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We investigate the bubble nucleation in five-dimensional spacetime catalyzed by quintessence. We
especially focus on the decay of a metastable Minkowski vacuum to an anti–de Sitter vacuum and study
the dynamics of the bubble on which a four-dimensional expanding universe is realized. We also discuss
the trans-Planckian censorship conjecture and impose a constraint on the parameter space of the
catalysis. As an application of this model, we propose an inflation mechanism and an origin of the dark
energy in the context of quintessence in five dimensions.
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I. INTRODUCTION

The structure of vacua in unified theories has attracted
wide attention recently. Especially, after the discovery of the
Higgs particle and precise measurements of top quark mass,
it have been believed that our Universe is metastable even
within the standard model [1]. This possibility was first
pointed out by [2–4]. Related work on this instability of our
Universe has been done from various points of view [5].
In string theories, the vacuum structure becomes more
involved, which is known as the string landscape (see [6]
for example), and has been discussed recently in the context
of swampland conjectures [7]. One of the remarkable
conjectures is the de Sitter conjecture [8], which prohibits
making a four-dimensional de Sitter space by compactifying
the internal space. See [9] for reviews and references therein.
This conjecture is controversial and still under debate.
However, it would be interesting to explore other realizations
of our Universe in string theories in light of the conjectures.
An interesting avenue was opened up by the authors of [10],
in which they realized a four-dimensional universe on a
bubble in five dimensions created by a decay process of a
metastable anti–de Sitter (AdS) vacuum. The radiation and
matter in four dimensions are realized in terms of a black
hole and a string cloud in five dimensions. Naïvely, since
the bubble is the boundary of two AdS spaces, the four-
dimensional gravity can be localized on the bubble in the
same spirit as Randall-Sundrum [11] scenario (see [12,13]

for more recent studies on this issue). The catalytic effects
caused by the string cloud and the black hole in this context
was recently discussed in [14] and showed that the catalysis
provides a kind of the selection rule to the cosmological
constant on the bubble universe. This paper can be regarded
as a continuation of this study, and we try to engineer the
inflation sector and the dark energy in this context.
Catalytic effects in field theories were first pointed out

by [15] and discussed in various contexts such as realistic
model building [16] and decay processes in stringy
theories [17]. Also, this idea has been discussed in the
context of gravitational theories [18] initiated by [19]. In
this paper, we study vacuum decay along the lines of these
papers, especially by using the method developed in [18]
to treat a singular bounce solution. Recently, catalytic
effects in gravitational theories have been discussed in
various contexts [20–25].
In this paper, we introduce quintessence in this scenario

and discuss catalysis induced by it. A discontinuity of
quintessence on the bubble can be interpreted as a four-
dimensional quintessence. One of the remarkable features
of the quintessence is the time dependence of wð4Þ in
the state equation. Even if wð4Þ ≃ −1 at the present age of
the Universe, it could be larger at the early stage. It would
be interesting if quintessence can play a role of catalyst
when the bubble universe is created. Moreover, we will
use the quintessence to engineer the inflation at the early
stage and the dark energy at the late stage of the Universe.
The organization of this paper is as follows: in Sec. II,

we review black hole solutions spherically surrounded by
quintessence in four and five dimensions. Also we briefly
review junction conditions for connecting two solutions
with different parameters. Then, we show how to compute
the bounce action for the decay of metastable vacuum
and discuss a recent development on the bounce action
for a solution with singularities along the lines of [3,18,21].
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In Sec. III, we show catalytic effects induced by quintessence
for the decay process of a metastable Minkowski vacuum to
an AdS vacuum. In Sec. IV, we consider a model including
two types of quintessence. First, we study catalytic effects
induced by the quintessence and show a selection rule of
bubbles in five dimensions. Then, we further impose a
constraint by using the trans-Planckian censorship conjec-
ture [26]. After that, we discuss an application of this model
to a realization of inflation and the dark energy on the bubble
universe. We use the freezing-type quintessence as an
inflaton and thawing-type as the dark energy at the present
age. Section V is devoted to conclusions and summary. In
Appendix A, we quickly review the Coleman–de Luccia
(CDL) bounce action in five dimensions [4,14]. Throughout
this paper, we assume the parameter range −1 ≤ w ≤ 0 for a
quintessential field. However, there is an interesting field for
acceleration of the Universe, namely the phantom field with
w < −1. In the Appendix B, we show the catalytic effect
induced by the phantom field.

II. GENERAL ARGUMENTS

In this paper, we incorporate inflation and the dark
energy with the bubble Universe realized in five dimen-
sions [10]. Toward this goal, we use quintessence as
candidates for inflaton and the dark energy. We treat
spherically symmetric gravitational solutions for quintes-
sence and study junctions of two solutions with different
parameters. Hence, we first review the solutions in four
and five dimensions, then we show basic formulas that
will be used in computing the bounce action in the next
section. To compute the bounce action, by using the
method developed by Coleman [3], we solve the equation
of motion for the bubble, which is the junction surface
separating two regions, in Euclideanized theory and plug
the solution back into the action. We also comment that
the singularity at the origin of the solutions does not
contribute to the bounce action.

A. Gravitational solution for quintessence

Here, we quickly review the solutions for quintessence in
four and five dimensions along the lines of [27,28]. First,
we treat four dimensions. In the standard cosmology,
the state equation relates the pressure p with the energy
density ρ; p ¼ wð4Þρ. To distinguish from five-dimensional
quintessence, we add the subscript. In four dimensions,
the cosmological constant, radiation, and matter correspond
to wð4Þ ¼ −1; 1=3; 0, respectively. We use the terminology
“quintessence” in a broad sense in which all the states
except these three cases are quintessence. Moreover,
quintessence states can be divided into two parts by the
acceleration of the universe. From the Friedmann equation,

ä
a
¼ −

4

3
G4ð1þ 3wð4ÞÞρ ðin four dimensionsÞ; ð2:1Þ

we see that when wð4Þ ≤ −1=3, the Universe is accelerated
by quintessence while wð4Þ > −1=3 corresponds to
deceleration.
Time dependence of wð4Þ varies from model to model

and various kinds of phenomenological models for quintes-
sence has been proposed. See [29] for reviews. Among
them, the freezing and thawing models are suitable for our
purpose. So we discuss them by idealizing the dependence
of wð4Þ as functions shown in Fig. 1 for the sake of
simplicity. In the freezing model, wð4Þ starts around zero.
It gradually gets smaller and eventually reaches −1. In the
thawing model, it starts around −1 and finally becomes
zero. Note that Fig. 1 is just a schematic picture to
demonstrate our assumption, so the numbers in the figure
do not have any sense. Throughout this paper, we simply
assume the scale factor dependence of wð4Þ as in Fig. 1
without specifying explicit models.
Black hole solutions surrounded by quintessence were

shown in [27]

FIG. 1. Schematic picture of w. We assume that w in five dimensions varies as a function of scale factor. In the freezing model, it starts
around 0 and goes to −1, while in the thawing, it starts from −1 and goes to 0. In Secs. III and IV, we discuss the four-dimensional
universe realized on the bubble created in five dimensions. In this case, R̃, which is a normalized scale factor (2.13), corresponds to the
size of the bubble in five dimensions.
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ds2 ¼ −fKðrÞdt2 þ f−1K ðrÞdr2 þ r2dΩ2
2; ð2:2Þ

where dΩ2
2 is the two-dimensional round metric and

fKðrÞ ¼ 1 −
r2g
r2

−
X
n

�
rn
r

�
3wðnÞ

ð4Þþ1

: ð2:3Þ

The label n runs from 1 to the total number of quintessence.
Although the solutions corresponding to the accelerated
universe have both cosmological and event horizons, the
solutions for −1=3 < wð4Þ < 0, there is no cosmological
horizon.
These quintessential solutions were extended to higher

dimensions [28]. Here, let us focus on five dimensions for
our purpose. In this case, the solution is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
3; ð2:4Þ

where dΩ2
3 is the three-dimensional round metric and the

function fðrÞ is

fðrÞ ¼ 1 −
r2BH
r2

−
Λð5Þ

6
r2 −

X
n

qðnÞ

r4w
ðnÞþ2

: ð2:5Þ

Here, we wrote the contribution of the cosmological
constant separately, because we will deal with models
having both cosmological constant and quintessence later.
In five dimensions, the accelerated universe corresponds
to w < −1=2.
In the solutions of (2.2) and (2.4), contributions from black

holes exist. These are important in making spherically
symmetric quintessence in a realistic situation. However,
in the discussions below, we put rBH ¼ 0 for the sake of
simplicity and illustrate the catalytic effect induced by
quintessence. As we will see in Secs. III and IV, inhomoge-
neity of these solutions,which can be seen in the singularity at
the origin, enhances the decay rate of the metastable vacuum.

B. Junction condition and equation of motion
for bubble

In discussing the bubble nucleation, we study a junction
surface of two different spherically symmetric solutions.
Over the surface, there are discontinuities of physical
quantities such as the curvature and the energy-momentum
tensor. The discontinuity of the curvature can be expressed
in terms of the extrinsic curvature Kij as follows: the
Einstein equation on the surface can be reduced to

Kþ
ij − K−

ij ¼ 8πG5

�
Sij −

1

3
γijS

�
; ð2:6Þ

where i, j runs from 1 to the dimension of the bubble. This
is known as Israel’s junction condition [30]. Hereafter, we

write the subscript þð−Þ for quantities outside (inside) the
bubble. For the sake of simplicity, we impose the thin-wall
approximation and use Sij ¼ −σγij. With this notation and
by taking the trace of the extrinsic curvature, the junction
condition becomes

Kþ − K− ¼ 32πG5

3
σ; ð2:7Þ

where we used S ¼ −4σ.
For later convenience, let us modify the expression and

make the condition a bit simpler form. We basically adopt
the same notations used in [21] and define η ¼ σ̄l, σ̄ ¼
4πG5σ=3 and

l2¼ 6

ΔΛð5Þ ; γ¼ 4σ̄l2

1þ4σ̄2l2
; α2¼1þΛð5Þ

− γ2

6
; ð2:8Þ

where ΔΛð5Þ ¼ Λð5Þ
þ − Λð5Þ

− . Two geometries with different
parameters are connected at r ¼ RðλÞ (λ is the proper time
on the bubble), thus the induced metric on the bubble
becomes the Friedmann type form,

ds2 ¼ −dλ2 þ R2ðλÞdΩ2
3: ð2:9Þ

To estimate the decay rate for this bubble nucleation, by
following the Coleman’s method [3], we introduce the
Euclidean time defined by t ¼ −iτ and look for a classical
solution in the Euclideanized theory. By computing the
extrinsic curvature with the notations above, (2.7) can be
written as

1

R
ðfþ _τþ − f− _τ−Þ ¼ −

8πG5

3
σ; ð2:10Þ

where _τ� satisfy the following relations

f� _τ2� þ
_R2

f�
¼ 1: ð2:11Þ

Using these expressions and introducing f̄ ¼ ðfþ þ f−Þ=2
and Δf ¼ fþ − f−, we obtain the equation of motion for
the bubble

_R2 ¼ −σ̄2R2 þ f̄ −
ðΔfÞ2
16σ̄2R2

: ð2:12Þ

For numerical calculations, we define dimensionless
coordinates as in [21],

R̃ ¼ αR
γ
; λ̃ ¼ αλ

γ
; τ̃ ¼ ατ

γ
: ð2:13Þ

It is also convenient to introduce dimensionless param-
eters for quintessence,
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QðwÞ
�ðnÞ ¼

�
α

γ

�
4wþ2

q�ðnÞ; ð2:14Þ

and to express the functions f� in terms of them

f�ðR̃Þ ¼ 1þ
�

γ

l�α

�
2

R̃2 −
X
n

QðwÞ
�ðnÞ

R̃4wðnÞþ2
: ð2:15Þ

Throughout this paper, since we assume vacuum decay
between AdS (or Minkowski) spacetimes in five dimen-
sions, we define the typical length of the spacetimes as

l2� ¼ −
6

Λð5Þ
�

: ð2:16Þ

The equation of motion for the radius of the bubble can be
expressed as

ð _̃RÞ2 ¼ 1 − R̃2 −
X
n

�
Q̄ðnÞ þ

ΔQðnÞ
8η2

�
1

R̃4wðnÞþ2

−
1

16η2

�
lα
γ

�
2
�X

n

ΔQðnÞ
R̃4wðnÞþ3

�
2

; ð2:17Þ

where we introduced

Q̄ðnÞ ¼
QðwÞ

þðnÞ þQðwÞ
−ðnÞ

2
; ΔQðnÞ ¼QðwÞ

þðnÞ−QðwÞ
−ðnÞ: ð2:18Þ

Now, let us discuss the cosmological constant for
the four-dimensional bubble universe. By comparing with
the Friedmann equation, we can read off it from the
second term on the right-hand side of (2.17) in dimen-
sionful coordinates (note that this equation is expressed by
Euclidean time),

α2

γ2
l2 ¼ η2 −

1þ δ2

2ð1 − δ2Þ þ
1

16η2
¼ Λð4Þl2

3
; ð2:19Þ

where we defined δ ¼ l−=lþ. The minus sign in the second
term of (2.19), originating from background of the anti–de
Sitter space, is important. If we assume de Sitter spaces in
five dimensions for both sides of the bubble, then the sign
becomes plus, which make it impossible to take the
cosmological constant to be zero. From Fig. 2, we see
that the cosmological constant on the bubble depends on
the tension η and in a wide range of parameter spaces it is
positive. However, note that, as we will see below, not all
the tension can be realized under the bubble nucleation.
For the fixed value of catalyst, there is the minimum
allowed value of η, below which there is not a bounce
solution for the decay (one can check that by numerical
computations for explicit models). When Λð4Þ < 0, one
can also explicitly check that there is no bounce solution

for Eq. (2.17) in the most of η (there might be a very small
allowed window around the critical value of η). Hence,
the four-dimensional AdS space cannot be created by
this catalysis. So the minimum cosmological constant
obtained by balancing the tension of the bubble and
background AdS radius is Λð4Þ ¼ 0. In this case, the
tension has to satisfy the following relation,

σ̄2cr −
1

2

�
1

l2þ
þ 1

l2−

�
þ 1

16σ̄2cr

�
1

l2þ
−

1

l2−

�
2

¼ 0: ð2:20Þ

We call the bubble satisfying this condition as the critical
bubble and denote its tension σ̄cr. By solving this
equation, we obtain the critical value of the tension as

σ̄cr ¼
1

2

�
1

l−
−

1

lþ

�
; ηcr ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ − l−
lþ þ l−

s
: ð2:21Þ

Adopting the same notation in [10], let us introduce a
parameter ϵ representing deviation from the critical value,

σ̄ ¼ σ̄crð1 − ϵÞ; ð2:22Þ

and approximate the right-hand side of (2.19) a few order
in ϵ

Λð4Þ ≃
6ϵ

lþl−
þ 3ϵ2

�
1

l2−
þ 1

l2þ
þ 1

l−lþ

�
: ð2:23Þ

Interestingly, by taking lþ → ∞ (Minkowski limit), the
leading order of the cosmological constant becomes zero.
Hence, to make fine-tuning a bit mild, we assume a
metastable Minkowski vacuum for the original geometry
and study its decay process to AdS vacuum. It is worthy
noting that if we naïvely take Minkowski vacua for both
sides of the bubble, which corresponds to l� → ∞, the

FIG. 2. The cosmological constant on the bubble as a function
of the tension η. The blue and red curves correspond to δ ¼
0 and 6=10.
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parameters become α ¼ 1 and γ ¼ σ̄, thus the cosmologi-
cal constant given by the scale of the tension is
Λð4Þ ¼ 3σ̄2. In this case,G4 and Λð4Þ are roughly expressed
by the same scale, namely the Planck scale, which cannot
be acceptable in phenomenological point of view. In this
scene, we assume AdS (or Minkowski for outside) space-
times for both sides and study bubbles with tension near
the critical value. Also, to make the four-dimensional
Newton constant finite, we define G4 ¼ G5=l.
The quintessence in five dimensions can be interpreted

as the one in four dimensions on the bubble. For example, a
contribution to the Friedmann equation can be given by
1=R̃4wþ4 in five-dimensional terminology. This should
correspond to 1=R̃3wð4Þþ3 in four dimensions. Thus, we get

wð4Þ ⇔
1

3
ð4wþ 1Þ: ð2:24Þ

We find that quintessence parameter w in five dimensions
corresponds to the states on the bubble as follows1:

w¼
8<
:
−1 cosmological constant

−1
4

matter ðonthebubbleÞ
0 radiation

: ð2:25Þ

In this ways, parameter range −1 ≤ w ≤ 0 covers all the
states in four dimensions. Thus, below we consider only
this parameter range for w in five dimensions.2

C. Calculation of the bounce action

In this subsection, we quickly review how to compute the
bounce action. Recently, Gregory, Moss and Withers showed
how to treat singularities on bounce solutions [18]. Here, we
outline the formulas without showing the details. To extract
the contributions from the singularities, let us decompose the
spacetime into two parts. Suppose that there are several
singularities on the solution labeled by i. We denote the
neighborhood of the singularities B ¼ P

i Bi and whole
spacetime M. Subtracting the singular parts, we obtain
M − B. In the same way, the action can be decomposed
into two parts, I ¼ IM−B þ IB. Let us consider the first
contribution

IM−B ¼ −
1

16πG5

Z
M−B

R −
Z
M−B

Lm þ 1

8πG5

Z
∂ðM−BÞ

K:

ð2:26Þ
This can be further divided into three parts, namely the
contributions from in and outside of the bubble (we denote
W) and bubble itself,

IM−B ¼ I− þ Iþ þ IW : ð2:27Þ

The action on the wall can be given by

IW ¼ −
Z
W
Lm ¼

Z
W
σ: ð2:28Þ

Also, the curvature tensor of five dimensions can be
decomposed in terms of the four dimensional curvature as
follows:

R¼ð5ÞR−K2þK2
ij−2∇iðui∇jujÞþ2∇jðui∇iujÞ; ð2:29Þ

where uj is the derivative of coordinates with respect to the
proper time on the bubble. By exploiting these expressions,
the action can be written as

I� ¼ −
1

8πG5

Z
W
K� þ 1

8πG5

Z
W
n�jui∇iuj; ð2:30Þ

where nμ is the normal vector perpendicular to the bubble
and satisfies the condition, 1 ¼ gμνnμnν. Hence, the action
(2.26) can be expressed as

IM−B¼
Z
W
σ−

4

3

Z
W
σ−

1

16πG5

Z
W
ðf0þ _τþ−f0− _τ−Þ; ð2:31Þ

¼ −
1

3

Z
W
σ −

1

16πG5

Z
W
ðf0þ _τþ − f0− _τ−Þ: ð2:32Þ

Next, we show contributions to the bounce action from the
singularities on the solution. According to [18,21], these are
given by the entropy of the horizons. (See, for example,
appendix of [25].)

IB ¼ −
1

16πG5

Z
B
R −

Z
B
Lm þ 1

8πG5

Z
∂B

K; ð2:33Þ

¼ −
1

4G5

X
i

Ai: ð2:34Þ

The bounce action B for the decay process is given by
subtraction of the action I0 for the original configuration,

B ¼ IB − I0: ð2:35Þ

Finally, let us comment on a contribution to the bounce
action from the singularity at the origin of the quintes-
sence solution. For the solution with −1=2 < w ≤ 0 and
rBH ¼ 0, there is an event horizon surrounding the origin,
which allows us to consider only the outside region of it
to calculate the bounce action. However, when we study
the solution with −1 < w ≤ −1=2 and rBH ¼ 0, there is a

1In four dimensions, wð4Þ ¼ −1; 0; 1=3 corresponds to the
cosmological constant, matter, and radiation, respectively.

2In Appendix B, we discuss a phantom field with w < −1,
which is not excluded from observations and study its catalytic
effect.

CATALYTIC CREATION OF A BUBBLE UNIVERSE INDUCED … PHYS. REV. D 104, 126015 (2021)

126015-5



naked singularity that can contribute to the bounce action.
However, by using the method shown in [18], one can
show that this singularity does not contribute. To show
that, let us turn on rBH and introduce a small black hole
horizon, which can be regarded as a regulator for the
calculation. In this case, by the method in [18], we find
that its contribution is proportional to the area of the
horizon. In the limit rBH → 0, this vanishes. Therefore,
we do not have to take into account the singularity at the
origin.

III. CATALYSIS INDUCED BY QUINTESSENCE

In this section, we illustrate catalytic effects by discussing
the freezing and thawing models separately. We investigate
behavior of the bounce action as a functions of tension and
quantities of the catalysts. We will find that in both cases,
the bounce actions becomes smaller compared to that of
Coleman–de Luccia, hence the lifetime of a metastable state
is much shorter. We will see that there is a tendency that the
catalytic effect becomes more important when w approaches
to −1=2.

A. Catalysis in the freezing model

As the first example of the catalysis, let us consider the
freezing model: in the early stage of the Universe, w is close
to zero and gradually shifts to a smaller value (see Fig. 1).
Thus, we consider catalysis induced by quintessence with

w ∼ 0. We assume the decay of metastable Minkowski
vacuum to AdS one. So, f� in this case are given by

fþ ¼ 1−
QðwÞ

þ
r̃4wþ2

; f− ¼ 1−
QðwÞ

−

r̃4wþ2
þ
�

γ

l−α

�
2

r̃2: ð3:1Þ

As mentioned in general arguments, the equation of motion
for the bubble radius R̃ (in Euclidean time) is given by

ð _̃RÞ2 ¼ 1 − R̃2 −
�
Q̄þ ΔQ

8η2

�
1

R̃4wþ2

−
�ð1þ 4η2ÞαΔQ

16η2

�
2 1

R̃8wþ6
: ð3:2Þ

As an illustration, we show the bounce action for the cases,
w ¼ 0, −1=100, −1=10, and −3=10 in Fig. 3. Remarkably,
the catalytic effect is enhanced for small value of w.
Therefore, in an explicit freezing model, the catalysis
becomes more important as the time goes by. From the
figure, we find that, for small value of Qþ, the bounce
action is monotonically decreasing function and eventually
reaches the minimum. We call the bubble at this point the
saturated bubble. Above this minimum, the property of the
bubble is changed and, in fact, there exists a remnant inside
the bubble.

FIG. 3. The bounce actions for the quintessence with w ¼ 0, −1=100, −1=10, and −3=10. The green, blue, and orange curves

correspond to η ¼ 0.15, 0.2, and 0.25. Beyond the minimum values of QðwÞ
þ for each curve, there is a remnant in the bubble. We refer to

this bubble as the saturated bubble.
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What happen if we take a smaller value of w? The
catalytic effect can become strong, however the inner
horizon approaches to the size of the bubble since it is

given by r̃ ¼ Q1=ð4wþ2Þ
þ . Clearly at w ¼ −1=2, it diverges,

which means that the horizon goes to infinity. This should
be regard as a cosmological horizon. So with w < −1=2,
the model is similar to the thawing type; we will discuss it
in the next subsection.

B. Catalysis in the thawing model

As the second example of the catalysis caused by
quintessence, let us study the thawing type behavior of
w. In this model, at the early stage of the Universe w is
relatively close to −1. In this subsection, we naïvely
assume −1 < w < −1=2. When w ≃ −1, the geometry
becomes similar to the de Sitter spacetime because fþ
behaves like

fþ ¼ 1 −QþR̃a; a ≃ 2: ð3:3Þ

Again, we assume the metastable Minkowski vacuum,

namely Λð5Þ
þ is zero, as an initial state. Since this Qþ plays

a similar role to the cosmological constant of the de Sitter
space, we find that smaller values of Qþ are energetically
favorable. Thus, we expect that catalytic effect works in this
model as well. Similarly, the geometry inside the bubble
can be given by

f− ¼ 1 −Q−R̃a þ
�

γ

l−α

�
2

R̃2: ð3:4Þ

As mentioned above, smallerQ− is energetically favorable.
The equation of motion for the bubble is given by (3.2). As
an illustration, we show the bounce action for the model
with w ¼ −6=10, ¼ −7=10, ¼ −8=10, and ¼ −9=10 in
Fig. 4. Again, one finds that the bounce action becomes
smaller as the parameter w approaches to −1=2.

IV. REALIZATION OF INFLATION AND DARK
ENERGY ON THE BUBBLE

In the previous section, we studied the catalysis induced
by quintessence. Both freezing and thawing models had an
enhanced decay rate of metastable vacuum and quintes-
sence played a role of catalyst. In this section, exploiting
this understanding, we propose a model realizing inflation
and the dark energy on the expanding bubble universe. On
this bubble four-dimensional gravity is localized [10] due
to AdS spaces inside and outside of the bubble. The
cosmological constant for the four-dimensional theory
can be determined by the tension of the bubble and vacuum
energies of AdS spaces. Since the tension of bubble is fixed
by the dynamics of the decay process, we can find most
probable cosmological constant realized on this decay
process. We will search in a wide range of parameter
spaces of the theory. Then, we impose the trans-Planckian
censorship conjecture (TCC) [26] and discuss the allowed
cosmological constant, which gives us a constraint for the

FIG. 4. The bounce actions for the thawing model with w ¼ −6=10, ¼ −7=10, ¼ −8=10, and ¼ −9=10. The green, blue, and orange
curves correspond to η ¼ 0.15, η ¼ 0.2, and η ¼ 0.25.
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allowed parameter spaces. Since the created bubble itself is
stable, as long as the lower energy vacuum is the absolute
minimum, all the bubble with positive cosmological con-
stant cannot satisfy TCC. This constraint gives us a
remarkable scenario for realizing four-dimensional theory
in string theories.

A. Catalytic selection of bubble universe

Let us include freezing and thawing types of quintes-
sence simultaneously which eventually play roles of the
dark energy and inflaton. Then, we assume that they have
w1 ≃ −1 and w2 ≃ 0 when a bubble is created. Note that the
most economical earlier example is the one discussed in
[31,32] where the single scale field plays not only the
inflaton for the primordial inflation but also the quintes-
sential dark energy in the late stage. However, this model
cannot satisfy the conditions coming from the distance
conjecture [7] and the trans-Planckian censorship conjec-
ture [26], so we introduce two kinds of quintessence fields
and consider a model circumventing the swampland con-
jectures. In the same way as the previous section, we study
the decay of Minkowski vacuum to the AdS vacuum for the
sake of simplicity. The inside and outside geometries that
we will study are as follows:

fþ ¼ 1 −
Qðw1Þ

þð1Þ
r̃4w1þ2

−
Qðw2Þ

þð2Þ
r̃4w2þ2

;

f− ¼ 1 −
Qðw1Þ

−ð1Þ
r̃4w1þ2

−
Qðw2Þ

−ð2Þ
r̃4w2þ2

þ
�

γ

l−α

�
2

r̃2: ð4:1Þ

The equation of motion for the bubble connecting two
geometries at r̃ ¼ R̃ is given by

ð _̃RÞ2 ¼ 1 − R̃2 −
�
Q̄ð1Þ þ

ΔQð1Þ
8η2

�
1

R̃4w1þ2

−
�
Q̄ð2Þ þ

ΔQð2Þ
8η2

�
1

R̃4w2þ2

−
1

16η2

�
lα
γ

�
2
�ΔQð1Þ
R̃4w1þ3

þ ΔQð2Þ
R̃4w2þ3

�
2

: ð4:2Þ

The original geometry before bubble nucleation has two
horizons. In Fig. 5, we show an example of inner and
outer horizons for the parameter choice, w1 ¼ −1=10,
w2 ¼ −7=10, and Qð−0.1Þ

þð1Þ ¼ 3=100. For fixed Qðw1Þ
þð1Þ and

w1;2, there is the maximum value of Qðw2Þ
þ2 where two

horizons coincide. In the figure, it exists around

Qð−0.7Þ
þ2 ∼ 2.2.
Now, we are ready to calculate the bounce action for

the decay of the Minkowski vacuum to the AdS vacuum
catalyzed by two quintessence fields. Especially, we
focus on the following parameter choice, η ¼ 0.2,

Qð−0.1Þ
þð1Þ ¼ 3=100, w1 ¼ −1=10, and w2 ¼ −7=10. We

show the ratio of the bounce action to that of CDL for

various choices of remnants Qðw1;2Þ
−ð1;2Þ in Fig. 6. For a small

value of Qð−0.7Þ
þð2Þ , the dominant decay process is given by

Qð−0.1Þ
−ð1Þ ¼ 3=100 and Qð−0.7Þ

−ð2Þ ¼ 0 (the purple curve), which

means that the bubble with the remnant of quintessence of
w1 is the most probable possibility. On the other hand,

when Qð−0.7Þ
þð2Þ is larger than about 0.04, the bubble without

remnants, namely Qð−0.1Þ
−ð1Þ ¼ 0 and Qð−0.7Þ

−ð2Þ ¼ 0, dominate

0.7

FIG. 5. Outer (the upper curve) and inner (the lower curve)
horizons of the geometry before the transition. We choose

w1 ¼ −1=10, w2 ¼ −7=10, and Qð−0.1Þ
þð1Þ ¼ 3=100. Around

Qð−0.7Þ
þ2 ∼ 2.2 they coincide with each other.

FIG. 6. The numerical calculation of the bounce action for
the parameter choice η ¼ 0.2, Qð−0.1Þ

þð1Þ ¼ 3=100, w1 ¼
−1=10, and w2 ¼ −7=10. The blue curve corresponds to

the bubble without remnant, namely Qð−0.1Þ
−ð1Þ ¼ 0 and

Qð−0.7Þ
−ð2Þ ¼ 0. The orange and green curves have two types

remnants, Qð−0.1Þ
−ð1Þ ¼ 1=100, Qð−0.7Þ

−ð2Þ ¼ 1=100, Qð−0.1Þ
−ð1Þ ¼ 3=100;

Qð−0.7Þ
−ð2Þ ¼ 1=100, respectively. The purple curve includes only

one remnant Qð−0.1Þ
−ð1Þ ¼ 3=100; Qð−0.7Þ

−ð2Þ ¼ 0.
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the process (the blue curve). The former region, the
catalytic effect induced by quintessence of w2, is domi-
nant while the latter is that of w1. Since w2 is smaller than
−1=2, it behaves like positive cosmological constant
which clearly enhances the decay rate of the vacuum in

any region. On the other hand, as forQðw1Þ
þð1Þ, the behavior is

slightly different. Turning on Qð−0.1Þ
þð1Þ makes the event

horizon in the geometry, which creates a singularity of the
bounce solution. This enlarges the bounce action and
forbids the decay of w1 quintessence. However, by taking
a large Qþð2Þ, the catalytic effect overcomes that and
allows us to decay the quintessence in the region of a large
value of Qþð2Þ.
Beyond Qð−0.7Þ

þð2Þ ∼ 0.12, the dominant contribution is
given by the saturated bubble discussed in the previous
section. In other words, the remnant has to be required to
satisfy the equation of motion. The remnant should be
Qw1

−ð1Þ or Q−ð2Þ. To see which remnant yields the dominant

contribution, in the Fig. 7, we show two bounce actions
corresponding to two choices of remnants for the parameter
choice, η ¼ 2=10, w1 ¼ −1=10, w2 ¼ −7=10, and

Qð−0.1Þ
þð1Þ ¼ 3=100. For the gray curve, we assumedQð−0.1Þ

−ð1Þ ¼
0 and nonzero Qð−0.7Þ

−ð2Þ . The nonzero value is determined by

solving conditions for the saturated bubble. On the other

hand, the blue curve is the opposite choice withQð−0.7Þ
−ð2Þ ¼ 0

and nonzero Qð−0.1Þ
−ð1Þ . Clearly, the bounce action for the blue

curve is smaller than the other.
Let us comment on the behavior of the blue curve around

Qð−0.7Þ
þð2Þ ∼ 0.3. This drastic change of the behavior can be

understood from the contribution of the inner horizon after
the transition. As one can see in the right panel of Fig. 7,

around Qð−0.7Þ
þð2Þ ∼ 0.3, the inner horizon after the transition

approaches to the size of the horizon before the transition.
Thus, the contributions from the singular part of the bounce
solution before and after the transition becomes almost the
same, which reduces the bounce action.
As we have shown in Figs. 6 and 7, the bounce actions

become smaller as the parameter QðwÞ
þð2Þ increases, which

naïvely suggests to us that the most probable bubble
corresponds to that of the smaller action because the decay
rate is proportional to the action Γ ∼ e−B. However when B
is very small, the prefactor coming from one-loop con-
tribution around the bounce solution can have a large
contribution. By taking into account them, the lifetime of
the vacuum is given by

τ ≃
�
2π

B

�1
2

RBeB; ð4:3Þ

where RB is the size of the bubble. For numerical
simulation it is useful to define dimensionless lifetime as
τ̃ ¼ ατ=γ. In Figs. 8 and 9 we show the bounce action and

the lifetime of metastable vacuum as functions of QðwÞ
�ð2Þ for

the parameter choice, Qð−0.1Þ
þð1Þ ¼ 3=100, w1 ¼ −1=10,

w2 ¼ −7=10, l3=G5 ¼ 50 and 1=100. From the figures,
we see that the lifetime of the vacuum is much shorter than
that of the Coleman–de Luccia one in five dimensions,

τ̃CDL ≃
�

2π

BCDL

�
5=2

R̃BeBCDL : ð4:4Þ

The numerical estimations of the lifetime of CDL solution
are shown in Fig. 10. The most probable universe can

depend basically on two parameters, l3=G5 and QðwÞ
þð2Þ. In

general, when l3=G5 is small, there is a tendency that the
higher tension bubble is selected by the catalysis. By taking

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

0.12

0.7

FIG. 7. Left panel: the bounce actions for the saturated bubble in which there is a remnant. We took η ¼ 2=10, Qð−0.1Þ
þð1Þ ¼ 3=100,

w1 ¼ −1=10, and w2 ¼ −7=10. The gray curve corresponds to the bubble with Qð−0.1Þ
−ð1Þ ¼ 0 and nonzero Qð−0.7Þ

−ð2Þ while the brown curve

corresponds to that withQð−0.7Þ
−ð2Þ ¼ 0 and nonzeroQð−0.1Þ

−ð1Þ . The blue curve are connected to the end point of the one in Fig. 6. Right panel:

purple curve is the position of the inner horizon inside the bubble. The doted blue line is that of original geometry before the transition.
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l3=G5 to be very small, the tension of the most probable
universe approaches to the critical tension (2.21). In this
sense, for the critical bubble to have the largest probability
by catalysis, we have to fine-tune the parameter l3=G5,
which is the price we have to pay to get a very small
cosmological constant on the four-dimensional bubble
universe in light of the catalytic selection.

B. Trans-Planckian censorship conjecture and catalytic
creation of bubble

In the previous subsection, we studied a selection of
the bubble in terms of the catalysis and find that the
cosmological constant on the bubble is determined by
parameter choice of two vacua and G5. Here, we discuss
the selection from a slightly different viewpoint. In [26],

FIG. 8. We choose the parameters Qð−0.1Þ
þð1Þ ¼ 3=100, w1 ¼ −1=10, w2 ¼ −7=10, and the green, blue, purple, light-blue, and black

curves correspond to η ¼ 0.18, 0.2, 0.22, 0.24, and 0.26. In the upper two panels, we set l3=G5 ¼ 50. In this case, the prefactor
significantly contribute and bubbles with larger B become the most probable decay. On the other hand, in the lower two panels, we set
l3=G5 ¼ 1=100. In this case, the values of the bounce action become larger compared to the previous case, the dominant contribution is
given by the bubble with smaller bounce action.

FIG. 9. The bounce actions for larger values of tension. The green, blue, purple, light-blue, and black curves correspond to η ¼ 0.39,

041, 0.43, 0.45, and 0.47. We took l3=G5 ¼ 1=100, Qð−0.1Þ
þð1Þ ¼ 3=100, w1 ¼ −1=10, and w2 ¼ −7=10.
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the trans-Planckian censorship conjecture was proposed in
the context of the swampland conjectures. Since we are
interested in finding a scenario satisfying all conditions
coming from a quantum theory of gravity, we would like
to impose this condition to the bubble selection. TCC
condition is given by

Rf

Ri
<

Mpl

Hf
; ð4:5Þ

where R is the scale factor of the four dimensions and
subscripts i and f indicate the initial and final states. This
condition yields a strong constraint for the lifetime of the
de Sitter vacuum; thus, in our model, this should be
imposed on the four-dimensional universe on the bubble.
To avoid the trans-Planckian problem, the time period of
the inflation, T, has to satisfy the following condition

T < H−1 log

�
Mpl

H

�
; ð4:6Þ

where H is the Hubble parameter during the inflation. In
our setup, the created bubble exists eternally, as long as
the lower energy vacuum is absolutely stable, it eventually
violates the TCC condition. This is remarkable: although
two vacua (in and outside) in the five dimensions are AdS
spaces and satisfy all swampland conjectures including
TCC, some of the created bubbles having the positive
cosmological constant can violate the TCC condition. We
interpret this fact as follows: since we naïvely assume that
the tension of the bubble σ̄ is a free parameter in the thin-
wall approximation that comes from the shape of the
potential. However, in the low energy theory arising from
a consistent theory of gravity, the allowed value of σ̄ is
limited, which indicates a constraint for the potential
shape in AdS space. Hence, the bubble with a positive
cosmological constant cannot be created under the decay
process. Moreover, as mentioned in the previous sections,
four-dimensional AdS space on the bubble also cannot be
created by the decay process of metastable vacuum.

Namely, the bounce solution does not exist for this decay.
Therefore, combining these two facts, we remarkably
conclude that the created bubbles necessarily have van-
ishing cosmological constant.3

To see the most probable universe under this assumption,
let us consider the equation of motion for the bubble

ð _̃R0Þ2 ¼ 1 −
�
Q̄0

ð1Þ þ
ΔQ0

ð1Þ
8η2

�
1

R̃04w1þ2

−
�
Q̄0

ð2Þ þ
ΔQ0

ð2Þ
8η2

�
1

R̃04w2þ2

−
1

16η2

�
l
γ

�
2
� ΔQ0

ð1Þ
R̃04w1þ3

þ
ΔQ0

ð2Þ
R̃04w2þ3

�
2

: ð4:7Þ

Note that the R̃2 term does not exist in this case. Since we
treat α ¼ 0, it is convenient to redefine dimensionless
parameters as follows:

R̃0 ¼ R
γ
; λ̃0 ¼ λ

γ
;

τ̃0 ¼ τ

γ
; Q0ðwÞ

�ðnÞ ¼
�
1

γ

�
4wþ2

q�ðnÞ: ð4:8Þ

As in the previous subsection, we can calculate the bounce
action and the lifetime of the metastable vacuum. Numerical
estimations are shown in Fig. 11. Again, the lifetime is much
shorter than that of CDL shown in (4.4).

C. Application to cosmology

Here, we will discuss expansion of the bubble after the
nucleation by the catalysis. We use the Minkowski times
and consider the evolution of the radius R. We focus on
the critical bubble on which the cosmological constant is
vanishing. As mentioned, the normalization of (2.13) is not
appropriate since α ¼ 0 and η ¼ 1=2, so we write the
equation of motion in terms of dimensionful parameters

_R2

R2
¼ −

1

R2
þ qþð1Þ
R4w1þ4

þ qþð2Þ
R4w2þ4

þ l2

4

� Δqð1Þ
R4w1þ4

þ Δqð2Þ
R4w2þ4

�
2

;

ðfor critical bubbleÞ: ð4:9Þ

We use one of the quintessence fields in our model as an
inflaton, namely the one corresponding to w1. Right after
the nucleation, it is still w1 ≃ −1 since the transition time is
quite a short period. As long as w1 is very close to −1 the
inflation occurs and the radius of the bubble grows
exponentially,

FIG. 10. Numerical estimation of lifetime for the CDL solution.
Blue, red, and green curves correspond to l3=G5 ¼ 1=100, 1=10,
and 50.

3Here, we assume that the lower energy vacuum with Λð5Þ
− is

absolute minimum. If it is metastable, then there is a chance to
circumvent TCC condition by decaying into a lower energy
vacuum.
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R ∝ exp½λ ffiffiffiffiffiffiffiffiffiffi
qþð1Þ

p �: ð4:10Þ

For getting enough e-folding, e.g., N e ∼ 60, we require an
inflaton period λinf

λinf ¼ N e
1ffiffiffiffiffiffiffiffiffiffiqþð1Þ

p : ð4:11Þ

After this period, we assume that w1 drastically varies its
value and the relevant term in (4.9) becomes subdominant.
When the term becomes comparable to other terms, the
inflation stops.
After the inflation R is exponentially large, thus most of

the terms in (4.9) become irrelevant. This is nothing but the
washout by inflation. However, since we assume the
thawing type behavior for the second quintessence, w2

eventually approaches to −1. In this case, the following
terms get back to relevant

_R2

R2
¼ qþð2Þ

R4w2þ4
þ l2

4

� Δqð2Þ
R4w2þ4

�
2

þ � � � : ð4:12Þ

As one can see in Fig. 12, a tiny value of function for
general choice of w2 is drastically enlarged as w2

approaches to −1. For example, the very small number
e−70 becomes large enough by their small powers,
½e−70� 110 ≃ 9.1 × 10−4, ½e−70� 1

100 ≃ 0.49. This fact can be used
to explain the smallness of the dark energy.
Finally, let us determine the quantity of the thawing

quintessence in terms of data of present age as a boundary
condition. We refer to the scale factor and w2 at the present
age as R0 and w0. For the quintessence to explain the small
present dark energy, qþð2Þ should be

Λð4Þ
0

3
≃

qþð2Þ
R4w0þ4
0

: ð4:13Þ

D. Toward a realistic model in five dimensions

In our argument as far, we naively assumed the
existence of two types of quintessential fields in five
dimensions and discussed consequences of varying w in
time. It would be intriguing to explore a possibility of
realization of our idea in an explicit model. One of the
recent successful models for the quintessential inflation
was studied in [33]. In the paper, the authors discussed an
exponential type potential and studied the inflation at the
early stage as well as the late-time dark energy in a single
package. One of the interesting features of the paper is
the scaling behavior of the inflaton field in the radiation
dominated era. At the beginning of the era, the energy
density of the inflaton becomes much smaller than that of
the radiation. However, by the scaling behavior, which is
peculiar property of the model, it gradually increases and
approaches to the energy density of the radiation. This
behavior is quite reminiscent to that of our model shown

30

300

20

25

FIG. 11. Left panel: we choose l3=G5 ¼ 1=10, w1 ¼ −1=10, and w2 ¼ −7=10. The blue and green curves correspond to Q0ð−0.1Þ
þð1Þ ¼

3=100 and 1=10. Right panel: the red and black curves correspond to Q0ð−0.1Þ
þð1Þ ¼ 3=100 and 1=10. We took l3=G5 ¼ 1=100,

w1 ¼ −1=10, and w2 ¼ −7=10.

FIG. 12. The blue and orange lines correspond to R ¼ e100 and
e60. Near the region where w2 is very close to zero, the functions
1=R4w2þ4 become drastically large.
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above (for example see Fig. 12).4 Therefore, it can be
possible to realize an explicit model of our idea by slightly
modifying it and using its scaling behavior. To do that, we
first have to extend the model to five dimensions with a
negative cosmological constant. Also, to make a meta-
stable state, we have to assume the existence of a small dip
at the origin of the inflaton field, for example. These
modifications allow us to create the bubble discussed in
this section. It would be interesting to explore this model
further and study how these changes affect the scenario
discussed in [33]. However, it is clearly beyond the scope
of our paper, so we would like to revisit this issue in a
separate publication.
This scaling behavior is also interesting because the

energy density of the inflaton at the late stage does not
depend on the initial value significantly. This idea also
holds for our model shown in this section. The final values
of cosmological constant in (4.13) does not highly depend
on qð2Þþ as long as it is nonzero. Dynamics of the late state
that govern the behavior of w2 is very important. In this
sense, we can use the scaling mechanism to avoid the initial
condition problem of the field corresponding to w2.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we studied catalytic effects induced by
quintessence in five dimensions. We computed the decay
rate of a metastable vacuum by using Coleman’s method
and the technique to treat a singular bounce solution
developed by [18]. We found that the decay rate is highly
enhanced by the catalysis and the lifetime becomes much
shorter. Since the lifetime varies from bubble to bubble, this
can be seen as a dynamical selection of four-dimensional
expanding universe. As in [10], we consider the critical
bubble where the cosmological constant on the bubble is
vanishing by tuning the parameters in five dimensions. This
fine-tuning is a price we have to pay to get small dark
energy. We also imposed the trans-Planckian censorship
conjecture [26] on the decay process. The created bubble
expands eternally, it eventually violates the condition, even
if the cosmological constant is small. This contradicts with
quantum gravity theory and can never occur in a consistent
low energy theories. Moreover, since there is no solution
corresponding to four-dimensional AdS spacetimes, we
conclude that the only allowed bubble in a consistent theory
of gravity has to have the vanishing cosmological constant.
In light of this understanding, we studied an application

of this model to incorporate the inflation mechanism and
the dark energy to the four-dimensional bubble universe.
We introduced two types of quintessence fields, one is the
thawing type that played a role of inflaton and the other is
the freezing type that was used to explain the dark energy at

the present age. Initial inflation driven by the thawing-type
field washes out the Universe; however, we claimed that the
freezing type of quintessence can contribute at the late stage
of the Universe since it can become w2 ≃ −1 and the very
small number gets back to a large quantity. This idea may
give us one of the possibility to explain the smallness of the
dark energy.
In our setup, there is no contribution of matter and

radiation at the late stage. To engineer them, we have to
incorporate the reheating process in this scenario. It would
be interesting to study the gravitational reheating process in
the present quintessential inflation [31,34] and produce
matter and radiation in this context, and study observational
consequences along the lines of [32]. Since we naïvely
assumed the time dependence ofw1;2 as shown in Fig. 1. The
next step we should do is engineer an explicit model of
quintessence in five dimensions and reproduce w1;2 depend-
encies. Clearly, this is beyond the scope of our paper: we
would like to revisit this issue in separate publication.
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APPENDIX A: COLEMAN–DE LUCCIA BOUNCE
ACTION IN FIVE DIMENSIONS

In this appendix, we will review the CDL bounce action
[4,14] by focusing on the five dimensions. The final
expression will be used in the main text. We will adopt
the same notations as the main text (2.13) and describe the
position of the CDL bubble as r̃ ¼ R̃ðλ̃Þ. λ̃ is the proper
time on the bubble. For the tunneling between two vacua
without quintessence, the equation of motion for the bubble
reduces to

�
dR̃

dλ̃

�
2

¼ 1 − R̃2: ðA1Þ

The equation can be easily solved and the solution is given
by R̃ ¼ cos λ̃. The parameter range of the proper time is
−π=2 ≤ λ̃ ≤ π=2. By plugging back into the Euclidean
action, we obtain the Coleman–de Luccia action

4We would like to thank the referee for showing us this model
and suggesting the possibility of avoiding the initial condition
problem by using this mechanism.
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BCDL ¼ π

2G5

�
γ

α

�
3
Z

0

−π
2

dλ̃R̃2ð_̃τþ − _̃τ−Þ; ðA2Þ

where relations between the proper time and times of inside
and outside geometries are described by

_̃τ� ¼ 1

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� −

�
dR̃

dλ̃

�
2

s
¼ 1

f�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f� − ð1 − R̃2Þ

q
: ðA3Þ

In this case, f� is simply represented as

f�ðRÞ ¼ 1 − κ�R̃2; ðA4Þ

where κ�, which is a negative value for an AdS spacetime,
is defined by

κþ ¼
�
γ

lα

�
2

þ ðα2 − 1Þ
α2

; κ− ¼ α2 − 1

α2
: ðA5Þ

Substituting this into (A3), we obtain

_̃τ� ¼ R̃

1 − κ�R̃2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ�

p
: ðA6Þ

Solving this equation, we find the relation between time in
AdS and the proper time on the bubble. The result is

t� ¼ 1ffiffiffiffiffiffiffijκ�
p j tan

−1
� ffiffiffiffiffiffiffiffijκ�j

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jκ�j

p sinh λ

�
; ðA7Þ

where we used the Minkowski time. As one can see from
Fig. 13, even in the short period of the AdS spacetime, it
corresponds to a long enough time on the bubble. Therefore,
when we apply the trans-Planckian censorship conjecture
[26] to the four-dimensional universe on the bubble, we have
to use this proper time.

Finally, we show the bounce action for the five dimen-
sions in terms of an analytic function. We assume the decay
of AdS (or Minkowski) to AdS vacua, namely, κ� ≤ 0. In
this case, the bounce action can be described in a relatively
simple form:

BCDL ¼ πγ3

2G5α
3
½ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − κþ
p

HðκþÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ−

p
Hðκ−Þ�; ðA8Þ

where we defined

HðκÞ≡
Z

1

0

dx
x3

ð1 − κx2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

¼ 1

jκj −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jκj3ð1þ jκjÞ
p sinh−1

ffiffiffiffiffi
jκj

p
:

APPENDIX B: CATALYSIS BY PHANTOM
FIELDS

In the main text, we studied the catalysis induced by
quintessential fields with −1 < w < 0. There is another
interesting field, which is not excluded by observations,
so-called the phantom fields with w < −1. This field plays
an important role at the late stage of the Universe (see [35]
for a review article and references therein). In this
appendix, we investigate how the phantom field affects
the catalysis at the early stage. To do that, we include a
term in (2.5) corresponding to w < −1 and consider the
junction condition for combining two different geom-
etries. Doing in the same way as we did in Sec. III, we can
calculate the bounce action for the catalysis. In Fig. 14, we
show numerical estimations of the action with various
choices of parameters, w ¼ −1, −1.1, and −1.2 for the
case η ¼ 2=10. As QðwÞ for the phantom field increases,

FIG. 13. The relation between the time t̃þ in AdS spacetime and
the proper time λ̃ on the bubble. The blue and orange curves
correspond to parameters κþ ¼ −2 and κþ ¼ −1=2, respectively.

FIG. 14. The bounce action for the catalytic decays normalized
by BCDL as a function of QðwÞ

þ . We took η ¼ 2=10, and the blue,
green, and red curves correspond to w ¼ −1, −1.1, and −1.2
respectively.
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the value of the action decreases, which indicates
enhancement of the decay rate of the metastable vacuum.
However, as one can see from the numerical value of the
vertical axis, the catalytic effect is mild compared with
the case for −1 < w < 0. The reason for that can be seen
in the form of fðRÞ; the contribution from the phantom
field goes like f ¼ 1 −QðwÞRa where a is greater than 2.
Hence, in the region of small R, the second term in f
becomes very small. Typically, the size of the created
bubble is small, since it is a quantum effect, so the

catalytic effect induced by the phantom field can be
negligible compared to that of other fields. Although its
effect is subdominant, the phantom field can play an
important role at the late stage of the Universe such as the
big rip. In this way, without disturbing the catalytic
creation of the bubble universe at the early stage, we
can include the phantom field and change the late time
scenario drastically, which is an interesting possibility to
explore further. Since this is beyond the scope of this
paper, we would like to leave it for future work.
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