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AdS from CFT for scalar QED
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We construct an explicit bulk dual in anti—de Sitter space, with couplings of order 1/N, for the SU(N)-
singlet sector of QED in d space-time dimensions (2 < d < 4) coupled to N scalar fields. We begin from
the bulk dual for the theory of N complex free scalar fields that we constructed in our previous work, and
couple this to U(1) gauge fields living on the boundary in order to get the bulk dual of scalar QED (in
which the U(1) gauge fields become the boundary value of the bulk vector fields). As in our previous work,
the bulk dual is nonlocal but we can write down an explicit action for it. We focus on the CFTs arising at
low energies (or, equivalently, when the U(1) gauge coupling goes to infinity). For d = 3 we discuss also
the addition of a Chern-Simons term for U(1), modifying the boundary conditions for the bulk gauge field.
We also discuss the generalization to QCD, with U(N,.) gauge fields coupled to N scalar fields in the
fundamental representation (in the large N limit with fixed N,).

DOI: 10.1103/PhysRevD.104.126011

I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1-3] is an equivalence
between theories of quantum gravity on asymptotically
anti-de Sitter (AdS) space in d+ 1 dimensions, and
conformal quantum field theories (CFTs) in d dimensions.
Since for d >2 we do not have any nonperturbative
definition of these quantum gravity theories, the corre-
spondence should be viewed as providing a nonperturba-
tive definition for these theories in terms of the
corresponding quantum field theories, whenever those
are known and well understood. In many cases of the
correspondence the gravitational theories have a classical
limit, in which the ratio of the Planck scale to the radius of
anti—de Sitter space goes to infinity, and which corre-
sponds to a large N limit of some sort in the CFT side. In
those cases one can test the correspondence by checking
that the semiclassical expansion on the gravity side
agrees with the large N limit of the corresponding field
theories.

A derivation of the AdS/CFT correspondence requires
showing that the CFT can be rewritten as a quantum gravity
theory, in the sense that its 1/N expansion reproduces
the corresponding perturbative expansion around some
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gravitational solution in AdS space. While one can often
test this for specific observables, providing such a deriva-
tion for the full theory is challenging (see [4—7] for some
recent progress in relating free d = 2 symmetric orbifold
CFTs to string theory on AdS3). In our recent paper [8] we
provided such a derivation for the simplest case of the
AdS/CFT correspondence—the duality [9] between the
U(N)-singlet sector of N free complex scalar fields in d
dimensions, and a theory of higher-spin gravity on AdS,, ;.
Our derivation in [8] followed the methods of bi-local
holography [10-15], in its Lorentz-invariant version.
We first changed variables in the CFT from the N

free scalar fields ¢;(x) (I =1,...,N) to their bi-local
combinations
1 N
G(x1, %) =— Zéb x1)r(x2), (1.1)
N

which capture all the information about U(N)-invariant
observables in the theory (at least in flat space). In the large
N expansion one can write down an action for G(x, x,)
that reproduces the correlators of the original theory, to all
orders in 1/N (as discussed in [8], the mapping to the
bilocal variables makes sense also for finite N but it is more
subtle then, and in this paper we only discuss the theory in
the 1/N expansion). In order to map this to a theory in AdS
space, we first expanded the bi-local field G(x;, x,) in a
basis of eigenstates of the Euclidean conformal group
SO(d+ 1,1). We then showed that the same eigenstates
appear in the expansion of transverse traceless fields
®,(x,z) of spin J (J=0,1,2,...) living on a fixed
AdS,.; space, enabling a one-to-one mapping between
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these fields and the bi-local (1.1). Using this mapping we
rewrote the action of the original theory as an action (with
coupling 1/N) for fields in AdS space. This action is
explicitly known but is nonlocal. For a specific choice of
the undetermined coefficients appearing in the mapping,
the quadratic term in the bulk can be chosen to be local.
Since the U(N)-singlet sector of N free scalars is con-
jectured [9] to be dual to Vasiliev’s high-spin gravity theory
[16-18], we believe that our action is equivalent to a gauge-
fixed version of this theory, in which its fields live on a
fixed AdS space-time (as in [19]); the spectrum of physical
fields is consistent with this, but the equivalence has not yet
been shown.

In this paper, we generalize this construction to the
SU(N)-singlet sector of scalar QED—the theory of a U(1)
gauge field minimally coupled to N charged scalar fields,
for 2 < d < 4. In principle this generalization is straight-
forward, since on the field theory side it just involves
introducing a dynamical U(1) gauge field and coupling it to
SU(N)-singlet combinations of the scalar fields, and we
can in principle do this also on the gravity side. On-shell,
local SU(N)-invariant operators (such as the ones appear-
ing in the coupling to the gauge field) map to the boundary
values of the bulk fields on AdS space; however, the
construction above requires the oft-shell mapping of the
local CFT operators to the bulk, and at first sight this seems
to be more complicated. In [8] we showed that for J =0
and d < 4 the naive on-shell mapping works also off-shell,
and we used it there to derive the dual to the critical U(N)
(or O(N)) vector model, by coupling a singlet o(x) to the
spin J = 0 operator ¢;(x)¢;(x). In this paper we show that
the same is true also for / =0 and d > 4, and also for
higher values of J. This allows us to write down a simple
action for the d-dimensional U(1) gauge field coupled to
the bulk fields; in fact, as may have been expected [20-24],
the U(1) gauge field becomes simply the boundary value of
the (d + 1)-dimensional vector field @ (x, z). Thus, com-
pared to the original theory of N free scalars, the descrip-
tion of QED just involves changing the boundary condition
for the bulk vector field ®;, and perhaps adding some
boundary terms for it. The boundary terms are required if
one wants to describe QED at finite coupling, but they
disappear in the low-energy limit, where QED (for
2 <d < 4) flows to a conformal field theory (at least at
large N and to all orders in 1/N [25], and perhaps also for
all finite values of N [26,27]).1 In the special case of d = 3
one can also add a Chern-Simons coupling at level k; when
k/N is kept fixed in the large N limit, this coupling is
translated into a modified boundary condition for the bulk
vector field.

"For d = 4 — ¢ dimensions with small ¢ and any value of N,
this fixed point is weakly coupled, but this does not play a role in
our construction.

One application of our bulk formalism for QED would
be to find classical solutions in the bulk describing
monopole operators, and perhaps to use them to compute
their correlation functions. As we discuss below, our
formalism only includes monopole operators if there is
no Chern-Simons coupling for the U(1), and it may be
interesting to look for ways to get around this problem so
that monopoles in Chern-Simons-matter theories may also
be incorporated.

We also generalize our construction to the SU(N)
singlet sector of N scalar fields in the fundamental
representation of a U(N,) gauge field (“scalar QCD”
[28]), when N, is kept fixed in the large N limit, and for
d =3 we can again include a Chern-Simons level k. The
bulk dual is very similar to the N, = 1 QED case, except
the bulk fields now transform in the adjoint representation
of U(N,.). Note that this limit is different from the large
N, k and fixed A = N./k limit considered in [29], which
is believed to also be dual to a parity breaking higher
spin bulk theory. It would be interesting to see if
the generalization of our construction to this limit just
involves changing boundary conditions, or explicitly
changes the bulk interaction terms as a function of A
(see discussions in [23,30]). Such a generalization, as
well as the inclusion of fermions, would allow us to
similarly construct the bulk dual of ABJ theory [31] in its
higher spin limit, which could ultimately lead to a
connection to string theory and M-theory via the ABJ
triality [23,32].

Finally, our off-shell mapping allows us to construct the
bulk dual for the critical U(N) or O(N) vector model for
4 <d <6, as discussed in [33,34]. This CFT is not
unitarity at finite N due to complex large N instantons
[35], but is unitary in the 1/N expansion. It would be
interesting to study the classical solutions corresponding to
these instantons from the bulk perspective using our
construction.

We begin in Sec. II by describing the SU(N)-singlet
sector of scalar QED in bi-local variables, and translating
its action to these variables. In Sec. III we review the
mapping found in [8] between the free scalar theory and the
bulk, and extend it to an off-shell mapping for local
operators in the CFT. In Sec. IV we then use this mapping
to construct the bulk dual for the SU(N)-singlet sector of
scalar QED, and show that it reproduces the 1/N expansion
of this theory. Finally, in Sec. V we discuss the generali-
zation to scalar QCD.

II. SCALAR QUED IN THE BILOCAL FORMALISM

We begin in this section by discussing QED with N
charged scalars in the bilocal formalism. First we will
discuss scalar QED in the usual local formalism in a general
dimension 2 < d < 4, as well as in d = 3 where we can
add a U(1) Chern-Simons term with level k. We will then
review how in d = 3 one can realize the restriction to
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SU(N)-singlet fields in a local fashion, by coupling to a
non-Abelian U(N) Chern-Simons theory at level k' and
taking k" — oo, before coupling to the U(1) gauge field
of QED. Finally, we will write the path integral for
the SU(N)-singlet sector of scalar QED in the bilocal
language, following the discussion of free scalars in
[10,36], and perform a saddle point expansion at large
N. In the 3d case we fix k = k/N to be finite in the large
N limit.

A. The local formalism

We begin by discussing the conventional local formalism
for QED with N complex scalars ¢/ on Euclidean R for
2 < d < 4, following [37-40]. The actions for this theory
can be assembled by starting with the (Euclidean) free
theory action

Srecld] = / dOG RN D). (21)

where all repeated indices are summed, including the
upper/lower I =1,...,N indices for the fundamental/
antifundamental of the U(N) global symmetry, and the
i=1,...,d index for the SO(d) Euclidean rotations. We
can then gauge the U(1) subgroup by adding a Maxwell
term with scalar couplings:

A
\/’— ¢1¢1

S.lp. Al :/ddx|:%FijFij+Ji[¢]

Til#) = i($70:4" = ¢'0i7). (2.2)
where A; is a U(1) gauge field with field strength F;;, the
U(1) current is J;, the seagull term is required by gauge-
invariance, and we rescaled e — ¢%/N and A; — A;/\V/N
for later convenience in the large N limit. This action
retains the SU(N) subgroup of the original U(N) global
symmetry, and also has a new (d — 3)-form U(1); global
symmetry generated by the Hodge dual field strength xF
[41,42]. The ¢! are uncharged under U(1);, but we can
couple it to codimension-3 operators, which in d =3
become local operators called monopole operators [43].
Finally, we should add a quartic coupling ﬁ(gﬁ}‘qﬁ’ )%,
which can be equivalently written by using a Hubbard-
Stratonovich field o as

S;[¢. o] :/dd [—iau— ohid'|,  (2.3)

75

where integrating out ¢ recovers the 75 (¢;¢")? term. The
most general UV action fora U(1) gauge theory coupled to
N complex scalars with relevant couplings in 2 < d < 4 is
then given by Sg.. + S, + S, as well as amass term (which
we will always fine-tune to have vanishing mass at low

energies). This theory is believed to flow in the IR to an
interacting CFT called the CPV~! or Abelian Higgs model®:

SC[F"N" [¢’A’ G] = Sfree [¢] + Se—»oo[qﬁ’A] + 8,1_,00[¢, G}’

(2.4)

where ¢, 4 — oo since the Maxwell term is irrelevant while
(¢i¢p")? is relevant (near the free UV fixed point).” Ind = 3,
we can generalize this CFT by adding a level k Chern-
Simons term

S04 = (2.5)

ik
—/d3 4’Ne,,,AaA,,

where k € Z (recall that we rescaled the gauge field by a
factor of v/N). Note that this term is marginal in 3d, unlike
the Maxwell term which dropped out for ¢ — 0.

In general the fixed point written above is strongly
coupled, but it becomes weakly coupled at large N, and it
can be studied perturbatively in a 1 /N expansion. We begin
by writing down the Feynman rules for this expansion. The
propagator for ¢ is

I'd/2-1) 1
47dl?

Go(x1,x,) = (2.6)

Xy — x| 72

For o, we have the momentum space o propagator and the
one-loop correction from the ¢> bubble diagram

3-d
21 2d ¢

I'(4sin(%)’

Bys(p) = —|p|o-* (2.7)

where the former comes from the trivial quadratic term 62,

. l I .
while the latter comes from the maqﬁ’;qﬁ vertex and is

simply Gy(x,0)?/4 in momentum space. Since both are
O(NY), atleading orderin 1/N we need to resum an infinite
geometrical series of bubble diagrams to obtain the
effective o propagator (see Fig. 1)

*This expectation is supported by lattice data for d = 3 and all
values of N [26,27], and by analytic results in the large N limit for
all values of d [25]. We will take (2.4) to be a formal definition of
the IR CFT, which should be valid for all values of d and N for
which this CFT exists.

SAt large N one can also tune 4 = 0 to get a different IR CFT
called the tricritical QED theory, but for d = 3 it is not clear if the
fixed point exists at finite N.
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FIG. 1.
contractions, and dashed lines to the scalars ¢);.

d
(0()a(0); = [ 5E3e™ D)+ Dp)B ()
X D,(p) +...] + O(N7)
_ [ dp 2)e'Px .
/ (2ﬂ)d 1 -2 |pld—421-245 + O(N )
I(4Gh) sin(%! )
(2.8)

In the IR CFT at 4 — o0, this becomes the propagator of a
dimension two operator:

243 sin(ZHr(4=1) 1
JTEF(E—Z) |X|

(6(x)0(0))e = (2.9)

For the gauge field A;, we must fix a gauge in order to
write down its propagator. It is convenient to choose a
gauge such that the IR limit e — oo can be taken immedi-
ately. As discussed in [37] for the similar fermionic QED;

|

< (5-—%)441—4“)

L L (g5, —PPi) _ kg P — )Mo _PiP;
e [62 (5’/ Ipz) 2,[8111172]-1-(1 Dadin IR

DY™(p) =

to

4 4n2

2d—2ﬂzi/zr(d) pipj
re-9rg? [pl

Bubble diagrams contributing to the effective ¢ propagator (¢(x)c(0)), at leading O(N°) order. Thick lines correspond to ¢

case, a simple family of gauges that has this property
involves an average over different gauge-fixings, which is
implemented by adding to the action the nonlocal gauge-
fixing term

g f Ay ) g3

1-{ 87 (d—

(24 3. 3, QA (A (Y) 5
175( 642 > [ &xdy Pe—y[? d=3,

SA]=

(2.10)

where k = k/N, and we chose a different coefficient for d =
3 for later convenience. This arises by averaging over
different 0;A’(x) = w(x) gauges with a nonlocal weight
proportional to (1—¢)7! [dxd?yw(x)w(y)/|x — y*4=4,
where { € R; the limit { — 1 recovers the usual Landau
gauge 9;A" = 0. Using this gauge-fixing term, along with
the Maxwell termin (2.2), and for d = 3 the CS termin (2.5),
we can find the momentum-space gauge field propagator

d+3
(2.11)

162> PiDj

d=3.

The coupling J;A; and the contact term A?¢? in (2.2) both contribute to the momentum space photon self-energy at one-

loop order

dlk [ 26
03(r) = [ G|~ e

LRLICEL IR I e
K-+ pPIK

(2.12)

_ Pin)
pl?)’

2972721 (d)

where we see that the only role of the A?¢? term is to cancel a divergence in the contribution of the J;A; term. As with o, at
leading order in 1/N we need to resum an infinite geometric series of bubble diagrams to find the effective photon

propagator (see Fig. 2)

i~ = i A R

+ 1~

FIG. 2. Bubble diagrams contributing to the effective photon propagator (A;(x)A;(0)) ., at leading O(N?) order. Squiggly lines
correspond to photon contractions DM, and dashed lines to the scalars ¢;.

1] >
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ddp ip- X ax X —
(A,-(x)Aj(())k,e,k:/(Zﬂ)de”’"[D?fa (p) + D™ (p)Bu(p)D)*™(p) 4 ...] + O(N™')
5 pipj

d’p Lipx G, 222911 (d) pip; -1

Ji e | (- 0% 4 o) a3

_ e (2.13)

#p o |G DO ey 12| 4 o(n-! d=3 |

J e (B +55 + 1+ﬁ4" (=07 +ONT) o

where the & label is only there for d = 3. In the IR CFT at e — oo the expression simplifies and we obtain the momentum
space propagator

1 24727971(d) PiPj -1
= TE-9T < éV|pZ> ONT) d#3

(Ai(P)A;(=P)) ook = X 16(5[11"’;‘”21')—%8%’;—" B (2.14)
T +O(N™) d=3
from which we can go to position space to get
I'(d) (d=2-0)8;;+2 C‘n‘zj 1
moprp O d#3
(Ai(¥)A;(0)) ¢ o = (2.15)

P ((1 = )8y + 201 + S e |f7’|> +ONT") d=3.

|

Note that the choice of gauge in (2.10) allowed us to take ~ U(N)-invariant sector, and then couple this sector to the
e — oo in the propagator, while other gauge choices such as U(1) gauge field. We can perform the restriction in a
R: gauge would give superficial divergences in this limit,  rigorous way [44] by coupling the theory to a U(N) Chern-
which would only cancel after computing gauge-invariant ~ Simons term at infinite level before coupling to the new
observables. U(1) gauge field, and we will use this to show that

Using these Feynman rules including the resummed  monopole operators cannot appear in the singlet sector
propagators, we can compute correlation functions in  (as we define it here) when k # 0. Thus, for d = 3 and
scalar QED, in an expansion in 1/N similar to the large  nonzero k our theory is not precisely the same as the

N expansion of vector models. SU(N)-singlet sector of scalar QED (which could have

SU(N)-singlet monopole operators), but we will still call it

B. A subtlety in restricting to the singlet sector by this name. In all other cases our theory includes the full
We will be interested in the SU(N) singlet sector of ~ SU(NV)-singlet sector of scalar QED. . _

scalar QED. In general d, we can simply restrict to this Let us start by considering the free theory with action

Sree in d = 3, with global symmetry U(N). We can gauge
this U(N) by adding a U(N), Chern-Simons term for a
gauge field B;, with scalar couplings:

sector by hand, which has no nontrivial effects on R“. For
d = 3 and nonzero k, we need to be more careful. What we
actually do is first restrict the theory of N scalars to its

|

ik 2i
Sk’ :/d%[—%fiﬂ(&ﬁaﬂz{—3Bi{B BIK> +Jt{B +BI{BZJ¢K¢K:|

INK
- /d3x[—l4— Bd;B, + J;B; + NB:B,;' + SU(N) terms], (2.16)
T

|
where B;} is the U(N) gauge field, J;] = i(¢;0;¢’ —
¢’ 0,¢p;) is the U(N) current, and in the second line we
separated out the SU(N) C U(N) terms from the U(1)

gauge field B; = A’,’ , which couples to the U(1) current J;
defined in (2.2). The gauge-invariant operators are then all

singlets of U(N), as we want, but the theory is modified by
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the extra B; fields, and in particular it has new monopole
operators charged under a topological U(1);» global
symmetry generated by the dual of the field strength of
B;. We can then take the k' — oo limit, which on R3
removes all dynamical effects of the gauging, including the
existence of monopoles charged under the U(1),,, and we
obtain precisely the desired restriction to U(N) singlets.

From the U(N)-singlet sector of the free theory, we can
then get the theory we are interested in (the SU(N)-singlet
sector of scalar QED at level k) by adding S,_ ., S, and
S, as discussed before. For k # 0, monopole operators
(charged under U(1);) carry k units of the gauge U(1)
charge, and so to be gauge-invariant under the A gauging,
monopoles need to be dressed by composites of ¢/ that will
cancel their U(1) charge. But then the dressed monopoles
would also be charged under the original B gauging due to
the dressing. Thus, our theory includes no gauge-invariant
monopoles for k # 0. For k = 0, the monopole operators of
QED are uncharged under U(1), so they are allowed.
Similarly for d # 3 where we have no Chern-Simons terms,
the codimension-3 monopole operators discussed above are
also allowed.

C. The bilocal formalism

We will now show how the singlet sector discussed
above can be usefully described in terms of bilocal
variables, which can then be naturally translated into the
bulk in the later sections. We start by reviewing the bilocal
formalism for the free theory with action Sg. in (2.1)
following [8,10,15,36]. All U(N) invariants of N free
scalars can be written in terms of the bilocal field (1.1).
We can then change variables in the path integral from ¢’ to
G to get the partition function

7= /DG(xl,Xz) exXP(—Stree[G] = S1ac[G1),

Sye = —(N = V)Tr(log(G)). (2.17)
where we regularized the path integral by placing our field
theory on a lattice of V points, such that G(x,x,) is a
Hermitian V x V matrix, and Sy, is the nontrivial Jacobian
(we drop all factors that do not depend on G). Note that
(2.17) is only correct for N > V, which applies to the large
N expansion we consider in this paper, while for N <V
G(xy,x,) must obey complicated nonlinear constraints.
The continuum limit is reached by taking V — oo,
in which case matrix traces become continuum
integrals as Tr(G) = [d‘xG(x,x) and (GH)(x,x,)=
Jdx3G(x;,x3)H(x3,x,). In particular, the continuum
Siree|G] may be written as

(2.18)

|x2=x1 .

Shree[G] = N/ddxlal,ialiG(xlvxZ)

Since both Sy, [G] and the Jacobian include terms propor-
tional to N, we can perform a 1/N saddle point expansion
by taking the large N limit first, where all physical
observables should be independent of the regularization
parameter V. In particular, we expand G around its large N
saddle point values given by the propagator Gy(x;,x,) in
(2.6) as

G(x1,x) = Go(x1,x,) + (2.19)

ﬁn('xI’XZ)‘

The free bilocal action (2.17) in terms of the fluctuation #
now gives (up to additive constants)

Speeln] = VNTr(Gy'n), (2.20)
and
Sueln] = ~(N = V) log (1 +ﬁca'n)
®© (_1\n+l
= > EV a5ty
n=1
v ey, @)

where we expanded in large N. Note that the first n = 1
term cancels the linear Sy [n] as we expect from a saddle
point solution. We can then write down Feynman rules
where the propagator is given by the n = 2 bare term in
(2.21), and we have bare n-point vertices for n > 3, as well
as counterterm (multiplied by V') n-point vertices for n > 1.
As shown in [8], these Feynman rules lead to the expected
correlation functions for the free theory.

We can extend the bilocal formalism to QED by simply
writing all ¢-dependent terms in the actions we wrote above
using G as

S.[G.A]= / dx [iFg_,.(x) +I[GIA() +A$(x)c(x,x)] ,

4¢?
S,{[G,O‘}:/ddx [—4—1/102(x)+g0(x)G(x,x)], (2.22)

where we write the U(1) current in terms of G as
Ji[G) = iv/N(,,; - 01:)G(x1,%2)ly,—,- Note that Sy, .[G]
is gauge-invariant by itself, and then gauge-invariance of
the other terms works exactly the same as in the ¢
language. We would like to now expand G around G in
(2.6) (which is not gauge-invariant, but is still a saddle point
in the gauge-fixing that we perform as described above)
to get
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sinal= [t [i F2.(3) + JA) + LIGoJA () +

1 1

o) = [ dia] 40200 + Sotmtnn) + Lot

where J;[n] = i(0,,; —

A7 (x)n(x, x)
N + A} (x)Go(x, x) |,

(2.23)

01,:)n(x1,X2)|,,—, - This includes divergent terms involving G (x, x) and its derivatives, which are

not regularized by the lattice regulator used so far. For S, we can cancel o(x)Gy(x, x) at each order with a linear term 1n c
(or, equivalently, with a mass counterterm). For S,, we expect that J;[G,] = 0 in any Lorentz-invariant regulanzahon In
the following, we will simply drop the divergent terms that can be canceled in these ways, and thus define

sinAl= [t [1 F2.(x) + JiA(x) +

42

Sin, o] = / d?x {—Loz(x) +16(x);7(x, x)|.

Note that we have kept the counterterm A7(x)Gy(x, x) in
the action, because it is needed to cancel the divergence in
the contribution of J,[n]A; to the photon self-energy. In
particular, A?(x)G(x,x) contributes the first divergent
term in (2.12), while J;[#]A contributes the second term.

The ’(x\)/l—é Y term does not contribute at leading order in

1/N, but will contribute at subleading orders. In fact, for
the CPY~! model (2.4) we can make the field redefinition

2A2(x)

(after gauge-fixing) o(x) > o(x) — J~ Which cancels

M\/Z—éx’x) entirely (for 4 — o0). In this way the Feynman

diagrams of the theory can be packed in terms of the
effective o and A propagators in (2.9) and (2.13), respec-
tively.

Our action is written in a specific gauge choice discussed
above, using the nongauge-invariant bilocal variable
1n(x1,x,). In order to construct gauge-invariant variables,
we need to look at the limit x, — x; of 5(x;,x;) to
obtain gauge-invariant local operators, or alternatively to
dress G(x;, x,) with a Wilson line between x; and x,. We
can also compute correlation functions of 7(x;, x,)’s using

*A gauge-invariant way of cancelling this term is to couple N
new scalars ¢b; to A; with opposite charge as ¢ ; and large mass m.
We can then express ¢, in terms of bilocals G in the usual way
except the saddle point is now given by the massive free
propagator

s r(d/2—1)eK
Go(x,0) = 4:77‘1/2|x|d = (2.24)
and the J;A; terms in the G version of (2.23) come with opposite
sign. ~ If we now take the limit m — oo, then _we see
that Go(x;,x,) — 0 except where x; — x, such that G, — Gy,
so the only effect of these new scalars is to cancel the J;[GyA;
term.

A (x)n(x, x)

N T A (x)Go(x. x) |

(2.25)

our gauge-fixed action, but generally these are not mean-
ingful, because we are averaging over different gauge
choices in which G(x;,x,) corresponds to different
operators.

III. THE AdS/CFT MAP

In this section, we discuss the exact AdS/CFT map that
we will use in the next section to write down the bulk dual of
the SU(N)-singlet sector of scalar QED. We start by
reviewing the off-shell AdS/CFT map derived in [8],
which naturally acts on the CFT bilocal 7(x;, x,). We will
then show how this map implies that local single-trace
operators of any spin J in any dimension d also map off-shell
to the bulk in a simple way, generalizingthed < 4andJ = 0
case proven in [8]. For J =1, this off-shell map will
then be used to write the bulk dual of scalar QED in the
next section.

A. Review of the bilocal map

We begin by briefly reviewing the AdS/CFT map of the
free scalar theory [8]. The map is given by expanding the
bilocal fluctuation #7(x;,x,) on one side, and the spin J
transverse traceless AdS fields @, (x, z) on the other side, in
terms of the same irreducible representations (labeled by A,
J, y) of the conformal group, so that the exact map between
n(x1,x,) to @;(x, z) is given by the convolution of the basis
elements in each space.6

°In the special case { = 1 where we just have Landau gauge,
these correlation functions are meaningful, but they correspond to
some complicated nonlocal gauge-invariant operators.

For later convenience, we will not use the embedding space
formalism used in [8].
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@
2A¢ d—2Ag

FIG. 3. The deformation of the contour y, from the principal
series Re(A) = 4to include A = 2A, and exclude d — 2A, when
2A, < d/2. In general we should deform the contour y; for any
2A0+2n—|—J<§and n=20,1,....

We expand 7(xy, x,) in the complete basis

(ORSED Oy 3 RETNIEICN Y

X OAO(XZ)OA,J())»’ (3.1)

where the basis elements are “3-point functions™ of scalar
operators OAO and O, that have the same scaling dimen-

sion Ay = %2 as a free scalar field, namely

Ziv...Z —traces

= 2A0 —A+J _A— J A—J’
X2 X3 " Xo3

(3.2)

: X X
where Z' = - — -2, we define x; = [x; — x,/, and we will
13 23

in general suppress spin indices for simplicity. The con-
tours y; of the A integrals in (3.1) go over the principal
series A :%14_ is for real s, except for / =0 and d < 4
where we deform the contour as shown in Fig. 3 to ensure
that the pole 2A, = d — 2 of the scalar single-trace operator
in the free theory appears on the same side of the contour as
the other spin J single-trace operators with scaling dimen-
sion d—2+J. This expansion exists when n(x,x,)
satisfies the conditions

(1) lim,,_,, n(xy,x,) should be finite.

(2) At large |x; +x2| (and fixed difference) n(xy, x,)

should decay
(3) Atlarge |x;| (or |x,|) and fixed x, (x;)

n(x1, %) ~ |x;| 722 - Power seriesin—. (3.3)

|X1|

(4) n(x;,x,) must be smooth.

"Note that while the harmonic basis resembles a three point
function, it does not correspond to a correlator in a physical CFT,
and is simply a useful basis for conformally-covariant functions.

*In [8], a related map was also derived for 7(x;, x,) that do not
satisfy this condition.

For d > 4, we can use the orthogonality and complete-
ness relations of the 3-point basis, as reviewed in
Appendix A 1, to invert (3.1) and write C, ;(y) in terms
of n(x;,x,) as

11

d>4: Cyyy) = Eﬁ/ddhddxzﬂ(xhxz)
J

X (O, (x1)03,(x2) 04 ,(v)).  (3:4)
where the normalization N, ; is given in (A2), and tildes
over dimensions denote A = d — A. The shadow relation
(A5) implies that only half of the coefficients Cy ;(y) are
independent along the contour y;. We define the physical
Ca(y) to have Im(A) > 0, and then the shadow Cx ,(y)
are related to them by

1

&)
SAO Ay

Ci,0y) = / (01, (3)0ns (7)) Cas(y). (3.5)

where the shadow coefficient SXAOZJA)O is given in (A4), and
the “2-point function” is defined as

3ok i, I (x T (x
<OA,J (xl)OAJ (x2)) = (o) 2A )

12

— traces,

(3.6)

where Iii/zéii/—Z%. Hermiticity of #(x;,x,) then
implies that C;,(y) = (~1)/Cy, ().
For d < 4, the integral in (3.4) does not converge.

As explained in [8], we can avoid this divergence by
considering the auxiliary bilocal

~ _ F(%) 2v2v2
(1, x2) = d 1Van(xi. xp), (3.7)
472
which can be expanded in the harmonic basis as
i(xy, x2) Aszm/ yC as(y
X<050(x1)050(x2)0A,J(y>>7 (3.8)

where the contour is now the principal series for all J, and

‘We expect that d = 4 should be an analytic continuation of
our results for d > 4, as is generally the case in harmonic analysis
[45], but we will not discuss this case in detail.
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11

2Nay
X <OA0(X1)@A0(X2)OA,J()’)>

d<4: Cyyly) = dxydx,0(x,, x5)

(3.9)

is now convergent for d < 4, unlike (3.4). The original
expansion of 7(x;,x,) in (3.1) still holds for d <4
provided that we identify

]6ﬂdrz(% - Ao) ~

d<4: Cpyly) = F2<A0)/1AJ Cas(y),

(3.10)

where 1, ; is the eigenvalue of the bilocal Laplacian in the
conformal basis and is given for any d by

/IA.J = (M M?1+J])(M2AJ M%l-&-] 21)

MiJEA(A—d)— (3.11)

In AdS space we use Poincaré coordinates
(ds* = (dx'dx' + dz*)/7z?), and in our formalism the met-
ric in the bulk is fixed, with traceless transverse spin J fields
®,(x,z) (including a spin-two graviton) propagating on
this fixed background. We define the mapping from the
CFT to the bulk by expanding the bulk fields @, (x, z) in the
complete basis

). (3.12)

7(x,2) / /d ¥fasCas(y)Ga(x,

where we identified the bulk coefficient C, ;(y) with the
same coefficient appearing in the bilocal expansion, up to a
multiplicative factor f, ; that is not fixed by conformal
symmetry. This identification implies that the contour y; in
(3.12) is the same as the one in the bilocal expansion.
The basis elements in (3.12) are the bulk-to-boundary
propagators in AdS space, defined by the differential
equation

(V3= M3 ))Gay(x.2ly) =0.
V2, =7419,(7%19,) + 22 V2, (3.13)
and by the z — 0 boundary condition'”
Gay(x.2ly) = 257 (On s (x)On s (¥))
IS (=) e (B14)

where 577 (x) denotes a delta function with 2J suppressed
lower indices for spin J traceless transverse functions on

""When A = A, as can happen for the scalar bulk field in
d = 4, the second term will have a log(z), which distinguishes its
scaling in z from the first term.

the boundary IRd,” and we define the bulk shadow
coefficient

d
SAJ ﬂZF(A _g) (3 15)
J+A-1)rA-1) '
The solution to (3.13) and (3.14) is by construction trans-
verse

fora=1,....,J: V4G’ ”(x z2ly),,

VH = zd+3aﬂz-d-', (3.16)

where 4 = z, 1, ..., d denotes bulk spin indices that we in
general suppress for simplicity (we denote the index in the
radial direction by z, this should not be confused with the
value of the radial coordinate that we also denote by z).
See Appendix A2 for an explicit expression for G, ;, as
well as the orthogonality, completeness, and shadow
relations.

The CFT shadow relation (A5) and the bulk shadow
relations (A7) imply that f ; must satisfy the consistency
condition

(3.17)

fas S5 T(A+IP(AE)
A+J

fas  s& T TA4+)rPEHE)

Ag.A

where the bulk shadow coefficient is given in (3.15). The
expansion (3.12) assumes that @, (x, z) decays in the small
z limit as z=/ in general. For J = 0 and d < 4 recall that
the contour y, allows the integrand to have an extra
contribution at A = d —2, in which case ®g(x,z) could
decay as z972. Finally, ®,(x, z) should decay at large x,
which corresponds to #n(x;,x,) decaying at large
|X 1+ X2|.12

For J > 0 or d > 4, we can use the orthogonality and
completeness of the propagators to write C, ;(y) in terms
of @,(x,z) as

J>0 or d>4: CA,](y)

1 d“xdz
ST 7 ——

anA,JNA,J Z

(3.18)

where the normalization ; is given in (A9). This integral is
not convergent for / = 0 and d < 4, but as shown in [8] it
can be replaced by the modified relation

For instance, when J =1 we can define 51TIT]( x)
f z x P:P,)
( %ij lpl? /"

A map for nondecaying ®, was also derived in [8].
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J = 0 and d < 4: CA,O(.V)
- /ddxdz Giolx.zly)
2 daoa0faoNao

X (v)zr,z - Mi-z,o)(v)zc,z - Mi.o)q)o(x’ 2),

(3.19)

1 dAfA,/ /
d>4: &;(x,z / dly | d‘x,d’
s(x.2) = 25 22iN,, i

d<4: ®(x,z) =

where for d > 4 we plugged (3.4) into (3.12), while for
d < 4 we plugged (3.9) and (3.10) into (3.12). The AdS-to-
CFT map similarly comes from plugging (3.18) into (3.1),
and it takes the form

/s 27”/ / d+l aJNAJfAJ)

X<OA0(X1)OAO(XZ)OA.J())»CDJ(X’Z)’ (3.21)

’] X],XZ

where for d < 4 and J = 0 we need to replace the J =0
term by

dxdz
/zm/dd / i OAO xl)vo(xz)

Giolx. zly)
o N oAroFan
x Oao(y)) aoNaoAa0f a0

x (Vi = Mip0)(Vi: = M) ®o(x.2).  (3.22)

due to the modified expansion in (3.19).

B. Off-shell map of single-trace operators

We will now discuss how the off-shell bilocal map
reviewed above can be used to derive a simple off-shell map
for singlet local operators in the CFT. We start by reviewing
the derivation of the map for / =0 and d < 4 that was
shown in [8], and then discuss how to generalize this to
general J and d > 2.

Spin J single-trace singlet local operators S{l "y (x) in the
free theory are defined in terms of the bilocal as

=1
(Xr) 61_1}(1)

dA 2S<AO LM (x
2_7”- £280+/-A

AJ
‘DJ,i,...i,(xr,S) 22/ —fAJ [ (AOA)OCﬁJl (x

dly /ddx d’x, fas G
/;,;27”/ /IAJNAJ AJ(

where the AdS Laplacian is defined in (3.13).

The CFT-to-AdS map now simply follows from a
convolutionof the bulk and CFT bases, and it takes the
explicit form

WOs, (1) Oz, (x2) Og ()1 x2).

)<OA0 (M)OAO (x2)O03 J( )>V2V2’7(x1,x2) (3.20)

S‘zlltj( ) - hthl(xtl, Z)l/[(xl’ x2)|x2:x|+sé’ (323)

where ¢ is an arbitrary unit vector, and the bilocal differ-

(xl X2)

ential operator D can be found in [46] and is fixed

such that S;(x) 1s a conformal primary normalized with
two-point function

(87 . (x)S)  (x2))
I 1 1
:a,( 6 (12) i), (510) traces),
12

2(d-2+7)
X
[ . Nk 7@+ J-1)(d+J -3)
=0 — 24—, a; =
VTR ) Y VRS § T CE )
(3.24)
For instance, for J = 0, 1 we have
Do) =1 phn) = ! (0, —0;.). (3.25)
2/a—2 e
I'(d/2—1)?

such that for J/ = 0 we recover the coefficient ag = =5 —
in the scalar 2-point function computed from (2.6), while
for J =1 we identify S!(x)= —57= il with Ji[n]
defined below (2.23).

As shown in [8], we can use the expansions (3.1) and
(3.12) to show that

(e dependent)

tysli--Jy

/ dA/ AJ’ - iyeaidyifieen]
2A0+J—A ’
v 280+

1) +0(e)].

(3.26)
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In general, it is difficult to perform the A integrals in (3.26),
since we know very little about general C, ;. For instance,
the contour y, for d > 4 or for J/ > 0 and d <4 is the
principal series Re(A) = d/2, so along this contour the
leading term £2-4/2~/" diverges for the free theory. To get
the finite answer for S}, (x;) that we expect, there must
be complicated cancellations. For d < 4 and J' = 0, how-
ever, recall that the contour y includes a deformation from
the principal series to include the pole A =d —2 < d/2.
Since the principal series contribution goes to zero as £2~¢/2
in this case, we know even off-shell that the only con-
tribution as € — 0 to the integrals in (3.26) comes from the
A = d — 2 pole, which is the only pole on the other side of
the principal series. This yields the off-shell relation

SOx) = n(x,x) = lime?>~4®(x, ¢),

——lim (3.27)

which in particular continues to hold under deformations of
the theory.

We can generalize this relation to general d > 2 and J
using a different argument. Consider deforming the bilocal
CFT action by S/ coupled to a source A’ as

(3.28)

Sy, = / dxAl L S!
We can compute the VEV of 5(x,, x,) under this deforma-
tion (in the large N limit) as

(n(x1,%2))a, :/ddyA{,...i,(y)DiJ,’.(.).Ci],'xZ)Go(xhJ’>G0(yvx2)

_aJ/ddyAz{._..i,()’)<0A0<X1)@A0(3€2)

x O517,), (3.29)
where the second equality follows from the definitions
(2.6), (3.2), and (3.23). As x, — x, this VEV diverges as

S(Aaf;ﬁjfﬂ A (x1) /x84 At leading N — oo, this implies

the off-shell singularity
4—d-2J

lime

P n(x17x2>|x2:x1+sé

=S aAL ()88, (3.30)
which is singular for all d > 2 and J except J =0 for
d < 4. In the original path integral in terms of the local field
¢;(x), each ¢;(x) does not couple to the others, which
implies that the off-shell behavior of ¢;(x), and thus
n(xy,x,), is independent of N, so (3.30) in fact holds for
finite N. Recall that the conditions (3.3) to expand 7(xy, x,)
in terms of C,;(y) require that n(x;,x,) be finite as
X, = xy, so we must modify our AdS/CFT map in the
presence of this source for all d > 2 and J except J =0

for d <4. We can cancel the divergence (3.30) by
modifying the contour y; in (3.1) to include a piece around
A=d-2+J with

Ci217(¥) |A, = a,A7(y),

which will cancel the divergent VEV in (3.29). In the bulk,
this modification of y; will give the VEV

(3.31)

<®J(X7Z>>|A, =a;fa210 / dyAY ()G yonpg g(x.2]y).

(3.32)

which follows from modifying the contour in (3.12), and is
also what we would get by naively mapping (3.29) using
the unmodified map (3.20) and the CFT orthogonality
relation (A3). We can then take z — 0 to find the modified
off-shell bulk boundary condition

li})%gZJ—zq)J(x’ e)=a;f d—2+J.JS;13_2+jJAJ (x),

(3.33)

which follows from (3.14). We could equivalently use the
standard bulk boundary conditions and instead add to the
bulk action the source term

d
suk= [ AL,

24+ B0y

7 Hlinéez_dfbj(x,s). (3.34)
—2+4J, £

Now, comparing (3.34) to (3.28) for general A’ (x) implies
the off-shell relation

§7(x) = lime?~4®, (x, ¢),

d-2+7,J €0

(3.35)

which for J = 0 for d < 4 was what we previously showed
in (3.27), and for all other d > 2 and J follows from the
modified boundary condition argument. This off-shell map
generalizes the on-shell relation previously shown for
general d > 2 and J in [8].

IV. THE BULK DUAL OF SCALAR QED

We will now use the AdS/CFT map of the previous
section to write the action for the bulk dual of scalar QED.
We will first review the bulk action for the free and critical
U(N) theories, which were derived in [8]. We will then use
the off-shell map of single-trace local operators for J = 0, 1
to show that the bulk QED action is given by a simple
deformation of the bulk dual of the free theory. Finally, we
will compute correlation functions in the bulk and show
that the bulk duals of the free theory and QED only differ
by the boundary conditions of the bulk J = 0, 1 two-point
function, as anticipated in [20-24], where the J =1
two-point function is sensitive to the gauge-fixing in
the CFT.
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A. The bulk action

We start by reviewing the bulk action for the free theory,
which in the bilocal language had an infinite number of
terms given by (2.20) and (2.21). The bilocal AdS/CFT
map translates each of these terms to the bulk, where for
general f, ; they take a complicated nonlocal form given
explicitly in [8]. For the special choice

SA,J 1
local __ (_ 1 )J ~1’3
AJ SA’J ’

Ag.Ag

(4.1)

such that ' fi0! = (~1)’, the quadratic term in the bulk
action can be written in the simple local way:

2 21 ddde
Sele) =3 [ @) (V- M)

x (Viz =My, )®(x.2), (4.2)
where for d < 4 the modified map (3.22) gives a slightly
different form for the J =0 term as shown in [8]. The
higher order terms S"[®,] in the bulk action remain
nonlocal even for /%!, and include explicit bulk counter-

terms starting with S(V[®,] that are dual to the V-
dependent counterterms in (2.21).

The various deformations to the free theory discussed in
Sec. I1 C can then be mapped to the bulk using the off-shell
map of local operators in (3.35). For instance, the scalar
double-trace deformation in (2.25) maps to

1
S,[@y, D, A] = /ddx [—Flz](x) + A2 (x)Gy(x, x) + lir% e

4¢2

where we identified S (x) = — \/fiTQ J;[n], and recall that
the counterterm A?(x)G(x,x) is necessary to cancel
divergences in the A; two-point function. We can then
take the limit e — oo to get the bulk dual scalar QED (2.4)

with bulk action:

Scor1[@5.4,0]= Y S ®)]+ S, [@9. @1 A+

n=1

(4.5)

as well as the Chern-Simons term S;[A] for d =3 (if
desired).

Similar to the o, @, case, we can think of A;(x)
as a Lagrange multiplier that for k=0 sets
lim,_(e?~9®,(x,£) = 0 as an operator equation, just as

"The CFT is believed to be unitary only for 2 < d < 4.

S,)[®@y, o] —/ddx[—4—1/102(x)
+%6(x)

lime?~4®(x, €) |,

fa—2,0e0 (43)

where o(x) can be thought of as living on the boundary of
AdS. When 1 — 0, this defines the bulk dual of the critical
U(N) theory for any d > 2 such that this CFT exists, which
was argued to be (for large enough N) 2 < d < 6 in [33]."
The o(x) field then acts as a Lagrange multiplier in (4.3)
that sets lim,_oe>"®(x, ) = 0 off-shell, just as in the
CFT it set n(x, x) = 0 off-shell. Thus, the off-shell relation
(3.27) becomes trivial in the critical theory. The vanishing
of the z?=2 mode implies that ®,(x, z) now has the same
small z boundary condition as all other J > 0 bulk fields,
namely it scales as z%?, which is the real part of the
principal series contour. For 2 < d < 4 this was already
discussed in [8], and here we can generalize this to d > 4
because we generalized the off-shell map for J =0
to d > 4.

For QED, we first gauge-fix the CFT by adding the term
S¢[A] given in (2.10), where the family of possible gauge-
fixings is parametrized by { € R. Since this term, as well as
the Chern-Simons term S;[A] given in (2.5) for d = 3, do
not depend on 7, they map trivially to the bulk such that
A;(x) now lives on the boundary of AdS, just like o. We
then use the off-shell map (3.35) for J =0, 1 to map
S.[n,A] to the bulk to get

2ivd -2

i A7 (x) @y (x, €)
TMA,-(x)QDI(x, €) —1—7”, (4.4)

VNfa-20

in the CFT it set to zero the U(1) current. The z° mode of
@, then becomes dynamical, according to the off-shell
relation:

QEDwithk=0: @i (x,0) =i2Vd—2a;,f,_, 1 5% " A;(x),
(4.6)

which is just (3.33) with J = 1 and S} (x) = —ﬁ]i[n].
Namely, in the bulk dual to QED, A;(x) is nothing but
the boundary value of the bulk vector field. It is con-
venient to write this change of boundary condition
by defining a boundary field strength for ®; (even
though in our formalism there is no gauge freedom for
this field) as

Fu () =Mm(5, P, (x.2) = 0, @1 (%, 7)) (4.7)
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The boundary conditions for the free scalar theory and for QED for general d, as well as for d = 3 and general &, can then be
written compactly as

free: ]:ij(x) =0,
QED, with k = 0: F_,(x) =0

2ri
QED;: F;(x) + Egijlle(x) =0, (4.8)

where the free theory corresponds to electric boundary conditions, QED with k = 0 corresponds to magnetic boundary
conditions, and QEDj for general k corresponds to mixed boundary conditions. Finally, the A?(x) term in (4.4) will also
alter the boundary behavior of @, at subleading order in 1/N, according to (3.27).

B. The bulk correlation functions

We will now discuss the bulk correlation functions that follow from the bulk actions written above. For the dual of the free
theory with 4 = e¢ = 0, the bulk two-point functions coming from the local quadratic action (4.2) are [8]:

01/2
(@ (x1,21)Dy(x2,22)) = "2 — M2 (Hdezw.J(xl,Zﬂxz,Zz) _Hg—{JJ(xl’ZI‘XZ’ZZ))' (4.9)
d+J.J d+J7-2.7

Here, IT17, 477 (X1.21]x2, 2,) are the traceless transverse bulk-to-bulk propagators defined in [8] by the differential equation

(vi.z - MZA,J)HZTJ(XMZ] |x2, Zz) = —5TT(X1’Z1 |x2522),
(4.10)
and by the z, — 0 boundary condition
T . ZZA_JCAJGAJ(Xl, Z1|X2) + O(ZQA_1+1) A<d-J + 4
My (%1, 21[x2, 22) = d—2J+4 (4.11)
O(z5 ™) A>d-J+4,

where 877 is a delta function for traceless transverse functions that is defined precisely in [8], and the normalization is

(J+A-1T(A=1)

Cr, = 4.12
M oA +1-9) *.12)
The solution to (4.10) and (4.11) is by construction traceless and transverse:
fora = 1,...,]: V”“HKE(XI,Z”)Cz,Zz)”I ..... Haoeos ”J‘”/l ..... ”/j :O,
Hg?‘l(xlv Z1|x2’ ZZ)M ..... Mooy HylH e =0. (413)

The explicit propagators for A > d -2+ J for J > 0, or / = 0 and any A, were computed in [8], and are reviewed in
Appendix B 1. The massless propagators in the first term of (4.9) are identified with the physical particles dual to the
operators in our theory.14 For J > 0 they are dual to the infinite conserved currents in the CFT, and for J = 0 to the
A = d — 2 single-trace scalar. The particle with negative propagator and A = d + J — 2 is subleading in the z — 0 limit
(it happens to match the ghost spectrum of a certain gauge-fixing of Vasiliev’s theory [47-49], so we expect that probably
it can be interpreted as some kind of gauge-fixing-related ghost). The higher order correlation functions can be computed
using the Feynman rules for the higher order terms S [7], which were shown in [8] to lead to the expected free theory
results, where all loops and counterterms cancel (this cancellation will no longer be exact in the nonfree theory we are
discussing here, but the divergences should cancel in the same way).

“For massless propagators, the transversality constraint (4.13) can be interpreted as a bulk gauge choice in a putative bulk gauge
theory, which would be related to our bulk theory upon gauge-fixing.
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We can then consider the effect of the quadratic scalar deformation S;[®,, 6] given in (4.3), which only modifies the
scalar propagator as [8]:

1 aoC, 2 ]2
(@ (x1, 21) Py (X2, 22); = (Po(x1, 21)Po (X2, 22)) 1=0 + { oCan0f }

4(f9a)? M3 — M7 5
X/ddyddy’Gd—z,o(thly)<0(y)0(y/)>,1Gd—2,o(x2,Zz|yl) +O(N), (4.14)

where the ¢ propagator at finite A is given in (2.8). For the critical theory at 4 — oo, the ¢ propagator in (2.9) becomes a
conformally invariant two-point function with scaling dimension A =2 + O(1/N), so we can use the identity [50-52]

d
/ddyddY'GA,o(th Y)(Oz0(¥)Ozx0(Y)Gap(x2:22]y") =aNay <A —§> (R (x1.213 %0, 20) —TIET (1, 21332, 22)).
(4.15)
with A = d — 2 to compute

a0/2

(@o(x1,21)Po (%2, 22)) 1m0 = 35— 73—
MLZI.O - M?I—Z,O

(H%@Clv 213X2,22) = H££<xlv 215X2,22)) + O(N_l)- (4.16)
We see that the physical propagator IT57 20 for @ in the bulk dual of the free scalar theory has been replaced by the shadow
propagator IT7{), which generalizes the 2 < d < 4 results of [8]to 2 < d < 6 (where the critical theory is defined at large N).
Both I}/, and Hg,TJ are defined by the same bulk differential equation (4.10), and differ only by the boundary condition
(4.11). Since the only difference between the free and critical bulk theories was this scalar propagator, we see that to all
orders in 1/N the only difference between the free and critical bulk theories is the boundary condition for the bulk scalar, as
anticipated in [20,50,51]. As shown in [51], the modification of the free bulk Feynman rules by replacing IT}7,  — TIZ{
then leads to the expected bulk dual of the critical CFT for all bulk correlators, at all orders in 1/N.

Next, we consider the effect of coupling to the gauge field by adding S, [®,, ®,, A] with the family of gauge-fixing terms
S¢[A] (and for d = 3 we can add also the Chern-Simons term Si[A]). The J = 1 propagator is modified as

42 -d) aiCy_11/2 2
<‘D1(xl’Zl)‘I’l(xz»Zz»g,e.k = <‘D1(x1511)cb1(x2722)>e:0 + ol 2 |:M2 1 1]1‘/[2
( d—l,l) d+1.1 d-1.1

X /ddyddylGiz_l,l(xhZ1|)’)<Ai(J’)Aj(y/)>g,e,kGiz—1,1(x27Zz)”) +O(NT"), (4.17)

where we suppressed the bulk indices for simplicity, and where the gauge-fixed photon propagator is given in (2.13) for the
¢ family of gauges. Note that the bulk propagator now depends on the choice of gauge-fixing in the CFT. For the critical
theory at e — oo, we can derive a generalization of the identity (4.15) to massless J = 1 propagatorslsz

/ d?yd?y Gy 1 (x1, 2y |y)i\,4 (Ai(A (V)¢ .emoc0kGa1.1 (X2, Zz|y/)i'\ﬂ/

3d
8r2

k
= F(M)F(d) (HdTZLl(x],Zl;xz, Zz)m,/ - Hg;l(xlazléxz,zz)mﬂ/) (4.18)
2

Here, Hﬁ is a traceless and transverse propagator that satisfies the same differential equation (4.9) as Hgmv but has the
alternate boundary condition

(L) *9)
hmH1 (21X, 20) =— 222G (31,21 1), (4.19)

om0 20T (d)

where G‘f]f (x1,2z|x,) is a transverse bulk-to-boundary propagator that satisfies the same differential equation (3.13) as
Gy_1.1(x1.z|x,) but has the alternate z — 0 boundary condition

'SA similar identity in axial gauge was derived in [23].
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k
Gé;,l(xlvz|x2)ij =

(A (x)A; () rcox —2 [

d
_o m2I'(d d i iDi
(Ai(x1)A;(x2))g 00 — 2772 123((51)) J ataeir <5U - _p,,]|72'> REREES

[1317z eilez
(27)° 6,4[—;2+1

d+3,
(4.20)

_PiPj\_128. Pk
16( ij wz) T Cijkp]

+... d=3.

Note that we expressed 517 (x1,) explicitly in momentum space for d # 3 for ease of comparison to d = 3. Alternatively,

Hﬁ can be defined by their differential equation and the boundary condition (4.8). Explicit expressions for Hﬁ and G‘flf are
derived in Appendix B 2, where we show that they satisfy (4.18). We can then apply (4.18) to the ¢ — oo limit of (4.17) to

compute

a|/2
M2

<(Dl(xl’Zl)(bl(x2722)>¢’,e—>oo.k = _ M2
d+1.1 d-1.1

As in the scalar deformation, we see that the physical
propagator HZ_TI_I for @, has been replaced by the shadow
propagator Hﬁ, except that now the shadow propagator
depends on the CFT gauge-fixing parameter ¢, and for
d =3 it can also have an infinite number of possible
boundary conditions, parametrized by k.

For the CPV~! model, we saw above that we can change
variables for ¢(x) to get rid of the A?¢* term. In this way o,
A; couple in the bulk action (4.5) only linearly to ®,, @
respectively. As we explained in this section, this means
that the CPV~! bulk dual (at any order in 1/N) is the same
as the free theory bulk dual, only with the alternative
boundary conditions for both @, and ®;. We can use this to
argue that our bulk action gives the expected correlators to
all orders in 1/N for the CPV~! model, following the
analogous argument for the critical O(N) model in [51]. In
particular, already in the local description (2.4) we could
change variables for ¢, which led to only linear couplings
for o, A; to the ¢p;’s. We can then consider the difference
between correlation functions of single-trace operators in
the CPY~! model and in the free theory. At any order in
1/N, this difference can be written as integrals of the free
theory S° S! correlation functions with the effective
propagators for o, A;. Using (4.15) for S° and (4.18) for
S}, we can write the difference between the correlators as
the difference between the same Witten diagrams, only
with alternative boundary conditions for @, and ®;.

V. THE BULK DUAL OF U(N,) SCALAR QCD
AT FINITE N,

The bulk dual of scalar QED in 2 < d < 4 with N > 1
scalars that we described in the previous sections can be
easily generalized to U(N,.) QCD in 2 < d < 4 with N >
1 scalars [28], for finite N.. For d =3 we can again
consider also the large Chern-Simons level k limit with
fixed xk = k/N.

We start by considering a free theory of N x N, scalars
with global symmetry U(NN,). The singlet sector under

(Hf’_lf(xl,zl;xz, 20) =TT, (x1.213%0.20)) + O(NTH).

(4.21)

the U(N) C U(NN,) subgroup can be translated to the
bulk just like the usual U(N) free scalar theory, except that
now both the U(N) singlet bilocals in the CFT and their
dual bulk fields are adjoints under U(N,.), and the terms in
the bulk action are all single traces of products of U(N )
matrices. We can then construct the bulk dual of scalar
QCD by a procedure similar to the one described in the
previous sections: gauging U(N,) (in the CFT), fixing a
gauge convenient for the large N expansion, mapping the
U(N,) current (which is a U(N) singlet) to the bulk using
our usual CFT-to-AdS map, and coupling it to the new
U(N.) gauge fields. The main differences from the Abelian
case are that now the Yang-Mills and Chern-Simons terms
for U(N,) contain self-interactions of the U(N,) gauge
fields, and that the gauge-fixing now leads to ghosts (in the
adjoint of U(N.)) which will live on the boundary and
couple to the U(N,) gauge fields there.

As with QED, the resulting bulk theory is related
to the bulk dual of the free theory by a simple change
of boundary conditions for the spin one bulk field [in the
adjoint of U(N,.)]. Note that this bulk construction is useful
for large N with fixed N, and it does not apply to the
limit of large N., k with fixed N, k/N, discussed
in [29,53], which is expected to have a different dual
description.

ACKNOWLEDGMENTS

We would like to thank Tal Sheaffer and Tomer Solberg
for collaboration on related issues. This work was sup-
ported in part by an Israel Science Foundation center for
excellence grant (Grant No. 2289/18), by Grant
No. 2018068 from the United States-Israel Binational
Science Foundation (BSF), and by the Minerva foundation
with funding from the Federal German Ministry for
Education and Research. O.A. is the Samuel Sebba
Professorial Chair of Pure and Applied Physics. S. M. C.
is supported in part by a Zuckerman STEM leadership
fellowship.

126011-15



AHARONY, CHESTER, and URBACH PHYS. REV. D 104, 126011 (2021)

APPENDIX A: CONFORMAL BASES

In this Appendix we review properties of the conformal bases that we use for the CFT and for the bulk fields. For the CFT
we follow [54,55], while for the bulk we follow [52].

1. Three-point function basis

The harmonic basis defined in (3.2) satisfies the completeness relation

5(12)3(e2) / oo | 4 5 (08 ()08, (52000, (05, ()05, (005,00 (A1)

where the contour y; was described in the main text, and the normalization factor is

3d. ~
'J+1 ra-4 I'A-4¢
Noy= ot 1029 09 (2
’ 2 F( +J) (A—l)(A+J—1)F(A—1)(A+J—1)
The basis also satisfies the orthogonality relation
/ d¥x,d%x (O, (x1)Op, (%2) O s (1)) (O3, (x1) 5, (%2) O 5 ("))
. (A — A
=2miNyy (51,1’5(A - A/)5;T(y -y + % <0A,J()’)0A,J’ (y’)>>, (A3)
SAO,AO
where the traceless transverse delta function éfT was defined in the main text, and the shadow coefficient is
i~
iy mLA-9T(A+7-1)I2EH)
Sah = e (A4)

A-1Dra+ J)Fz(%)

The reason for the second term in (A3) is because the basis elements for A and for A are related by the shadow transform:
~ 1 N

(On, (x1)O4, (x2)On 4 () = &) / d’y' (04 () Oas (")) (O, (x1)O4, (x2)Og ; (¥'))- (AS5)

Ag.Ag

2. Bulk-to-boundary propagator basis
The differential equation (3.13) with boundary condition (3.14) has the explicit solution

z A
Gay(x,20y),, .. oliviy = <(x T z2> (X, i .- X, — traces), (A6)
where X; ; = 716, j— 2%%&4’ = (ﬁ(y);;i)zz The propagator satisfies the bulk analog of the shadow transform (AS5):
iy...0; 1 ] i 1
Gay"' (% 2ly)yy o, = & iy GL (6,2, (O8N0 (), (A7)
B

where Sé’l was given in (3.15). The orthogonality relation takes the form

ddde copgliy.id
/ Zd+1 GIZ],J o J< ’ )G” ( )/41--44/
XN it i, A N
= 2mi6(A — A)(OX ;" (x1) 045" (%)) S + 2mid(A — A)STT () A*zfa’, (A8)

where 677 (x) is defined in [52] as a delta function for traceless transverse spin J functions in d dimensions, N, ; is defined in
(A2), and

126011-16



AdS FROM CFT FOR SCALAR QED

PHYS. REV. D 104, 126011 (2021)

2'T(¢+J)
B0+ 1)

I
>
O

ay

Hlseee b |1 s ot
orr T (x 2

where here 677 is defined in the bulk.

APPENDIX B: BULK-TO-BULK PROPAGATORS

In this Appendix, we will show explicit expressions for
the bulk-to-bulk propagators discussed in the main text. We
will start by reviewing the traceless transverse propagators
IT}"; introduced in [8], which are defined by the differential
equation (4.10) with standard boundary condition (4.11).
These have explicit position space expressions for all J and
A>d-2+J. For J =1, we will also give the explicit
expression in momentum space. We will then consider the
J =1 propagator defined by the same differential equa-
tion (4.10) but with the alternate boundary condition (4.19),
which we will also write explicitly in momentum space.
From these momentum space expressions, we can immedi-
ately see the identity (4.18).

1. Standard boundary conditions

The differential equation (4.10) with boundary condition
(4.11) can be formally solved using the split representation

dA' Gy 4(x,2]y)Gg ; (X', Z']y)

Vs 27Tl aJNA“](MzAJ - MZA/J)

M (e 212, ) = (B

where the boundary spin indices are contracted on the right-

The bulk completeness relation for traceless transverse bulk
functions is

dA G
/’ 1 — o= dd
*.7) A.S. 277i/ Y

X, Z
= : (A10)
Ny
|
position-space expression
A7 (x, 2|, 2) = Hp s (x, 2], 2)
d+J-2 (2[7 _ d)
2 2
p=d—1 MA,J - Mp,J
x Res[[y y(x, 2, 2)]y_,s  (B2)

where I1, , is the standard massive bulk-to-bulk propagator
whose explicit form is given by a complicated recursion
relation in [56]. For instance, the J = 0 propagator is

1-d
Tao(x, 2], 2') = Cao(2u) ™2, F, (A, A+ T,ZA
2
—-d 1; -, B3
-2 (B3)
where the chordal distance is
X /
y = 2 (B4)

277

and note that TI}/) =TI,y since transversality and trace-
lessness are trivial for J = 0. For J = 1 the propagator is

hand side, while the bulk indices on both sides are implicit.  TIY, (x,z|x',2),y = =90 (u) 3,0, u+ g1 (0)D,udu,  (BS5)
For massive propagators, i.e., A >d -2+ J orJ =0, we
can close the contour and collect poles to get the explicit ~ where go(u) and g, (u) are
|
() = (d—A(A+ Du,F (AL (=d+ 20+ 1);—d +2A + 1;-2)
ottt = 2P (A= 1) (d—A— DI(—4+ A+ 1)
(u+ DC(A+ Du? L F (A + 1,3 (-d + 28+ 1);—d +2A + 1; - 2)
P28 (A =) (d = A-1DI(=¢+A+1) '
() (u+1)(d=A(A+Du "L F (AL (=d+2A+1);—d + 2A + 1;-2)
g\u) =
P2 A =D (u+2)(d-A-1DI(-4+A+1)
(d+w+1))0(A+ Du 22, F (A+ 1,5 (-d+2A+1);—d + 2A + 1;-2) (B6)

P2 A =) (u+2)(d-A-1DI(-4¢+A+1)

In the massless limit A - d —2 + J, the A’ = d —2 + J pole in (B1) becomes a double pole and we get the finite result
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Res[ITa (%, 2|x', )] w_g_(o-y)
4—-—d-2J

07, (e zlx' 2') = Oal(A —d = T+ 2)My y(x, 2|5, 2 )| acynis —

_ d+J-3 (2p _ d)

— > Res[[p ;(x,z
MZA,J - M%},J '

X2y (B7)
p=d-1

For J = 1, the massless propagator HZZM is the same as the position space Landau gauge propagator given in [57], which
can be explicitly checked from the definitions given here.

We will find it convenient to express Hﬂm in momentum space. Instead of directly transforming the known position
space expression, we can instead solve the differential equation (4.10) in momentum space. We start by writing the bulk-to-
boundary differential equation (3.13) in momentum space as

(2283 +(3-4d)z0, - pZZZ)Gd—l,l (P, Z)i.j —2izpiGa_1.1(p, Z)z,j =0,
d
(1283 +(3-d)z0, - PP +1- d)G a1 1(p, Z)z.j +2iz Z PiGa11(p. Z)i.j =0, (B8)

i=1

with the z — 0 boundary condition (3.14). We can solve this to get

d d
2> . pip;
Gorta(p. 2y = e (P22 ko) + 83,4 = 2l

I'(d) d
”‘_2122_{2_1 d_q .
Gd—l,l<p’z)z,j = () |PZ|2 ‘(leZ)K%(WZ)’ (B9)

which is the momentum space version of (A6). Next, we use transversality to rewrite (4.10) as

9y (Zs_d(aﬂnw - 801—[#/))) = _5'/,/15()6’ z

X, )+ 710,220, 1,y,

Fp o [LploKpld) =<7
yo(x, z|x', 2') = (ZZI)%/ pg ok SN . (B10)
‘ (27)° L(|p|Z)Ka(Iplz) 2" <z
which we then write in momentum space as
d
8z(Z_d+3((r9zl—I¢1—1,1 (p. 2 Z/)i,j —ipilly11(p, 2 Z/)z,j)) — 77 <P2Hd—1.1 (p. 2 Z')f,j + pi Z plly11(ps 2 Z')k,,)
k=1
=6;;0(z=2) =" pipyMao(p, 2. 2), (B11)
L(pz)Ki(pz) z<7
Mo(p.2.7) = (z2)%] : : B12
ao(p ) = (z2) %(pZ/)K%(PZ) 7 <z ( )

We can solve this equation along with the boundary condition (4.11) and the explicit momentum space G,_; (p, z) to get

d_ PiPj PiPj _ _
01 (po2, 7))y = (22)7 Kz (p2 ) 1az(p2) <6,<,A,»— ]')2’> + =2 1(z2)10, ¢ ((z2) T (pa2.2). )]s

: p

.Pi 4 _
ngl.l(p’z’zl)il’ - l;;Zd 181(Z dHHZIl,l(P’Z’Z/)z,z’)’

.Dj _ -
e (p.2.7),; = —lp—é(z’)d Yo, (/)T L (p.2.)..0).
?
G5 (p.2.d).0 = - ) (0aa0(p-2.2)|a=a1 (B13)

where I, (p, z,Z’) is the scalar bulk-to-bulk propagator
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(z2)5a(|pl)Kaa(lple) 2 <7

Myo(p.2,7) = . B14
o) {<zz>‘é Lo sIPl)K s p) 2> 2 B

2. Alternate boundary conditions for J=1

We will now solve the differential equatlon (B 11) with the alternate boundary conditions (4.19). We start by computing
the alternate bulk-to-boundary propagator Gl l( D, 2), by solving (B8) with the boundary condition (4.20) and the explicit
momentum space photon 2-point function given in the first line of (2.15), which depends on the family of gauge-fixings
parameterized by { € R, as well as the Chern-Simons coupling k for d = 3. For d # 3 we get

¢ _27280(d) | p[3E T Pl g 4(1—6)19,-19 )
Gilp2)is = F —ard - e @((5 P )K‘(' )+ =gy Hallp 'Z))

. ZTﬂEF(d)
G5, (p.2).; = ’m(é— 1)

while for d =3 and general k we get

F2Kea(Ipl2)p;, (B15)

€ ~Iplz 16(6 +1|711‘)j((1_§)(]+pz)_]))_£€uk%

Gii(p.2)i;
P = ESEReeE
16(1-¢) 1z
-k -
Gii(p.2).; =1 1+ (2 P (B16)

We can then solve (B11) with the alternate boundary conditions (4.19) to get for d # 3:

I (p. 2.2, = (22)F Kz (p2 ) Ioza(p2) <6i,.,- - p,lfj) p,’;’ff ()10, ((22) T 4 (. 2, 2),. )],
. Pi 4 _
5 (P20 )i = i 32710, (P2 21)c0)

.Dj
5, (p.2.7).; = - p2< )10 ((2) ™I (pa 2. 2). ),

2
0, (p.2.2),0 = dp_ 5 (OaTlao(p.2.2)) ozt + e 2)ré ~Or ) (¢ = 1)p*(z2) Kez(|pl2)Kez(|p|2),  (BIT)

2/°\2

where we fixed the coefficients to match (4.19), (4.20) and (2.15).
For d = 3 and general k, we instead get (demanding (4.8) as boundary conditions)

1 [ e lplE+2) 1\2 K\ 2 piDi K p
k(2 oy, = L[ (AN (NP (5 _Pipiy _ & . P
P2 iy =75, {<§>2+<%6>2<((16) (27r> >< p2> 167 54 |

il pir;\| , PiP; P
+elPlie] <5,~,j— I;zjﬂ +ﬁ[(21’)25@z'((11’) M (p.2.2),0)]

54 (p,2,2);. —z;zm 5 (pz2). )
6 (p,2.2)., i (2)20.((2) 264 (p, 2, 7))

5(p.2. 7). 0 = '%'ZZ’ [<e"v<z+z’>Ei<2|p|z> + elPlEHE(=2] pl2))

-¢

> el (B18)
14 (5%)?

— (e IPIE=DEi(=2|p|z) + e IPIEBi(=2|p|2)) + 2

Finally, the difference between Hﬂl 1 (p,z,7') and Hﬁ (p, z,Z') can be written in terms of the momentum space bulk-to-
boundary propagators and the effective photon propagator (2.14) as
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Gd—1,1<p7Zl)i\y<Ai<p)Ai’(_p)>é,oo.kGd—1,1(_pvZ2>i’|;4’ =

which gives (4.18) in position space.

T(F3)r(d

k
) (HZJTLI (p’ Z1s Z2>y|y’ - Hf,l (p’ <1, ZZ);A;/)’ (B19)
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