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We study a systematic derivation of four-dimensional A" = 1 supersymmetric effective theory from a
ten-dimensional non-Abelian Dirac-Born-Infeld action compactified on a six-dimensional torus with
magnetic fluxes on the D-branes. We find a new type of matter Kihler metric, while gauge kinetic function
and superpotential are consistent with previous studies. For the ten-dimensional action, we use a

symmetrized trace prescription and focus on the bosonic part up to O(F*). In the presence of the

supersymmetry, four-dimensional chiral fermions can be obtained via index theorem. The new matter
Kihler metric is independent of flavor but depends on the fluxes, 4D dilaton, Kihler moduli, and complex
structure moduli and will be always positive definite if an induced Ramond-Ramond charge of the D-
branes on which matters are living are positive. We read the superpotential from an F-term scalar quartic
interaction derived from the ten-dimensional action and the contribution of the new matter Kéhler metric to
the scalar potential which we derive turns out to be consistent with the supergravity formulation.

DOI: 10.1103/PhysRevD.104.126020

I. INTRODUCTION

Superstring theory is an attractive candidate for a unified
theory consistent with quantum gravity. The theory can
provide us with a theoretical framework to describe all the
interactions and chiral matters such as quarks and leptons
as well as the Higgs field. The string theory can predict the
existence of extra dimensions and D-branes. Dynamics of
low energy excitations on D-branes is described by gauge
theories. Compactification of string theory on tori is one of
simple ways to obtain four-dimensional (4D) effective field
theories but these are nonchiral, while the Standard Model
is chiral. The chiral nature of matter fields is realized by
introducing magnetic fluxes on the world volume of
D-branes in the compact extra dimensions [1-4]. Even
in toroidal compactifications, magnetic fluxes realize 4D
chiral theory. Orbifold compactification with magnetic
fluxes is also studied in Refs. [5—7]. The number of chiral
generations is determined by the size of the magnetic flux
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on compact extra dimensions.' Three-generation models
have been classified in Refs. [8—10]. Moreover, as the zero-
mode functions of the Dirac (Laplace) operator are qua-
silocalized in compact space and Yukawa couplings as
well as higher order couplings are written by overlap
integration among their zero mode functions, hierarchical
couplings can be realized [11,12]. The realization of quark
and lepton masses and their mixing angles was studied in
Refs. [13—-16]. Furthermore, their flavor structure is con-
trolled by modular symmetry [17-23]. Thus, compactifi-
cation with magnetic background fluxes is one of practical
methods to derive realistic particle physics from string
theory.

4D low energy effective theories have often been
constructed through compactification of higher-dimen-
sional super Yang-Mills (SYM) theory with the canonical
kinetic term [11,24]. On the other hand, the Dirac-Born-
Infeld (DBI) action [25,26] with the Chern-Simons (CS)
terms [27-33] describes the dynamics of massless open
string modes on the D-branes. At the lowest order of the
gauge field strength F, the DBI action reduces to Yang-
Mills theory. However, the DBI action can describe more
stringy D-brane natures, e.g., T duality. For non-Abelian
DBI action, higher order terms of the gauge field strength
are less known owing to its noncommutativity [34—40], and

'"The number of chiral generations also depends on twisted
boundary conditions, discrete Wilson lines, and Scherk-Schwarz
phase in orbifold models.
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it is also less known to compute explicitly 4D effective
theories via compactification on a magnetized torus. This
naturally motivates us to study dimensional reduction of the
non-Abelian DBI action for including higher order correc-
tions. Our purpose in this paper is to compute 4D N = 1
supersymmetric effective action from ten-dimensional
(10D) non-Abelian DBI action compactified on the mag-
netized six-dimensional torus with focus on terms up to
O(F%),

Lyp = [r . d6y['non-AbelianDBI
~ /TG dy(trF? + wF*),  where Fyiy #0. (1.1

Here, y'(i = 1,2, ...,6) denote the coordinates in the extra
six dimensions, and F is the background flux. Hereafter, we
drop the Neveu—Schwarz-Neveu—Schwarz (NSNS) two-
form potential for simplicity throughout this paper. We
ignore also CS terms in the D-brane action since they
mainly contribute to topological terms and supersymmetry
(SUSY) breaking terms which vanish for supersymmetric
vacua with canceled tadpoles. We focus on the bosonic part
of non-Abelian DBI action in this paper, since fermions can
be naturally introduced with SUSY.

In 4D action, we show the matter Kihler metric,
gauge kinetic function, and superpotential in supergravity
(SUGRA) through a systematic study of dimensional
reduction. The DBI correction of O(F*) contributes only
to the matter Kihler metric and gauge kinetic function. It
turns out that there exists a new flux contribution to the
matter Kédhler potential, while gauge kinetic functions and
holomorphic Yukawa couplings in the superpotential are
consistent with previous works. Such a new flux correction
to the Kihler metric has been often neglected, although a
flux contribution to gauge coupling is frequently discussed
for the coupling unification. We take flux corrections into
account consistently in this sense and show a concrete
dependence on fluxes in the Kéhler potential of chiral
matters. Also, that of open string moduli, which was
discussed in Refs. [41-43], is shown in the Appendix A.
Such consistent treatment may become important to study
swampland conjectures [44] with effective field theories
(see [45] for a review). The new matter Kéahler metric is
independent of flavor but depends on the fluxes, 4D
dilaton, Kéhler moduli, and complex structure moduli
and will be always positive definite if an induced
Ramond-Ramond (RR) charge of the D-branes on which
matters are living are positive. The contribution of the
matter Kdhler metric to the scalar potential is shown to be
consistent with the SUGRA formulation, and the super-
potential is read from scalar quartic interaction.

The paper is organized as follows. In Sec. I, we give a
brief review of the non-Abelian DBI action and a mag-
netized torus. In Sec. III, we derive 4D supersymmetric low

energy effective action from the DBI action compactified
on a magnetized torus. The results turn out to be consistent
with 4D SUGRA formulation. Section IV is devoted to the
summary and discussion. In Appendixes A and B, we give
the details of the calculations.

II. NON-ABELIAN DBI ACTION ON MAGNETIZED
EXTRA DIMENSIONS

In this section, we introduce the DBI action and
summarize our setup of flux compactification of the DBI
action on a six-dimensional torus.

The dynamics of massless open string modes on the D p-
brane is described by the DBI action with the CS terms. The
DBI action for Abelian gauge theory is expressed as

Spilgmn: @ Au]

:_Tp/d”]fe_w\/—gﬁ(gMN+27T05/FMN)7 (2.1)

where M,N =0,1,...,p stand for the indices of the
(p + 1)-dimensional world volume of Dp-brane, and
gun 1s the pull back of the bulk metric on the D-brane.
@ denotes the Regge slope, and Fy is the gauge field
strength on the Dp-brane, Fyy = 0yAy —OnAy. @
denotes the 10D dilaton field, and 7', is the brane tension
given by T, = 2z/¢0"" =21/ (27 '/?)P+!, where ¢, =
27a’1/? is the string length. The superpartner fermions are
dropped here for simplicity. The DBI action (2.1) is known
to be robust for an Abelian gauge theory living on a single
D-brane.

A non-Abelian gauge theory is realized on a stack of
D-branes. The author of Ref. [46] proposed the non-
Abelian version of the DBI action with a prescription of
the symmetrized trace, while terms higher than O(F®) in
the non-Abelian DBI (NDBI) action are still ambiguous
owing to its noncommutativity [34—40]. As the extension of
Eq. (2.1), NDBI action is given by [46]

SNDBI = —71]7 / dp+1§e“/’str\/—[(ilf¥(gMN + 271'a’FMN)
(2.2)

Here, Fy;y is field strength of the non-Abelian gauge field,
Fyn = OyAy — OnAy + i[Ay, Ay], and “str” denotes the
symmetrized trace,

1
~ T, -

(T T,) =

-T, + (permutations)]. ~ (2.3)

Hereafter, we consider space-filling D9-branes (p = 9)
for concreteness because the Lagrangian in the bosonic part

consists only of the gauge field. We focus on terms up
to O(F*).
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A. Magnetized D9-branes on the
six-dimensional torus

We introduce background fluxes on a stack of D9-branes
compactified on a six-dimensional torus. Let us consider a
six-dimensional torus consisting of three two-dimensional
tori as the extra dimension T® = []3_, T?. The 10D metric
of My x [[3_, T? is given by

3
dsty = e*®n,, dxtdx’ + ¢3 Z ghndy 'y

i=1

(i)
(i) _ 20':‘( 1 TR )
Gn =€ o aop )
TR |T(l)|

where u, v=0, 1, 2, 3, nﬂy:diag(—l,l,l,l) is the

Minkowski metric, and () = rg) + iTgi) (i=1,2, 3)is
the complex structure modulus on the ith torus T?. y”
(m =1, 2) denotes the coordinate on T,z and 0 <y <1,
where y’s are normalized by the string length. The volume

of the ith torus in the string length unit reads

Vol(T?) = /¢! = AW = ez”iry).

(2.4)

(2.5)
|

10 / —q (27[(1/)2
SNDBI ~ —Tg a’X —dethNe 4 4

1 1
+ 5 FxFruFunFyk — ZFKLFKLFMNFMN - gFKLFMNFKLFMN> + O(F6)} ]

2

where the metric is omitted in contracting indices of the
gauge field strength, e.g., FynyFun = gME N EFynFrr. X
denotes the bulk coordinate in 10D. The normalization of
the gauge group generator is assumed to be given by
tr(7T°T?) = 5°°. The quadratic term trF3,, can reduce to
the well-known Yang-Mills action with the canonical
kinetic term.

With respect to the background fluxes on the D9-branes,
it is assumed that only the fluxes on the extra six dimension
have nonzero values,

where F 2 # 0.

Fyn 3 Fy?’y,”-’ ViV

(2.11)

Here, the background flux F is taken to be diagonal with
respect to the torus index, i.e., ﬁy;y; #0fori=1,2,3and
ﬁyliny;; =0 for i # j. In the complex basis, nonvanishing
components of the fluxes are given by

2 AR
F — — Fyliny;] .

T 0z 0%

i=1,23. (2.12)

tr FMNFMN -

Hence, €% is regarded as a volume modulus of T?. For the
4D Einstein frame, we have introduced the 4D dilaton @,

1 . 1
D =¢p- Elog H.A(’) =¢- Elog Vol(T%),  (2.6)

where Vol(T®) = AN AP AB) is the volume of T°. With
the complex coordinate on the ith torus
dz; = dy} +7dy;,

i=1.23  (27)

the 10D metric is rewritten as

3
dsty = P detdxt + 67y Eodzdz. (2.8)

i=1
Thus, the metric on the T? in the complex basis is given by

326,»

g; =102 75,-}-. (2.9)
We focus on a stack of the space-filling D9-branes on the

factorized torus [ [3_; T? with nontrivial background fluxes

on the D-branes. The NDBI action (2.2) expanded up to

O(F*) is given by [46]

(27 )?
T FKLFLMFNKFMN

: (2.10)

[

See Appendix A for details. This is consistent with the
SUSY condition as discussed later.

B. Flux and matter zero modes

Although fermions are neglected so far, they exist in the
presence of the SUSY. We briefly review a zero (massless)
mode solution of the Dirac equation on the T2 with U(1)
magnetic flux [11]. A generalization of the solution to the
TO case is discussed later.

The background magnetic flux on T? in the string length
unit is given by

F . miM
/—:M—)F:idz/\dz, MeZ. (2.13)
72n (74
Then, the gauge potential can be written as
A M
Az) = T—Im(Zdz). (2.14)
1

A large gauge transformation associated with translations
on the torus is given by

126020-3
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A(z+1) =A(z) +d(ﬁlm( ))

T

Az +17) =A(2) +d(ﬂT—MIm(%z)). (2.15)

Let us consider the spinor y on the T? with unit charge

g = 1, where
v=(10)

Here, + denotes the eigenvalue of SO(2) spinor algebra
associated with the torus (chirality). The gauge trans-
formation acts on the spinor as

(2.16)

e+ 1) = exp 12 () o).

w(z+1) =exp {i”MIm(%z)] w(z). (2.17)

T

With these two boundary conditions, we solve the Dirac
equation iy = 0 on the T2, It is noted that the spinor
becomes a single-valued function up to the gauge trans-
formation when M € Z. For M > 0, only y, is a normal-
izable zero modes, which is |M|-fold degenerate; similarly,
only w_ is a normalizable |M|-fold degenerate zero mode
for M < 0. Hence, the effective theory becomes chiral
in the low energy limit. Explicitly, for M > 0 the y, is
written as

yAM = @AM () = Ny exp [m’Mz Im(z)} 9 {%} (Mz, M7),

T

A=0,1,....M—1. (2.18)
Here, N\, is the normalization constant, A labels the
number of degeneracy, i.e., flavor, and & is the Jacobi
theta function,

9 |:Cl:| (I/ - Zem (a+1)’z e2ri(a+l)(v+b) (219)
b lez
The normalization of y, reads
2
[ sy e = s YL a0)
2TI|M
and we choose the following condition®:
\/27;|M

(W) = Y20l (221)

A ’

*The normalization factor for M = 0 is N = 1/+/A.

such that [ d?y,/G;0*"(2)@BM(z) = 8. Here, we
used dimensionless coordinate z. For M < 0, the normal-
izable solution of y_ is written as

VIAM

where the normalization constant is the same as that for
M > 0. Thus, a signature of M is associated with the
chirality of fermion.

eMMI(7), A=0,1,....|M -1, (2.22)

1. Symmetry breaking of U3) - U(1),xU(1), xU(1),
and degeneracy

It is easy to extend the above solution to a 10D theory
compactified on T® = [[}_, T? with non-Abelian gauge
symmetries of our interest. In the 10D SYM theory, there
exist gauge fields A,, and their superpartner gluinos A(!*)

It is necessary to take into account of background fluxes
to identify which zero modes survive in 4D theory. We give
the following background fluxes in a non-Abelian gauge
theory:

. . M)
Fz[Z,- = Fﬁ = lﬂ]t/i[) ,

T

i=123(2.23)

Here, M) is a matrix-valued constant and gives the gauge
symmetry which can survive in the 4D theory through
M, A,] = 0. Otherwise, gauge fields become massive.
For simplicity, we hereafter focus on the case in which the
U(3) gauge group in 10D is broken to U(1), x U(1), x
U(1), in 4D by the diagonal background fluxes,

MY
dz; A dz;Fz = M) = M) :
2
T ME‘I)
MY ez, (2.24)

where the fluxes are similarly quantized for a charged zero
mode to have a single-valued function on the each T2 up to
gauge transformation. Replacing unity with the identity
matrix in Eq. (2.24) can realize 4D non-Abelian gauge
symmetries. It is noted that gauge fields and gluinos in 10D
are both adjoint representations, in which they are coupled
to the fluxes with a commutator through their covariant
derivatives. Hence, the degeneracy of fermion zero modes
1,5 depends on the difference of fluxes between two gauge
groups on each torus [11],

3
I(l/f = HI((;;’
i=1

() — gD _ ()
I, a =My

ap " (O!,ﬁza,b,c),

(2.25)
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for matter with a charge of (1, —1) againsta U(1), x U(1),

gauge group. It is noted that the definition of 1,4 gives
U (2.26)

This equation can determine a relative signature among

Iop’s. Next, we show the SUSY condition for avoiding
tachyons and visit concrete zero mode functions.

2. Supersymmetry conditions on the background fluxes

We consider the condition for background fluxes to
preserve 4D N = 1 SUSY for realizing chiral theories. The
SUSY transformation of 10D fermions should vanish to
preserve the 4D SUSY. Then, the condition of the back-
ground fluxes at O(F 2) on the complex manifold reads
[11,41,47-50]

giF; =0, (2.27)
Fiy=Fz;=0 (2.28)
It is noted that an additional term of F. . F_. F_ . to the

21211 2251 737
ths of Eq. (2.27) is required for the calibration condition
of magnetized D-branes with DBI action. However, the
above condition is sufficient to us since we focus on the
terms of O(F*) 3 F? x (fluctuations) in the Lagrangian.
Higher order corrections in O(F®) 3 F* x (fluctuations)
neglected in this paper can modify the condition to the
terms involved in F*. In our case, the former condition
(2.27) is satisfied when

3
M
Z 7= (@ =a,b,c). (2.29)

The latter condition on the vanishing holomorphic flux
condition (2.28) is satisfied when we consider the diagonal
fluxes in the torus index. Then, tachyons are absent in the
effective theories since their mass squared is proportional to
[5,11,51]

My

3 3
; A0 - :ZAa([i}):O‘

This equation can also determine a relative signature

(2.30)

among Ifj;s with fixed a and f on the top of Eq. (2.26).
For later convenience, we introduce the notation of the flux
divided by the torus area as

(2.31)

3. Matter zero modes in SUSY theories

We consider zero mode functions on T® in the presence
of 4D SUSY. Let us take 10D chirality of the gluino A(10)
as [24]

00 = 43(10), (2.32)
Then, the gluino is decomposed into the irreducible spinor
representation with SO(2)? that is the Cartan subalgebra of
S0(6),
/11 = A_;'___,

A‘Z = A_+_, /13 = l___‘_,

(2.33)

Ao = Ay

where + denotes the eigenvalues of SO(2)? spinor algebra
(chiralities). 10D gauge fields A, can be decomposed
similarly into

A, A A

A (2.34)

2 21’ 22° 23’

where A, =~ (204, = Ap). Tn 4D N = 1 SUSY the-
1'1 i i

ories, a vector multiplet V' consists of A, and 4,, whereas
chiral multiplets ®; can consist of fluctuations of A, and 4;
(i =1, 2, 3). When the background fluxes preserve the 4D
SUSY in flat spacetime, bosonic partners have the same
zero mode function as fermions [11,24]. Then, the zero
mode function of the massless gauge multiplet V is
independent of coordinates y since there exists no coupling

to the fluxes in the zero mode equation, i.e., [M (0, A]=0.
For the chiral multiplets ®;(x), the zero mode functions
¢;(y) are given by products of those on each torus,

@0 (x,y) = Z(D;M“" (x)® 45;\‘1”’” (y) + (massive modes),
A

(2.35)

(2.36)

3
AL, A1)
o0 = (IT#"00).

r=1

Here, for 1,5 # 0,

7 7
0" (z,) with 70 (r=i&I1") > 0)

ang ) i
dop _ RG] o &1V '
iT? "l (z,) with < (r # i & 1) <0)
0 (other cases)

(2.37)

This is consistent with chiralities in Eq. (2.33). A"") is the
index of flavor on each torus, A" =0, 1, |I£$| — 1, and
hence, the total flavor index is A =0, 1, ..., |Ia/,| —1.Itis

126020-5
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noted that matter <I> " has a charge of (1, —1) against the
U(1), x U(1), gauge group.
Without loss of generality, we assume that

s, 120 <o,

1220)>0, Ig,) <0,

c

1% >0, 17 <o, (2.38)
to satisfy Eqgs. (2.26) and (2.30). This is also consistent
with decomposition of Eq. (2.33) as below. As noted, we
have the gauge symmetry breaking of U(3) — U(1), x
U(1), x U(1),. Then, the fluctuations of 10D gauge fields
are decomposed into 4D zero (massless) modes, which are,
namely, gauge fields and complex scalars charged under the

4D gauge symmetries,

o
a, = ah , (2.39)
a,
a?b
aZi = aibc
as?
1
A6,
=: Bi¢l~bC5i2 N (240)
Cii“5;3

where a,; denotes fluctuations of the 10D gauge fields.
ay”¢ are the 4D gauge fields associated with U(1),,.
symmetries. A;, B;, and C; denote 4D complex scalars.
(9P, pbe, ps) == (¢ll.ab,¢11.b”,(,/)ll.”’) show zero mode func-
tions relevant to each complex scalar, and we suppressed
the flavor index. These scalars have bifundamental charges
against U(1),x U(1), x U(1), symmetries, Q(A;) =
(1,-1.0), Q(B;) =(0.1,-1), and Q(C;) = (-1.0.1),
respectively, where Q(scalar) denotes the U(1) charges
of the scalar. According to Egs. (2.37) and (2.38), the
surviving zero modes in 4D are only

c

A}, BB, and Cf§. (2.41)

Here, A, B, and C are the flavor indices, and their zero
mode functions surviving in 4D are written as

¢/\ ,ab @A
B,b

¢y

¢5C.cu —

1 (2)) ® @47l (z,) @ @4Vl (z3),
= 08" (1) ® OV () ® @8V (z3),

O (2,) ® O (25) ® O (2

s

)
(2.42)

where AW =0,1,..1") =1, B® =0,1,.... 1| -1,
and C =01, 1% -1 r=1, 2, 3: A=0,1,
|Iah| 1, B= 0,1,...,|Ihc|—1, and C=0,1,...,

o m .
|IC,1| . The normalization factor of ©A"u(z;) is

denoted as ./\/ 1, for instance. From Eq. (2.21), these zero
uh

mode functions are normalized as

/ doy\/Gedp} A\ A= pa. (2.43)

¢’s are zero mode solutions for 10D SYM with the
canonical kinetic term. In the case with the NDBI action,
there are corrections of fluxes to this zero mode solution.
Since the flux is constant to the coordinates of a six-
dimensional torus, the corrections are expected to change
the normalization of the matter Kdhler metric. In this
paper, for simplicity, we neglect higher order interactions
with derivatives in 4D theories such as |A|*|0A|* or
|OA|*, where A is a 4D complex scalar in a chiral matter
multiplet.

I1I. SUSY EFFECTIVE ACTION OF
U(1), xU(1), x U(1), THEORY

In this section, we exhibit 4D SUSY effective action
derived from the 10D NDBI action, focusing on the
bosonic sector. As noted already, we assume to start with
10D U(3) gauge symmetry which is broken to U(1), x
U(1), x U(1), by the background flux of Eq. (2.24).

We can read the 4D gauge couplings, Kihler metrics of
the chiral matters, and scalar quartic couplings, after
substituting the fields of Egs. (2.39), (2.40), and the metric
(2.8) into the NDBI action (2.10). For later convenience, we
define closed string moduli [11],

5= e ? AD AP AB) = e=oVol(TO), (3.1)
ti = e ? AW = e=*Vol(T?), (3.2)
Uj=it),  u;=Re(U;) =1\, (3.3)

where s is the 4D dilaton, and ¢; are the Kédhler moduli. U
stand for the complex structure moduli of T? in the SUGRA
basis. In combination with axions descended from RR
tensors, the above moduli constitute the complexified
dilaton S and the Kihler moduli 7';. The Kéhler potential
of these closed string moduli K(©) is given by

Zlog (T; +T;)

- Zlog(Ui +U;).

i=1

K© = —log(S+S) -

126020-6
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4D effective action of chiral matters is written with these
closed string moduli as seen below. See Appendix A for
details of the computation.

A. Gauge couplings
The gauge couplings of U(1), x U(1), x U(1), are read
from the coefficient of the gauge kinetic term. The
canonical kinetic term Lyp 3 [d®y,/gee *tr(f,,)* gives
the leading contribution without fluxes, whereas the flux-
corrected contributions come from® £ 3 J dﬁy\/g_ﬁe“” X

tw[(F3F77)(f,,)%. Here, f,, is the fluctuation of the 10D
gauge field strength of the U(3) gauge symmetry with the
4D subscripts. The former kinetic term depends on
e™?Vol(T%) = s, and the latter includes s x m?, where m
is the moduli-dependent flux defined in Eq. (2.31). Thus,
we find

1 1
SnpBI 2 —gf d4x\/—g4@(f,‘j,,)2, (3.5)
where fj, = 0,a; — 0,a; is the field strength for the
U(1),, and the gauge coupling for the U(1), group is

1 I~ iy
_zzs[HE;(ma )]

(3.6)
Ya

=s— MM - oMP MY

— MM, 3.7
In the second line, the SUSY condition (2.29) is used. The
results for U(1), and U(1), symmetries are similar to that
of the U(1),. This is a well-known result of the D-brane
models [41-43,50] and is regarded as the real part of a
corresponding holomorphic gauge coupling f,,

Re(fo) = . (3.8)

QQN| —_

fo=8-T MM —1,MVMY — ;M MP. (3.9
The expansion in fluxes is valid when s > t,-|M(aj)M,(lk>><
|(i # j # k # i). Then, a gauge coupling will become weak
for large vacuum expectation values of moduli. It is noted
that terms dependent on 7; can be positive contributions to

the gauge coupling when an induced D5-brane charge

—ME{ )Mék), which is carried by a magnetized D9-brane, is

positive.4

A contribution of / dﬁy\/g?e"/’tr[f’ i fﬂyﬁji /"] is included
because [Fj, f,,] = 0.

“The induced charge and its contribution to a holomorphic
gauge coupling are seen from a CS term on a D9-brane,
Jpo(Ce +1Cy Af A f) ANF AF, where C, and C4 are RR
two-form and six-form potentials.

B. Kihler metric of chiral matters

The coefficient of a scalar kinetic term gives the Kihler
metric for chiral matter in SUSY theories. The kinetic
terms with the leading contribution without fluxes are read
from Lyp 3 [d®y\/gee’®*tr(f,;f*), whereas the next
leading contributions with fluxes are roughly given by a
combination of Lyp 3 fde\/f]gez‘D‘"’tr(f?j,-{ijfﬂif”i +
Fj,;fﬂiﬁk~ff”i) and similar terms. Here, f,; := f . is the
fluctuation of 10D field strength and includes the 4D
kinetic term of a scalar fluctuation, e.g., 8,,A§\, where A;
is given in Eq. (2.40) with the intersection number (2.38).5
A factor ¢?® originates from the 4D Einstein frame metric
G = e—z‘l’gﬂy in the kinetic term /-4 x PGS il vis
where g, is the Jordan frame metric, T
e*®g,,dx*dx* =, dx*dx" as in Eq. (2.4). For instance,
we roughly estimate

/ By Tt (f,u )

Ne2<b—(pgiilaﬂA;%|2/d6y\/%|¢;%.ab|2
2ui

NWW,,ANZ, (3.10)
for terms without fluxes and
/d6y géez‘p_”’tr(ﬁj%ﬁl_(jfﬂif”i)
~ B FIF,AL [ TRl
o x 2 10,422, (3.11)

X —_—
" Nol(TY)

for the flux-corrected terms with the moduli-dependent

fluxes m in Eq. (2.31). Here, (/Jf\’“" is the zero mode
function for A; in the magnetized extra dimension, and we

used ¢ =2¢7%“ and the normalization of ¢/’ in

Eq. (2.43). In adcllition, let us rescale the matter field as
A — ai'b)Ai so that matter superpotential becomes a hol-
omorphic function of the moduli, and the matter Kihler

metric results in a real function of the moduli [24], where

RO Vol(T°) ( 7y >1/4
o = 3 VA .
22y, (2P uyuyu3) Hm“«iﬁ)l
a,p=a,b,c, 512

for 1,11, # 0. Then, the metric for A;, Z¢,, is obtained
as

*We have generalized A, to A; with any i.
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1 .
SNDBI > —%/d4x\/—g4zzb|DﬂAlA

where D, A} = (9, + ia% — ia})A}, and

. _ 1 . .
Zl =27 x {1 —E(Zm(aj)m,(lk) + ng’)mgd

— 7, x {1 - é- eMIMY oMV u + MM 4 Mg”MEj‘))] (i#j4k#i)
N

-5 ()

YA 2“’
@ Vol(T6)

2, (3.13)

+mm + m,(]j)mszk))} (i#j#k#i)

(3.14)

Ll

[1 79

(3.15)

Here, we used the SUSY condition in the computation. It is noted that ZE;Z is the metric obtained 10D SYM with the

(i)

canonical kinetic term on the magnetized extra dimension [11,24] and that the above Z, in Eq. (3.14) is symmetric under
exchange of a and b and independent of labels of flavor. This is also rewritten with complexified moduli and intersection

numbers as

(T +T)) 7
Zi =7 x |1+ (Y
ab |: + 6(S+ ) ( ab ab

3Py ()—3M,(]j)M,(]k))} (i j#k#iD), (3.16)
' 1 3 1 I(l)
zi = _ ( __ ) | “”'U . (3.17)
Ti+Ti i V(U + U \ Tl |

The expansion in fluxes is valid when s > #;|MU)MK®) x
|(i # j # k # i), and this is similar to the case of a gauge
coupling. Then, the metric Z/, can be positive definite
in SUSY theories when induced DS5-brane charges,

—ME,j )M,(lk) and —-M U )Mg, >, are positive, even if flux
corrections become large This is because a sign of the
product of intersection numbers, I, U )I ( b> , 1s always positive
owing to a chirality of A; multlplet A similar Ké&hler
potential which depends on S is obtained in type II theories
with string scattering amplitudes [41-43] and is found also
in Heterotic M-theory [52] with an effective field theory
approach.

The Kéhler metrics for the other fields are systematically
given by the cyclic replacement of the label of the tori and
gauge groups.

C. Scalar quartic term in the F-term scalar potential

Let us check if the Kéhler metric in the previous
subsection is correct by showing the scalar potential. We
derive scalar quartic couplings in the F-term potential from
NDBI action and compare it with the SUGRA description.
For concreteness, we focus on A;B,A,B, term included in
the potential. This is related to the Yukawa coupling in the
superpotential and hence is restricted by holomorphy. On
the other hand, there is another type of quartic terms of

|A;|* that is associated with the D term. The D-term scalar
potential is less constrained than that of the F term, and
hence we do not discuss the details in this paper for
simplicity.

The leading term in flux expansion of the F-term scalar
potential which consists of multiplication of the holomor-
phic function and its complex conjugate one is estimated
from

2nLyp D =V D 2/d6y G50 g glitr[as, a;).

Here, V§ denotes the F-term scalar potential, and we drop
the covariant derivative on zero modes since we focus
on a scalar quartic term.® A factor of e*® originates from
\/Gs in the 4D effective action with the Einstein frame
metric g, = €72%3,,. The term of ATBYA{ BY including
flux corrections arises from those proportional to
a1, ax][aj. a3],

%It is noted that D, Ja;, =0,a; +1[A a.] =0 fori# jand
D:a, = 0;a, + z[A } =0 for zero modes [11,24]. Terms
propomonal to D_a, and D a, ( # j) for zero modes will
contribute to 4D action as a moduh -dependent Fayet- Ilhopoulos
D term, which will be vanishing if the SUSY condition is
preserved.
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3¢

e
Vi ZWg“g22 [1 +- G (ng 'm? + 2mIm? + mPm? + mﬁ')mf))}
x (all))? x (ag))? x APBEAY BY x ( / Aoy /Gep P e b ﬂE‘“”C) (3.18)
= 273, e 2 frab B, hm
= A}B3AY BY x z W!Jllgzz( 2 (a) ) </ d°\/96) ) > (3.19)

where Eq. (3.14) is used, and (a'}))? x (a!)? comes from the rescaling of A» — a}JA and BE — a!” BE for the SUGRA

basis. Since Z2, = 2*=7¢%(a2))? and Vol(T®) = e~2%+2_ this potential is also written as

(2 3)

5 B
oK 2430-p Yab O ¥ /d6y\/‘%¢/&ab B.be Wb yBbe. (3.20)
V911922933

K©
e
ARB AN pB
Vi 2 A'B5AY BY X 5

ca

Here, X = 1/(2 sty tyuyupus) and ¢ = 1/g;.

Before carrying out the integration of four zero mode functions, we introduce a holomorphic Yukawa coupling W apc
with an integration of three zero mode functions, since the former integration is written as the square of the absolute value of
the latter one. As discussed in Ref. [11], a holomorphic Yukawa coupling is expressed as

30—¢
Wage = V2e¥0/2qWgDg €~ / 6y /Ted P pBle P (3.21)
ABe ab b T I 9239% ° :

3
=2 H W poco, (3.22)

(r)

where the holomorphic function of W A B (r=1, 2, 3) is given by

I 1 1
BO|IL)|- C”\I m1V1L)

Wa0g0cm = 19[ ) 11 }(0 iU 1515, 160, (3.23)
0
cOID|-a0 \1°>|+m 213 -
WA(Z)B(Z)C(2) =9 |Ia2b)1i)2c Lal (07 lmllizb)lézc)lga )’ (324)
L 0 -
AD|19|-p0 \1 [+mO 11 -
WA(S)B(z)C(S) =4 |1ab be Sz)| (0, 173|I£;7)I§Z)I(CZ)|)’ (325)

L O J
and
AD = BO 4 ) 4 O] =01, )
B =A® 4+ CO 4 m@1Z,  m®=0.1,..1%-1,

CB® = A® 4 BO 4 m®|1Y)], =0,1,.... 0% — 1. (3.26)

It is noted that this coupling depends on the complex structure moduli U; via the argument of the theta function. The
coefficient in Eq. (3.21) is chosen such that the Yukawa coupling becomes a holomorphic function consistent with the
SUGRA formulation as noted already (see also Appendix B).
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To evaluate the zero mode integral in the rhs of Eq. (3.20), we first rewrite the integral as

/ d6y\/%¢A ab B, bC¢[B’ bc¢A’ .ab

= [ B 0) [ d ET P <o) (327)
V9%
and use the following completeness relation [12]”:
S EUWETY) = ——dly - ¥). (328)
n>0.C V9
Here, EE'C“ are the eigenfunctions of the Dirac equation with the magnetic flux of 1 5’3 = Ei) -M Ef) on each torus, and n

denotes the label of the Landau level including the zero mode. The degeneracy is given by |I.,|- These functions are

assumed to be normalized as

A 6 Oy /GGG B = 6, ,5c.cr. (3.29)
Massive modes in Landau level are orthogonal to zero modes, so Eq. (3.27) becomes
)3 [ a0 5065 0) x [ o ad T
Thus, this is evaluated as
/ dﬁy\/—¢A .ab Bbc¢B’ ”‘q’)A/ w1V 2uyuyus /1 blbc ca ZW/-\BCWA'B/
~ 22 Vol(T9) G
0) <1,,)a5,2?a(cz) -2 _
<\/_e—K /2030~ (/)agng];gg]g) ZWABCWA’B’C’ (3.30)
v : C

where flavor labels including A’ and B’ satisfy Eq. (3.26),
and a factor 1/2% comes from the normalization 2 of W s
in Eq. (3.22). Using this result, Eq. (3.20) becomes

K(O)
Ve Zg x AABBANBE x ZWABCWA we.  (3.31)
Suppose that the superpotential is given by
W= WagcAl'BSCS, (3.32)

A,B.C

where W qpc is the holomorphic Yukawa coupling defined
in Eq. (3.21). This superpotential is discussed also in
Refs. [11,24]. With this superpotential, the above scalar

"The integration on the third torus is straightforward even
without the completeness relation. We obtain the result of
|W 40 50c0|* explicitly consistent with the SUGRA formulation
after the 1ntegrat10n because both ¢/ b and ¢?’hc have the
(almost) antiholomorphic solution on the third torus.

potential turns out to be written based on the SUGRA
formulation,

K0
e —_—
= D (O W) (D W) (3.33)
ca C

KO
e Y —
> 1 ByAT By X ZWABCWA’B’C-
ca C

(3.34)

Thus, the Kihler metric derived from the NDBI action is
consistent with the scalar potential based on the SUGRA
formulation.

IV. SUMMARY AND DISCUSSIONS

4D N =1 supersymmetric effective action is system-
atically derived from the 10D NDBI action on a six-
dimensional magnetized torus. The 10D action is expanded
in the series of fluxes up to O(F*) with a symmetrized trace
prescription. The eigenfunctions of the Dirac equations on

126020-10
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the torus are explicitly written with using the Jacobi theta
function and contribute to the 4D effective action as an
integrand in the extra dimension. We calculated the flux
corrections systematically to the matter Kdhler metrics, the
gauge couplings, and the holomorphic superpotential via
scalar quartic couplings in the F-term potential. Our finding
is a new flux correction appearing in the Kéhler metrics of
Egs. (3.16) and (3.17) in a flavor-independent way. The
new matter Kéhler metric depends on the fluxes, 4D
dilaton, Kéhler moduli, and complex structure moduli
and will be always positive definite if an induced RR
charge of the D-branes on which matters are living are
positive. A contribution of the new matter Kihler metric to
the F-term scalar potential turns out to be consistent with
the SUGRA formula. The gauge coupling in Eq. (3.9) and
the holomorphic superpotential in Eq. (3.32) are consistent
with the previous works.

Phenomenologically, matter Kéhler metrics contribute to
physical Yukawa couplings in a flavor-independent way. If
fluxes on a stack of D-branes on which quarks in the
Standard Model are living are different from those on
which leptons are living, differences in their Kdhler metrics
will be induced and could explain the mass difference
between quarks and leptons. If fluxes are common both in
the quark sector and lepton one as in the Pati-Salam like D-
brane models, such an explanation will be difficult in
toroidal compactifications. As for SUSY breaking effects to
chiral matters, even if vacuum expectation values of F
components of 7; and U; are much smaller than that of S,
the flux corrections depending on § in the Kéhler metrics
can generate sizable soft terms in comparison with cases
without the corrections [43].

In this work, we consider the SUSY condition of (2.29).
However, if the configuration of D9-branes is supersym-
metric, this condition will be modified as

(1) 3 W)
M, Mg
E m—jlzllm, a—a,b,c. (41)

i

It will be worthwhile studying the D-term potential
including the Fayet-Illiopoulos term. Further, imposing
this SUSY condition on the D9-brane action requires
higher order corrections to the Lagrangian. For instance,
O(F?®) terms are required for the SUSY condition when we
focus on O(F*) terms as in this paper. We could identify a
part of O(F®) then. To include higher order interactions
with derivatives can be important to study swampland
conjectures with effective field theories.
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APPENDIX A: DETAILS OF THE
CALCULATIONS

In this section, we show the details of the calculations of
the NDBI action and use the action in Eq. (2.10) and the
metric ansatz in Eq. (2.8). Using these, we read the gauge
couplings, matter kinetic terms, and quartic terms of the
scalar potential for the fluctuations in Egs. (2.39) and (2.40)
around the background fluxes in Eq. (2.24). Then, the 10D
field strength in Eq. (2.10) is expressed as

Fyuy = Fyn + fun. (A1)

where F,,y denotes the background flux with the back-
ground gauge field Azi and the fluctuation f),y is given by

fuw =0,a,—0,a,, fu=0,a,+ila, a,]+ i[aﬂ,Azi],
(A2)

fij = aZiaZj + i[AZ,"aZ/‘] - az»av

Joci

- i[AZ/’ aZ,‘] + i[aZ[ ’ aZj]’
(A3)

fl; = aZ,'aZj + i{AZ,” ai,] - aZjaZ,’ - i[AZj’ aZ,‘] + i[aZi’ azj']'
(A4)
Here, Az,- denotes the background gauge field, and ay,

denotes the fluctuation. In addition, let us introduce the
following quantity for simplicity:

N . 2u; & i MW
T S == 0) ) ==
Cr=9"F = a0, 2T 4G
(A5)

where j = 1, 2, 3, the summation with respect to j is not
taken, and M) is given by Eq. (2.24). The SUSY condition
(2.27) is rewritten as the condition of G j as
G +G,+G;=0. (A6)
In the following parts, we focus juston f,,, ,a.. € f
ila,,a.] € fijandila,, a: | € fi;to calculate the effective
action. Derivative terms of D_ a, =0, a. +i[A; a_ |(i#])
and D; a, = 0; a, +i[A; ,a, ] are vanishing for zero modes
[11,24]. Terms proportional to D_ a and D a, (i#) for
zero modes will contribute to 4D action as a moduli-
dependent Fayet-Illiopoulos D-term, which will be vanish-
ing if the SUSY condition is preserved.

1. Gauge couplings

The gauge coupling is read from the coefficient of the
gauge kinetic term. Due to the index structure of Eq. (2.10),
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only its third and forth terms in O(F*) contribute to the
gauge kinetic terms, and then, the expansion of the NDBI
action is calculated as

e
27[‘CNDBI S — / d6y\/% 4 €_4¢ [trfm,f’”’ + 2

/2
X(Zﬂ'd)l
3

w(F B f, v+ Fﬂ;fﬂﬁ"’_‘f””)}
(A7)

/ Py /7l {trf,wf 2

(27:(1

Ztr 26,Gif uf™ + Gif u Gif™ )]

(A8)

where we used the fact that the background flux is diagonal,

F jl_c:Fkl_c(Skj- Since these fluxes are assumed to be

Abelian, the Lagrangian reduces to

-9

e
2nLxppr D — / dy 96T

xtr[ 27ta ;
(b

where we used [d®y,/gge™ = s.

f,wfw} (A9)

)f,,yfﬂv} (A10)

2. Kinetic terms

The scalar kinetic terms come from those proportional to
fuifig"g". Such terms including flux corrections are
given by

2(I>—(/7

2nLxper D — / d6y\/“ {4Ztrf Wil iy

(2na!)? (2;:0/)2
~3 TG
(2zd )2 n 2z )2

12 K 24

Zg,

+ (Al1)

where
Zg = —Zgﬁgﬂ”tr[ZGiGi(fmfy; + fuifui) + 4Gifm6ifu?]v
(A12)

Zyr = —429”5;#”&

fmfm +f;uful)] (A13)

Zxy = —SZ Z gﬁgﬂytr[ékék (fuifui + f;ﬁfz/i)]’ (Al4)
ik

Zra = —16) Y ¢l w[Gif Gl (Al5)
i k

a. Kéhler metric of charged matters

With the background and the fluctuations substituted
into the above equations, it turns out that the Kihler metric
of chiral matter A; is given by

2u: t: .
Y- oM MY

27 L D —
ENDBL 2 T Vol(TO) | 6s

+om) my) + MM+ m) M) | 10,441,

(A16)

with i # j#k # i and i = 1 for a fixed choice of inter-
section number in this paper. The Kéhler metrics for the
other fields are systematically given by the cyclic replace-
ment of the label of the tori and gauge groups.

b. Kéhler metric of open string moduli

A diagonal part of gauge fluctuation a; is open string
modulus a? == a??. Its Kéhler metric can be read from
Eq. (A11),

2”£NDBI S — (ll-b 2, (A17)

2 Li () 0 (0)
= |1-imMVm
<2r,»><2u,»>[ s Mo My |19,

2 T+ T3) )8
(T, + 1)U, + 0, { (5135 oM ]
(A18)

i
Zhh_

It is noted that a flux correction in this result is obtained
also by replacing M, with M. This matches the result
discussed in Refs. [41-43,53]. The positivity condition on
the kinetic term of the open string modulus is same as that
of the gauge coupling.

3. Quartic terms
Scalar quartic terms originate from those including
9”9”(fz,f?] +fi]ffj)’ where f;; = i[ai’aj] and fij =

ia;, a;]. We can read such terms from NDBI action,

27T£NDBI
40—
/ dy\/36 [Zzgug”(trfijfﬁ+tffi}'f?j)
i,j
Qrd)?  (2zd)? (2na)? (27a)?
- K, — K K K
3 ! 6 2 Rt Ry
(A19)
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and K ,_ are decomposed to two parts: one is K -
p=1234 Y p p.F - g N A
containing f;;f7 and the other is K, , containing f3;f3;. Kir = 289 g-”tr{;ka ijGif ﬁ}’ (A26)
i,
Explicitly, they are given by ’

LJ

ij

Kip= Zgﬁgﬁtr{zéiéi(fﬁfi} + fiif3;) +4Gif 5Gif (A27)
i

+ ((A}if}j + ij}i)(fi;fj; +f;jfji)}, (A21) If we want to get the specific quartic coupling such as

g oa A A A a APBEBY AY, one needs to choose a term with a fixed index
Koy =) g d"al{4GGi(ff 5+ f5f 1) = 4Gif5Gif 7} ke finfis.
i

(A22) a. F-term potential

Kyp = Zgﬁgﬁ w{4G,G,(f if i+ fiif5) The terms containing f;;(i # j) contribute to the scalar

b F-term potential. When the background fluxes satisfy the

+2(Gif5Gif i + Gif5,Gifi) (A23)  SUSY condition of Eq. (2.27) or (A6), we can show that

K,p (p=1, 2, 3, 4) does not include f;(i # j) and

Kuv — ii giitrd 4 G.G iy S } hence does not contribute to the F-term scalar potential.

3’F ,Z]:g g { (2}{: ¢ k) il + I5f3) In the leading contribution in the flux expansion, how-

ever, tr(a;, asl[a;, a;] is shown to have tr[a;, a;] contrib-

uting to the F-term potential through the Jacobi identity
as [54]

(A24)

Ksp = Zgﬁgﬁtf{“ <ZGka> (fi}'fﬁ + fij;'f}'i)

ij k trla;, a;][a;, a;] + trla;, aj]la;, a;] + trlaz, a;] = 0. (A28)
+4(GifiGif 5+ GiGif if i + faGif 3G,

Then, the F-term potential from NDBI action is

+Gifaf j]Gj)}7 (A25)  given by
|
1 42d)? . ~ a a
2nLnppr ——/d6y g™ ‘”Zg”g”tr{8fl]f,j ( 3 ) [Gifijijf]"" G,fiiGif3;
i<j
+ (Giéj + G/Gi)(fijffj + ff}fij)] } (A29)

Thus, we can get Eq. (3.19) by substituting the flux background and fluctuations into this Lagrangian.

APPENDIX B: COMMENTS ON THE YUKAWA TYPE SUPERPOTENTIAL

Here, we show that a factor 2 in Eq. (3.22) is consistent with the SUGRA formulation. Let us consider the following
Yukawa type superpotential with introduction of a coefficient w:

—-Ko/2,,(1) (2) (3) 3d—¢p

w e a o A e
W, = wdapcAMBYCS = — ab The ~<4 d°\/Gedt P pRre pS AN BB CE, (B1)
e g V2 V911922933 Vs
where
Iapc = HW B (B2)
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With this superpotential, the scalar potential of |A7'B2|?

APBEANBE x

derived from the NDBI action is expressed as

3
an

2 (ol

V911922933

P\ 2 6 Aab ,B.bc B be (A ab
d°y\/96P) Cy T Py TPy (B3)

2\ 1 ,
€\, ) e 0 Wal, (B4)

ca

which implies that w = 2 makes this SUGRA potential be equal to Eq. (3.20) derived from NDBI action.
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