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In this paper, we bring together two topics in the holographic correspondence—quantum chaos and
quark-gluon plasma (QGP). We establish that the first relativistic correction to drag force experienced by a
charge carrier moving through a thermal medium (for example, a quark in QGP) at a constant velocity is
fixed by the butterfly velocity. Moreover, we show that this result is robust against stringy corrections and
anisotropy. For the jet quenching parameter, we find that it is related to the butterfly velocity along the
momentum broadening direction and temperature. This opens a way to the reconstruction of butterfly
velocity of quark-gluon plasma and other strongly coupled systems experimentally from rather simple
observables.

DOI: 10.1103/PhysRevD.104.126013

I. INTRODUCTION

Many properties of strongly interacting quantum systems
are known to carry large imprint of universality. To explain
this universality is a challenging and intriguing problem. A
possible way to address it that has successfully been
adopted in the past is to search for universal relations
between seemingly different and unrelated physical quan-
tities. Holographic correspondence is a versatile and power-
ful tool to reveal these relations. The broad range of the
holography applications varies from the studies of the
heavy-ions collisions and thermal QCD [1–3] to condensed
matter theory [4,5] and quantum information realm [6]. The
discussion about the relation between the AdS=CFT
correspondence and real physical systems largely started
from papers [7,8] establishing the universal result concern-
ing the viscosity to entropy ratio η=s in holographic
quantum systems

KPSS viscosity relation∶
η

s
∼

1

4π

ℏ
kB

: ð1Þ

where “KPSS” stands for Kovtun-Son-Starinets-Policatro.
After the experiments at RHIC (for references and review
see [1]), many probes amenable to the holographic descrip-
tion have been introduced and studied in the theory of

strongly interacting systems and QGP in particular.
In this work, we focus mainly on the drag force [9,10]
and jet quenching parameter [11]. Both are related to the
energy and momentum loss for projectiles moving in a
strongly interacting quantum system (quark-gluon plasma).
However, their origin and properties are slightly different,
and we would like to stress the following points

(i) Drag force is associated with the momentum loss of
a single quark (charge carrier) moving in the
strongly interacting medium.

(ii) The jet quenching coefficient q̂ plays the role of the
collective transport coefficient (sometimes q̂ is
called a jet transport coefficient) describing the mo-
mentum broadening in a thermal medium.1 This
coefficient is essential for the description of a
radiative parton energy loss. It is important to notice
that the jet quenching probes very different scales of
medium simultaneously [12].

(iii) Drag force also can be related to the transport
coefficient, namely conductivity (see [13]) for the
small charge carriers.

Recently, the transport properties of quantum systems
have been related to quantum chaos [14,15]. The motiva-
tion for this takes its roots in [16], where it was suggested
that some velocity v could determine the diffusion
constant.

Hartnoll bound∶ D ∼
ℏv2

kBT
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1The momentum broadening is defined as the probability of
momentum increase by the hard parton after propagating through
a medium.
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In [14], this statement has been clarified for holographic
theories with particle-hole symmetry and transformed into
the relation between charge diffusion,2 butterfly velocity vB
[17], and the temperature

Blake relation∶; Dc ¼ C ·
v2B
2πT

; ð3Þ

where the constant C depends only on the details of the
infrared theory, namely C ¼ dθ=Δχ. Here dθ is the effective
spatial dimensionality of the fixed point and Δχ is the
scaling dimension of the susceptibility. In the paper [15]
Blake, Davison and Sachdev (BDS) extended this relation
to a more general class of theories and thermal diffusion
constant DT

BDS relation∶ DT ∼ v2BτL; ð4Þ

where τL ¼ ð2πTÞ−1 is the Lyapunov time.
Taking these relations as a prototypical example, we aim

to establish a connection between drag force, jet quenching,
and butterfly velocity.
In this paper we argue that the drag force and jet

quenching parameter also has the imprint of universality
analogous to (1)–(3). We show how they are related to the
butterfly velocity and temperature. First of all, we obtain
that in the holographic systems for small velocities v of
charge carrier (quark), the properly normalized momentum
loss dpσ=dt is fixed by the butterfly velocity up to a first
“relativistic,” i.e., v3 term

dpσ=dt ¼ −v − B · v3 þ � � � ; B ¼ 1

ðd − 1Þv2B
; ð5Þ

where we denote the normalization factor by σ. One may
consider this identity as the microscopic manifestation of
the relations between diffusion and butterfly velocity. It is
worth noticing that, in principle, this relation allows to
measure butterfly velocity in a straightforward manner in
experimental setups with charge carriers. The precision
experiments in terms of this proposal is under question,
however, at least it could me used to obtain the order of
magnitude for vB. Moreover, we provide evidence that this
result is robust against higher-derivative corrections on the
gravity side and anisotropy.
To reveal a similar universal relation for q̂ one should

remember that it is (especially sensitive) to anisotropy—we
always have to specify two directions (direction of momen-
tum broadening and direction where parton moves). Taking
this into account, the relation similar to (2) and (3) can also
be written down. We argue that the jet quenching can be
expressed as

q̂y ¼ A
�
vðxÞb

vðyÞb

�2

Tσx ð6Þ

where vðxÞB and vðyÞB are the butterfly velocities along the
directions x and y, T is the temperature and σx is the
coefficient defining the leading order drag force coefficient
acting on the projectiles along direction x (5). Another
interpretation of σ is the “string tension” calculated from
the asymptotic of spatial Wilson loops [18].
The organization of this paper is as follows. First,

we obtain (5) and discuss it, then turn to the jet quench-
ing parameter and derive relation (6). In the Supplemental
Material [19] we provide all necessary details of
calculations.

II. THE CHAOTIC ORIGIN OF THE
DRAG FORCE

Our main focus is on the dþ 1-dimensional metrics of
the form

ds2¼−gttdt2þguudu2þgiidxidxi; i¼1;…;d−1; ð7Þ

where we assume gij to be diagonal, and the horizon
located at u ¼ uh fixes the temperature and entropy density
in dual theory

s ¼
ffiffiffiffiffiffiffiffiffi
det g

p
4GN

����
u¼uh

; T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðgttÞ0ðguuÞ0

p
4π

����
u¼uh

; ð8Þ

where GN is a gravitational constant.
Consider a heavy particle (quark or charge carrier)

moving in the strongly interacting thermal medium with
the temperature T at constant velocity v. According to
holographic duality, the bulk description of this particle is
given by a classical string hanging from the asymptotic
AdS boundary. The particle worldline x ¼ v · t fixes the
boundary condition for this string, and this leads us to the
string ansatz for the world sheet xðt; uÞ of the form

xðt; uÞ ¼ vtþ ξðuÞ: ð9Þ

As the particle moves through the medium, it experiences
momentum loss dp=dt due to the drag force F ¼ dp=dt.
The calculation of this drag force is well known [9,10] and
the derivation details can be found in the Supplemental
Material [19]. As a result, one can get that the string
dynamic depends on the special bulk point uc fixed by the
condition

ðgtt − gxxv2Þju¼uc ¼ 0: ð10Þ

The momentum loss is defined by uc as
2A similar relation takes place for shear viscosity and

diffusion.
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dpx

dt
¼ −

v
2πα0

gxxju¼uc ; ð11Þ

where α0 is the inverse string tension T−1
f ¼ 2πα0. The

solution of Eq. (10) can be found as a series

uc ¼ uh −
gxxðuhÞ
g0ttðuhÞ

v2 þ � � � ; ð12Þ

leading to the expression for the drag force

F ¼ −
v

2πα0
gxxðuhÞ −

v3

2πα0

�
g0xx
g0tt

· gxx

�����
u¼uh

þ � � � ð13Þ

Now turn to the chaotic properties of the holographic dual
described by (7). There are different characteristics of
quantum system relevant to quantum chaos recently pro-
posed to be calculated [17,20–22] from the exponential
growth of Hermitian operators commutators

h½OxðtwÞ;Oyð0Þ�2iβ ∼ eλLðtw−τ�−jx−yj=vBÞ: ð14Þ

Here scrambling time τ� is the time of the chaos onset,
butterfly velocity vB defines the effective light cone
constraining the spatial chaos spreading and Lyapunov
exponent λL is related to the chaotic features of time
evolution. In holographic correspondence one can calcu-
late3 τ�, λL and vB for the quantum system dual to (7) in
terms of metric components values at the horizon uh

λL ¼ 2πT; v2B ¼ g0ttðuhÞ
g0xxðuhÞðd − 1Þ : ð15Þ

Combining (8), (15), (13) and expanding for small v we
obtain, that momentum loss dp=dt normalized by the
leading order coefficient σ depends only on the butterfly
velocity at the first subleading order in v

dpσ

dt
¼ 1

σ

dp
dt

¼ −v − v3 ·
1

ðd − 1Þv2B
þ � � � ; : ð16Þ

where

σ ¼ ð2πα0Þ−1gxxðuhÞ; ð17Þ

and pσ ¼ p=σ is the normalized momentum. A few com-
ments are in order now

(i) We propose that using this formula, one can deter-
mine the butterfly velocity of the strongly interacting
quantum system in the quite general experimental
setup and for a wide range of quantum systems
where the measurement of momentum loss is

possible. Following [14,15] we assume that the
systems where (16) take place are holographic
theories, which we usually are understood as the
strong coupling systems with a large number of
freedom degrees. Also, the system is supposed to be
thermal and with well-defined butterfly velocity
where (15) makes sense. The presence of heavy
(quasi)particles seems a natural requirement as well.
One should take care when considering possible
experiments with the hypothetical direct drag force
measurement. The exact description of the exper-
imental setup with such measurements is out of the
scope of our paper. Also, it is worth noticing that for
example in holographic phenomenological QGP
studies the drag force is estimated indirectly through
the nuclear modification factor RAA [23]. In general,
it is not clear how accurately we can estimate the
butterfly velocity using (16). The discussion here
and formula (16) seems to be not enough for general
real-world applications and we leave necessary
absent details for a future research. It would be
interesting to understand our proposal beyond ther-
mality, where the butterfly velocity is not so well
defined. Typical setup without exponential growth
of OTOC and the canonical notion of butterfly
velocity corresponds to the extremal black holes
(see [24] as example). The experimental setups and
protocols allowing the measurement of butterfly
velocity have been widely discussed previously
for example in [25–28]. These protocols are quite
exotic for general systems and in general OTOC
measurement may require, for example, the inver-
sion of time evolution. The drag force is relatively
simple observable and it would be interesting to
understand whether it could be applied for direct
butterfly velocity measurements. If so, our proposal
could be applied to a quite broad range of quantum
systems (at least those with the massive charge
carriers or (quasi)particles).

(ii) In the particular case of QGP the coefficient σ can be
interpreted as a so-called “spatial string tension”
defined from rectangular spatial Wilson loop asymp-
totic responsible for chromomagnetic fluctuations
(see [18] and [29–31] for detailed discussion). Also
σ can be related to spatial Ds and momentum diffu-
sion Dp of heavy quarks as T ¼ Dsσ, Dp ¼ Tσ.
However, we would like to stress that one can avoid
this interpretation and consider σ as just the leading
order drag force coefficient.4

(iii) An important issue in the identities like (1) or (4) is
the robustness of such results against stringy corre-
ctions and anisotropy. It is known that KPSS

3See Supplemental Material [19] for derivation of the butterfly
velocity and references.

4These Ds and Dp are different from the charge and energy
diffusion described in Blake and BDS relations.
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bound (1) is violated by stringy corrections and
anisotropy while BDS identity is robust. In the
Supplemental Material [19] we provide evidence
that our proposal is robust against stringy correc-
tions. It is also robust against the inclusion of
anisotropy with a very mild modification. Namely,
we derive that the butterfly velocity vðiÞB along the
spatial direction i depends on the first and second
drag force coefficients along different direction Fi ¼
−σiv − Biv3 as

vðiÞB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ−1iP
d−1
i¼1 Biσ

−2
i

s
: ð18Þ

(iv) While the simple and robust form of expressions (16)
and (18) is quite unusual, in general, the existence of
such relation between drag force and butterfly
velocity is expected from the following kinetic
theory and perturbative quantum field theory argu-
ment. The drag force can be evaluated and essentially
depends on the matrix elements describing 2-2
scattering from the projectile M (the example for
hot QGP and QED see [32–34]). On the other hand,
as was shown in [35] some OTOC reformulations
also lead to the connection with kinetic equations
allowing us to express the Lyapunov exponent as the
function of M. At the moment a similar result for
the butterfly velocity vB is unknown. However, the
Bethe-Salpether equations describing it could be cast
in the kineticlike form indicating a similar relation as
for the Lyapunov exponent. It would be interesting to
get the precise form of such relation and a derivation
of (16) on the QFT side.

III. JET QUENCHING AND
BUTTERFLY VELOCITY

Another interesting quantity called a jet quenching
parameter q̂ also characterizes the energy and momentum
loss of projectiles in a strongly interacting medium. In the
studies of heavy-ions collisions and thermal QCD, the jet-
quenching phenomena are called the disappearance or
suppression of the bunch of hadrons resulting from the
fragmentation of a parton after strong interaction leading to
momentum loss in the dense medium (quark-gluon
plasma). In general, the details of the mechanism of a
jet energy loss depend on the medium properties. The jet
quenching parameter can be defined in the perturbative
framework and considered as a kind of transport coeffi-
cient. Also, it allows a nonperturbative definition in terms
of adjoint lightlike Wilson loop [11] useful in the gauge/
gravity duality

hWAðCÞi ≈ exp

�
−

1

4
ffiffiffi
2

p q̂L−L2

�
: ð19Þ

Here L− corresponds to the distance between the lightlike
parts of the contour C and L between the transversal one
with L− ≫ L. From the holographic viewpoint, this Wilson
loop can be calculated by the string hanging from the
lightlike contour on the boundary, and we leave all details
of calculations in the Supplemental Material [19].
In general, we have in mind a dual metric of the form (7)

and in particular, the geometries similar to the background
with hyperscaling violation to make parallels with [14].
However, there are some possible subtleties related to the
divergences stemming from UV structure of this kind of
theory. It is worth stressing that while the stringy jet-
quenching calculation is typically considered for a five-
dimensional gravitational background, we assume an
arbitrary space-time dimension. Also, we do not discuss
the gravitational action that gives our metric as a solution
and just takes quite a general form of ansatz because the jet-
quenching formula depends only on metric details. Of
course, one could meet some restrictions on the metric
coefficients like in the hyperscaling violating theories.
We restrict our attention to d-dimensional metric (20) of

the form

ds2¼−
fðzÞ
z2ν

dt2þ dz2

z2νzfðzÞþ
dx2

z2ν
þdy2

z2νy
þ
X
α

dx2α
z2να

; ð20Þ

and assume that the parton is moving along direction x
while the momentum broadening occurs along y. We refer
the reader to the Supplemental Material [19] for the
computational details and derivation of the formula for
jet quenching parameter [36]5 which has the form

q̂y ¼
ffiffiffi
2

p

πα0

�Z
uh

0

1

gyy

ffiffiffiffiffiffiffiffi
guu
g−−

r
du

�
−1
; g−− ¼

gxx−gtt
2

; ð21Þ

for a general class of anisotropic metrics (7). The jet
quenching parameter temperature dependence correspond-
ing to the isotropic background with ν ¼ νt ¼ νz ¼ νy ¼
να ¼ 1 derived first in [11] has the form

q ¼ B0 · T3; ð22Þ

where B0 is some constant. The butterfly velocity for this
choice of parameters is temperature-independent. Thus it is
not clear whether the jet quenching is related to it. One
should notice that from the very beginning, jet quenching is
intrinsically sensitive to anisotropy (see [36–40] for holo-
graphic studies of jet quenching parameter in the presence
of anisotropy). We have to specify two directions for jet
quenching in contrast to the drag force and conductivity. To
reveal some nontrivial relation between q̂ and chaotic
characteristics, we focus on the jet quenching for some

5Notice the sign in the definition of gtt component.
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particular but still quite general anisotropic metric with
νt ¼ νx ¼ ν. We consider two different butterfly velocities

vðxÞB and vðyÞB associated with spatial directions x and y
respectively.6 For metric (20) they have the form

vðxÞB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
2ðPiνiÞ

r
; vðyÞB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

2ðPiνiÞ
r

z
νy−ν
h ; ð23Þ

where
P

i is the summation over all spatial νi. For our
choice of anisotropic exponents the jet quenching para-
meter depends on zh as

q ¼ 1

2πα0
B · z

−2νyþνz−ν−1
h ; ð24Þ

where B depends only on exponents νx, ν, νz and spacetime
dimension a (see the Supplemental Material [19] for the
explicit form of B). We are looking for the relation between
the jet quenching parameter and butterfly velocity supple-
mented with the additional characteristic depending on the
inverse string tension. Equation (24) is combined with the
temperature of the metric (20)

T ¼ azνz−ν−1h

4π
; ð25Þ

and butterfly velocity vðxÞB and vðyÞB defined by (23) results in
the relation

q̂y ¼ A
�
vðxÞb

vðyÞb

�2

Tσx; ð26Þ

between the jet quenching parameter, the butterfly veloc-

ities vðxÞB , vðyÞB , and the leading order drag force coefficient
(17). The constant A depends only on the dimension a and
the infrared exponents ν as it should be. For the isotropic

case, i.e., for vðxÞb ¼ vðxÞb this formula implies that q̂y does
not depend on the butterfly velocity. Notice, however,
that anisotropy is important in the context of QGP,
especially at early stages of its formation. The parameter
σx can be interpreted as the string tension calculated from
the asymptotic behavior of the spatial Wilson loop.
Nevertheless it seems more natural here to consider σx
in terms of the leading order drag force acting on the
projectiles.
As we mentioned before, the jet quenching probes very

different scales of the system: an initial fragmentation of
parton which is weakly coupled and late-time interaction of
jets with a thermal medium which needs nonperturbative
description [12]. The relation (26) involves the thermody-
namics (temperature T) and late time drag force coefficient

σ, which defines the dynamics of slowly moving projectile.
As we have shown before on the intermediate nonpertur-
bative scales, the drag force acting on the projectile is
described by the butterfly velocity which is also present
in (26).

IV. RELATION BETWEEN BUTTERFLY
VELOCITY AND JET QUENCHING

VIA DRAG FORCE

As we already mentioned the jet quenching parameter is
the multiscale probe, intrinsically sensitive to the physical
setup under investigation. When we introduce q̂ in terms of
lightlike Wilson loop we also suggest (as was stressed in
[11]) that it could be considered as the fundamental
definition inherent to the nonperturbative regime of
strongly coupled theory. However, before the introduction
of such a quite universal definition especially well designed
for AdS=CFT correspondence many efforts have been
made to estimate q̂ from various natural viewpoints. The
approach especially interesting to us is based on the
estimates of the relation between drag force and q̂ in
different regimes. A brief review can be found in [41] as
well as an alternative holographic calculation of q̂ in terms
of dragged string fluctuations. As a summary of different
approaches and setups, one can state the dependence

−
dp
dt

∼ϒ · λq̂ ð27Þ

where ϒ is the constant which rely on the derivation
method, assuming that parton travels through medium of
thickness λ. For example, based on the uncertainty principle
in [42] the inequality

−
dp
dt

<
1

2
q̂λ ð28Þ

has been proposed. Also, in [41] it was argued that this
inequality tends to saturation for holographic theories and
large enough v. This lead us to a rough estimate

Gubser=uncertainty based estimate∶ ϒ ¼ 1=2: ð29Þ

From the analysis of radiative energy by Baier, Dokshitzer,
Mueller and Schiff (BDMPS) in [43] the alternative value
of ϒ is

BDMPS∶ ϒ ¼ αsNc

8
; ð30Þ

where Nc is the number of colors and αs is ’t Hooft
coupling. While it should be perceived with the natural
amount of caution we are left with the expression

6A brief review concerning the derivation of the anisotropic
butterfly velocities can be found in the SupplementalMaterial [19].
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q
σ
≈ v

1þ Bv2

λϒ
; B ¼ 1

ðd − 1Þv2B
; ð31Þ

obtained by combination of (27) with (16). The parameter
ϒ is setup-dependent and we provided two different
versions of it above. To summarize this section let us
stress a few moments

(i) Serving as complementary consideration to the
Wilson loop-based derivation outlined in the pre-
vious section, formulas (31) have a restricted range
of applicability (defined by the method of derivation
ofϒ). We would like to stress, that the jet quenching
parameter from the previous section and the ones
considered in this section are different. The jet
quenching parameter in the previous section is
defined in terms of lightlike Wilson loop nonper-
turbatively and in a model-independent manner (as it
was stressed in [11]). In [41] the jet quenching is
related to the two-point function of force fluctua-
tions acting on heavy quarks. In general, the
calculations in [11] are related with the light quarks,
while trailing string fluctuation calculations in [41]
are associated with the heavy quarks.

(ii) We listed at least three setups where this relation fits
quite well: the BDMPS approach, dragging string
derivation by Gubser, and the quantum uncertainty
approach.

V. DISCUSSION

In summary, we have obtained two relations between
probes in strongly coupled quantum theory and butterfly
velocity vB. Both results are obtained in the framework of
holographic correspondence. First, we have shown that the
subleading (i.e., first “relativistic”) coefficient in the drag
force is fixed by butterfly velocity vB. This leads us to the
possibility of measuring butterfly velocity by experimental
study of the velocity dependence for momentum loss of
charge carriers in strongly coupled theories. Second,
analogous to the charge diffusion constant [14], the jet
quenching coefficient is defined by anisotropic butterfly
velocity, temperature, and leading order drag force

coefficient up to some constant. The jet quenching results
are obtained for quite general theory dual to a metric similar
to anisotropic hyperscaling geometry. The presented results
indicate that these quantities in strongly coupled theories
and, particularly, quark-gluon plasma are governed by
butterfly velocity and thermodynamic quantities.
Let us briefly discuss possible future extensions of

this work
(i) It would be interesting to extend the understanding

of the relation between drag force and butterfly
velocity in different directions, such as the correc-
tions caused by quark mass or other drag force
proposals [23] (for review of quark dynamic holo-
graphic description see [44]). Also, it is interesting
to consider the anisotropic background where par-
ticle moves in an arbitrary direction and study a
similar relation for the butterfly velocity and Wilson
loops [30,31,45].

(ii) Another prospective question is to consider the
phenomenological implications of our identities
using the known backgrounds reproducing experi-
mental results concerning drag force and jet quench-
ing (see for example [23,46]).

(iii) Finally, the intriguing direction to study is the
relation of chaos to other probes of QGP, including
hot wind [47], glueball spectrum [48] or particles
production multiplicity [49,50]. An interesting pro-
posal revealing some relation between Lyapunov
exponent and QCD recently appeared [51–54], and
it would be very interesting to find the connection
between our proposal and described in these papers.
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