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Flat-space cosmologies (FSCs) are solutions to three-dimensional theories of gravity without
cosmological constants that have cosmological horizons. A detector located near the timelike singularity
of the spacetime can absorb Hawking modes that are created near the horizon. Continuation of this process
will eventually cause the entropy of the radiation to be larger than the entropy of the FSC, which leads to the
information paradox. In this paper, we resolve this paradox for the FSC using the island proposal. To do
this, we couple an auxiliary flat bath system to this spacetime in timelike singularity so that Hawking
modes are allowed to enter the bath, and the entropy of radiation can be measured in its asymptotic region
where gravity is also weak. We show that adding island regions that receive the partners of Hawking modes
cause the entropy of radiation to follow a Page curve, which leads to resolving the information paradox.
Moreover, we design a quantum teleportation protocol by which one can extract the information residing
in islands.
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I. INTRODUCTION

Recently, Einstein gravity without cosmological con-
stants in three dimensions has been considered with more
interest. This theory does not have black hole solutions [1],
but in addition to Minkowski spacetime, other solutions can
be found that have a horizon [2]. The event horizons for
these asymptotically flat spacetimes are cosmological hori-
zons, hence they are called flat-space cosmologies (FSCs).
These spacetimes can be locally converted to Minkowski
spacetime, and their relationship to Minkowski spacetime
is similar to what Banados-Teitelboim-Zanelli (BTZ) black
holes have to the anti–de Sitter (AdS) spacetimes. In fact,
the FSCs are orbifolds of Minkowski spacetime and can be
converted to it with a shift and boosts in coordinates [3].
Moreover, the FSCs can be obtained from the BTZ black
hole by taking the flat-space limit (zero cosmological
constant limit or infinite AdS radius limit), which makes
a large number of its properties easily proven from the
asymptomatic AdS case using the flat-space limit.

One of the reasons for paying attention to the FSC
spacetimes is that they appear in the holography of
asymptotically flat spacetimes. It has been recently pro-
posed that asymptotically flat spacetimes in three dimen-
sions are dual to the states of a two-dimensional field theory
with an ultra relativistic symmetry [4,5]. In fact, the origin
of this proposal is that asymptotic symmetries at null
infinity of asymptotically flat spacetimes in three dimen-
sions are given by the Bondi-Metzner-Sachs group [6,7].
This group is isomorphic to another group in two dimen-
sions, which is obtained by Inonu-Wigner contraction of
the conformal group [8]. This contraction is done by taking
the zero limit of the light speed. Hence this group is
ultrarelativistic and is called the Carrollian conformal group
[9]. We call the field theory with this symmetry Carrollian
conformal field theory and the corresponding holography
flat/Carrollian conformal field theory. Various aspects of
this holography have been explored so far, a list of which
can be found in the references of a recent article [10].
It is possible to define entropy and temperature for the

cosmological horizon of FSC spacetime. The entropy in
this case is similar to black holes and is proportional to
the area of the horizon. In Ref. [11], it was shown that
this entropy can be obtained by counting the number of
corresponding states in the dual field theory. The FSCs, like
black holes, can have Hawking radiation [2]. The causal
structure of this spacetime (up to asymptotic regions) and
the type of its horizons are exactly the same as de Sitter
spacetimes. The study of radiation from the cosmological
horizon of de Sitter spacetimes has been done for the first
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time in the paper [12]. This study can be generalized to the
FSCs, which ultimately leads to the definition of temper-
ature for the cosmological horizon that is proportional to its
surface gravity.
Due to the timelike singularity of FSC spacetime, the

Hawking mode created near the horizon is reflected from
it and after a while reaches its partner inside the horizon. The
result of this meeting is the purification of their state and
therefore there is no notion of information paradox. This
picture is similar to the one for the large black holes in AdS
spacetimes where the Hawking mode is reflected from the
asymptotic timelike boundary and the total state after a while
becomes a thermofield double state at fixed temperature.
The eternal AdS black holes become radiative by coupling
their asymptotic boundary to an auxiliary flat spacetime
(bath system). In this coupled system, the Hawking mode
instead of reflection from the asymptotic boundary is
absorbed in the bath and therefore the entanglement entropy
of radiation becomes larger and larger, same as the one for an
evaporating black hole. This is an information paradox since
unitarity limits the maximum entropy of a black hole to be
the Bekenstein-Hawking entropy.
Interestingly, this paradox can be resolved with the

help of the island proposal [13,14]. The main idea in this
proposal is the existence of new regions (islands) contain-
ing the partner of Hawking mode, which could be added to
the entanglement wedge of radiation collected in the bath.
Since, by this addition, the state of Hawking mode and
its partner is purified to a Bell state, the increasing of
entanglement entropy of radiation is stopped and informa-
tion paradox is resolved. The boundary of these new
regions are located either inside or outside the horizon
and are called quantum extremal surfaces (QES) since they
are minimum of the following generalized entropy func-
tional for the radiation [13,14],

SRad ¼ Min

�
Ext

�
Areað∂IÞ
4GN

þ SvNðR ∪ IÞ
��

: ð1:1Þ

The Area refers to the area of codimension 2 boundary
surface of island, ∂I, and SvN½R ∪ I� is the von Neumann
entropy of the quantum state of combined radiation and
island systems computed in the effective semiclassical
theory. The island here refers to any number of regions,
including zero, contained in the gravitational region. The
combination of an area term with quantum matter entan-
glement entropy is known as generalized entanglement
entropy. The procedure for applying this formula is extrem-
izing the right-hand side of (1.1) with respect to the position
of the boundary of island then minimizing over all extremal
surfaces. It is worth mentioning that albeit this procedure
comes from the AdS=CFT, i.e., Ryu-Takayanagi formula
[15] and its extensions [16,17], but actually it can be
applied for any quantum field theory (QFT) coupled to
gravity. Marvelously, this proposal has come out proud in

all the examples that have been used, i.e., for two-dimen-
sional black holes of JT (Jackiw-Teitelboim) gravity
[14,18–21], two-dimensional asymptotically flat solutions
of the Callan-Giddings-Harvey-Strominger model [22–25],
higher dimensional spacetimes in Einstein gravity [26,27],
higher curvature gravities [28], massive gravities [29], and
de Sitter horizons [30–34].1 For all of them, the entangle-
ment entropy of radiation follows the Page curve [37] and
therefore the unitarity is restored. Albeit the whole pro-
cedure is done in the semiclassical limit, since the infor-
mation paradox is resolved by a coherent connection
between gravity and quantum mechanics, it is very impor-
tant to the understanding of quantum gravity.
In this paper we would like to extend the previous studies

on the island formula to the FSC spacetimes. For this
purpose, we make its timelike singularity transparent by
coupling it to an auxiliary bath and then examine the island
proposal. We will show that the entanglement entropy of
radiation follows the Page curve thanks to the appearance
of a new quantum extremal surface outside of the horizon.
We will discuss that to have an agreement with quantum
focusing conjecture, the boundary of the island cannot
appear inside the horizon in the coupled system and we also
design a quantum teleportation protocol by which one can
extract the information residing in the island. We organize
the paper as follows: in Sec. II, we explain more carefully
the FSC geometry and its thermodynamics characteristics
such as temperature, Bekenstein-Hawking entropy, and
also the associated first law. Also, the proper coordinates
that can be analytically continued to the whole geometry of
two-sided eternal FSC geometry coupled to the bath will
be introduced. Moreover, the procedure of emitting the
Hawking radiation from the cosmological horizon will be
explained. In Sec. III, we apply the island formula and find
the new quantum extremal surface outside the horizon.
After calculating the Page time and scrambling time we
also design a procedure to extract information from the
island. The last section, IV, is devoted to the conclusion and
future directions.

II. THREE-DIMENSIONAL FSC

A. The FSC solution and its conformal structure

The gravitational theory that we consider in this paper is
Einstein gravity without cosmological constant in three
dimensions. In addition to the Minkowski spacetime, which
is an obvious solution, it is easy to check that the following
metric also satisfies its equations of motion [2]:

ds2 ¼ −
dr2

fðrÞ þ fðrÞdt2 þ r2ðdϕ − NϕðrÞdtÞ2; ð2:1Þ

1The cosmological circuit complexity in the presence of
islands is studied in [35]. Also, the role played by mutual
information of subsystems on the Page curve is explored in [36].
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with

fðrÞ ¼ r̂2þðr2 − r20Þ
r2

; NϕðrÞ ¼
r0r̂þ
r2

; ð2:2Þ

and r0 and r̂þ are two constants. The function fðrÞ vanishes
at r ¼ r0 and for r > r0 the coordinate r is timelike while t
is spacelike. Thus r ¼ r0 is a cosmological horizon and the
geometry given by (2.1) is known as FSC. There is also an
intrinsic singularity at r ¼ 0, which is timelike. The two
parameters r0 and r̂þ are related to the massM and angular
momentum J of the FSC by

r̂þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8GNM

p
; r0 ¼

ffiffiffiffiffiffiffiffiffi
2GN

M

r
jJ j: ð2:3Þ

It is possible to find a locally well-defined transformation
which maps FSC (2.1) to the Minkowski spacetime. This
transformation is a combination of shift and boost of the
coordinates and shows that FSC only encompasses part of
the Minkowski geometry. Accordingly, FSC is known as
the shift-boost orbifold of the Minkowski spacetime.
Moreover, FSC is given by taking the flat-space limit from
the BTZ black hole,

ds2 ¼ −
ðr2 − r2þÞðr2 − r2−Þdt2

l2r2
þ l2r2dr2

ðr2 − r2þÞðr2 − r2−Þ

þ r2
�
dϕ −

rþr−
lr2

dt

�
2

; ð2:4Þ

where rþ and r− are the radii of outer and inner horizons
and l ¼ −4=Λ is the AdS radius according to the negative
cosmological constant Λ. The radii r� are given in terms of
mass M and angular momentum J of BTZ as follows

M ¼ r2þ þ r2−
8GNl2

; J ¼ rþr−
4GNl

: ð2:5Þ

Plugging (2.5) in (2.4) and taking the l → ∞ limit results
in (2.1). It is clear from (2.5) that at large AdS radius,
r− → r0 and rþ → lr̂þ. Thus the region between outer
horizon and AdS boundary is vanished by taking the flat-
space limit. Furthermore, it is worth noting that the ϕ-
constant surfaces in geometry (2.1) are spacelike for r < r0
and timelike for r > r0. In order to have a well-defined
spacelike periodic coordinate in all parts of spacetime, we
define a new coordinate ψ ,

ψ ¼ ϕ −
r̂þ
r0

t; ð2:6Þ

which by that the metric of ψ -constant two-dimensional
surfaces becomes

ds2 ¼ r̂2þðr2 − r20Þ
r20

dt2 −
r2

r̂2þðr2 − r20Þ
dr2: ð2:7Þ

ThePenrose diagramofmaximally extendedFSC spacetime,
(2.1), is depicted in Fig. 1. The corresponding Kruskal
coordinate U and V for the upper wedge is given by2

U ¼ e
r̂2þ
r0
uðt;rÞ; V ¼ e

r̂2þ
r0
vðt;rÞ; ð2:8Þ

where

uðt; rÞ ¼ 1

r̂2þ

�
rþ r0

2
log

r − r0
rþ r0

�
− t;

vðt; rÞ ¼ 1

r̂2þ

�
rþ r0

2
log

r − r0
rþ r0

�
þ t:

The definition of U and V coordinates in other wedges of
Fig. 1 can be written by analytic continuation of (2.8) as
follows

FIG. 1. Penrose diagram of FSC solution. The dashed lines
indicate the cosmological horizon. The solid black lines and
wiggly red lines are corresponded to the past-future null infinities
and timelike singularities, respectively.

2This coordinates are written by taking the flat space limit from
the Kruskal coordinates of BTZ black hole introduced in [38].

ISLANDS IN FLAT-SPACE COSMOLOGY PHYS. REV. D 104, 126017 (2021)

126017-3



Urightðt;rÞ¼Utop

�
tþ iπ

r0
r̂2þ

;r

�
; Vrightðt;rÞ¼V topðt;rÞ;

Uleftðt;rÞ¼Utopðt;rÞ; Vleftðt;rÞ¼V top

�
tþ iπ

r0
r̂2þ

;r

�
;

Ubottomðt;rÞ¼Utop

�
tþ iπ

r0
r̂2þ

;r
�
;

Vbottomðt;rÞ¼V top

�
tþ iπ

r0
r̂2þ

;r

�
: ð2:9Þ

The temperature and entropy for the cosmological horizon
r0, are given by

T ¼ κ

2π
¼ r̂2þ

2πr0
; Sth ¼

A
4G

¼ πr0
2GN

: ð2:10Þ

Interesting point is that both of the temperature and entropy
of the cosmological horizon aregiven by taking the flat-space
limit from the temperature and entropy of the BTZ inner
horizon. This relation between theBTZ inner horizon and the
cosmological horizon of FSC also has an impact on the first
law of cosmological horizon. Similar to the inner horizon of
BTZ [39], we can write

dM ¼ −TdSþΩdJ; ð2:11Þ

whereΩ ¼ r̂þ=r0 is the angular velocity of the cosmological
horizon.

B. Radiation from the FSC horizon

In order to study the Hawking radiation from the
cosmological horizon of the FSC, we compare the causal
structure of this spacetime, Fig. 1, with the one for de Sitter
(dS) spacetime, Fig. 2. The metric of dS spacetime in the
static coordinate is given by

ds2 ¼ −
�
1 −

r2

l2

�
dt2 þ dr2

ð1 − r2

l2Þ
þ r2dϕ2; ð2:12Þ

where r ¼ l locates its cosmological horizon. Thus in both
of spacetimes in the region I or r < rCH (where rCH is the
radius of cosmological horizon), t is timelike, and r is
spacelike. However, dS has a spacelike boundary in region
II, at r ¼ ∞. The radiation from cosmological horizon of
dS spacetime has been studied in [12] by Gibbons and
Hawking. The mechanism is very similar to the radiation
from the event horizon of black holes, i.e., a pair of particle
and antiparticle are created from the vacuum state near
the horizon in region I. Antiparticle with negative energy
(with respect to the timelike Killing vector ∂t) crosses the
horizon and appears in region II where ∂t is now spacelike.
Therefore, in region II it can be considered as an ordinary
particle. Moreover, the particle in region I moves towards
r ¼ 0 and can be detected by a detector located near r ¼ 0.
The flux of these detected particles is interpreted as the
radiation from the cosmological horizon. The picture for
the FSC solution is similar to [2] and one can deduce
Hawking radiation for its cosmological horizon with
the temperature (2.10). The absorption of radiation by
the detector increases its entropy and thus decreases the
entropy of the cosmological horizon. This reduces the area
of the horizon and according to the first law (2.11) we can
conclude that the mass of FSC increases.

III. ISLAND AND RESOLVING THE
INFORMATION PARADOX

If there is no detector near the singularity, each Hawking
mode created near the cosmological horizon at early times,
will be reflected at the timelike singularity (wiggly red
line in Fig. 1) at later times. This implies a balance
between emitting particles from the cosmological horizon
and absorbing the ones reflected from the singularity.
Accordingly, the total state is independent of the time. It
is similar to what happens for the eternal AdS black holes,
where each Hawking mode is reflected from the timelike
asymptotic boundary and then is absorbed by the black
hole at a finite time. Similar to simulating the black hole
evaporation in the eternal AdS black hole spacetime, we
can connect a bath to the right and left singularities in a way
that the common boundaries become transparent, see
Fig. 3. By “bath” we mean a quantum mechanical system
where we can neglect the gravitational effects. In this setup,
the whole system starts in a Hartle-Hawking state (thermo-
field double state) and it is evolved forward in time on both
sides. Now, the FSC is radiative. The Hawking radiation
can be collected in the bath region and its full fine-grained
entropy is given by the island formula (1.1). One technical
issue in applying the formula (1.1) is that in three-dimen-
sional spacetimes, the entanglement entropy of quantum
matter has an arealike UV divergence,FIG. 2. Penrose diagram of de Sitter spacetime.
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SvNðR ∪ IÞ ¼ Areað∂IÞ
ε

þ SvN;finðR ∪ IÞ; ð3:1Þ

where ε is the short distance cutoff scale. This divergence
can be absorbed by renormalization of Newton constant,
1=4GN þ 1=ε ¼ 1=4GN;ren. Accordingly, the island for-
mula (1.1) changes to

SRad ¼ Min

�
Ext

�
Areað∂IÞ
4GN;ren

þ SvN;finðR ∪ IÞ
��

: ð3:2Þ

Another technical issue is about the number of quantum
matter (scalar) fields, N ∼ c where c (some fixed positive
constant for a unitary theory) denotes the central charge.
In the following, we assume that 1 ≪ N ≪ Sth, where in
competition with the graviton the quantum matter has a
main contribution to the von Neumann entropy while at
the same time the backreaction of matter fields on the
geometry is negligible. Another technical issue is that
the calculation of entanglement entropy of a three-
dimensional quantum matter field for a region with several
disconnected intervals is not an easy task. But here we
are interested in the entanglement entropy of quantum

fields on geometry with angular symmetry in the direc-
tion of the ψ coordinate, (2.6). By choosing the expan-
sion of quantum fields according to this symmetry,
the reduced two-dimensional theory apart from the
massless modes contains some massive Kaluza-Klein
modes whose masses are given by angular momentum
along the circle S1. Since the entangling regions that are
interesting for us here are far from each other, the
contribution of those massive modes to entanglement
entropy is negligible. Accordingly, we have a massless
quantum field theory (CFT)3 on two-dimensional geom-
etry (2.7) and therefore we can use the following two-
dimensional formula [40] for the finite part of entangle-
ment entropy of the union of regions Rþ ¼ ½bþ;∞�,
R− ¼ ½b−;∞� and island I ¼ ½a−; aþ� in Fig. 3,

SvN;finðR ∪ IÞ

¼ c
6
log

�
Lðaþ; a−ÞLðbþ; b−ÞLðaþ; bþÞLða−; b−Þ

Lðaþ; b−ÞLða−; bþÞ
�
;

ð3:3Þ

where Lðp1; p2Þ denotes the proper geodesic length
between two point p1ðt; rÞ and p2ðt; rÞ. It is worth
mentioning that to write the above expression we have
used this fact that the whole system (FSCþ bath)
represents a pure state, actually the vacuum state. To
have a vacuum state in the whole system, we work within
a new null coordinates U and V. For the top wedge in
Fig. 1, they are defined as

Uðt; rÞ ¼ e
2π
β uðt;rÞ ¼ e−

2π
β ðt−r�ðrÞÞ;

Vðt; rÞ ¼ e
2π
β vðt;rÞ ¼ e

2π
β ðtþr�ðrÞÞ; ð3:4Þ

where β is the inverse of the temperature (2.10) and

r�FSCðrÞ ¼
β

4π
log ðjr2 − r20jÞ: ð3:5Þ

This definition can also be analytically continued to
other wedges in Fig. 1 by relations similar to (2.9).
The auxiliary bath system is in the thermal equilibrium
with the FSC spacetime (2.7) and therefore for the whole
system, we can write the metric as

ds2 ¼ −Ω−2dUdV; ð3:6Þ

where4

FIG. 3. Penrose diagram of eternal FSC solution coupled to the
bath. The Hawking mode and its interior partner are represented
by green curved lines. The dashed line(s) and dotted line(s)
indicate the location of horizon and the path of entangled modes,
respectively. The amount of energy emitted by cosmological
horizon (Hawking radiation) is same as one falling in from the
bath, therefore in all times the geometry is eternal solution. Since
moving the left side backwards in time and the right one forwards
in time is an isometry, we can make left and right times equal by
using this isometry.

3To be more precise, a specific type of 2D CFT, for example
free fermions.

4According to (3.7), the metric is not continuous at the
singularity where we couple the two systems, but there the flux
of energy is actually smooth by noting to the conformal
symmetry of quantum matter field.
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ΩFSCðrÞ ¼
r̂þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r20

p e
2π
β r

�
FSCðrÞ; ΩBath ¼

2π

β
e
2π
β r

�
BathðrÞ;

ð3:7Þ

and r�BathðrÞ ¼ r. Accordingly, the geodesic distance
Lðp1; p2Þ in the whole system becomes

Lðp1; p2Þ ¼
ðUðp2Þ − Uðp1ÞÞðVðp1Þ − Vðp2ÞÞ

Ωðp1ÞΩðp2Þ
: ð3:8Þ

The main reason to use the null coordinates U, V instead
of the null coordinates U, V (2.8) is that for the latter

one, the metric apart from the off-diagonal component
also has another components. This implies that the
geodesic length Lðp1; p2Þ would not have the simple
form as (3.8).

A. Island outside the horizon
of coupled system

Using the expression (3.8) for the geodesic distance
and for bþ∶ðtb; bÞ, aþ∶ðta; aÞ, b−∶ð−tb; bÞ, a−∶ð−ta; aÞ
together with considering the possible quantum extremal
surface in the right wedge,5 the finite part of the entangle-
ment entropy (3.3) becomes

SvN;fin ¼
c
6
log

�
β2ðr20 − a2Þ

4π2r̂2þ
e−

4πðtaþtbÞ
β ð1þ e

4πta
β Þ2ð1þ e

4πtb
β Þ2

×
ðe2π

β ðtaþtbþ2bÞ − e
2π
β ð2taþbþr�ðaÞÞ − e

2π
β ð2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

ðe2π
β ðtaþtbþ2bÞ þ e

2π
β ðbþr�ðaÞÞ þ e

2π
β ð2taþ2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
: ð3:9Þ

Let us firstly explore the existence of quantum extremal surface at early times. At early times when ta=b; tb=b ≪ 1, the von
Neumann entropy (3.9) simplifies to

SvN;fin ¼
c
6
log

�
4β2ðr20 − a2Þ

π2r̂2þ

ðe4πb
β þ e

4πr�ðaÞ
β − 2e

2π
β ðbþr�ðaÞÞÞ2

ðe4πb
β þ 2e

2π
β ðbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
: ð3:10Þ

Therefore, the generalized entropy in these times reads

Sgen ¼
πa

GN;ren
þ c
6
log

�
4β2ðr20 − a2Þ

π2r̂2þ

ðe4πb
β þ e

4πr�ðaÞ
β − 2e

2π
β ðbþr�ðaÞÞÞ2

ðe4πb
β þ 2e

2π
β ðbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
; ð3:11Þ

that it might be extremized with respect to the location of quantum extremal surface, i.e., with respect to a and ta. The
extremization with respect to a gives

∂Sgen
∂a ¼ 1

3ðr20 − a2Þ
�
3πðr20 − a2Þ − cGN;rena

GN;ren
þ 4cðe2π

β ð3bþr�ðaÞÞ − e
2π
β ðbþ3r�ðaÞÞÞa

ðe2πb
β − e

2πr�ðaÞ
β Þ2ðe4πb

β þ 2e
2π
β ðbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ

�
¼ 0; ð3:12Þ

and the extremization with respect to ta becomes

∂Sgen
∂ta ¼ −

2πce
2π
β ðtaþtbþ2r�ðaÞÞ

3βðe4πb
β þ 2e

2π
β ðbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ

¼ 0:

ð3:13Þ

From Eq. (3.13), it is clear that the only possibility for the
boundary of island is a ¼ r0. But this value of a apparently
is not acceptable by the equation (3.12). This implies that
there is no island at early times. In absence of the island,

only the contribution of quantum matter to the generalized
entanglement entropy (3.9) remains

Sgen ¼ SvN;fin ¼
c
6
log

�
β2

π2
cosh2

�
2πtb
β

��
; ð3:14Þ

which at very early times behaves as the following6

Sgen ∼
2π2c
3

t2b
β2

; ð3:15Þ

5The proper coordinates are Uright and Vright, according to (2.9)
for analytical continuations.

6The Oðt2Þ growth is similar to the time dependency of
entanglement entropy after a global quench in very early times
[41].
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while at late times (after a few thermal times), entropy
grows linearly

Sgen ∼
2πc
3

tb
β
: ð3:16Þ

This linear growth at late times is nothing but the observation
ofHawking to have informationparadox. To bemore precise,
because of this late time linear growth the finiteness of von
Neumann entropy for a finite dimensional system is violated.

To stop this linear growth, one possibility is that the observer
should have access to the partner of Hawking mode (interior
mode in Fig. 3). In another words, a new region must be
added to the entanglement wedge of radiation. According to
the island proposal [13,14], the boundary of this new region
is controlled by a new quantum extremal surface. To explore
the existence of this quantum extremal surface, let us come
back to the general expression for the finite part of the von
Neumann entropy (3.3) [or equivalently (3.9)], which at late
times ta=β, tb=β ≫ 1 reduces to

SvN;fin ¼
c
6
log

�
β2ðr20 − a2Þ

4π2r̂2þ
e−

4π
β ðtaþtbþbþr�ðaÞÞ

× ðe2π
β ðtaþtbþ2bÞ − e

2π
β ð2taþbþr�ðaÞÞ − e

2π
β ð2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
; ð3:17Þ

since the distance between the left wedge and the right wedge in Fig. 3 is very large and therefore

Lðaþ; a−Þ ≃ Lðbþ; b−Þ ≃ Lðaþ; b−Þ ≃ Lða−; bþÞ ≫ Lða�; b�Þ: ð3:18Þ
Accordingly, in these times the generalized entanglement entropy becomes

Sgen ¼
πa

GN;ren
þ c
6
log

�
β2ðr20 − a2Þ

4π2r̂2þ
e−

4π
β ðtaþtbþbþr�ðaÞÞ

× ðe2π
β ðtaþtbþ2bÞ − e

2π
β ð2taþbþr�ðaÞÞ − e

2π
β ð2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
: ð3:19Þ

Now, from the extremization with respect to a and ta one gets, respectively,

∂Sgen
∂a ¼ 1

3ðr20 − a2Þ
�
3πðr20 − a2Þ − cGN;rena

GN;ren

þ ce
2π
β ðtaþtbÞðe4πb

β − e
4πr�ðaÞ

β Þa
ðe2π

β ðtaþtbþ2bÞ − e
2π
β ð2taþbþr�ðaÞÞ − e

2π
β ð2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ

�
¼ 0; ð3:20Þ

and

∂Sgen
∂ta ¼ −

2πc
3β

e
2π
β ðbþr�ðaÞÞðe4πta

β − e
4πtb
β Þ

ðe2π
β ðtaþtbþ2bÞ − e

2π
β ð2taþbþr�ðaÞÞ − e

2π
β ð2tbþbþr�ðaÞÞ þ e

2π
β ðtaþtbþ2r�ðaÞÞÞ

¼ 0: ð3:21Þ

The equation (3.20) implies that a ≠ r0. According to that and by noting to the expression of tortoise coordinate (3.5), we
find that the only solution for Eq. (3.21) is ta ¼ tb. For ta ¼ tb, the generalized entanglement entropy (3.19) is more
simplified to

Sgen ¼
πa

GN;ren
þ c
6
log

�
β3e−

4πb
β ðe2πb

β −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 − a2

p Þ4
8π3r0

�
: ð3:22Þ

This allows an extremal surface at

a ¼ r0

�
1 −

2c2e−
4πb
β G2

N;ren

9π2

�
; ð3:23Þ

where the generalized entanglement entropy (3.19) reads

Sgen ¼ 2Sth þ
c
6
log

�
β3e

4πb
β

8π3r0

�
−
2c2r0e

−4πb
β GN;ren

3π
þOðG2

N;renÞ: ð3:24Þ
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The first term is exactly twice the Bekenstein-Hawking
entropy (2.10) and the other terms are the effect of
quantum matter. In contrast to the late time result without
the island (3.16), this is a constant that implies that the
configuration with the island is preferred and the entropy
stops growing. Interestingly, to resolve the information
paradox we did not consider any gravitational back-
reaction7 for the FSC, actually semiclassical gravity is
sufficient. It is also worth noting that, according to (3.23),
it looks surprising that the boundary of the island is
outside the horizon because we can send a signal from
the island to the bath. Since we are dealing with a
coupled system (FSCþ bath), this coupling by time
evolution mixes the degrees of freedom in bath and
outside the FSC horizon and therefore there is no
paradox in this case. But one might worry that, if we
decouple the FSC from the bath, then we really encounter
causality paradoxes. Indeed, to decouple the FSC from
the bath one needs to a positive value of energy and by
this energy flux into the FSC, the area of horizon

becomes smaller8 and the quantum extremal surface then
lies behind the horizon, therefore again there is no
paradox. Accordingly, even though the island is outside
the horizon of the coupled system, it changes to the
behind the horizon of the decoupled system. This is in
agreement with arguments in [17]. Based on generalized
second law, it is argued in Ref. [17] that the quantum
extremal surface should be behind the horizon.

B. No island behind the horizon
of coupled system

In the previous subsection, we have assumed that the
boundary of island is located outside of the horizon, and
we were able to confirm it by performing concrete
calculations. In this subsection, we show that the island
does not appear behind the horizon of the coupled
system (FSCþ bath), i.e., in the top-wedge in Fig. 3. By
using the proper coordinates (3.4) for the top-wedge
one gets

Sgen ¼
πa

GN;ren
þ c
6
log

�
β2ða2 − r20Þ

4π2r̂2þ
e−

4πðtaþtbÞ
β ð−1þ e

4πta
β Þ2ð1þ e

4πtb
β Þ2

×
ðe2π

β ðtaþtbþ2bÞ − e
2π
β ð2taþbþr�ðaÞÞ þ e

2π
β ð2tbþbþr�ðaÞÞ − e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

ðe2π
β ðtaþtbþ2bÞ − e

2π
β ðbþr�ðaÞÞ þ e

2π
β ð2taþ2tbþbþr�ðaÞÞ − e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
; ð3:25Þ

which at early times, ta=b, tb=b ≪ 1, is simplified to

Sgen ¼
πa
Gren

þ c
6
log

�
β2ða2 − r20Þ

4π2r̂2þ
e−

4π
β ðtaþtbÞð−1þ e

4πta
β Þ2ð1þ e

4πtb
β Þ2

�
: ð3:26Þ

By extremizing this early time general entropy with respect to the location of possible quantum extremal surface near the
horizon, a ¼ r0 þ ϵ, we find the following equation

π

Gren
þ c
12r0

þ c
6ϵ

¼ 0; ð3:27Þ

which does not allow a consistent solution in the region r0 < a < ∞. This implies that at early times the island is not
generated for r0 < a < ∞. Accordingly, in the following we check the existence of island region at late times. At late times,
the general entropy (3.25) becomes

Sgen ¼
πa

GN;ren
þ c
6
log

�
β2ða2 − r20Þ

4π2r̂2þ
e−

4π
β ðtaþtbþbþr�ðaÞÞ

× ðe2π
β ðtaþtbþ2bÞ − e

2π
β ð2taþbþr�ðaÞÞ þ e

2π
β ð2tbþbþr�ðaÞÞ − e

2π
β ðtaþtbþ2r�ðaÞÞÞ2

�
; ð3:28Þ

where we have used again the relations (3.18) to compute the bulk entropy. The extremization with respect to a and ta gives,
respectively,

7The energy (Hawking radiation) emitted from the FSC precisely balances the energy (radiation from the bath) falls in the FSC.
8It can be seen by noting to the first law of thermodynamics for the FSC solution (2.11) together with expression for thermal

entropy (2.10).
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∂Sgen
∂a ¼ 1

3ða2 − r20Þ
�
3πða2 − r20Þ þ cGN;rena

GN;ren
þ

−
ce

2π
β ðtaþtbÞðe4πb

β þ e
4πr�ðaÞ

β Þa
ðe2π

β ðtaþtbþ2bÞ − e
2π
β ð2taþbþr�ðaÞÞ þ e

2π
β ð2tbþbþr�ðaÞÞ − e

2π
β ðtaþtbþ2r�ðaÞÞÞ

�
¼ 0;

∂Sgen
∂ta ¼ −

2πc
3β

e
2π
β ðbþr�ðaÞÞðe4πta

β þ e
4πtb
β Þ

ðe2π
β ðtaþtbþ2bÞ − e

2π
β ð2taþbþr�ðaÞÞ þ e

2π
β ð2tbþbþr�ðaÞÞ − e

2π
β ðtaþtbþ2r�ðaÞÞÞ

¼ 0: ð3:29Þ

It is clear that these two equations do not have any
consistent solution for ta and a. Therefore, not only in
early times but also at late times there is no island with
boundary surfaces inside of the horizon, r0 < r < ∞. This
is consistent with the quantum focusing conjecture (QFC)
[42] as following. Let us assume that there is a quantum
extremal surface behind the horizon. Since this is an
extremum of generalized entanglement entropy, the first
covariant derivative of Sgen in the direction of null vector k
vanishes,

∇kSgenðQESÞ ¼ 0: ð3:30Þ

According to QFC, the second covariant derivative of
generalized entanglement entropy in the direction of null
vector k is not positive [42],

∇2
kSgen ≤ 0; ð3:31Þ

which together with (3.30) imply that by moving away
from the QES in the direction of k (right-moving light ray
in Fig. 4), the first derivative of generalized entanglement
entropy must be less than zero. But away from the QES, for
Sgen in (3.28) one can see that

∇kSgen ¼
2π2

βGN;ren

r2 − r20
r

þOðG0
N;renÞ > 0: ð3:32Þ

This contradiction stems from the fact that we wrongly
assumed that there is a QES behind the horizon. On the
other hand, if we assume that the QES is outside of the
horizon then by using (3.19) we can find the first derivative
of Sgen in the right-moving light ray direction that it again
becomes (3.32) and that is clearly negative for r < r0,
consistent with QFC.

C. Page time and scrambling time

By equating the entropy (3.14) with the generalized
entropy (3.24), one can determine the Page time, which is a
time when the entropy stops growing. Doing so, at late
times tb=β ≫ 1, we arrive at

tPage ¼
3β

πc
Sth þ

β

4π
log

�
βe

4πb
β

2πr0

�
−
cβr0e

−4πb
β GN;ren

π2

þOðG2
N;renÞ: ð3:33Þ

Moreover, according to (3.23), we can determine the
scrambling time. The scrambling time is defined based
on the minimum time required to retrieve the information
after sending the information into the black hole. Since in
our setup the radiation degrees of freedom are encoded in
the union of R ∪ I, the signal thrown into the FSC comes
up in the radiation degree of freedom after signal reaches to
the island. Let us assume that the observer is sitting at the
radius b and at time t0 sends a signal into the FSC, see
Fig. 5. This signal will get to the island with a boundary at

FIG. 4. According to QFC, this setup is ruled out where a is the
assumed quantum extremal surface inside of the horizon and σ
denotes another codimesnion 2 surface. The k is a null vector in
the v direction and we take the region associated to QFC to be the
causal domain of spatial interval between a and b. The boundary
of the causal domain (Wheeler-DeWitt patch) is shown in violet
color. Since the right end point has been fixed to b, we cannot
move the left end point beyond this boundary.
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radius a and time ta. The distance between these two points
in the ingoing null direction is given by

vðt0; bÞ − vðta; aÞ ¼ ðt0 þ r�ðbÞÞ − ðta þ r�ðaÞÞ; ð3:34Þ

therefore the time difference between the boundary of the
island and the initial time is given by

ta − t0 ¼ ðr�ðbÞ − r�ðaÞÞ − ðvðt0; bÞ − vðta; aÞÞ: ð3:35Þ

Since the vðta; aÞ should be equal or greater than vðt0; bÞ to
have signal in island, therefore the minimum time to
retrieve the information is given by

tscr ≡ ta − t0 ¼ r�ðbÞ − r�ðaÞ; ð3:36Þ

which according to (3.5) and (3.23) becomes

tscr ¼
β

2π
log Sth þ 2b −

β

2π
log

�
cr20
3

�
≃

β

2π
log Sth: ð3:37Þ

The leading dependence is universal [43] and this tscr
actually is the fast scrambling time. This scrambling time
can also be written as

tscr ¼
β

2π
log

�
3

GN;ren

�
þ 2bþ β

2π
log

�
π

2cr0

�
≃

β

2π
log cM;

ð3:38Þ

which is in agreement with [10] and cM ¼ 3=GN;ren is
the central charge of ðBondi-Metzner-SachsÞ3 algebra

associated to the asymptotic symmetry group at null
infinity [7]. The study in [10] is based on evaluating
special four-point out-of-time-ordered correlation functions
relevant to the (quantum) chaos and scrambling time is
defined as the timescale where the global block expan-
sions fail.

D. Extracting information from the island

In Sec. III A, we observed that to resolve the information
paradox in our setup, we need to include a new region
(island) to the entanglement wedge of Hawking radiation.
One might expect that it might be possible to also extract
the information in the island. Even thought extracting
information in general could be very difficult, but in our
setup there is a simple way to do it following [44]. As we
have mentioned previously, the state of the whole system
(FSCþ bath) is a thermofield double state with the
following standard representation,

jTFDðtL; tRÞi

¼ 1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp e−iðbHLtLþbHRtRÞ

X
n

e−βEn=2jEniLjEniR: ð3:39Þ

This state has a large bipartite entanglement between the
right and left side since the von Neumann entropy of the
reduced density matrix ρR ¼ TrðρTFDÞL is given by

SvNðρRÞ ¼ Sth ∼ 1=GN: ð3:40Þ

This large amount of entanglement creates a connected
geometry, Einstein-Rosen bridge. Even in presence of this
wormhole between the two sides, a signal from the left-side
island cannot be seen in the right side, according to the
causality. The absence of this communication stems also
from the absence of interaction between boundary QFTs.
Now let us turn on an interaction between the boundary
QFT in the right side and boundary QFT in the left side at
the time t ¼ 0, by adding the operator exp ðigX̂Lð0ÞX̂Rð0ÞÞ
to the total Hamiltionian in (3.39). According to the gauge/
gravity duality, this means that in the gravity we have
turned on a nonlocal interaction exp ðigΦLð0ÞΦRð0ÞÞ,
where the fields Φ are sources for the operators X̂. In
the simplest case, where we have one free scalar field and in
the limit GN → 0, the energy-momentum tensor of scalar
theory after turning on this coupling becomes

hTuuig ¼ he−igΦLð0ÞΦRð0ÞTuueigΦLð0ÞΦRð0Þig¼0: ð3:41Þ

It is clear that by adjucting the coupling constant g the
deformed energy can become negative. It can be seen by
noting that (3.41) at first order of perturbation becomes

FIG. 5. A signal that is thrown into the FSC comes up in the
radiation degree of freedom after scrambling time.
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hTuuig ¼−igh½ΦLΦR;∂uΦ∂uΦ�g¼0i
¼−ig½ΦL;∂uΦ�g¼0hΦR∂uΦig¼0þL↔R: ð3:42Þ

The commutator gives the delta function (shockwave in the
v direction, see Fig. 6) in the location of the field and
another term is related to the causal propagator. It is
worthwhile to emphasize that while the initial deformations
are localized in the baths, the coupled Hamiltonian in this
protocol is crucial for propagating the negative energy into
the bulk. Albeit this shock wave has negative energy but it
increases the size of horizon when entering the FSC, since
we have a nonstandard first law of thermodynamics for the
FSC solution, the minus sign in (2.11). This increase in the
size of the horizon is given by9

ΔV ∼ −GN;ren

Z
Tuu;gdu ¼ −gGshockGN;ren þOðG2

N;renÞ;

ð3:43Þ
where G is related to causal propagator. Moreover, the
distance between the quantum extremal surface a, (3.23),
and the past horizon is given by

ΔV ¼ Vðta; aÞ − Vð−∞; r0Þ

¼ 2cr0
3π

e−
2π
β ðb−tbÞGN;ren þOðG2

N;renÞ; ð3:44Þ

which implies that by choosing the g properly, the nonlocal
interaction can produce enough negative energy to pull the
island into the causal contact with the left system. SinceΔV
(3.43) is of order GN;ren, the wormhole becomes slightly
traversable.10 Accordingly, the information stranded in the
right-side island can be rescued and detected in the left
bath. This protocol will be successful if we also make sure
that the information in island is transferred correctly to the
other side, i.e., we have a procedure which for any jΨi
implements

jΨiIj0iRadL → j0iIjΨiRadL ð3:45Þ

or more generally

jΨiIj0iRadL → j0iIURadL jΨiRadL ; ð3:46Þ

where U is a unitary operator.11 The way to test it is
introducing an additional auxiliary system A, of the same
dimensionality as island I in the right side and radiation in
the left bath, and maximally entangle it with I. According
to the linearity, we then have the evolution

1ffiffiffiffiffijIjp X
i

jiiIj0iRadL jiiA → j0iI
1ffiffiffiffiffijIjp X

i

URadL jiiRadL jiiA;

ð3:47Þ

which transfers the purification of A from I to RadL. Now,
if the final states ρIA will be close to ρI ⊗ ρA in the trace
norm, we can claim that the transfer is successful [45].
Since all we have done is valid in the low-energy limit
(semiclassical regime) and we do not know the microstates
of the island, therefore we can not check this test concretely
at the moment. Last but not least, it is also worth noting that
with this protocol we cannot transfer the information
forever since, for that purpose, we not only need to create
large amount of negative energy but also need many signals
from the island. As both of them can backreact on the
geometry, accordingly we lose our control on the simple
background spacetime.

IV. DISCUSSION

In this paper we study the eternal two-sided FSC solution
that is coupled to a nongravitational bath. The whole
system starts in a pure state and then evolves in time.
Conceptually, it is similar to a collapse of matter prepared
in the pure state to create a black hole and then its
evaporation. But in comparison to the real case, our setup
is simpler since the background solution is simpler to find

FIG. 6. Recovering the information of island through a quan-
tum teleportation protocol. By choosing the proper sign for the
coupling g, one can create two shock waves with negative energy
in the bulk where one of them is presented here. After changing
the location of horizon, the signal from the right-side island by
reaching to the negative energy shockwave gets time advances
and comes out on the other side.

9The first relation is actually the first law (2.11).
10The way we glue the two boundaries breaks the time killing

symmetry in the bulk and the signal cannot back to a time.
Therefore, there exists no closed timelike curves in our setup.

11The receiver can get back to the evolution (3.45) by action
with U†

RadL
.
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and therefore we can present a version of information
paradox where the quantum state and geometry are very
simple. Actually, without encountering the conceptual
problems related to the backreaction of matter fields on
the geometry, we can also resolve this paradox by finding
new regions (islands) in the gravitational system. It is
worthwhile to emphasize again that the whole procedure
is based on a semiclassical approximation without any
need to the information about the quantum UV completion.
Furthermore, apart from a configuration with a single
island, it might also be configurations with more islands,
though in this paper we did not consider them. At late
times, these extra configurations would not have a dom-
inant contribution since a configuration with a single island
already agrees with twice that of the Bekenstein-Hawking
entropy of the eternal two-sided cosmological solution.
But around the Page time, they might contribute and
accordingly the sharp change of general entropy may be
smoothed away.
More importantly, the minus sign in the first law of

thermodynamics for the FSC solution, (2.11), is a source
for two interesting observations: (i) in our setup, the island
is located outside of the horizon of coupled system
(FSCþ bath). When we decouple the FSC from the bath,
two positive energy shock waves are created that, by
entering the cosmological horizon, decrease the size of
the horizon. Accordingly, the island changes to behind
the horizon in agreement with the general argument of
Engelhardt and Wall. The decreasing size of the horizon
by absorbing the positive energy is related to this minus
sign. (ii) To extract information from the island, we need
a protocol by which the wormhole becomes traversable.
This can be provided by creating the negative energy
shockwave in the bulk. This negative energy shockwave
increases the size of horizon and after that information can
be causally transferred from the island to the bath. Again,
increasing the size of horizon by absorbing the negative
energy is related to that minus sign. More precisely, both of
the above observations are in agreement with quantum
focusing conjecture and therefore this minus sign can also
affect the (averaged) null energy condition for the FSC
geometry, which is worthwhile to be explored further.
Furthermore, the Ryu-Takayanagi formula and its exten-

sion in presence of quantum matter can be obtained by
replica method for the gravitational path integral [46,47].
This means that the island formula is also calculable by
using the replica method [48,49]. The later one implies that
there are geometries connecting the different replicas which
are know as replica wormholes. These geometries are used
in the JT gravity to analyze the late time behavior of
correlation functions [50] and spectral form factor [51,52].
Intriguingly, these wormholes can give a small overlap (of
order e−Sth ) between naïvely orthogonal bulk states and this
small correction to the Hawking radiation can restore the
unitarity in evaporation process. But apart from these very

fascinating characteristics, they lead to a factorization
puzzle. Since, there is no interaction term between the
dual QFTs in the two sides therefore the partition function
of combined system is actually a product of the partition
function of left and right systems, ZLR ¼ ZLZR. However,
it seems that the presence of replica wormholes in the bulk
implies that ZLR ≠ ZLZR. A resolution suggested was that
in presence of wormholes the bulk theory is dual to an
ensemble of field theories [52]. For the FSC case, we have
the same factorization problem and it might be the same
resolution as for the JT gravity, which is interesting to be
explored. More importantly, one can ask what happens to
the wormholes connecting the decoupled system when we
focus on just one element of the ensemble. For the dual of
JT theory, which is the Sachdev-Ye-Kitaev (SYK) model, it
was shown that not only those wormhole saddles persist but
also new saddles exist, which are named as half-wormholes
[53]. Exploring this new saddles for the FSC case would be
also very interesting.
Last but not least, in Sec. III D we have implicitly

assumed that there are local gauge invariant excitations in
the island region and we want to extract information about
them. In the gravitational system (FSC without bath) as a
gauge theory, in order to define a gauge invariant operator
one needs a dressing procedure. Accordingly, in order to
define a gauge invariant operator for the island I, even a
spatial geodesic should pass through the complement
region Σ − ðR ∪ IÞ to reach the radiation region R, where
Σ here denotes the overall Cauchy slice. This implies that to
construct this gauge invariant operator, we not only need
the information of the entanglement wedge of radiation
(R ∪ I) but also the information of the entanglement wedge
of its complement. But this is in contradiction with the
known principle [54] that the algebra of an entanglement
wedge should be closed and commute with the algebra of
its complement. According to Refs. [55,56], the source of
this puzzle seems to be whether or not there is massless
graviton in the setup. If there is massless graviton, then we
really encounter the problem since in the procedure of
dressing we connect the entanglement wedge of radiation
to its complement. But, if there is no massless graviton,
then the necessary Green function to define the dressing is a
decaying function.12 Hence it might not be any connection
between the entanglement wedge of radiation with its com-
plement and consequently there is no puzzle.13 Interes-
tingly, in the similar setup, AdS spacetimes in d > 2
dimensions, the graviton picks up mass in coupling to
the nongravitational bath [60–62]. The reason is that the

12Some criticisms on this issue can be found in [57–59].
13More precisely, in presence of a mass term, the equation that

describes the linearized graviton hij on ḡij background together
with the energy density ρ of excitations, F ðḡij; hijÞ þm2hii ∼
GNρ, has not a gradient form. Therefore, the integral of energy
density over a volume cannot be expressed as a boundary term.
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energy-momentum tensor of gravitational system on the
boundary of AdS is no longer conserved. It is worth noting
that if there is for example anUð1Þ charged excitation in the
island, there is no problem to associate a gauge invariant
operator to it since for such gauge theory we have negative
and positive charges together. In a gravitational system,
there is just one charge with a fixed sign. Our setup is
similar to the AdS case, where we couple FSC solution in
d ¼ 3 dimensions14 to the bath. By this coupling and
allowing the modes to travel freely to the bath, the energy-
momentum tensor in the gravitational region (FSC) is no
more conserved and the graviton can becomes massive,
accordingly there is no puzzle also in our setup. Of course,

checking this guess more accurately needs concrete cal-
culations such as the one for the AdS and we hope to
address it in our future works.
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