] and is regarded as the real part of a
corresponding holomorphic gauge coupling fa,

ReðfaÞ ¼
1

g2a
; ð3:8Þ

fa ¼ S − T1M
ð2Þ
a Mð3Þ

a − T2M
ð1Þ
a Mð3Þ

a − T3M
ð1Þ
a Mð2Þ

a : ð3:9Þ

The expansion in fluxes is valid when s > tijMðjÞ
a MðkÞ

a ×
jði ≠ j ≠ k ≠ iÞ. Then, a gauge coupling will become weak
for large vacuum expectation values of moduli. It is noted
that terms dependent on Ti can be positive contributions to
the gauge coupling when an induced D5-brane charge

−MðjÞ
a MðkÞ

a , which is carried by a magnetized D9-brane, is
positive.4

B. Kähler metric of chiral matters

The coefficient of a scalar kinetic term gives the Kähler
metric for chiral matter in SUSY theories. The kinetic
terms with the leading contribution without fluxes are read
from L4D ∋

R
d6y

ffiffiffiffiffi
g6

p
e2Φ−φtrðfμifμiÞ, whereas the next

leading contributions with fluxes are roughly given by a
combination of L4D ∋

R
d6y

ffiffiffiffiffi
g6

p
e2Φ−φtrðF̂jk̄F̂

k̄jfμifμi þ
F̂jk̄fμiF̂

k̄jfμiÞ and similar terms. Here, fμi ≔ fμzi is the
fluctuation of 10D field strength and includes the 4D
kinetic term of a scalar fluctuation, e.g., ∂μAA

i , where Ai

is given in Eq. (2.40) with the intersection number (2.38).5

A factor e2Φ originates from the 4D Einstein frame metric
gμν ¼ e−2Φg̃μν in the kinetic term

ffiffiffiffiffiffiffiffi
−g̃4

p
× g̃μνgiīfμifνī,

where g̃μν is the Jordan frame metric, ds210 ∋
e2Φgμνdxμdxν≕ g̃μνdxμdxν as in Eq. (2.4). For instance,
we roughly estimate

Z
d6y

ffiffiffiffiffi
g6

p
e2Φ−φtrðfμifμiÞ

∼ e2Φ−φgiīj∂μAA
i j2

Z
d6y

ffiffiffiffiffi
g6

p jϕA;ab
i j2

∼
2ui

tiVolðT6Þ j∂μAA
i j2; ð3:10Þ

for terms without fluxes and

Z
d6y

ffiffiffiffiffi
g6

p
e2Φ−φtrðF̂jk̄F̂

k̄jfμifμiÞ

∼ e2Φ−φF̂jk̄F̂
k̄jgiīj∂μAA

i j2
Z

d6y
ffiffiffiffiffi
g6

p jϕA;ab
i j2

∼m2 ×
2ui

tiVolðT 6Þ j∂μAA
i j2; ð3:11Þ

for the flux-corrected terms with the moduli-dependent
fluxes m in Eq. (2.31). Here, ϕA;ab

i is the zero mode
function for Ai in the magnetized extra dimension, and we
used giī ¼ 2e−φ ui

ti
and the normalization of ϕA;ab

i in
Eq. (2.43). In addition, let us rescale the matter field as

Ai → αðiÞabAi so that matter superpotential becomes a hol-
omorphic function of the moduli, and the matter Kähler
metric results in a real function of the moduli [24], where

αðiÞαβ ¼
1ffiffiffiffiffiffiffiffiffi
22ui

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðT 6Þ

p
ð23u1u2u3Þ1=4

� jIðiÞαβ jQ
r≠ijIðrÞαβ j

�
1=4

;

α; β ¼ a; b; c; ð3:12Þ

for IabIbcIca ≠ 0. Then, the metric for Ai, Zi
ab, is obtained

as

3A contribution of
R
d6y

ffiffiffiffiffi
g6

p
e−φtr½F̂ij̄fμνF̂

j̄ifμν� is included
because ½F̂ij̄; fμν� ¼ 0.

4The induced charge and its contribution to a holomorphic
gauge coupling are seen from a CS term on a D9-brane,R
D9ðC6 þ 1

2
C2 ∧ f ∧ fÞ ∧ F̂ ∧ F̂, where C2 and C6 are RR

two-form and six-form potentials. 5We have generalized A1 to Ai with any i.
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SNDBI ∋ −
1

2π

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

p
Zi

abjDμAA
i j2; ð3:13Þ

where DμAA
i ¼ ð∂μ þ iaaμ − iabμÞAA

i , and

Zi
ab ¼ Zi

ab ×

�
1 −

1

6
ð2mðjÞ

a mðkÞ
a þ 2mðjÞ

b mðkÞ
b þmðjÞ

a mðkÞ
b þmðjÞ

b mðkÞ
a Þ

�
ði ≠ j ≠ k ≠ iÞ

¼ Zi
ab ×

�
1 −

ti
6s

ð2MðjÞ
a MðkÞ

a þ 2MðjÞ
b MðkÞ

b þMðjÞ
a MðkÞ

b þMðjÞ
b MðkÞ

a Þ
�

ði ≠ j ≠ k ≠ iÞ; ð3:14Þ

Zi
ab ≔

2ui
tiVolðT 6Þ ðα

ðiÞ
abÞ2 ¼

1

2ti

�Y3
k¼1

1ffiffiffiffiffiffiffi
2uk

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jIððiÞÞab jQ
j≠ijIððjÞÞab j

vuut : ð3:15Þ

Here, we used the SUSY condition in the computation. It is noted that ZðiÞ
ab is the metric obtained 10D SYM with the

canonical kinetic term on the magnetized extra dimension [11,24] and that the above ZðiÞ
ab in Eq. (3.14) is symmetric under

exchange of a and b and independent of labels of flavor. This is also rewritten with complexified moduli and intersection
numbers as

Zi
ab ¼ Zi

ab ×

�
1þ ðTi þ TiÞ

6ðSþ S̄Þ ðI
ðjÞ
ab I

ðkÞ
ab − 3MðjÞ

a MðkÞ
a − 3MðjÞ

b MðkÞ
b Þ

�
ði ≠ j ≠ k ≠ iÞ; ð3:16Þ

Zi
ab ¼

1

Ti þ Ti

�Y3
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðUk þ UkÞ

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jIðiÞabjQ
j≠ijIðjÞab j

vuut : ð3:17Þ

The expansion in fluxes is valid when s > tijMðjÞMðkÞ×
jði ≠ j ≠ k ≠ iÞ, and this is similar to the case of a gauge
coupling. Then, the metric Zi

ab can be positive definite
in SUSY theories when induced D5-brane charges,

−MðjÞ
a MðkÞ

a and −MðjÞ
b MðkÞ

b , are positive, even if flux
corrections become large. This is because a sign of the

product of intersection numbers, IðjÞab I
ðkÞ
ab , is always positive

owing to a chirality of Ai multiplet. A similar Kähler
potential which depends on S is obtained in type II theories
with string scattering amplitudes [41–43] and is found also
in Heterotic M-theory [52] with an effective field theory
approach.
The Kähler metrics for the other fields are systematically

given by the cyclic replacement of the label of the tori and
gauge groups.

C. Scalar quartic term in the F-term scalar potential

Let us check if the Kähler metric in the previous
subsection is correct by showing the scalar potential. We
derive scalar quartic couplings in the F-term potential from
NDBI action and compare it with the SUGRA description.
For concreteness, we focus on A1B2A1B2 term included in
the potential. This is related to the Yukawa coupling in the
superpotential and hence is restricted by holomorphy. On
the other hand, there is another type of quartic terms of

jA1j4 that is associated with the D term. The D-term scalar
potential is less constrained than that of the F term, and
hence we do not discuss the details in this paper for
simplicity.
The leading term in flux expansion of the F-term scalar

potential which consists of multiplication of the holomor-
phic function and its complex conjugate one is estimated
from

2πL4D ∋ −VF ∋ 2

Z
d6y

ffiffiffiffiffi
g6

p
e4Φ−φgiīgjj̄tr½aī; aj̄�:

Here, VF denotes the F-term scalar potential, and we drop
the covariant derivative on zero modes since we focus
on a scalar quartic term.6 A factor of e4Φ originates fromffiffiffiffiffi
g̃4

p
in the 4D effective action with the Einstein frame

metric gμν ¼ e−2Φg̃μν. The term of AA
1 B

B
2A

A0
1 BB0

2 including
flux corrections arises from those proportional to
½a1; a2�½a1̄; a2̄�,

6It is noted that Dziazj ¼ ∂ziazj þ i½Âzi ; azj � ¼ 0 for i ≠ j and
Dz̄iazi ¼ ∂ z̄i azi þ i½Âz̄i ; azi � ¼ 0 for zero modes [11,24]. Terms
proportional to Dziazi and Dz̄iazjði ≠ jÞ for zero modes will
contribute to 4D action as a moduli-dependent Fayet-Illiopoulos
D term, which will be vanishing if the SUSY condition is
preserved.
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VF ∋ 2
e3φ

ðVolðT 6ÞÞ2 g
11̄g22̄

�
1þ 1

6
ð2mð1Þ

a mð2Þ
a þ 2mð1Þ

c mð2Þ
c þmð1Þ

a mð2Þ
c þmð1Þ

c mð2Þ
a Þ

�

× ðαð1Þab Þ2 × ðαð2Þbc Þ2 × AA
1 B

B
2A

A0
1 BB0

2 ×

�Z
d6y

ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕA0;ab
1 ϕB0;bc

2

�
ð3:18Þ

¼ AA
1 B

B
2A

A0
1 BB0

2 ×
2Z3

ca

Z3
ca

e3φ

ðVolðT6ÞÞ2 g
11̄g22̄ðαð1Þab Þ2ðαð2Þbc Þ2

�Z
d6

ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕA0;ab
1 ϕB0;bc

2

�
; ð3:19Þ

where Eq. (3.14) is used, and ðαð1Þab Þ2 × ðαð2Þbc Þ2 comes from the rescaling of AA
1 → αð1Þab A

A
1 and BB

2 → αð2Þbc B
B
2 for the SUGRA

basis. Since Z3
ca ¼ e2Φ−φg33̄ðαð3Þca Þ2 and VolðT6Þ ¼ e−2Φþ2φ, this potential is also written as

VF ∋ AA
1 B

B
2A

A0
1 BB0

2 ×
eK

ð0Þ

Z3
ca

� ffiffiffi
2

p
e−K

ð0Þ=2e3Φ−φ α
ð1Þ
ab α

ð2Þ
bc α

ð3Þ
caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g11̄g22̄g33̄
p

�
2
Z

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕA0;ab
1 ϕB0;bc

2 : ð3:20Þ

Here, eK
ð0Þ ¼ 1=ð27st1t2t3u1u2u3Þ and giī ¼ 1=giī.

Before carrying out the integration of four zero mode functions, we introduce a holomorphic Yukawa coupling WABC
with an integration of three zero mode functions, since the former integration is written as the square of the absolute value of
the latter one. As discussed in Ref. [11], a holomorphic Yukawa coupling is expressed as

WABC ≔
ffiffiffi
2

p
e−K0=2αð1Þab α

ð2Þ
bc α

ð3Þ
ca

e3Φ−φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11̄g22̄g33̄

p
Z

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕC;ca
3 ð3:21Þ

¼ 2
Y3
r¼1

WAðrÞBðrÞCðrÞ ; ð3:22Þ

where the holomorphic function of WðrÞ
AðrÞBðrÞCðrÞ (r ¼ 1, 2, 3) is given by

WAð1ÞBð1ÞCð1Þ ≔ ϑ

� Bð1ÞjIð1Þca j−Cð1ÞjIð1Þbc jþmð1ÞIð1Þbc I
ð1Þ
ca

jIð1Þab I
ð1Þ
bc I

ð1Þ
ca j

0

�
ð0; iU1jIð1Þab I

ð1Þ
bc I

ð1Þ
ca jÞ; ð3:23Þ

WAð2ÞBð2ÞCð2Þ ≔ ϑ

� Cð2ÞjIð2Þab j−Að2ÞjIð2Þca jþmð2ÞjIð2Þab I
ð2Þ
ca j

jIð2Þab I
ð2Þ
bc I

ð2Þ
ca j

0

�
ð0; iU2jIð2Þab I

ð2Þ
bc I

ð2Þ
ca jÞ; ð3:24Þ

WAð3ÞBð3ÞCð3Þ ≔ ϑ

� Að3ÞjIð3Þbc j−Bð3ÞjIð3Þab jþmð3ÞjIð3Þab I
ð3Þ
bc j

jIð3Þab I
ð3Þ
bc I

ð3Þ
ca j

0

�
ð0; iU3jIð3Þab I

ð3Þ
bc I

ð3Þ
ca jÞ; ð3:25Þ

and

Að1Þ ¼ Bð1Þ þ Cð1Þ þmð1ÞjIð1Þbc j; mð1Þ ¼ 0; 1;…; Ið1Þab − 1;

Bð2Þ ¼ Að2Þ þ Cð2Þ þmð2ÞjIð2Þca j; mð2Þ ¼ 0; 1;…; Ið2Þbc − 1;

Cð3Þ ¼ Að3Þ þ Bð3Þ þmð3ÞjIð3Þab j; mð3Þ ¼ 0; 1; :…; Ið3Þca − 1: ð3:26Þ

It is noted that this coupling depends on the complex structure moduli Ui via the argument of the theta function. The
coefficient in Eq. (3.21) is chosen such that the Yukawa coupling becomes a holomorphic function consistent with the
SUGRA formulation as noted already (see also Appendix B).
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To evaluate the zero mode integral in the rhs of Eq. (3.20), we first rewrite the integral as

Z
T6

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕB0;bcϕA0;ab

¼
Z
T6

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ðyÞϕB;bc

2 ðyÞ
Z
T6

d6y0
ffiffiffiffiffi
g6

p
ϕB0;bcðy0ÞϕA0;abðy0Þ × 1ffiffiffiffiffi

g6
p δðy − y0Þ ð3:27Þ

and use the following completeness relation [12]7:

X
n≥0;C

ΞC;ca
n ðyÞΞC;ca

n ðy0Þ ¼ 1ffiffiffiffiffi
g6

p δðy − y0Þ: ð3:28Þ

Here, ΞC;ca
n are the eigenfunctions of the Dirac equation with the magnetic flux of IðiÞca ¼ MðiÞ

c −MðiÞ
a on each torus, and n

denotes the label of the Landau level including the zero mode. The degeneracy is given by jIcaj. These functions are
assumed to be normalized as

Z
T6

d6y
ffiffiffiffiffi
g6

p
ΞC0;ca
m ΞC;ca

n ¼ δm;nδC;C0 : ð3:29Þ

Massive modes in Landau level are orthogonal to zero modes, so Eq. (3.27) becomes

X
C

Z
T6

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ðyÞϕB;bc

2 ðyÞϕC;ca
3 ðyÞ ×

Z
T6

d6y0
ffiffiffiffiffi
g6

p
ϕA0;abðy0ÞϕB0;bcðy0ÞϕC;ca

3 ðy0Þ:

Thus, this is evaluated as

Z
T6

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕB0;bcϕA0;ab ¼ 1

22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23u1u2u3

p
VolðT 6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IabIbcIca

p

Ið1Þab I
ð2Þ
bc I

ð3Þ
ca

X
C

WABCWA0B0C

¼
� ffiffiffi

2
p

e−K
ð0Þ=2e3Φ−φ α

ð1Þ
ab α

ð2Þ
bc α

ð3Þ
caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g11̄g22̄g33̄
p

�
−2X

C

WABCWA0B0C; ð3:30Þ

where flavor labels including A0 and B0 satisfy Eq. (3.26),
and a factor 1=22 comes from the normalization 2 ofWABC
in Eq. (3.22). Using this result, Eq. (3.20) becomes

VF ∋
eK

ð0Þ

Z3
ca

× AA
1 B

B
2A

A0
1 BB0

2 ×
X
C

WABCWA0B0C: ð3:31Þ

Suppose that the superpotential is given by

W ¼
X
A;B;C

WABCAA
1 B

B
2C

C
3 ; ð3:32Þ

where WABC is the holomorphic Yukawa coupling defined
in Eq. (3.21). This superpotential is discussed also in
Refs. [11,24]. With this superpotential, the above scalar

potential turns out to be written based on the SUGRA
formulation,

VF ∋
eK

ð0Þ

Z3
ca

X
C

ð∂CC
3
WÞð∂CC

3
WÞ ð3:33Þ

∋
eK

ð0Þ

Z3
ca

× AA
1 B

B
2A

A0
1 BB0

2 ×
X
C

WABCWA0B0C: ð3:34Þ

Thus, the Kähler metric derived from the NDBI action is
consistent with the scalar potential based on the SUGRA
formulation.

IV. SUMMARY AND DISCUSSIONS

4D N ¼ 1 supersymmetric effective action is system-
atically derived from the 10D NDBI action on a six-
dimensional magnetized torus. The 10D action is expanded
in the series of fluxes up toOðF4Þwith a symmetrized trace
prescription. The eigenfunctions of the Dirac equations on

7The integration on the third torus is straightforward even
without the completeness relation. We obtain the result of
jWAð3ÞBð3ÞCð3Þ j2 explicitly consistent with the SUGRA formulation
after the integration because both ϕA;ab

1 and ϕB;bc
2 have the

(almost) antiholomorphic solution on the third torus.
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the torus are explicitly written with using the Jacobi theta
function and contribute to the 4D effective action as an
integrand in the extra dimension. We calculated the flux
corrections systematically to the matter Kähler metrics, the
gauge couplings, and the holomorphic superpotential via
scalar quartic couplings in the F-term potential. Our finding
is a new flux correction appearing in the Kähler metrics of
Eqs. (3.16) and (3.17) in a flavor-independent way. The
new matter Kähler metric depends on the fluxes, 4D
dilaton, Kähler moduli, and complex structure moduli
and will be always positive definite if an induced RR
charge of the D-branes on which matters are living are
positive. A contribution of the new matter Kähler metric to
the F-term scalar potential turns out to be consistent with
the SUGRA formula. The gauge coupling in Eq. (3.9) and
the holomorphic superpotential in Eq. (3.32) are consistent
with the previous works.
Phenomenologically, matter Kähler metrics contribute to

physical Yukawa couplings in a flavor-independent way. If
fluxes on a stack of D-branes on which quarks in the
Standard Model are living are different from those on
which leptons are living, differences in their Kähler metrics
will be induced and could explain the mass difference
between quarks and leptons. If fluxes are common both in
the quark sector and lepton one as in the Pati-Salam like D-
brane models, such an explanation will be difficult in
toroidal compactifications. As for SUSY breaking effects to
chiral matters, even if vacuum expectation values of F
components of Ti and Ui are much smaller than that of S,
the flux corrections depending on S in the Kähler metrics
can generate sizable soft terms in comparison with cases
without the corrections [43].
In this work, we consider the SUSY condition of (2.29).

However, if the configuration of D9-branes is supersym-
metric, this condition will be modified as

X
i

MðiÞ
α

AðiÞ ¼
Y3
j¼1

MðjÞ
α

AðjÞ ; α ¼ a; b; c: ð4:1Þ

It will be worthwhile studying the D-term potential
including the Fayet-Illiopoulos term. Further, imposing
this SUSY condition on the D9-brane action requires
higher order corrections to the Lagrangian. For instance,
OðF6Þ terms are required for the SUSY condition when we
focus on OðF4Þ terms as in this paper. We could identify a
part of OðF6Þ then. To include higher order interactions
with derivatives can be important to study swampland
conjectures with effective field theories.
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APPENDIX A: DETAILS OF THE
CALCULATIONS

In this section, we show the details of the calculations of
the NDBI action and use the action in Eq. (2.10) and the
metric ansatz in Eq. (2.8). Using these, we read the gauge
couplings, matter kinetic terms, and quartic terms of the
scalar potential for the fluctuations in Eqs. (2.39) and (2.40)
around the background fluxes in Eq. (2.24). Then, the 10D
field strength in Eq. (2.10) is expressed as

FMN ¼ F̂MN þ fMN; ðA1Þ

where F̂MN denotes the background flux with the back-
ground gauge field Âzi and the fluctuation fMN is given by

fμν ¼ ∂μaν − ∂νaμ; fμi ¼ ∂μazi þ i½aμ; azi � þ i½aμ; Âzi �;
ðA2Þ

fij ¼ ∂ziazj þ i½Âzi ; azj � − ∂zjazi − i½Âzj ; azi � þ i½azi ; azj �;
ðA3Þ

fij̄ ¼ ∂ziaz̄j þ i½Âzi ; az̄j � − ∂ z̄jazi − i½Âz̄j ; azi � þ i½azi ; az̄j �:
ðA4Þ

Here, Âzi denotes the background gauge field, and aM
denotes the fluctuation. In addition, let us introduce the
following quantity for simplicity:

Ĝj ¼ gjj̄F̂jj̄ ¼ i
2uj

l2
sAðjÞ

π

uj
MðiÞ ¼ i

2πα0
mðjÞ; mðjÞ ≔

MðjÞ

AðjÞ ;

ðA5Þ

where j ¼ 1, 2, 3, the summation with respect to j is not
taken, andMðjÞ is given by Eq. (2.24). The SUSY condition
(2.27) is rewritten as the condition of Ĝj as

Ĝ1 þ Ĝ2 þ Ĝ3 ¼ 0: ðA6Þ

In the following parts, we focus just on fμν, ∂μazi ∈ fμi,
i½azi ; azj � ∈ fij and i½azi ; az̄j � ∈ fij̄ to calculate the effective

action. Derivative terms of Dziazj¼∂ziazjþi½Âzi ;azj �ði≠jÞ
andDz̄iazi ¼∂ z̄iazi þ i½Âz̄i ;azi � are vanishing for zero modes
[11,24]. Terms proportional to Dziazi and Dz̄iazjði≠jÞ for
zero modes will contribute to 4D action as a moduli-
dependent Fayet-Illiopoulos D-term, which will be vanish-
ing if the SUSY condition is preserved.

1. Gauge couplings

The gauge coupling is read from the coefficient of the
gauge kinetic term. Due to the index structure of Eq. (2.10),
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only its third and forth terms in OðF4Þ contribute to the
gauge kinetic terms, and then, the expansion of the NDBI
action is calculated as

2πLNDBI ∋ −
Z

d6y
ffiffiffiffiffi
g6

p e4Φ−φ

4
e−4Φ

�
trfμνfμν þ 2

×
ð2πα0Þ2

8

1

3
trð2F̂jk̄F̂

jk̄fμνfμν þ F̂jk̄fμνF̂
jk̄fμνÞ

�

ðA7Þ

¼−
Z

d6y
ffiffiffiffiffi
g6

p e−φ

4

�
trfμνfμν

−
ð2πα0Þ2

6

X
k

trð2ĜkĜkfμνfμνþ ĜkfμνĜkfμνÞ
�
;

ðA8Þ
where we used the fact that the background flux is diagonal,
F̂jk̄ ¼ F̂kk̄δkj. Since these fluxes are assumed to be
Abelian, the Lagrangian reduces to

2πLNDBI ∋ −
Z

d6y
ffiffiffiffiffi
g6

p e−φ

4

× tr

�
ð1 − ð2πα0Þ2

2

X
k

ĜkĜkÞfμνfμν
�

ðA9Þ

¼ −
s
4
tr

��
1þ 1

2

X
k

ðmðkÞÞ2
�
fμνfμν

�
; ðA10Þ

where we used
R
d6y

ffiffiffiffiffi
g6

p
e−φ ¼ s.

2. Kinetic terms

The scalar kinetic terms come from those proportional to
fμifνīg

μνgiī. Such terms including flux corrections are
given by

2πLNDBI ∋ −
Z

d6y
ffiffiffiffiffi
g6

p e2Φ−φ

4

�
4
X
i

trfμifνīg
μνgiī

−
ð2πα0Þ2

3
ZK1 −

ð2πα0Þ2
6

ZK2

þ ð2πα0Þ2
12

ZK3 þ
ð2πα0Þ2
24

ZK4

�
; ðA11Þ

where

ZK1 ¼−
X
i

giīgμνtr½2ĜiĜiðfμifνīþfμīfνiÞþ 4ĜifμiĜifνī�;

ðA12Þ

ZK2 ¼ −4
X
i

giīgμνtr½ĜiĜiðfμifνī þ fμīfνiÞ�; ðA13Þ

ZK3 ¼ −8
X
i

X
k

giīgμνtr½ĜkĜkðfμifνī þ fμīfνiÞ�; ðA14Þ

ZK4 ¼ −16
X
i

X
k

giīgμνtr½ĜkfμiĜkfνī�: ðA15Þ

a. Kähler metric of charged matters

With the background and the fluctuations substituted
into the above equations, it turns out that the Kähler metric
of chiral matter Ai is given by

2πLNDBI ∋ −
2ui

tiVolðT6Þ
�
1 −

ti
6s

ð2MðjÞ
a MðkÞ

a

þ 2MðjÞ
b MðkÞ

b þMðjÞ
a MðkÞ

b þMðjÞ
b MðkÞ

a Þ
�
j∂μAij2;

ðA16Þ
with i ≠ j ≠ k ≠ i and i ¼ 1 for a fixed choice of inter-
section number in this paper. The Kähler metrics for the
other fields are systematically given by the cyclic replace-
ment of the label of the tori and gauge groups.

b. Kähler metric of open string moduli

A diagonal part of gauge fluctuation ai is open string
modulus abi ≔ abbi . Its Kähler metric can be read from
Eq. (A11),

2πLNDBI ∋ −
2

ð2tiÞð2uiÞ
�
1 −

ti
s
MðjÞ

b MðkÞ
b

�
j∂μabi j2; ðA17Þ

Zi
bb ¼

2

ðTi þ T̄iÞðUi þ ŪiÞ
�
1 −

ðTi þ T̄iÞ
ðSþ S̄Þ MðjÞ

b MðkÞ
b

�
:

ðA18Þ
It is noted that a flux correction in this result is obtained
also by replacing Ma with Mb. This matches the result
discussed in Refs. [41–43,53]. The positivity condition on
the kinetic term of the open string modulus is same as that
of the gauge coupling.

3. Quartic terms

Scalar quartic terms originate from those including
giīgjj̄ðfijfī j̄ þ fij̄fījÞ, where fij ≔ i½ai; aj� and fij̄ ≔
i½ai; aj̄�. We can read such terms from NDBI action,

2πLNDBI

∋ −
Z

d6y
ffiffiffiffiffi
g6

p e4Φ−φ

4

�X
i;j

2giīgjj̄ðtrfijfij þ trfij̄fījÞ

−
ð2πα0Þ2

3
K1 −

ð2πα0Þ2
6

K2 þ
ð2πα0Þ2
12

K3 þ
ð2πα0Þ2
24

K4

�
;

ðA19Þ
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and Kp¼1;2;3;4 are decomposed to two parts: one is Kp;F

containing fijfij and the other is Kp;D containing fij̄fīj.
Explicitly, they are given by

K1;F ¼
X
i;j

giīgjj̄trf2ĜiĜiðfijfji þ fijfjiÞ þ 4ĜifijĜifji

− ðĜiĜj þ ĜjĜiÞðfijfji þ fijfjiÞg; ðA20Þ

K1;D ¼
X
i;j

giīgjj̄trf2ĜiĜiðfjīfij̄ þ fj̄ifījÞ þ 4Ĝifij̄Ĝifjī

þ ðĜiĜj þ ĜjĜiÞðfij̄fjī þ fījfj̄iÞg; ðA21Þ

K2;F ¼
X
i;j

giīgjj̄trf4ĜiĜiðfijfji þ fijfjiÞ − 4ĜifijĜjfjig;

ðA22Þ
K2;D ¼

X
i;j

giīgjj̄trf4ĜiĜiðfij̄fjī þ fījfj̄iÞ

þ 2ðĜifij̄Ĝjfjī þ ĜifījĜjfj̄iÞg; ðA23Þ

K3;F ¼
X
i;j

giīgjj̄tr

�
4

�X
k

ĜkĜk

�
ðfijfji þ fijfjiÞ

�
;

ðA24Þ

K3;D ¼
X
i;j

giīgjj̄tr

�
4

�X
k

ĜkĜk

�
ðfij̄fjī þ fījfj̄iÞ

þ 4ðĜifiīĜjfjj̄ þ ĜiĜjfjj̄fiī þ fiīĜifjj̄Ĝj

þ Ĝifiīfjj̄ĜjÞ
�
; ðA25Þ

K4;F ¼
X
i;j

8giīgjj̄tr

�X
k

ĜkfijĜkfji

�
; ðA26Þ

K4;D ¼
X
i;j

giīgjj̄tr

�
8
X
k

Ĝkfij̄Ĝkfjī þ 4ðĜiĜjfiīfjj̄

þ Ĝifjj̄fiīĜj þ fiīĜjĜifjj̄ þ fiīfjj̄ĜiĜjÞ
�
:

ðA27Þ

If we want to get the specific quartic coupling such as

AA
1 B

B
2B

B0
2 A

A0
1 , one needs to choose a term with a fixed index

like f12f1̄ 2̄.

a. F-term potential

The terms containing fijði ≠ jÞ contribute to the scalar
F-term potential. When the background fluxes satisfy the
SUSY condition of Eq. (2.27) or (A6), we can show that
Kp;D (p ¼ 1, 2, 3, 4) does not include fij̄ði ≠ jÞ and
hence does not contribute to the F-term scalar potential.
In the leading contribution in the flux expansion, how-
ever, tr½ai; aj̄�½aj; aī� is shown to have tr½aī; aj̄� contrib-
uting to the F-term potential through the Jacobi identity
as [54]

tr½ai; aj̄�½aj; aī� þ tr½ai; aī�½aj; aj̄� þ tr½aī; aj̄� ¼ 0: ðA28Þ

Then, the F-term potential from NDBI action is
given by

2πLNDBI ∋ −
1

4

Z
d6y

ffiffiffiffiffi
g6

p
e4Φ−φ

X
i<j

giīgjj̄tr

�
8fijfī j̄ −

4ð2α0Þ2
3

½ĜifijĜjfī j̄ þ ĜjfijĜifī j̄

þ ðĜiĜj þ ĜjĜiÞðfijfī j̄ þ fī j̄fijÞ�
�
: ðA29Þ

Thus, we can get Eq. (3.19) by substituting the flux background and fluctuations into this Lagrangian.

APPENDIX B: COMMENTS ON THE YUKAWA TYPE SUPERPOTENTIAL

Here, we show that a factor 2 in Eq. (3.22) is consistent with the SUGRA formulation. Let us consider the following
Yukawa type superpotential with introduction of a coefficient w:

Ww ¼ wϑABCAA
1 B

B
2C

C
3 ¼ wffiffiffi

2
p e−K0=2αð1Þab α

ð2Þ
bc α

ð3Þ
ca e3Φ−φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g11̄g22̄g33̄
p

Z
d6

ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕC;ca
3 AABBCC; ðB1Þ

where

ϑABC ≔
Y3
r¼1

WAðrÞBðrÞCðrÞ : ðB2Þ
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With this superpotential, the scalar potential of jAA
1 B

B
2 j2 derived from the NDBI action is expressed as

AA
1 B

B
2A

A0
1 BB0

2 ×
2

Z3
ca
eK0

�
e−K0=2αð1Þab α

ð2Þ
bc α

ð3Þ
ca e3Φ−φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g11̄g22̄g33̄
p

�
2
Z

d6y
ffiffiffiffiffi
g6

p
ϕA;ab
1 ϕB;bc

2 ϕB0;bc
2 ϕA0;ab

1 ðB3Þ

∈
�
2

w

�
2 1

Z3
ca
eK0 j∂C3

Wwj2; ðB4Þ

which implies that w ¼ 2 makes this SUGRA potential be equal to Eq. (3.20) derived from NDBI action.
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