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We construct an explicit bulk dual in anti–de Sitter space, with couplings of order 1=N, for the SUðNÞ-
singlet sector of QED in d space-time dimensions (2 < d < 4) coupled to N scalar fields. We begin from
the bulk dual for the theory of N complex free scalar fields that we constructed in our previous work, and
couple this to Uð1Þ gauge fields living on the boundary in order to get the bulk dual of scalar QED (in
which theUð1Þ gauge fields become the boundary value of the bulk vector fields). As in our previous work,
the bulk dual is nonlocal but we can write down an explicit action for it. We focus on the CFTs arising at
low energies (or, equivalently, when the Uð1Þ gauge coupling goes to infinity). For d ¼ 3 we discuss also
the addition of a Chern-Simons term for Uð1Þ, modifying the boundary conditions for the bulk gauge field.
We also discuss the generalization to QCD, with UðNcÞ gauge fields coupled to N scalar fields in the
fundamental representation (in the large N limit with fixed Nc).

DOI: 10.1103/PhysRevD.104.126011

I. INTRODUCTION AND SUMMARY

The AdS=CFT correspondence [1–3] is an equivalence
between theories of quantum gravity on asymptotically
anti–de Sitter (AdS) space in dþ 1 dimensions, and
conformal quantum field theories (CFTs) in d dimensions.
Since for d ≥ 2 we do not have any nonperturbative
definition of these quantum gravity theories, the corre-
spondence should be viewed as providing a nonperturba-
tive definition for these theories in terms of the
corresponding quantum field theories, whenever those
are known and well understood. In many cases of the
correspondence the gravitational theories have a classical
limit, in which the ratio of the Planck scale to the radius of
anti–de Sitter space goes to infinity, and which corre-
sponds to a large N limit of some sort in the CFT side. In
those cases one can test the correspondence by checking
that the semiclassical expansion on the gravity side
agrees with the large N limit of the corresponding field
theories.
A derivation of the AdS=CFT correspondence requires

showing that the CFT can be rewritten as a quantum gravity
theory, in the sense that its 1=N expansion reproduces
the corresponding perturbative expansion around some

gravitational solution in AdS space. While one can often
test this for specific observables, providing such a deriva-
tion for the full theory is challenging (see [4–7] for some
recent progress in relating free d ¼ 2 symmetric orbifold
CFTs to string theory on AdS3). In our recent paper [8] we
provided such a derivation for the simplest case of the
AdS=CFT correspondence—the duality [9] between the
UðNÞ-singlet sector of N free complex scalar fields in d
dimensions, and a theory of higher-spin gravity on AdSdþ1.
Our derivation in [8] followed the methods of bi-local
holography [10–15], in its Lorentz-invariant version.
We first changed variables in the CFT from the N
free scalar fields ϕIðxÞ (I ¼ 1;…; N) to their bi-local
combinations

Gðx1; x2Þ≡ 1

N

XN
I¼1

ϕ�
I ðx1ÞϕIðx2Þ; ð1:1Þ

which capture all the information about UðNÞ-invariant
observables in the theory (at least in flat space). In the large
N expansion one can write down an action for Gðx1; x2Þ
that reproduces the correlators of the original theory, to all
orders in 1=N (as discussed in [8], the mapping to the
bilocal variables makes sense also for finite N but it is more
subtle then, and in this paper we only discuss the theory in
the 1=N expansion). In order to map this to a theory in AdS
space, we first expanded the bi-local field Gðx1; x2Þ in a
basis of eigenstates of the Euclidean conformal group
SOðdþ 1; 1Þ. We then showed that the same eigenstates
appear in the expansion of transverse traceless fields
ΦJðx; zÞ of spin J (J ¼ 0; 1; 2;…) living on a fixed
AdSdþ1 space, enabling a one-to-one mapping between
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these fields and the bi-local (1.1). Using this mapping we
rewrote the action of the original theory as an action (with
coupling 1=N) for fields in AdS space. This action is
explicitly known but is nonlocal. For a specific choice of
the undetermined coefficients appearing in the mapping,
the quadratic term in the bulk can be chosen to be local.
Since the UðNÞ-singlet sector of N free scalars is con-
jectured [9] to be dual to Vasiliev’s high-spin gravity theory
[16–18], we believe that our action is equivalent to a gauge-
fixed version of this theory, in which its fields live on a
fixed AdS space-time (as in [19]); the spectrum of physical
fields is consistent with this, but the equivalence has not yet
been shown.
In this paper, we generalize this construction to the

SUðNÞ-singlet sector of scalar QED—the theory of a Uð1Þ
gauge field minimally coupled to N charged scalar fields,
for 2 < d < 4. In principle this generalization is straight-
forward, since on the field theory side it just involves
introducing a dynamicalUð1Þ gauge field and coupling it to
SUðNÞ-singlet combinations of the scalar fields, and we
can in principle do this also on the gravity side. On-shell,
local SUðNÞ-invariant operators (such as the ones appear-
ing in the coupling to the gauge field) map to the boundary
values of the bulk fields on AdS space; however, the
construction above requires the off-shell mapping of the
local CFToperators to the bulk, and at first sight this seems
to be more complicated. In [8] we showed that for J ¼ 0
and d < 4 the naive on-shell mapping works also off-shell,
and we used it there to derive the dual to the critical UðNÞ
(or OðNÞ) vector model, by coupling a singlet σðxÞ to the
spin J ¼ 0 operator ϕIðxÞϕIðxÞ. In this paper we show that
the same is true also for J ¼ 0 and d > 4, and also for
higher values of J. This allows us to write down a simple
action for the d-dimensional Uð1Þ gauge field coupled to
the bulk fields; in fact, as may have been expected [20–24],
theUð1Þ gauge field becomes simply the boundary value of
the (dþ 1)-dimensional vector field Φ1ðx; zÞ. Thus, com-
pared to the original theory of N free scalars, the descrip-
tion of QED just involves changing the boundary condition
for the bulk vector field Φ1, and perhaps adding some
boundary terms for it. The boundary terms are required if
one wants to describe QED at finite coupling, but they
disappear in the low-energy limit, where QED (for
2 < d < 4) flows to a conformal field theory (at least at
large N and to all orders in 1=N [25], and perhaps also for
all finite values of N [26,27]).1 In the special case of d ¼ 3
one can also add a Chern-Simons coupling at level k; when
k=N is kept fixed in the large N limit, this coupling is
translated into a modified boundary condition for the bulk
vector field.

One application of our bulk formalism for QED would
be to find classical solutions in the bulk describing
monopole operators, and perhaps to use them to compute
their correlation functions. As we discuss below, our
formalism only includes monopole operators if there is
no Chern-Simons coupling for the Uð1Þ, and it may be
interesting to look for ways to get around this problem so
that monopoles in Chern-Simons-matter theories may also
be incorporated.
We also generalize our construction to the SUðNÞ

singlet sector of N scalar fields in the fundamental
representation of a UðNcÞ gauge field (“scalar QCD”
[28]), when Nc is kept fixed in the large N limit, and for
d ¼ 3 we can again include a Chern-Simons level k. The
bulk dual is very similar to the Nc ¼ 1 QED case, except
the bulk fields now transform in the adjoint representation
of UðNcÞ. Note that this limit is different from the large
Nc, k and fixed λ≡ Nc=k limit considered in [29], which
is believed to also be dual to a parity breaking higher
spin bulk theory. It would be interesting to see if
the generalization of our construction to this limit just
involves changing boundary conditions, or explicitly
changes the bulk interaction terms as a function of λ
(see discussions in [23,30]). Such a generalization, as
well as the inclusion of fermions, would allow us to
similarly construct the bulk dual of ABJ theory [31] in its
higher spin limit, which could ultimately lead to a
connection to string theory and M-theory via the ABJ
triality [23,32].
Finally, our off-shell mapping allows us to construct the

bulk dual for the critical UðNÞ or OðNÞ vector model for
4 < d < 6, as discussed in [33,34]. This CFT is not
unitarity at finite N due to complex large N instantons
[35], but is unitary in the 1=N expansion. It would be
interesting to study the classical solutions corresponding to
these instantons from the bulk perspective using our
construction.
We begin in Sec. II by describing the SUðNÞ-singlet

sector of scalar QED in bi-local variables, and translating
its action to these variables. In Sec. III we review the
mapping found in [8] between the free scalar theory and the
bulk, and extend it to an off-shell mapping for local
operators in the CFT. In Sec. IV we then use this mapping
to construct the bulk dual for the SUðNÞ-singlet sector of
scalar QED, and show that it reproduces the 1=N expansion
of this theory. Finally, in Sec. V we discuss the generali-
zation to scalar QCD.

II. SCALARQUED IN THE BILOCAL FORMALISM

We begin in this section by discussing QED with N
charged scalars in the bilocal formalism. First we will
discuss scalar QED in the usual local formalism in a general
dimension 2 < d < 4, as well as in d ¼ 3 where we can
add a Uð1Þ Chern-Simons term with level k. We will then
review how in d ¼ 3 one can realize the restriction to

1For d ¼ 4 − ϵ dimensions with small ϵ and any value of N,
this fixed point is weakly coupled, but this does not play a role in
our construction.
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SUðNÞ-singlet fields in a local fashion, by coupling to a
non-Abelian UðNÞ Chern-Simons theory at level k0 and
taking k0 → ∞, before coupling to the Uð1Þ gauge field
of QED. Finally, we will write the path integral for
the SUðNÞ-singlet sector of scalar QED in the bilocal
language, following the discussion of free scalars in
[10,36], and perform a saddle point expansion at large
N. In the 3d case we fix κ ¼ k=N to be finite in the large
N limit.

A. The local formalism

We begin by discussing the conventional local formalism
for QED with N complex scalars ϕI on Euclidean Rd for
2 < d < 4, following [37–40]. The actions for this theory
can be assembled by starting with the (Euclidean) free
theory action

Sfree½ϕ� ¼
Z

ddx∂iϕ
�
I ðxÞ∂iϕ

IðxÞ; ð2:1Þ

where all repeated indices are summed, including the
upper/lower I ¼ 1;…; N indices for the fundamental/
antifundamental of the UðNÞ global symmetry, and the
i ¼ 1;…; d index for the SOðdÞ Euclidean rotations. We
can then gauge the Uð1Þ subgroup by adding a Maxwell
term with scalar couplings:

Se½ϕ; A� ¼
Z

ddx

�
1

4e2
FijFij þ Ji½ϕ�

Aiffiffiffiffi
N

p þ AiAi

N
ϕ�
Iϕ

I

�
;

Ji½ϕ�≡ iðϕ�
I∂iϕ

I − ϕI∂iϕ
�
I Þ; ð2:2Þ

where Ai is a Uð1Þ gauge field with field strength Fij, the
Uð1Þ current is Ji, the seagull term is required by gauge-
invariance, and we rescaled e2 → e2=N and Ai → Ai=

ffiffiffiffi
N

p
for later convenience in the large N limit. This action
retains the SUðNÞ subgroup of the original UðNÞ global
symmetry, and also has a new (d − 3)-form Uð1ÞT global
symmetry generated by the Hodge dual field strength �F
[41,42]. The ϕI are uncharged under Uð1ÞT, but we can
couple it to codimension-3 operators, which in d ¼ 3
become local operators called monopole operators [43].
Finally, we should add a quartic coupling λ

4N ðϕ�
Iϕ

IÞ2,
which can be equivalently written by using a Hubbard-
Stratonovich field σ as

Sλ½ϕ; σ� ¼
Z

ddx

�
−

1

4λ
σ2 þ 1

2
ffiffiffiffi
N

p σϕ�
Iϕ

I

�
; ð2:3Þ

where integrating out σ recovers the λ
4N ðϕ�

Iϕ
IÞ2 term. The

most general UVaction for a Uð1Þ gauge theory coupled to
N complex scalars with relevant couplings in 2 < d < 4 is
then given bySfree þ Se þ Sλ, as well as amass term (which
we will always fine-tune to have vanishing mass at low

energies). This theory is believed to flow in the IR to an
interacting CFT called theCPN−1 or Abelian Higgs model2:

SCPN−1 ½ϕ; A; σ�≡ Sfree½ϕ� þ Se→∞½ϕ; A� þ Sλ→∞½ϕ; σ�;
ð2:4Þ

where e; λ → ∞ since the Maxwell term is irrelevant while
ðϕ�

Iϕ
IÞ2 is relevant (near the free UV fixed point).3 In d ¼ 3,

we can generalize this CFT by adding a level k Chern-
Simons term

Sk½A� ¼ −
Z

d3x
ik
4πN

εijlAi∂jAl; ð2:5Þ

where k ∈ Z (recall that we rescaled the gauge field by a
factor of

ffiffiffiffi
N

p
). Note that this term is marginal in 3d, unlike

the Maxwell term which dropped out for e → ∞.
In general the fixed point written above is strongly

coupled, but it becomes weakly coupled at large N, and it
can be studied perturbatively in a 1=N expansion. We begin
by writing down the Feynman rules for this expansion. The
propagator for ϕI is

G0ðx1; x2Þ ¼
Γðd=2 − 1Þ

4πd=2
1

jx1 − x2jd−2
: ð2:6Þ

For σ, we have the momentum space σ propagator and the
one-loop correction from the ϕ2 bubble diagram

DσðpÞ¼−2λ; Bϕ2ðpÞ¼−jpjd−4 21−2dπ
3−d
2

Γðd−1
2
Þsinðπd

2
Þ; ð2:7Þ

where the former comes from the trivial quadratic term σ2,
while the latter comes from the 1

2
ffiffiffi
N

p σϕ�
Iϕ

I vertex and is

simply G0ðx; 0Þ2=4 in momentum space. Since both are
OðN0Þ, at leading order in 1=N we need to resum an infinite
geometrical series of bubble diagrams to obtain the
effective σ propagator (see Fig. 1)

2This expectation is supported by lattice data for d ¼ 3 and all
values ofN [26,27], and by analytic results in the largeN limit for
all values of d [25]. We will take (2.4) to be a formal definition of
the IR CFT, which should be valid for all values of d and N for
which this CFT exists.

3At large N one can also tune λ ¼ 0 to get a different IR CFT
called the tricritical QED theory, but for d ¼ 3 it is not clear if the
fixed point exists at finite N.
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hσðxÞσð0Þiλ ¼
Z

ddp
ð2πÞd e

ip·x½DσðpÞ þDσðpÞBϕ2ðpÞ

×DσðpÞ þ…� þOðN−1Þ

¼ −
Z

ddp
ð2πÞd

2λeip·x

1 − 2λ jpjd−421−2dπ3−d2
Γðd−1

2
Þ sinðπd

2
Þ

þOðN−1Þ:

ð2:8Þ

In the IR CFT at λ → ∞, this becomes the propagator of a
dimension two operator:

hσðxÞσð0Þi∞ ¼ 2dþ3 sinðπd
2
ÞΓðd−1

2
Þ

π
3
2Γðd

2
− 2Þ

1

jxj4 þOðN−1Þ: ð2:9Þ

For the gauge field Ai, we must fix a gauge in order to
write down its propagator. It is convenient to choose a
gauge such that the IR limit e → ∞ can be taken immedi-
ately. As discussed in [37] for the similar fermionic QED3

case, a simple family of gauges that has this property
involves an average over different gauge-fixings, which is
implemented by adding to the action the nonlocal gauge-
fixing term

Sζ½A�¼

8>><
>>:

1
1−ζ

Γðd
2
Þ2

8πdðd−1Þðd−2Þ
R
ddxddy∂iAiðxÞ∂jAjðyÞ

jx−yj2d−4 d≠3

1
1−ζ

�
κ2

π4
þ 1

64π2

�R
d3xd3y∂iAiðxÞ∂jAjðyÞ

jx−yj2 d¼3;

ð2:10Þ

where κ ≡ k=N, and we chose a different coefficient for d ¼
3 for later convenience. This arises by averaging over
different ∂iAiðxÞ ¼ ωðxÞ gauges with a nonlocal weight
proportional to ð1 − ζÞ−1 R ddxddyωðxÞωðyÞ=jx − yj2d−4,
where ζ ∈ R; the limit ζ → 1 recovers the usual Landau
gauge ∂iAi ¼ 0. Using this gauge-fixing term, along with
theMaxwell term in (2.2), and ford ¼ 3 theCS term in (2.5),
we can find the momentum-space gauge field propagator

DMax
ij ðpÞ ¼

8>>><
>>>:

e2

p2

�
δij −

pipj

jpj2

�
þ ð1 − ζÞ 2d−2πd=2ΓðdÞΓð2−d

2
ÞΓðd

2
Þ2

pipj

jpjd d ≠ 3

1
p2

e4
þ κ2

4π2

�
1
e2

�
δij −

pipj

jpj2

�
− κ

2π εijl
pl

jpj2

�
þ ð1 − ζÞ 16π2

64κ2þπ2
pipj

jpj3 d ¼ 3:
ð2:11Þ

The coupling JiAi and the contact term A2
iϕ

2 in (2.2) both contribute to the momentum space photon self-energy at one-
loop order

BijðpÞ ¼
Z

ddk
ð2πÞd

�
−
2δij
jkj2 þ

ð2kþ pÞið2kþ pÞj
jkþ pj2jkj2

�
¼ −

Γð2 − d
2
ÞΓðd

2
Þ2

2d−2πd=2ΓðdÞ jpj
d−2

�
δij −

pipj

jpj2
�
; ð2:12Þ

where we see that the only role of the A2
iϕ

2 term is to cancel a divergence in the contribution of the JiAi term. As with σ, at
leading order in 1=N we need to resum an infinite geometric series of bubble diagrams to find the effective photon
propagator (see Fig. 2)

FIG. 1. Bubble diagrams contributing to the effective σ propagator hσðxÞσð0Þiλ at leading OðN0Þ order. Thick lines correspond to σ
contractions, and dashed lines to the scalars ϕI .

FIG. 2. Bubble diagrams contributing to the effective photon propagator hAiðxÞAjð0Þiζ;e;k at leading OðN0Þ order. Squiggly lines
correspond to photon contractions DMax

ij , and dashed lines to the scalars ϕI .
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hAiðxÞAjð0Þiζ;e;k ¼
Z

ddp
ð2πÞd e

ip·x½DMax
ij ðpÞ þDMax

ik ðpÞBklðpÞDMax
lj ðpÞ þ…� þOðN−1Þ

¼

8>>><
>>>:

R ddp
ð2πÞd e

ip·x

�
e2ðδij−

pipj

jpj2 Þ

jpj2þ Γð2−d
2
ÞΓðd

2
Þ2

2d−2πd=2ΓðdÞ
e2

jpj2−d
þ 2d−2πd=2ΓðdÞ

Γð2−d
2
ÞΓðd

2
Þ2 ð1 − ζÞ pipj

jpjd

�
þOðN−1Þ d ≠ 3

R d3p
ð2πÞ3

eip·x
jpj

�ð 1
16
þjpj

e2
Þðδij−

pipj

jpj2 Þ−
κ
2πεijl

pl
jpj

ð 1
16
þjpj

e2
Þ2þ κ2

4π2

þ 16

1þ64κ2

π2

ð1 − ζÞ pipj

jpj2

�
þOðN−1Þ d ¼ 3;

ð2:13Þ

where the k label is only there for d ¼ 3. In the IR CFT at e → ∞ the expression simplifies and we obtain the momentum
space propagator

hAiðpÞAjð−pÞiζ;∞;k ¼

8>>><
>>>:

1
jpjd−2

2d−2πd=2ΓðdÞ
Γð2−d

2
ÞΓðd

2
Þ2

�
δij − ζ

pipj

jpj2

�
þOðN−1Þ d ≠ 3

1
jpj

16ðδij−ζ
pipj

jpj2 Þ−
128κ
π εijl

pl
jpj

1þ64κ2

π2

þOðN−1Þ d ¼ 3

ð2:14Þ

from which we can go to position space to get

hAiðxÞAjð0Þiζ;∞;k ¼

8>>><
>>>:

ΓðdÞ
2Γð2−d

2
ÞΓðd

2
Þ3

ðd−2−ζÞδijþ2ζ
xixj

jxj2
jxj2 þOðN−1Þ d ≠ 3

8
π2þ64κ2

1
jxj2

�
ð1 − ζÞδij þ 2ζ

xixj
jxj2 þ κ

4
εijl

xl
jxj

�
þOðN−1Þ d ¼ 3:

ð2:15Þ

Note that the choice of gauge in (2.10) allowed us to take
e → ∞ in the propagator, while other gauge choices such as
Rξ gauge would give superficial divergences in this limit,
which would only cancel after computing gauge-invariant
observables.
Using these Feynman rules including the resummed

propagators, we can compute correlation functions in
scalar QED, in an expansion in 1=N similar to the large
N expansion of vector models.

B. A subtlety in restricting to the singlet sector

We will be interested in the SUðNÞ singlet sector of
scalar QED. In general d, we can simply restrict to this
sector by hand, which has no nontrivial effects on Rd. For
d ¼ 3 and nonzero k, we need to be more careful. What we
actually do is first restrict the theory of N scalars to its

UðNÞ-invariant sector, and then couple this sector to the
Uð1Þ gauge field. We can perform the restriction in a
rigorous way [44] by coupling the theory to a UðNÞ Chern-
Simons term at infinite level before coupling to the new
Uð1Þ gauge field, and we will use this to show that
monopole operators cannot appear in the singlet sector
(as we define it here) when k ≠ 0. Thus, for d ¼ 3 and
nonzero k our theory is not precisely the same as the
SUðNÞ-singlet sector of scalar QED (which could have
SUðNÞ-singlet monopole operators), but we will still call it
by this name. In all other cases our theory includes the full
SUðNÞ-singlet sector of scalar QED.
Let us start by considering the free theory with action

Sfree in d ¼ 3, with global symmetry UðNÞ. We can gauge
this UðNÞ by adding a UðNÞk0 Chern-Simons term for a
gauge field Bi, with scalar couplings:

Sk0 ¼
Z

d3x

�
−
ik0

4π
εijl

�
Bi

I
J∂jBl

J
I −

2i
3
Bi

J
I Bj

K
J Bl

I
K

�
þ JiJI Bi

I
J þ Bi

J
I Bi

I
Jϕ

�
Kϕ

K

�

¼
Z

d3x
�
−
iNk0

4π
εijlBi∂jBl þ JiBi þ NBiBiϕ

�
Iϕ

I þ SUðNÞ terms
�
; ð2:16Þ

where Bi
I
J is the UðNÞ gauge field, JiJI ≡ iðϕ�

I∂iϕ
J −

ϕJ∂iϕ
�
I Þ is the UðNÞ current, and in the second line we

separated out the SUðNÞ ⊂ UðNÞ terms from the Uð1Þ
gauge field Bi ≡ Bi

I
I

N , which couples to the Uð1Þ current Ji
defined in (2.2). The gauge-invariant operators are then all
singlets of UðNÞ, as we want, but the theory is modified by
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the extra Bi fields, and in particular it has new monopole
operators charged under a topological Uð1ÞT 0 global
symmetry generated by the dual of the field strength of
Bi. We can then take the k0 → ∞ limit, which on R3

removes all dynamical effects of the gauging, including the
existence of monopoles charged under the Uð1ÞT 0 , and we
obtain precisely the desired restriction to UðNÞ singlets.
From the UðNÞ-singlet sector of the free theory, we can

then get the theory we are interested in (the SUðNÞ-singlet
sector of scalar QED at level k) by adding Se→∞, Sk, and
Sλ→∞ as discussed before. For k ≠ 0, monopole operators
(charged under Uð1ÞT) carry k units of the gauge Uð1Þ
charge, and so to be gauge-invariant under the A gauging,
monopoles need to be dressed by composites of ϕI that will
cancel their Uð1Þ charge. But then the dressed monopoles
would also be charged under the original B gauging due to
the dressing. Thus, our theory includes no gauge-invariant
monopoles for k ≠ 0. For k ¼ 0, the monopole operators of
QED are uncharged under Uð1Þ, so they are allowed.
Similarly for d ≠ 3where we have no Chern-Simons terms,
the codimension-3 monopole operators discussed above are
also allowed.

C. The bilocal formalism

We will now show how the singlet sector discussed
above can be usefully described in terms of bilocal
variables, which can then be naturally translated into the
bulk in the later sections. We start by reviewing the bilocal
formalism for the free theory with action Sfree in (2.1)
following [8,10,15,36]. All UðNÞ invariants of N free
scalars can be written in terms of the bilocal field (1.1).
We can then change variables in the path integral from ϕI to
G to get the partition function

Z ¼
Z

DGðx1; x2Þ expð−Sfree½G� − SJac½G�Þ;

SJac ¼ −ðN − VÞTrðlogðGÞÞ; ð2:17Þ

where we regularized the path integral by placing our field
theory on a lattice of V points, such that Gðx1; x2Þ is a
Hermitian V × V matrix, and SJac is the nontrivial Jacobian
(we drop all factors that do not depend on G). Note that
(2.17) is only correct for N ≥ V, which applies to the large
N expansion we consider in this paper, while for N < V
Gðx1; x2Þ must obey complicated nonlinear constraints.
The continuum limit is reached by taking V → ∞,
in which case matrix traces become continuum
integrals as TrðGÞ≡ R

ddxGðx; xÞ and ðGHÞðx1; x2Þ≡R
ddx3Gðx1; x3ÞHðx3; x2Þ. In particular, the continuum

Sfree½G� may be written as

Sfree½G� ¼ N
Z

ddx1∂1;i∂2;iGðx1; x2Þjx2¼x1 : ð2:18Þ

Since both Sfree½G� and the Jacobian include terms propor-
tional to N, we can perform a 1=N saddle point expansion
by taking the large N limit first, where all physical
observables should be independent of the regularization
parameter V. In particular, we expand G around its large N
saddle point values given by the propagator G0ðx1; x2Þ in
(2.6) as

Gðx1; x2Þ ¼ G0ðx1; x2Þ þ
1ffiffiffiffi
N

p ηðx1; x2Þ: ð2:19Þ

The free bilocal action (2.17) in terms of the fluctuation η
now gives (up to additive constants)

Sfree½η� ¼
ffiffiffiffi
N

p
TrðG−1

0 ηÞ; ð2:20Þ

and

SJac½η� ¼ −ðN − VÞ log
�
1þ 1ffiffiffiffi

N
p G−1

0 η

�

¼ −
X∞
n¼1

ð−1Þnþ1

n
N1−n

2TrððG−1
0 ηÞnÞ

− V
X∞
n¼1

ð−1Þn
n

N−n
2TrððG−1

0 ηÞnÞ; ð2:21Þ

where we expanded in large N. Note that the first n ¼ 1
term cancels the linear Sfree½η� as we expect from a saddle
point solution. We can then write down Feynman rules
where the propagator is given by the n ¼ 2 bare term in
(2.21), and we have bare n-point vertices for n ≥ 3, as well
as counterterm (multiplied by V) n-point vertices for n ≥ 1.
As shown in [8], these Feynman rules lead to the expected
correlation functions for the free theory.
We can extend the bilocal formalism to QED by simply

writing all ϕ-dependent terms in the actions wewrote above
using G as

Se½G;A�¼
Z

ddx

�
1

4e2
F2
ijðxÞþJi½G�AiðxÞþA2

i ðxÞGðx;xÞ
�
;

Sλ½G;σ�¼
Z

ddx

�
−
1

4λ
σ2ðxÞþ

ffiffiffiffi
N

p

2
σðxÞGðx;xÞ

�
; ð2:22Þ

where we write the Uð1Þ current in terms of G as
Ji½G�≡ i

ffiffiffiffi
N

p ð∂2;i − ∂1;iÞGðx1; x2Þjx2¼x1 . Note that SJac½G�
is gauge-invariant by itself, and then gauge-invariance of
the other terms works exactly the same as in the ϕ
language. We would like to now expand G around G0 in
(2.6) (which is not gauge-invariant, but is still a saddle point
in the gauge-fixing that we perform as described above)
to get
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Se½η; A� ¼
Z

ddx
�
1

4e2
F2
ijðxÞ þ Ji½η�AiðxÞ þ Ji½G0�AiðxÞ þ

A2
i ðxÞηðx; xÞffiffiffiffi

N
p þ A2

i ðxÞG0ðx; xÞ
�
;

Sλ½η; σ� ¼
Z

ddx
�
−

1

4λ
σ2ðxÞ þ 1

2
σðxÞηðx; xÞ þ

ffiffiffiffi
N

p

2
σðxÞG0ðx; xÞ

�
; ð2:23Þ

where Ji½η�≡ ið∂2;i − ∂1;iÞηðx1; x2Þjx2¼x1 . This includes divergent terms involving G0ðx; xÞ and its derivatives, which are
not regularized by the lattice regulator used so far. For Sλ, we can cancel σðxÞG0ðx; xÞ at each order with a linear term in σ
(or, equivalently, with a mass counterterm). For Se, we expect that Ji½G0� ¼ 0 in any Lorentz-invariant regularization.4 In
the following, we will simply drop the divergent terms that can be canceled in these ways, and thus define

Se½η; A�≡
Z

ddx

�
1

4e2
F2
ijðxÞ þ Ji½η�AiðxÞ þ

A2
i ðxÞηðx; xÞffiffiffiffi

N
p þ A2

i ðxÞG0ðx; xÞ
�
;

Sλ½η; σ�≡
Z

ddx

�
−

1

4λ
σ2ðxÞ þ 1

2
σðxÞηðx; xÞ

�
: ð2:25Þ

Note that we have kept the counterterm A2
i ðxÞG0ðx; xÞ in

the action, because it is needed to cancel the divergence in
the contribution of Ji½η�Ai to the photon self-energy. In
particular, A2

i ðxÞG0ðx; xÞ contributes the first divergent
term in (2.12), while Ji½η�A contributes the second term.

The A2
i ðxÞηðx;xÞffiffiffi

N
p term does not contribute at leading order in

1=N, but will contribute at subleading orders. In fact, for
the CPN−1 model (2.4) we can make the field redefinition

(after gauge-fixing) σðxÞ ↦ σðxÞ − 2A2
i ðxÞffiffiffi
N

p which cancels
A2
i ðxÞηðx;xÞffiffiffi

N
p entirely (for λ → ∞). In this way the Feynman

diagrams of the theory can be packed in terms of the
effective σ and A propagators in (2.9) and (2.13), respec-
tively.
Our action is written in a specific gauge choice discussed

above, using the nongauge-invariant bilocal variable
ηðx1; x2Þ. In order to construct gauge-invariant variables,
we need to look at the limit x2 → x1 of ηðx1; x2Þ to
obtain gauge-invariant local operators, or alternatively to
dress Gðx1; x2Þ with a Wilson line between x1 and x2. We
can also compute correlation functions of ηðx1; x2Þ’s using

our gauge-fixed action, but generally these are not mean-
ingful, because we are averaging over different gauge
choices in which Gðx1; x2Þ corresponds to different
operators.5

III. THE AdS/CFT MAP

In this section, we discuss the exact AdS=CFT map that
wewill use in the next section towrite down the bulk dual of
the SUðNÞ-singlet sector of scalar QED. We start by
reviewing the off-shell AdS=CFT map derived in [8],
which naturally acts on the CFT bilocal ηðx1; x2Þ. We will
then show how this map implies that local single-trace
operators of any spin J in any dimensiond alsomap off-shell
to the bulk in a simpleway, generalizing thed < 4 and J ¼ 0
case proven in [8]. For J ¼ 1, this off-shell map will
then be used to write the bulk dual of scalar QED in the
next section.

A. Review of the bilocal map

We begin by briefly reviewing the AdS=CFT map of the
free scalar theory [8]. The map is given by expanding the
bilocal fluctuation ηðx1; x2Þ on one side, and the spin J
transverse traceless AdS fieldsΦJðx; zÞ on the other side, in
terms of the same irreducible representations (labeled by Δ,
J, y) of the conformal group, so that the exact map between
ηðx1; x2Þ toΦJðx; zÞ is given by the convolution of the basis
elements in each space.6

4A gauge-invariant way of cancelling this term is to couple N
new scalars ϕ̃I to Ai with opposite charge as ϕI and large massm.
We can then express ϕ̃I in terms of bilocals G̃ in the usual way
except the saddle point is now given by the massive free
propagator

G̃0ðx; 0Þ ¼
Γðd=2 − 1Þ

4πd=2
e−mjxj

jxjd−2 ; ð2:24Þ

and the JiAi terms in the G̃ version of (2.23) come with opposite
sign. If we now take the limit m → ∞, then we see
that G̃0ðx1; x2Þ → 0 except where x1 → x2 such that G̃0 → G0,
so the only effect of these new scalars is to cancel the Ji½G0�Ai
term.

5In the special case ζ ¼ 1 where we just have Landau gauge,
these correlation functions are meaningful, but they correspond to
some complicated nonlocal gauge-invariant operators.

6For later convenience, we will not use the embedding space
formalism used in [8].
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We expand ηðx1; x2Þ in the complete basis

ηðx1; x2Þ ¼
X∞
J¼0

Z
γJ

dΔ
2πi

Z
ddyCΔ;JðyÞhOΔ0

ðx1Þ

× ÔΔ0
ðx2ÞOΔ;JðyÞi; ð3:1Þ

where the basis elements are “3-point functions”7 of scalar
operators OΔ0

and ÔΔ0
that have the same scaling dimen-

sion Δ0 ¼ d−2
2

as a free scalar field, namely

hOΔ0
ðx1ÞÔΔ0

ðx2ÞOi1;…;iJ
Δ;J ðx3Þi¼

Zi1…ZiJ − traces

x2Δ0−ΔþJ
12 xΔ−J13 xΔ−J23

; ð3:2Þ

where Zi ≡ xi
13

x2
13

− xi
23

x2
23

, we define x12 ≡ jx1 − x2j, and we will
in general suppress spin indices for simplicity. The con-
tours γJ of the Δ integrals in (3.1) go over the principal
series Δ ¼ d

2
þ is for real s, except for J ¼ 0 and d < 4

where we deform the contour as shown in Fig. 3 to ensure
that the pole 2Δ0 ¼ d − 2 of the scalar single-trace operator
in the free theory appears on the same side of the contour as
the other spin J single-trace operators with scaling dimen-
sion d − 2þ J. This expansion exists when ηðx1; x2Þ
satisfies the conditions
(1) limx2→x1ηðx1; x2Þ should be finite.
(2) At large jx1 þ x2j (and fixed difference) ηðx1; x2Þ

should decay.8

(3) At large jx1j (or jx2j) and fixed x2 (x1)

ηðx1; x2Þ ∼ jx1j−2Δ0 · Power series in
1

jx1j
: ð3:3Þ

(4) ηðx1; x2Þ must be smooth.

For d > 4,9 we can use the orthogonality and complete-
ness relations of the 3-point basis, as reviewed in
Appendix A 1, to invert (3.1) and write CΔ;JðyÞ in terms
of ηðx1; x2Þ as

d > 4∶ CΔ;JðyÞ ¼
1

2

1

NΔ;J

Z
ddx1ddx2ηðx1; x2Þ

× hOΔ̃0
ðx1ÞÔΔ̃0

ðx2ÞOΔ̃;JðyÞi; ð3:4Þ

where the normalization NΔ;J is given in (A2), and tildes
over dimensions denote Δ̃ ¼ d − Δ. The shadow relation
(A5) implies that only half of the coefficients CΔ;JðyÞ are
independent along the contour γJ. We define the physical
CΔ;JðyÞ to have ImðΔÞ ≥ 0, and then the shadow CΔ̃;JðyÞ
are related to them by

CΔ̃;JðyÞ ¼
1

SðΔ̃;JÞΔ0;Δ0

Z
ddy0hOΔ;JðyÞOΔ;Jðy0ÞiCΔ;Jðy0Þ; ð3:5Þ

where the shadow coefficient SðΔ̃;JÞΔ0;Δ0
is given in (A4), and

the “2-point function” is defined as

hOi1…iJ
Δ;J ðx1ÞOi0

1
…i0J

Δ;J ðx2Þi ¼
Ii1i

0
1ðx12Þ � � � IiJi0Jðx12Þ

x2Δ12
− traces;

ð3:6Þ

where Iii
0 ≡ δii

0 − 2 xixi
0

jxj2 . Hermiticity of ηðx1; x2Þ then

implies that C�
Δ;JðyÞ ¼ ð−1ÞJCΔ̃;JðyÞ.

For d < 4, the integral in (3.4) does not converge.
As explained in [8], we can avoid this divergence by
considering the auxiliary bilocal

η̃ðx1; x2Þ ¼
�
Γðd−2

2
Þ

4π
d
2

�
2

∇2
1∇2

2ηðx1; x2Þ; ð3:7Þ

which can be expanded in the harmonic basis as

η̃ðx1; x2Þ ¼
X∞
J¼0

Z
P:S:

dΔ
2πi

Z
ddyC̃Δ;JðyÞ

× hOΔ̃0
ðx1ÞÔΔ̃0

ðx2ÞOΔ;JðyÞi; ð3:8Þ

where the contour is now the principal series for all J, and

FIG. 3. The deformation of the contour γ0 from the principal
series ReðΔÞ ¼ d

2
to includeΔ ¼ 2Δ0 and exclude d − 2Δ0, when

2Δ0 < d=2. In general we should deform the contour γJ for any
2Δ0 þ 2nþ J < d

2
and n ¼ 0; 1;….

7Note that while the harmonic basis resembles a three point
function, it does not correspond to a correlator in a physical CFT,
and is simply a useful basis for conformally-covariant functions.

8In [8], a related map was also derived for ηðx1; x2Þ that do not
satisfy this condition.

9We expect that d ¼ 4 should be an analytic continuation of
our results for d > 4, as is generally the case in harmonic analysis
[45], but we will not discuss this case in detail.
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d < 4∶ C̃Δ;JðyÞ ¼
1

2

1

NΔ;J

Z
ddx1ddx2η̃ðx1; x2Þ

× hOΔ0
ðx1ÞÔΔ0

ðx2ÞOΔ̃;JðyÞi ð3:9Þ

is now convergent for d < 4, unlike (3.4). The original
expansion of ηðx1; x2Þ in (3.1) still holds for d < 4
provided that we identify

d < 4∶ CΔ;JðyÞ≡ 16πdΓ2ðd
2
− Δ0Þ

Γ2ðΔ0ÞλΔ;J
C̃Δ;JðyÞ; ð3:10Þ

where λΔ;J is the eigenvalue of the bilocal Laplacian in the
conformal basis and is given for any d by

λΔ;J ¼ ðM2
Δ;J −M2

dþJ;JÞðM2
Δ;J −M2

dþJ−2;JÞ;
M2

Δ;J ≡ ΔðΔ − dÞ − J: ð3:11Þ

In AdS space we use Poincaré coordinates
(ds2 ¼ ðdxidxi þ dz2Þ=z2), and in our formalism the met-
ric in the bulk is fixed, with traceless transverse spin J fields
ΦJðx; zÞ (including a spin-two graviton) propagating on
this fixed background. We define the mapping from the
CFT to the bulk by expanding the bulk fieldsΦJðx; zÞ in the
complete basis

ΦJðx; zÞ ¼
Z
γJ

dΔ
2πi

Z
ddyfΔ;JCΔ;JðyÞGΔ;Jðx; zjyÞ; ð3:12Þ

where we identified the bulk coefficient CΔ;JðyÞ with the
same coefficient appearing in the bilocal expansion, up to a
multiplicative factor fΔ;J that is not fixed by conformal
symmetry. This identification implies that the contour γJ in
(3.12) is the same as the one in the bilocal expansion.
The basis elements in (3.12) are the bulk-to-boundary
propagators in AdS space, defined by the differential
equation

ð∇2
x;z −M2

Δ;JÞGΔ;Jðx; zjyÞ ¼ 0;

∇2
x;z ≡ zdþ1∂zðz−dþ1∂zÞ þ z2∇2

x; ð3:13Þ

and by the z → 0 boundary condition10

GΔ;Jðx; zjyÞ ¼ zΔ−JhOΔ;JðxÞOΔ;JðyÞi
þ zd−Δ−JSΔ;JB δTTJ ðx − yÞ þ � � � ; ð3:14Þ

where δTTJ ðxÞ denotes a delta function with 2J suppressed
lower indices for spin J traceless transverse functions on

the boundary Rd,11 and we define the bulk shadow
coefficient

SΔ;JB ≡ π
d
2ΓðΔ − d

2
Þ

ðJ þ Δ − 1ÞΓðΔ − 1Þ : ð3:15Þ

The solution to (3.13) and (3.14) is by construction trans-
verse

for a ¼ 1;…; J∶ ∇μaGi1���iJ
Δ;J ðx; zjyÞμ1���μa���μJ ¼ 0;

∇μ ≡ zdþ3∂μz−d−1; ð3:16Þ

where μ ¼ z; 1;…; d denotes bulk spin indices that we in
general suppress for simplicity (we denote the index in the
radial direction by z, this should not be confused with the
value of the radial coordinate that we also denote by z).
See Appendix A 2 for an explicit expression for GΔ;J, as
well as the orthogonality, completeness, and shadow
relations.
The CFT shadow relation (A5) and the bulk shadow

relations (A7) imply that fΔ;J must satisfy the consistency
condition

fΔ;J
fΔ̃;J

¼ SΔ̃;JB

SðΔ̃;JÞΔ0;Δ0

¼ ΓðΔþ JÞΓ2ðΔ̃þJ
2
Þ

ΓðΔ̃þ JÞΓ2ðΔþJ
2
Þ ; ð3:17Þ

where the bulk shadow coefficient is given in (3.15). The
expansion (3.12) assumes that ΦJðx; zÞ decays in the small
z limit as z

d
2
−J in general. For J ¼ 0 and d < 4 recall that

the contour γ0 allows the integrand to have an extra
contribution at Δ ¼ d − 2, in which case Φ0ðx; zÞ could
decay as zd−2. Finally, ΦJðx; zÞ should decay at large x,
which corresponds to ηðx1; x2Þ decaying at large
jx1 þ x2j.12
For J > 0 or d > 4, we can use the orthogonality and

completeness of the propagators to write CΔ;JðyÞ in terms
of ΦJðx; zÞ as

J > 0 or d > 4∶ CΔ;JðyÞ

¼ 1

αJfΔ;JNΔ;J

Z
ddxdz
zdþ1

ΦJðx; zjyÞGΔ̃;Jðx; zjyÞ; ð3:18Þ

where the normalization αJ is given in (A9). This integral is
not convergent for J ¼ 0 and d < 4, but as shown in [8] it
can be replaced by the modified relation

10When Δ ¼ Δ̃, as can happen for the scalar bulk field in
d ¼ 4, the second term will have a logðzÞ, which distinguishes its
scaling in z from the first term.

11For instance, when J ¼ 1 we can define δTT1;ijðxÞ≡R ddp
ð2πÞd e

ipxðδij − pipj

jpj2 Þ.
12A map for nondecaying Φ0 was also derived in [8].

AdS FROM CFT FOR SCALAR QED PHYS. REV. D 104, 126011 (2021)

126011-9



J ¼ 0 and d < 4∶ CΔ;0ðyÞ

¼
Z

ddxdz
zdþ1

GΔ̃;0ðx; zjyÞ
λΔ;0α0fΔ;0NΔ;0

× ð∇2
x;z −M2

d−2;0Þð∇2
x;z −M2

d;0ÞΦ0ðx; zÞ; ð3:19Þ

where the AdS Laplacian is defined in (3.13).
The CFT-to-AdS map now simply follows from a

convolutionof the bulk and CFT bases, and it takes the
explicit form

d > 4∶ ΦJðx; zÞ ¼
1

2

Z
P:S:

dΔ
2πi

fΔ;J
NΔ;J

Z
ddy

Z
ddx1ddx2GΔ;Jðx; zjyÞhOΔ̃0

ðx1ÞÔΔ̃0
ðx2ÞOΔ̃;JðyÞiηðx1; x2Þ;

d < 4∶ ΦJðx; zÞ ¼
1

2

Z
γJ

dΔ
2πi

Z
ddy

Z
ddx1ddx2

fΔ;J
λΔ;JNΔ;J

GΔ;Jðx; zjyÞhOΔ0
ðx1ÞÔΔ0

ðx2ÞOΔ̃;JðyÞi∇2
1∇2

2ηðx1; x2Þ; ð3:20Þ

where for d > 4 we plugged (3.4) into (3.12), while for
d < 4 we plugged (3.9) and (3.10) into (3.12). The AdS-to-
CFT map similarly comes from plugging (3.18) into (3.1),
and it takes the form

ηðx1; x2Þ ¼
X∞
J¼0

Z
P:S:

dΔ
2πi

Z
ddy

Z
ddxdz
zdþ1

GΔ̃;Jðx; zjyÞ
αJNΔ;JfΔ;J

× hOΔ0
ðx1ÞÔΔ0

ðx2ÞOΔ;JðyÞiΦJðx; zÞ; ð3:21Þ

where for d < 4 and J ¼ 0 we need to replace the J ¼ 0
term by

Z
γ0

dΔ
2πi

Z
ddy

Z
ddxdz
zdþ1

hOΔ0
ðx1ÞÔΔ0

ðx2Þ

×OΔ;0ðyÞi
GΔ̃;0ðx; zjyÞ

α0NΔ;0λΔ;0fΔ;0

× ð∇2
x;z −M2

d−2;0Þð∇2
x;z −M2

d;0ÞΦ0ðx; zÞ; ð3:22Þ

due to the modified expansion in (3.19).

B. Off-shell map of single-trace operators

We will now discuss how the off-shell bilocal map
reviewed above can be used to derive a simple off-shell map
for singlet local operators in the CFT. We start by reviewing
the derivation of the map for J ¼ 0 and d < 4 that was
shown in [8], and then discuss how to generalize this to
general J and d > 2.
Spin J single-trace singlet local operators SJi1���iJðxÞ in the

free theory are defined in terms of the bilocal as

SJi1���iJðx1Þ≡ lim
ε→0

DJ;ðx1;x2Þ
i1���iJ ηðx1; x2Þjx2¼x1þεê; ð3:23Þ

where ê is an arbitrary unit vector, and the bilocal differ-

ential operator DJ;ðx1;x2Þ
i1…iJ

can be found in [46] and is fixed
such that SJðxÞ is a conformal primary normalized with
two-point function

hSJi1…iJ
ðx1ÞSJj1…jJ

ðx2Þi

¼ aJ

�
Ij1ði1ðx12Þ � � � IiJÞjJðx12Þ

x2ðd−2þJÞ
12

− traces

�
;

Iij≡ δij− 2
xixj
x2

; aJ ¼
π

1
2
−dΓðd

2
þ J− 1ÞΓðdþ J− 3Þ

2dþJΓðJþ 1ÞΓðd−3
2
þ JÞ :

ð3:24Þ

For instance, for J ¼ 0, 1 we have

D0;ðx1;x2Þ ¼1; D1;ðx1;x2Þ
i ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
d−2

p ð∂i;x2 −∂i;x1Þ; ð3:25Þ

such that for J ¼ 0we recover the coefficient a0 ¼ Γðd=2−1Þ2
16πd

in the scalar 2-point function computed from (2.6), while
for J ¼ 1 we identify S1i ðxÞ ¼ − i

2
ffiffiffiffiffiffi
d−2

p Ji½η� with Ji½η�
defined below (2.23).
As shown in [8], we can use the expansions (3.1) and

(3.12) to show that

SJi1…iJ
ðx1Þ ¼ lim

ε→0

�Z
γJ

dΔ
2πi

2SðΔ̃;JÞΔ0;Δ0
CΔ̃;J
i1…iJ

ðx1Þ
ε2Δ0þJ−Δ þ

X∞
J0¼0

Z
γJ0

dΔ
2πi

Z
ddyCΔ;J0

j1…jJ0
ðyÞ ðê-dependentÞi1…iJ ;ji…jJ0

ε2Δ0þJ0−Δ

�
;

ΦJ;i1…iJðx1; εÞ ¼ 2

Z
γJ

dΔ
2πi

fΔ;JεΔ−J½SðΔ̃;JÞΔ0;Δ0
CΔ̃;J
i1;…iJ

ðx1Þ þOðεÞ�: ð3:26Þ
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In general, it is difficult to perform the Δ integrals in (3.26),
since we know very little about general CΔ;J. For instance,
the contour γJ0 for d > 4 or for J0 > 0 and d ≤ 4 is the
principal series ReðΔÞ ¼ d=2, so along this contour the
leading term ε2−d=2−J

0
diverges for the free theory. To get

the finite answer for SJi1…iJ
ðx1Þ that we expect, there must

be complicated cancellations. For d < 4 and J0 ¼ 0, how-
ever, recall that the contour γ0 includes a deformation from
the principal series to include the pole Δ ¼ d − 2 < d=2.
Since the principal series contribution goes to zero as ε2−d=2

in this case, we know even off-shell that the only con-
tribution as ε → 0 to the integrals in (3.26) comes from the
Δ ¼ d − 2 pole, which is the only pole on the other side of
the principal series. This yields the off-shell relation

S0ðxÞ≡ ηðx; xÞ ¼ 1

fd−2;0
lim
ε→0

ε2−dΦ0ðx; εÞ; ð3:27Þ

which in particular continues to hold under deformations of
the theory.
We can generalize this relation to general d > 2 and J

using a different argument. Consider deforming the bilocal
CFT action by SJ coupled to a source AJ as

SAJ
¼

Z
ddxAJ

ii…iJ
SJi1…iJ

: ð3:28Þ

We can compute the VEVof ηðx1; x2Þ under this deforma-
tion (in the large N limit) as

hηðx1; x2ÞiAJ
¼

Z
ddyAJ

ii…iJ
ðyÞDJ;ðx1;x2Þ

i1���iJ G0ðx1; yÞG0ðy; x2Þ

¼ aJ

Z
ddyAJ

ii…iJ
ðyÞhOΔ0

ðx1ÞÔΔ0
ðx2Þ

×Oi1;…;iJ
d−2þJ;JðyÞi; ð3:29Þ

where the second equality follows from the definitions
(2.6), (3.2), and (3.23). As x2 → x1, this VEV diverges as

Sðd−2þJ;JÞ
Δ0;Δ0

AJðx1Þ=xd−4þ2J
12 . At leading N → ∞, this implies

the off-shell singularity

lim
ε→0

ε4−d−2Jηðx1; x2Þjx2¼x1þεê

¼ Sðd−2þJ;JÞ
Δ0;Δ0

aJAJ
ii…iJ

ðx1Þêi1…êiJ ; ð3:30Þ

which is singular for all d > 2 and J except J ¼ 0 for
d < 4. In the original path integral in terms of the local field
ϕIðxÞ, each ϕIðxÞ does not couple to the others, which
implies that the off-shell behavior of ϕIðxÞ, and thus
ηðx1; x2Þ, is independent of N, so (3.30) in fact holds for
finite N. Recall that the conditions (3.3) to expand ηðx1; x2Þ
in terms of CΔ;JðyÞ require that ηðx1; x2Þ be finite as
x2 → x1, so we must modify our AdS=CFT map in the
presence of this source for all d > 2 and J except J ¼ 0

for d < 4. We can cancel the divergence (3.30) by
modifying the contour γJ in (3.1) to include a piece around
Δ ¼ d − 2þ J with

Cd−2þJ;JðyÞjAJ
¼ aJAJðyÞ; ð3:31Þ

which will cancel the divergent VEV in (3.29). In the bulk,
this modification of γJ will give the VEV

hΦJðx; zÞijAJ
¼ aJfd−2þJ;J

Z
ddyAJðyÞGd−2þJ;Jðx; zjyÞ;

ð3:32Þ

which follows from modifying the contour in (3.12), and is
also what we would get by naively mapping (3.29) using
the unmodified map (3.20) and the CFT orthogonality
relation (A3). We can then take z → 0 to find the modified
off-shell bulk boundary condition

lim
ε→0

ε2J−2ΦJðx; εÞ ¼ aJfd−2þJ;JS
d−2þJ;J
B AJðxÞ; ð3:33Þ

which follows from (3.14). We could equivalently use the
standard bulk boundary conditions and instead add to the
bulk action the source term

Sbulk
AJ

¼
Z

ddxdz
zdþ1

AJ
ii…iJ

ðxÞ 1

fd−2þJ;J
lim
ε→0

ε2−dΦJðx;εÞ: ð3:34Þ

Now, comparing (3.34) to (3.28) for general AJðxÞ implies
the off-shell relation

SJðxÞ ¼ 1

fd−2þJ;J
lim
ε→0

ε2−dΦJðx; εÞ; ð3:35Þ

which for J ¼ 0 for d < 4 was what we previously showed
in (3.27), and for all other d > 2 and J follows from the
modified boundary condition argument. This off-shell map
generalizes the on-shell relation previously shown for
general d > 2 and J in [8].

IV. THE BULK DUAL OF SCALAR QED

We will now use the AdS=CFT map of the previous
section to write the action for the bulk dual of scalar QED.
We will first review the bulk action for the free and critical
UðNÞ theories, which were derived in [8]. We will then use
the off-shell map of single-trace local operators for J ¼ 0, 1
to show that the bulk QED action is given by a simple
deformation of the bulk dual of the free theory. Finally, we
will compute correlation functions in the bulk and show
that the bulk duals of the free theory and QED only differ
by the boundary conditions of the bulk J ¼ 0, 1 two-point
function, as anticipated in [20–24], where the J ¼ 1
two-point function is sensitive to the gauge-fixing in
the CFT.
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A. The bulk action

We start by reviewing the bulk action for the free theory,
which in the bilocal language had an infinite number of
terms given by (2.20) and (2.21). The bilocal AdS=CFT
map translates each of these terms to the bulk, where for
general fΔ;J they take a complicated nonlocal form given
explicitly in [8]. For the special choice

flocalΔ;J ¼
�
ð−1ÞJ SΔ̃;JB

SΔ̃;JΔ0;Δ0

�1
2

; ð4:1Þ

such that flocalΔ;J f
local
Δ̃;J ¼ ð−1ÞJ, the quadratic term in the bulk

action can be written in the simple local way:

Sð2Þ
free½ΦJ� ¼

X∞
J¼0

1

αJ

Z
ddxdz
zdþ1

ΦJðx; zÞð∇2
x;z −M2

dþJ−2;JÞ

× ð∇2
x;z −M2

dþJ;JÞΦJðx; zÞ; ð4:2Þ

where for d < 4 the modified map (3.22) gives a slightly
different form for the J ¼ 0 term as shown in [8]. The
higher order terms SðnÞ½ΦJ� in the bulk action remain
nonlocal even for flocalΔ;J , and include explicit bulk counter-
terms starting with Sð1Þ½ΦJ� that are dual to the V-
dependent counterterms in (2.21).
The various deformations to the free theory discussed in

Sec. II C can then be mapped to the bulk using the off-shell
map of local operators in (3.35). For instance, the scalar
double-trace deformation in (2.25) maps to

Sλ½Φ0; σ� ¼
Z

ddx

�
−

1

4λ
σ2ðxÞ

þ 1

2
σðxÞ 1

fd−2;0
lim
ε→0

ε2−dΦ0ðx; εÞ
�
; ð4:3Þ

where σðxÞ can be thought of as living on the boundary of
AdS. When λ → 0, this defines the bulk dual of the critical
UðNÞ theory for any d > 2 such that this CFT exists, which
was argued to be (for large enough N) 2 < d < 6 in [33].13

The σðxÞ field then acts as a Lagrange multiplier in (4.3)
that sets limε→0ε

2−dΦ0ðx; εÞ ¼ 0 off-shell, just as in the
CFT it set ηðx; xÞ ¼ 0 off-shell. Thus, the off-shell relation
(3.27) becomes trivial in the critical theory. The vanishing
of the zd−2 mode implies that Φ0ðx; zÞ now has the same
small z boundary condition as all other J > 0 bulk fields,
namely it scales as zd=2, which is the real part of the
principal series contour. For 2 < d < 4 this was already
discussed in [8], and here we can generalize this to d > 4
because we generalized the off-shell map for J ¼ 0
to d > 4.
For QED, we first gauge-fix the CFT by adding the term

Sζ½A� given in (2.10), where the family of possible gauge-
fixings is parametrized by ζ ∈ R. Since this term, as well as
the Chern-Simons term Sk½A� given in (2.5) for d ¼ 3, do
not depend on η, they map trivially to the bulk such that
AiðxÞ now lives on the boundary of AdS, just like σ. We
then use the off-shell map (3.35) for J ¼ 0, 1 to map
Se½η; A� to the bulk to get

Se½Φ0;Φ1; A� ¼
Z

ddx

�
1

4e2
F2
ijðxÞ þ A2

i ðxÞG0ðx; xÞ þ lim
ε→0

ε2−d
�
2i

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p

fd−1;1
AiðxÞΦi

1ðx; εÞ þ
A2
i ðxÞΦ0ðx; εÞffiffiffiffi

N
p

fd−2;0

��
; ð4:4Þ

where we identified S1i ðxÞ ¼ − i
2
ffiffiffiffiffiffi
d−2

p Ji½η�, and recall that
the counterterm A2

i ðxÞG0ðx; xÞ is necessary to cancel
divergences in the Ai two-point function. We can then
take the limit e → ∞ to get the bulk dual scalar QED (2.4)
with bulk action:

SCPN−1 ½ΦJ;A;σ�≡
X∞
n¼1

SðnÞ
free½ΦJ�þSe→∞½Φ0;Φ1;A�þSλ→∞

ð4:5Þ

as well as the Chern-Simons term Sk½A� for d ¼ 3 (if
desired).
Similar to the σ, Φ0 case, we can think of AiðxÞ

as a Lagrange multiplier that for k ¼ 0 sets
limε→0ε

2−dΦ1ðx; εÞ ¼ 0 as an operator equation, just as

in the CFT it set to zero the Uð1Þ current. The z0 mode of
Φ1 then becomes dynamical, according to the off-shell
relation:

QEDwith k¼0∶Φi
1ðx;0Þ¼ i2

ffiffiffiffiffiffiffiffiffiffi
d−2

p
a1fd−1;1S

d−1;1
B AiðxÞ;

ð4:6Þ

which is just (3.33) with J ¼ 1 and S1i ðxÞ ¼ − i
2
ffiffiffiffiffiffi
d−2

p Ji½η�.
Namely, in the bulk dual to QED, AiðxÞ is nothing but
the boundary value of the bulk vector field. It is con-
venient to write this change of boundary condition
by defining a boundary field strength for Φ1 (even
though in our formalism there is no gauge freedom for
this field) as

F μνðxÞ≡ lim
z→0

ð∂μΦ1;νðx; zÞ − ∂νΦ1;μðx; zÞÞ: ð4:7Þ13The CFT is believed to be unitary only for 2 < d < 4.
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The boundary conditions for the free scalar theory and for QED for general d, as well as for d ¼ 3 and general k, can then be
written compactly as

free∶ F ijðxÞ ¼ 0;

QEDdwith k ¼ 0∶ F ziðxÞ ¼ 0;

QED3∶ F ijðxÞ þ
2πi
16κ

εijlF zlðxÞ ¼ 0; ð4:8Þ

where the free theory corresponds to electric boundary conditions, QED with k ¼ 0 corresponds to magnetic boundary
conditions, and QED3 for general k corresponds to mixed boundary conditions. Finally, the A2

i ðxÞ term in (4.4) will also
alter the boundary behavior of Φ0 at subleading order in 1=N, according to (3.27).

B. The bulk correlation functions

Wewill now discuss the bulk correlation functions that follow from the bulk actions written above. For the dual of the free
theory with λ ¼ e ¼ 0, the bulk two-point functions coming from the local quadratic action (4.2) are [8]:

hΦJðx1; z1ÞΦJðx2; z2Þi ¼
αJ=2

M2
dþJ;J −M2

dþJ−2;J
ðΠTT

d−2þJ;Jðx1; z1jx2; z2Þ − ΠTT
dþJ;Jðx1; z1jx2; z2ÞÞ: ð4:9Þ

Here, ΠTT
d−2þJ;Jðx1; z1jx2; z2Þ are the traceless transverse bulk-to-bulk propagators defined in [8] by the differential equation

ð∇2
x;z −M2

Δ;JÞΠTT
Δ;Jðx1; z1jx2; z2Þ ¼ −δTTðx1; z1jx2; z2Þ;

ð4:10Þ

and by the z2 → 0 boundary condition

ΠTT
Δ;Jðx1; z1jx2; z2Þ ¼

�
z2Δ−JCΔ;JGΔ;Jðx1; z1jx2Þ þOðzΔ−Jþ1

2 Þ Δ < d − J þ 4

Oðzd−2Jþ4
2 Þ Δ ≥ d − J þ 4;

ð4:11Þ

where δTT is a delta function for traceless transverse functions that is defined precisely in [8], and the normalization is

CΔ;J ≡ ðJ þ Δ − 1ÞΓðΔ − 1Þ
2π

d
2ΓðΔþ 1 − d

2
Þ : ð4:12Þ

The solution to (4.10) and (4.11) is by construction traceless and transverse:

for a ¼ 1;…; J∶ ∇μaΠTT
Δ;Jðx1; z1jx2; z2Þμ1;…;μa;…;μJ jμ01;…;μ0J

¼ 0;

ΠTT
Δ;Jðx1; z1jx2; z2Þμ1;…;μa;…;μJ jμ01;…;μa;…;μ0J

¼ 0: ð4:13Þ

The explicit propagators for Δ ≥ d − 2þ J for J > 0, or J ¼ 0 and any Δ, were computed in [8], and are reviewed in
Appendix B 1. The massless propagators in the first term of (4.9) are identified with the physical particles dual to the
operators in our theory.14 For J > 0 they are dual to the infinite conserved currents in the CFT, and for J ¼ 0 to the
Δ ¼ d − 2 single-trace scalar. The particle with negative propagator and Δ ¼ dþ J − 2 is subleading in the z → 0 limit
(it happens to match the ghost spectrum of a certain gauge-fixing of Vasiliev’s theory [47–49], so we expect that probably
it can be interpreted as some kind of gauge-fixing-related ghost). The higher order correlation functions can be computed
using the Feynman rules for the higher order terms SðnÞ½η�, which were shown in [8] to lead to the expected free theory
results, where all loops and counterterms cancel (this cancellation will no longer be exact in the nonfree theory we are
discussing here, but the divergences should cancel in the same way).

14For massless propagators, the transversality constraint (4.13) can be interpreted as a bulk gauge choice in a putative bulk gauge
theory, which would be related to our bulk theory upon gauge-fixing.
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We can then consider the effect of the quadratic scalar deformation Sλ½Φ0; σ� given in (4.3), which only modifies the
scalar propagator as [8]:

hΦ0ðx1; z1ÞΦ0ðx2; z2iλ ¼ hΦ0ðx1; z1ÞΦ0ðx2; z2Þiλ¼0 þ
1

4ðflocald−2 Þ2
�

α0Cd−2;0=2
M2

d;0 −M2
d−2;0

�
2

×
Z

ddyddy0Gd−2;0ðx1; z1jyÞhσðyÞσðy0ÞiλGd−2;0ðx2; z2jy0Þ þOðN−1Þ; ð4:14Þ

where the σ propagator at finite λ is given in (2.8). For the critical theory at λ → ∞, the σ propagator in (2.9) becomes a
conformally invariant two-point function with scaling dimension Δ ¼ 2þOð1=NÞ, so we can use the identity [50–52]Z

ddyddy0GΔ;0ðx1;z1jyÞhOΔ̃;0ðyÞOΔ̃;0ðy0ÞiGΔ;0ðx2;z2jy0Þ¼α0NΔ;0

�
Δ−

d
2

�
ðΠTT

Δ;0ðx1;z1;x2;z2Þ−ΠTT
Δ̃;0ðx1;z1;x2;z2ÞÞ;

ð4:15Þ
with Δ ¼ d − 2 to compute

hΦ0ðx1; z1ÞΦ0ðx2; z2Þiλ→∞ ¼ α0=2
M2

d;0 −M2
d−2;0

ðΠTT
2;0ðx1; z1; x2; z2Þ − ΠTT

d;0ðx1; z1; x2; z2ÞÞ þOðN−1Þ: ð4:16Þ

We see that the physical propagator ΠTT
d−2;0 forΦ0 in the bulk dual of the free scalar theory has been replaced by the shadow

propagatorΠTT
2;0, which generalizes the 2 < d < 4 results of [8] to 2 < d < 6 (where the critical theory is defined at largeN).

Both ΠTT
Δ;J and ΠTT

Δ̃;J are defined by the same bulk differential equation (4.10), and differ only by the boundary condition
(4.11). Since the only difference between the free and critical bulk theories was this scalar propagator, we see that to all
orders in 1=N the only difference between the free and critical bulk theories is the boundary condition for the bulk scalar, as
anticipated in [20,50,51]. As shown in [51], the modification of the free bulk Feynman rules by replacing ΠTT

d−2;0 → ΠTT
2;0

then leads to the expected bulk dual of the critical CFT for all bulk correlators, at all orders in 1=N.
Next, we consider the effect of coupling to the gauge field by adding Se½Φ0;Φ1; A� with the family of gauge-fixing terms

Sζ½A� (and for d ¼ 3 we can add also the Chern-Simons term Sk½A�). The J ¼ 1 propagator is modified as

hΦ1ðx1; z1ÞΦ1ðx2; z2Þiζ;e;k ¼ hΦ1ðx1; z1ÞΦ1ðx2; z2Þie¼0 þ
4ð2 − dÞ
ðflocald−1;1Þ2

�
α1Cd−1;1=2

M2
dþ1;1 −M2

d−1;1

�
2

×
Z

ddyddy0Gi
d−1;1ðx1; z1jyÞhAiðyÞAjðy0Þiζ;e;kGj

d−1;1ðx2; z2jy0Þ þOðN−1Þ; ð4:17Þ

where we suppressed the bulk indices for simplicity, and where the gauge-fixed photon propagator is given in (2.13) for the
ζ family of gauges. Note that the bulk propagator now depends on the choice of gauge-fixing in the CFT. For the critical
theory at e → ∞, we can derive a generalization of the identity (4.15) to massless J ¼ 1 propagators15:Z

ddyddy0Gd−1;1ðx1; z1jyÞijμhAiðyÞAi0 ðy0Þiζ;e→∞;kGd−1;1ðx2; z2jy0Þi0jμ0

¼ 8π
3d
2

Γðd−2
2
ÞΓðdÞ ðΠ

TT
d−1;1ðx1; z1; x2; z2Þμjμ0 − Πζ;k

1;1ðx1; z1; x2; z2Þμjμ0 Þ: ð4:18Þ

Here, Πζ;k
1;1 is a traceless and transverse propagator that satisfies the same differential equation (4.9) as ΠTT

d−1;1, but has the
alternate boundary condition

lim
z2→0

Πζ;k
1;1ðx1;z1;x2;z2Þ¼

Γðd−2
2
ÞΓ2ðd

2
Þ

2π
d
2ΓðdÞ Gζ;k

1;1ðx1;z1jx2Þ; ð4:19Þ

where Gζ;k
1;1ðx1; zjx2Þ is a transverse bulk-to-boundary propagator that satisfies the same differential equation (3.13) as

Gd−1;1ðx1; zjx2Þ but has the alternate z → 0 boundary condition

15A similar identity in axial gauge was derived in [23].
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Gζ;k
1;1ðx1; zjx2Þij ¼

8>><
>>:

hAiðx1ÞAjðx2Þiζ;∞ − zd−2 π
d
2ΓðdÞ
Γ3ðd

2
Þ
R ddp

ð2πÞd e
ipx12

�
δij −

pipj

jpj2

�
þ…; d ≠ 3;

hAiðx1ÞAjðx2Þiζ;∞;k − z
R d3p

ð2πÞ3 e
ipx12

16ðδij−
pipj

jpj2 Þ−
128κ
π εijk

pk
jpj

64κ2

π2
þ1

þ…; d ¼ 3:

ð4:20Þ

Note that we expressed δTT1 ðx12Þ explicitly in momentum space for d ≠ 3 for ease of comparison to d ¼ 3. Alternatively,
Πζ;k

1;1 can be defined by their differential equation and the boundary condition (4.8). Explicit expressions forΠ
ζ;k
1;1 andG

ζ;k
1;1 are

derived in Appendix B 2, where we show that they satisfy (4.18). We can then apply (4.18) to the e → ∞ limit of (4.17) to
compute

hΦ1ðx1; z1ÞΦ1ðx2; z2Þiζ;e→∞;k ¼
α1=2

M2
dþ1;1 −M2

d−1;1
ðΠζ;k

1;1ðx1; z1; x2; z2Þ − ΠTT
dþ1;1ðx1; z1; x2; z2ÞÞ þOðN−1Þ: ð4:21Þ

As in the scalar deformation, we see that the physical
propagator ΠTT

d−1;1 for Φ1 has been replaced by the shadow
propagator Πζ;k

1;1, except that now the shadow propagator
depends on the CFT gauge-fixing parameter ζ, and for
d ¼ 3 it can also have an infinite number of possible
boundary conditions, parametrized by k.
For the CPN−1 model, we saw above that we can change

variables for σðxÞ to get rid of the A2
iϕ

2 term. In this way σ,
Ai couple in the bulk action (4.5) only linearly to Φ0, Φ1

respectively. As we explained in this section, this means
that the CPN−1 bulk dual (at any order in 1=N) is the same
as the free theory bulk dual, only with the alternative
boundary conditions for bothΦ0 andΦ1. We can use this to
argue that our bulk action gives the expected correlators to
all orders in 1=N for the CPN−1 model, following the
analogous argument for the critical OðNÞ model in [51]. In
particular, already in the local description (2.4) we could
change variables for σ, which led to only linear couplings
for σ, Ai to the ϕI’s. We can then consider the difference
between correlation functions of single-trace operators in
the CPN−1 model and in the free theory. At any order in
1=N, this difference can be written as integrals of the free
theory S0, S1i correlation functions with the effective
propagators for σ, Ai. Using (4.15) for S0 and (4.18) for
S1i , we can write the difference between the correlators as
the difference between the same Witten diagrams, only
with alternative boundary conditions for Φ0 and Φ1.

V. THE BULK DUAL OF UðNcÞ SCALAR QCD
AT FINITE Nc

The bulk dual of scalar QED in 2 < d < 4 with N ≫ 1
scalars that we described in the previous sections can be
easily generalized to UðNcÞ QCD in 2 < d < 4 with N ≫
1 scalars [28], for finite Nc. For d ¼ 3 we can again
consider also the large Chern-Simons level k limit with
fixed κ ≡ k=N.
We start by considering a free theory of N × Nc scalars

with global symmetry UðNNcÞ. The singlet sector under

the UðNÞ ⊂ UðNNcÞ subgroup can be translated to the
bulk just like the usual UðNÞ free scalar theory, except that
now both the UðNÞ singlet bilocals in the CFT and their
dual bulk fields are adjoints under UðNcÞ, and the terms in
the bulk action are all single traces of products of UðNcÞ
matrices. We can then construct the bulk dual of scalar
QCD by a procedure similar to the one described in the
previous sections: gauging UðNcÞ (in the CFT), fixing a
gauge convenient for the large N expansion, mapping the
UðNcÞ current (which is a UðNÞ singlet) to the bulk using
our usual CFT-to-AdS map, and coupling it to the new
UðNcÞ gauge fields. The main differences from the Abelian
case are that now the Yang-Mills and Chern-Simons terms
for UðNcÞ contain self-interactions of the UðNcÞ gauge
fields, and that the gauge-fixing now leads to ghosts (in the
adjoint of UðNcÞ) which will live on the boundary and
couple to the UðNcÞ gauge fields there.
As with QED, the resulting bulk theory is related

to the bulk dual of the free theory by a simple change
of boundary conditions for the spin one bulk field [in the
adjoint ofUðNcÞ]. Note that this bulk construction is useful
for large N with fixed Nc, and it does not apply to the
limit of large Nc, k with fixed N, k=Nc discussed
in [29,53], which is expected to have a different dual
description.
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APPENDIX A: CONFORMAL BASES

In this Appendix we review properties of the conformal bases that we use for the CFTand for the bulk fields. For the CFT
we follow [54,55], while for the bulk we follow [52].

1. Three-point function basis

The harmonic basis defined in (3.2) satisfies the completeness relation

δðx13Þδðx24Þ ¼
1

2

X∞
J¼0

Z
γJ

dΔ
2πi

Z
ddy

1

NΔ;J
hOΔ0

ðx1ÞÔΔ0
ðx2ÞOΔ;JðyÞihOΔ̃0

ðx3ÞÔΔ̃0
ðx4ÞOΔ̃;JðyÞi; ðA1Þ

where the contour γJ was described in the main text, and the normalization factor is

NΔ;J ¼
π

3d
2 ΓðJ þ 1Þ

2J−1Γðd
2
þ JÞ

ΓðΔ − d
2
Þ

ΓðΔ − 1ÞðΔþ J − 1Þ
ΓðΔ̃ − d

2
Þ

ΓðΔ̃ − 1ÞðΔ̃þ J − 1Þ : ðA2Þ

The basis also satisfies the orthogonality relationZ
ddx1ddx2hOΔ0

ðx1ÞÔΔ0
ðx2ÞOΔ;JðyÞihOΔ̃0

ðx1ÞÔΔ̃0
ðx2ÞOΔ̃0;J0 ðy0Þi

¼ 2πiNΔ;J

�
δJ;J0δðΔ − Δ0ÞδTTJ ðy − y0Þ þ δðΔ − Δ̃0Þ

SðΔ̃;JÞΔ0;Δ0

hOΔ;JðyÞOΔ;J0 ðy0Þi
�
; ðA3Þ

where the traceless transverse delta function δTTJ was defined in the main text, and the shadow coefficient is

SðΔ̃;JÞΔ0;Δ0
¼ π

d
2ΓðΔ̃ − d

2
ÞΓðΔ̃þ J − 1ÞΓ2ðΔþJ

2
Þ

ΓðΔ̃ − 1ÞΓðΔþ JÞΓ2ðΔ̃þJ
2
Þ : ðA4Þ

The reason for the second term in (A3) is because the basis elements for Δ and for Δ̃ are related by the shadow transform:

hOΔ0
ðx1ÞÔΔ0

ðx2ÞOΔ;JðyÞi ¼
1

SðΔ̃;JÞΔ0;Δ0

Z
ddy0hOΔ;JðyÞOΔ;Jðy0ÞihOΔ0

ðx1ÞÔΔ0
ðx2ÞOΔ̃;Jðy0Þi: ðA5Þ

2. Bulk-to-boundary propagator basis

The differential equation (3.13) with boundary condition (3.14) has the explicit solution

GΔ;Jðx; zjyÞμ1;…;μJ ji1;…;iJ ¼
�

z
ðx − yÞ2 þ z2

�
Δ
ðXμ1;i1 ·… · XμJ;iJ − tracesÞ; ðA6Þ

whereXi;j ¼ z−1ðδi;j − 2
ðx−yÞiðx−yÞj
ðx−yÞ2þz2 Þ,Xz;i ¼ −2ðx−yÞi

ðx−yÞ2þz2. The propagator satisfies the bulk analog of the shadow transform (A5):

Gi1…iJ
Δ;J ðx; zjyÞμ1;…;μJ ¼

1

SΔ̃;JB

Z
ddy0Gi0

1
…i0J

Δ̃;J ðx; zjy0Þμ1;…;μJhO
i1…iJ
Δ;J ðy0ÞOi0

1
…i0J

Δ;J ðy0Þi; ðA7Þ

where SΔ̃;JB was given in (3.15). The orthogonality relation takes the formZ
ddxdz
zdþ1

Gμ1…μJ ji1…iJ
Δ;J ðx; zjx1ÞGi0

1
…i0J

Δ̃0;J ðx; zjx2Þμ1…μJ

¼ 2πiδðΔ − Δ̃0ÞhOi1…iJ
Δ;J ðx1ÞOi0

1
…i0J

Δ;J ðx2ÞiSΔ̃;JB þ 2πiδðΔ − Δ0ÞδTTJ;i1…ijji01…i0J
ðx12Þ

NΔ;JαJ
2

; ðA8Þ

where δTTJ ðxÞ is defined in [52] as a delta function for traceless transverse spin J functions in d dimensions,NΔ;J is defined in
(A2), and
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αJ ≡ 2JΓðd
2
þ JÞ

π
d
2ΓðJ þ 1Þ : ðA9Þ The bulk completeness relation for traceless transverse bulk

functions is

δ
μ1;…;μJ jμ01;…;μ0J
TT ðx; zjx0; z0Þ ¼

Z
P:S:

dΔ
2πi

Z
ddy

Gμ1;…;μJ ji1;…;iJ
Δ;J ðx; zjyÞGμ0

1
;…;μ0J ji1;…;iJ

Δ̃;J ðx0; z0jyÞ
αJNΔ;J

; ðA10Þ

where here δTT is defined in the bulk.

APPENDIX B: BULK-TO-BULK PROPAGATORS

In this Appendix, we will show explicit expressions for
the bulk-to-bulk propagators discussed in the main text. We
will start by reviewing the traceless transverse propagators
ΠTT

Δ;J introduced in [8], which are defined by the differential
equation (4.10) with standard boundary condition (4.11).
These have explicit position space expressions for all J and
Δ ≥ d − 2þ J. For J ¼ 1, we will also give the explicit
expression in momentum space. We will then consider the
J ¼ 1 propagator defined by the same differential equa-
tion (4.10) but with the alternate boundary condition (4.19),
which we will also write explicitly in momentum space.
From these momentum space expressions, we can immedi-
ately see the identity (4.18).

1. Standard boundary conditions

The differential equation (4.10) with boundary condition
(4.11) can be formally solved using the split representation

ΠTT
Δ;Jðx; zjx0; z0Þ ¼

Z
γJ

dΔ0

2πi

GΔ;Jðx; zjyÞGΔ̃;Jðx0; z0jyÞ
αJNΔ;JðM2

Δ;J −M2
Δ0;JÞ

; ðB1Þ

where the boundary spin indices are contracted on the right-
hand side, while the bulk indices on both sides are implicit.
For massive propagators, i.e., Δ > d − 2þ J or J ¼ 0, we
can close the contour and collect poles to get the explicit

position-space expression

ΠTT
Δ;Jðx; zjx0; z0Þ ¼ ΠΔ;Jðx; zjx0; z0Þ

−
XdþJ−2

p¼d−1

ð2p − dÞ
M2

Δ;J −M2
p;J

× Res½ΠΔ0;Jðx; zjx0; z0Þ�Δ0¼p; ðB2Þ

whereΠΔ;J is the standard massive bulk-to-bulk propagator
whose explicit form is given by a complicated recursion
relation in [56]. For instance, the J ¼ 0 propagator is

ΠΔ;0ðx; zjx0; z0Þ ¼ CΔ;0ð2uÞ−Δ2F1

�
Δ;Δþ 1 − d

2
; 2Δ

− dþ 1;−
2

u

�
; ðB3Þ

where the chordal distance is

u ¼
P

ixix
0
i þ zz0

2zz0
; ðB4Þ

and note that ΠTT
Δ;0 ¼ ΠΔ;0 since transversality and trace-

lessness are trivial for J ¼ 0. For J ¼ 1 the propagator is

ΠTT
Δ;1ðx;zjx0;z0Þμjμ0 ¼−g0ðuÞ∂μ∂μ0uþg1ðuÞ∂μu∂μ0u; ðB5Þ

where g0ðuÞ and g1ðuÞ are

g0ðuÞ ¼
ðd − ΔÞΓðΔþ 1Þu−Δ2F1ðΔ; 12 ð−dþ 2Δþ 1Þ;−dþ 2Δþ 1;− 2

uÞ
πd=22Δþ1ðΔ − 1Þðd − Δ − 1ÞΓð− d

2
þ Δþ 1Þ

−
ðuþ 1ÞΓðΔþ 1Þu−Δ−12F1ðΔþ 1; 1

2
ð−dþ 2Δþ 1Þ;−dþ 2Δþ 1;− 2

uÞ
πd=22Δþ1ðΔ − 1Þðd − Δ − 1ÞΓð− d

2
þ Δþ 1Þ ;

g1ðuÞ ¼
ðuþ 1Þðd − ΔÞΓðΔþ 1Þu−Δ−12F1ðΔ; 12 ð−dþ 2Δþ 1Þ;−dþ 2Δþ 1;− 2

uÞ
πd=22Δþ1ðΔ − 1Þðuþ 2Þðd − Δ − 1ÞΓð− d

2
þ Δþ 1Þ

−
ðdþ ðuþ 1Þ2ÞΓðΔþ 1Þu−Δ−22F1ðΔþ 1; 1

2
ð−dþ 2Δþ 1Þ;−dþ 2Δþ 1;− 2

uÞ
πd=22Δþ1ðΔ − 1Þðuþ 2Þðd − Δ − 1ÞΓð− d

2
þ Δþ 1Þ : ðB6Þ

In the massless limit Δ → d − 2þ J, the Δ0 ¼ d − 2þ J pole in (B1) becomes a double pole and we get the finite result
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ΠTT
d−2þJ;Jðx; zjx0; z0Þ ¼ ∂Δ½ðΔ − d − J þ 2ÞΠΔ;Jðx; zjx0; z0Þ�Δ¼d−2þJ −

Res½ΠΔ0;Jðx; zjx0; z0Þ�Δ0¼d−ð2−JÞ
4 − d − 2J

−
XdþJ−3

p¼d−1

ð2p − dÞ
M2

Δ;J −M2
p;J

Res½ΠΔ0;Jðx; zjx0; z0Þ�Δ0¼p: ðB7Þ

For J ¼ 1, the massless propagator ΠTT
d−1;1 is the same as the position space Landau gauge propagator given in [57], which

can be explicitly checked from the definitions given here.
We will find it convenient to express ΠTT

d−1;1 in momentum space. Instead of directly transforming the known position
space expression, we can instead solve the differential equation (4.10) in momentum space. We start by writing the bulk-to-
boundary differential equation (3.13) in momentum space as

ðz2∂2
z þ ð3 − dÞz∂z − p2z2ÞGd−1;1ðp; zÞi;j − 2izpiGd−1;1ðp; zÞz;j ¼ 0;

ðz2∂2
z þ ð3 − dÞz∂z − p2z2 þ 1 − dÞGd−1;1ðp; zÞz;j þ 2iz

Xd
i¼1

piGd−1;1ðp; zÞi;j ¼ 0; ðB8Þ

with the z → 0 boundary condition (3.14). We can solve this to get

Gd−1;1ðp; zÞi;j ¼
π

d
222−

d
2

ΓðdÞ jpzjd2−1
�
z
pipj

jpj Kd−4
2
ðjpjzÞ þ δi;jðd − 2ÞKd−2

2
ðjpjzÞ

�

Gd−1;1ðp; zÞz;j ¼
π

d
222−

d
2

ΓðdÞ jpzjd2−1 · ðipjzÞKd−2
2
ðjpjzÞ; ðB9Þ

which is the momentum space version of (A6). Next, we use transversality to rewrite (4.10) as

∂μðz3−dð∂μΠνρ − ∂νΠμρÞÞ ¼ −δν;ρδðx; zjx0; z0Þ þ z−d−1∂ρ0z2∂νΠd;0;

Πd;0ðx; zjx0; z0Þ ¼ ðzz0Þd2
Z

d3p
ð2πÞ3 e

ip·ðx−x0Þ
(
Id
2
ðjpjzÞKd

2
ðjpjz0Þ z < z0

Id
2
ðjpjz0ÞKd

2
ðjpjzÞ z0 < z

; ðB10Þ

which we then write in momentum space as

∂zðz−dþ3ð∂zΠd−1;1ðp; z; z0Þi;j − ipiΠd−1;1ðp; z; z0Þz;jÞÞ − z−dþ3

�
p2Πd−1;1ðp; z; z0Þi;j þ pi

Xd
k¼1

pkΠd−1;1ðp; z; z0Þk;j
�

¼ −δi;jδðz − z0Þ − z−dþ1pipj0Πd;0ðp; z; z0Þ; ðB11Þ

Πd;0ðp; z; z0Þ ¼ ðzz0Þd2
(
Id
2
ðpzÞKd

2
ðpz0Þ z < z0

Id
2
ðpz0ÞKd

2
ðpzÞ z0 < z

: ðB12Þ

We can solve this equation along with the boundary condition (4.11) and the explicit momentum space Gd−1;1ðp; zÞ to get

ΠTT
d−1;1ðp; z; z0Þi;j ¼ ðzz0Þd2−1Kd−2

2
ðpz0ÞId−2

2
ðpzÞ

�
δi;j −

pipj

p2

�
þ pipj

p4
½ðzz0Þd−1∂z;z0 ððzz0Þ−dþ1ΠTT

d−1;1ðp; z; z0Þz;z0 Þ�;

ΠTT
d−1;1ðp; z; z0Þi;z0 ¼ i

pi

p2
zd−1∂zðz−dþ1ΠTT

d−1;1ðp; z; z0Þz;z0 Þ;

ΠTT
d−1;1ðp; z; z0Þz;j ¼ −i

pj

p2
ðz0Þd−1∂z0 ððz0Þ−dþ1ΠTT

d−1;1ðp; z; z0Þz;z0 Þ;

ΠTT
d−1;1ðp; z; z0Þz;z0 ¼ −

p2

d − 2
ð∂ΔΠΔ;0ðp; z; z0ÞÞjΔ¼d−1; ðB13Þ

where ΠΔ;0ðp; z; z0Þ is the scalar bulk-to-bulk propagator
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ΠΔ;0ðp; z; z0Þ ¼
( ðzz0Þd2IΔ−d

2
ðjpjzÞKΔ−d

2
ðjpjz0Þ z < z0

ðzz0Þd2IΔ−d
2
ðjpjz0ÞKΔ−d

2
ðjpjzÞ z > z0

: ðB14Þ

2. Alternate boundary conditions for J = 1

We will now solve the differential equation (B11) with the alternate boundary conditions (4.19). We start by computing
the alternate bulk-to-boundary propagator Gζ;k

1;1ðp; zÞ, by solving (B8) with the boundary condition (4.20) and the explicit
momentum space photon 2-point function given in the first line of (2.15), which depends on the family of gauge-fixings
parameterized by ζ ∈ R, as well as the Chern-Simons coupling k for d ¼ 3. For d ≠ 3 we get

Gζ
1;1ðp; zÞi;j ¼

2
d
2
−2π

d
2ΓðdÞjpj2−d2 zd−22

Γð2 − d
2
ÞΓðd

2
− 1ÞΓ2ðd

2
Þ
��

δi;j −
pipj

p2

�
Kd−2

2
ðjpjzÞ þ 4ð1 − ζÞ

d − 2

pipj

jpj zKd
2
ðjpjzÞ

�
;

Gζ
1;1ðp; zÞz;j ¼ i

2
d−2
2 π

d
2ΓðdÞ

Γð2 − d
2
ÞΓ3ðd

2
Þ ðζ − 1Þjpj2−d2 zd2Kd−2

2
ðjpjzÞpj; ðB15Þ

while for d ¼ 3 and general k we get

Gζ;k
1;1ðp; zÞi;j ¼

e−jpjz

jpj
1
16
ðδi;j þ pipj

jpj2 ðð1 − ζÞð1þ pzÞ − 1ÞÞ − κ
2π εijk

pk
jpj

ð κ
2πÞ2 þ ð 1

16
Þ2

Gζ;k
1;1ðp; zÞz;j ¼ i

16ð1 − ζÞ
1þ ð16κ

2π Þ2
e−jpjz

z
jpjpj: ðB16Þ

We can then solve (B11) with the alternate boundary conditions (4.19) to get for d ≠ 3:

Πζ
1;1ðp; z; z0Þi;j ¼ ðzz0Þd2−1Kd−2

2
ðpz0ÞI2−d

2
ðpzÞ

�
δi;j −

pipj

p2

�
þ pipj

p4
½ðzz0Þd−1∂z;z0 ððzz0Þ−dþ1Πζ

1;1ðp; z; z0Þz;z0 Þ�;

Πζ
1;1ðp; z; z0Þi;z0 ¼ i

pi

p2
zd−1∂zðz−dþ1Πζ

1;1ðp; z; z0Þz;z0 Þ;

Πζ
1;1ðp; z; z0Þz;j ¼ −i

pj

p2
ðz0Þd−1∂z0 ððz0Þ−dþ1Πζ

1;1ðp; z; z0Þz;z0 Þ;

Πζ
d−1;1ðp; z; z0Þz;z0 ¼ −

p2

d − 2
ð∂ΔΠΔ;0ðp; z; z0ÞÞjΔ¼d−1 þ

4

ðd − 2ÞΓð2 − d
2
ÞΓðd

2
Þ ðζ − 1Þp2ðzz0Þd2Kd−2

2
ðjpjzÞKd−2

2
ðjpjz0Þ; ðB17Þ

where we fixed the coefficients to match (4.19), (4.20) and (2.15).
For d ¼ 3 and general k, we instead get (demanding (4.8) as boundary conditions)

Πζ;k
1;1ðp; z; z0Þi;j ¼

1

2p

�
e−jpjðz0þzÞ

ð κ
2πÞ2 þ ð 1

16
Þ2
���

1

16

�
2

−
�

κ

2π

�
2
��

δi;j −
pipj

p2

�
−

κ

16π
εijk

pk

jpj
�

þ e−jpjjz0−zj
�
δi;j −

pipj

p2

��
þ pipj

jpj4 ½ðzz0Þ2∂z;z0 ððzz0Þ−2Πζ;k
1;1ðp; z; z0Þz;z0 Þ�

Πζ;k
1;1ðp; z; z0Þi;z0 ¼ −i

pi

p2
z2∂zðz−2Πζ;k

1;1ðp; z; z0Þz;z0 Þ

Πζ;k
1;1ðp; z; z0Þz;j ¼ i

pj

p2
ðz0Þ2∂z0 ððz0Þ−2Πζ;k

1;1ðp; z; z0Þz;z0 Þ

Πζ;k
1;1ðp; z; z0Þz;z0 ¼

jpj
2
zz0

�
ðe−jpjðzþz0ÞEið2jpjzÞ þ ejpjðzþz0ÞEið−2jpjz0ÞÞ

− ðe−jpjðz0−zÞEið−2jpjzÞ þ e−jpjðz−z0ÞEið−2jpjz0ÞÞ þ 2
1 − ζ

1þ ð16κ
2π Þ2

e−jpjðzþz0Þ
�
: ðB18Þ

Finally, the difference between ΠTT
d−1;1ðp; z; z0Þ and Πζ;k

1;1ðp; z; z0Þ can be written in terms of the momentum space bulk-to-
boundary propagators and the effective photon propagator (2.14) as
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Gd−1;1ðp; z1ÞijμhAiðpÞAi0 ð−pÞiζ;∞;kGd−1;1ð−p; z2Þi0jμ0 ¼
8π

3d
2

Γðd−2
2
ÞΓðdÞ ðΠ

TT
d−1;1ðp; z1; z2Þμjμ0 − Πζ;k

1;1ðp; z1; z2Þμjμ0 Þ; ðB19Þ

which gives (4.18) in position space.
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