
Generalized uncertainty principle or curved momentum space?

Fabian Wagner *

Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland

(Received 26 October 2021; accepted 10 November 2021; published 7 December 2021)

The concept of minimum length, widely accepted as a low-energy effect of quantum gravity, manifests
itself in quantum mechanics through generalized uncertainty principles. Curved momentum space, on the
other hand, is at the heart of similar applications such as doubly special relativity. We introduce a duality
between theories yielding generalized uncertainty principles and quantum mechanics on nontrivial
momentum space. In particular, we find canonically conjugate variables which map the former into
the latter. In that vein, we explicitly derive the vielbein corresponding to a generic generalized uncertainty
principle in d dimensions. Assuming the predominantly used quadratic form of the modification, the
curvature tensor in momentum space is proportional to the noncommutativity of the coordinates in the
modified Heisenberg algebra. Yet, the metric is non-Euclidean even in the flat case corresponding to
commutative space, because the resulting momentum basis is noncanonical. These insights are used to
constrain the curvature and the deviation from the canonical basis.
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I. INTRODUCTION

The idea of a fundamental limitation to length measure-
ments, originally going back to work of Werner Heisenberg
and W. Pauli [1] and Hartland Snyder [2] and encountered
in string theory [3–7], loop quantum gravity [8–12], non-
commutative geometry [13,14], as well as Hořava-Lifshitz
gravity [15–17] but also derived from general arguments
combining gravity and quantum theory [18–33], has played
a prominent role in the literature on the phenomenology of
quantum gravity. In quantum mechanics, such a minimum
length may be implemented by invoking a generalized
uncertainty principle (GUP) which, in turn, may be de-
rived from a momentum-dependent deformation of the
Heisenberg algebra [34–38].
Over the last 30 years this approach has continuously

gained momentum in the community leading to manifold
applications [39–53]. Note, however, that it harbors a
number of subtleties in spite of the success, many of which
are carefully reviewed in Ref. [54]. For example, it suffers
an inverse soccer problem rooted in the fact that the
corrections to the dynamical variables of the center of
mass in multiparticle states are inversely proportional to the
number of constituents [55]. This begs the question what a
fundamental constituent is supposed to be. Furthermore,
the deformed commutator can only yield either a trivial or a
divergent classical limit [56], implying that it is a purely
quantum mechanical effect [57]. This just closely saves it
from violating Gromov’s nonsqueezing theorem [58]; a
hallmark of symplectic geometry which may be understood

as classical analog of Heisenberg’s uncertainty principle
[59]. In that vein, the GUP may also challenge the second
law of thermodynamics [60]. Moreover, its synthesis with
the principle of gauge invariance is not thoroughly under-
stood [61] and its relativistic extensions lead to deforma-
tions [62] or straight violations [63] of Lorentz invariance.
Last but not least, as was alluded to above, the minimum
length may be derived from high-energy string scattering
amplitudes [3,6]. However, its value differs from the one
inferred from D-branes [64,65] making the GUP probe
dependent in string theory.
Curved momentum space, in contrast, is a very old

idea which is only gradually attracting attention within
physics. The first record of it in mathematics dates back to
Bernhard Riemann’s habilitation dissertation [66]. Later,
it was mainly developed by Paul Finsler [67] and Éllie
Cartan [68]. An overview of this topic, these days sub-
sumed under the terms Lagrangian and Hamiltonian
geometry, can be found in Refs. [69,70].
Conceived by Max Born [71] as a necessary condition for

the generalization of the symmetry of flat-space mechanics
under the exchange of phase space variables x̂ → p̂, p̂ → −x̂
(nowadays called Born reciprocity to curved spacetime)
nontrivial momentum space was intended to pave the way
towards a unification of quantum theory and general
relativity. This approach was further developed mainly by
Yuri Gol’fand [72–74] and Igor Tamm [75,76]. From the
mathematical side this endeavor led to the theory of quantum
groups [77–81]. Furthermore, the canonical quantization
of theories on curved momentum space was treated in
Refs. [82–84]. These efforts culminated in their recent
application to quantum gravity phenomenology [85–87]*fabian.wagner@usz.edu.pl
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on the one hand. On the other hand, they paved the way
for the construction of Born geometry [88–92], which
captures all mathematical structures behind Hamiltonian
mechanics (symplectic), quantum theory (complex), and
general relativity (metric) at once.
A deviation from ordinary quantum mechanics, analo-

gous to the GUP but deduced from position-dependent
corrections, goes under the name extended uncertainty
principle [93–96]. Recently, such a relation was derived
from curved position space alone [97–100]. However, the
generality of the arguments provided there allows for a
reinterpretation: As argued in Ref. [100], following the
same reasoning while taking curved momentum space as
the starting point, it would be possible to obtain a GUP
without assuming a deformation of the algebra of observ-
ables. Interestingly, this kind of link had already been
studied in Ref. [101]. The connection between curved
spaces and modified algebras is on display in the context of
doubly-special relativity [102–105] as well, which may be
interpreted as a theory defined on de Sitter-momentum
space [106,107]. Moreover, it has been corroborated further
from the geometric point of view [108,109]. Those results
provide a strong motivation to search for an equivalence
between GUP-deformed quantum mechanics and quantum
mechanics on curved momentum space.
The aim of the present paper lies in establishing such an

equivalence by introducing a novel set of conjugate variables
X̂i and P̂i satisfying the d-dimensional Heisenberg algebra.
These can be used to describe these kinds of modifications in
d dimensions canonically. As for the transformation often
applied in case of the GUP on commutative space [110,111],
this naturally leads to a modification of the single-particle
Hamiltonian. The thus arising dynamics constitute motion
on a nontrivial momentum space. For the quadratic GUP the
curvature tensor is proportional to the noncommutativity of
space. However, a commutative space does not imply that
the corresponding background is trivial. On the contrary, the
resulting basis in momentum space is nonlinearly related to
the one underlying the Euclidean metric.
Therefore, it is possible to import bounds on the curvature

of momentum space and the deviation from the canonical
basis from the literature on noncommutative geometry and
GUPs on commutative space, respectively. We thus obtain a
distinct interpretation for the already existing phenomenol-
ogy. Furthermore, the new set of phase space variables
allows for a rather simple treatment of noncommutative
space in quantummechanics mapping it onto a theory which
is analogous to quantum mechanics on curved manifolds as
described in Ref. [112]. Note that an instance of this duality
was obtained along a complementary road [113] during the
review process of the present work.
This paper is organized as follows. Sections II and III

serve as brief introductions to the influence of curved
momentum space and GUP-like deformations on quantum
mechanics, respectively. The equivalence of those two

theories is established in Sec. IV providing the map
connecting them. Subsequently, the newly appearing geo-
metrical observables are constrained in Sec. V. Finally,
Sec. VI is a summary and conclusion of the results.

II. CURVED MOMENTUM SPACE

In order to understand curved momentum space, a short
introduction to the geometry of generalized Hamilton
spaces is indispensable. On the base of this reasoning
and under the assumption that the metric bears no position-
dependence, it is straightforward to construct the corre-
sponding quantum theory.

A. Geometry

The theory of curved momentum spaces is derived from
the geometry of generalized Hamilton spaces [69,70] which
is gradually seeing more application to physics, in par-
ticular in the context of the phenomenology of quantum
gravity [86,87,114]. The starting point for this investigation
is a metric which not only depends on the position but also
the momentum of the investigated object

gij ¼ gijðx; pÞ: ð1Þ

To investigate the corresponding geometry, it is necessary to
find a nonlinear connection Nij which governs the division
of the cotangent bundle into horizontal (“position”) and
vertical (“momentum”) space. This choice is highly non-
trivial, though it can be simplified in a special case. Define
the Cartan tensor of the background space as

Ckij ¼ 1

2
_∂kgij; ð2Þ

where the partial derivative with respect to momenta is
denoted as _∂i ¼ ∂=∂pi. If this tensor turns out to be totally
symmetric, the metric can be derived from the Hamiltonian
of a free particle of mass m

H ¼ 1

2m
pipjgij; ð3Þ

according to the relation

gij ¼ m _∂i _∂jH: ð4Þ

Furthermore, a canonical nonlinear connection can be
found as

Nij ¼
1

4
ðfgij; Hg − gik _∂k∂jH − gjk _∂k∂iHÞ; ð5Þ

where the symbols f; g denote the Poisson bracket. Once the
nonlinear connection is known, it is possible to derive the
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covariant derivatives in position and momentum space and
the curvature tensors.
Assuming that the metric be solely a function of the

momenta

gij ¼ gijðpÞ; ð6Þ

the nonlinear connection immediately vanishes making the
problem particularly simple. Correspondingly, the covari-
ant derivative in position space is just the partial derivative.
Motion in momentum space, on the other hand, is described
by a Levi-Civita-like connection related to the Cartan
tensor

Cij
k ¼ −

1

2
gklð _∂igjl þ _∂jgil − _∂lgijÞ: ð7Þ

Defining covariant differentiation in momentum space

(denoted by the symbol _∇Þ in the usual way makes it
possible to construct a scalar from the Cartan tensor

C≡ gðjkgilÞ _∇lCijk; ð8Þ

where the parenthesis in the indices implies total symmet-
rization. If the Cartan tensor is totally symmetric, this
quantity is uniquely defined and measures the departure
from Riemannian geometry. Moreover, the curvature tensor
in position space vanishes while its counterpart in momen-
tum space Siljk takes the familiar form

Skilj ¼ _∂jCil
k − _∂lCij

k þ Cml
k Cij

m − Cmj
k Cil

m; ð9Þ

which is clearly reminiscent of the Riemann tensor.
Therefore, the Hamilton geometry derived from a purely
momentum-dependent metric is simply of Riemannian
type. We can further define the Ricci scalar as

S≡ gijSkikj: ð10Þ

Unfortunately, the metric which will be treated below does
not generally yield a totally symmetric Cartan tensor (2).
Thus, we are dealing with a generalized Hamilton space. In
this case, the nonlinear connection must be provided before-
hand. By analogy with the simpler case, we choose the
nonlinear connection to vanish because the metric harbors no
position dependence. Then, the same reasoning follows.
A note of caution might be in order, though. Bear in

mind, that the metric still constitutes a tensor and thus
transforms as such. It can only be independent of the
position if the system is described in Cartesian coordinates.
Otherwise, several issues arise which complicate the
process of quantization enormously. Fortunately, this set
of coordinates suffices for the purpose of the present paper.

B. Quantum mechanics

Given a metric (6) and a vanishing nonlinear connection,
it is possible to construct the line element in momentum
space

dσ2 ¼ gijðpÞdpidpj: ð11Þ

First and foremost, this implies that the dynamics of a
single particle derive from a Hamiltonian operator

Ĥ ¼ 1

2m
p̂ip̂jgijðp̂Þ þ Vðx̂iÞ: ð12Þ

Furthermore, the position and momentum operators obey
the Heisenberg algebra

½x̂i; x̂j� ¼ 0 ½p̂i; p̂j� ¼ 0 ½x̂i; p̂j� ¼ iℏδij; ð13Þ

as in textbook quantum mechanics.
A convenient representation of this algebra yielding a

Hermitian Hamiltonian is based on the integral measure

dμðpÞ ¼ ddp
ffiffiffiffiffiffiffiffiffi
gðpÞ

p
; ð14Þ

with the determinant of the metric g ¼ det gij. Then, the
Hilbert space scalar product, transforming as a scalar if the
momentum space wave functions ψ and ϕ transform as
scalars, becomes

hψ jϕi ¼
Z

ddp
ffiffiffiffiffiffiffiffiffi
gðpÞ

p
ψ�ðpÞϕðpÞ: ð15Þ

The position operator, being an observable, is required to
be symmetric with respect to the measure (14) which is why
it is turned into a vertical covariant derivative denoted by
the symbol _∇

x̂iψ ¼ iℏ

�
_∂i þ 1

2
Cij
j

�
ψ ¼ iℏ _∇iψ : ð16Þ

Correspondingly, the Hamiltonian describing a single par-
ticle in curved momentum space acts on wave functions as

Ĥψ ¼
�
1

2m
gijðpÞpipj þ Vðiℏ _∇iÞ

�
ψ : ð17Þ

Furthermore, the geodesic distance σ, the only possible
position-dependent scalar appearing in the Hamiltonian, can
be computed by solving the differential equation

gij∂iσ
2∂jσ

2 ¼ 4σ2: ð18Þ

In the given case, this procedure results in the expression

σ2 ¼ gijðpÞðx − x0Þiðx − x0Þj; ð19Þ
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where xi0 denote the coordinates of the point with respect to
which the distance is calculated; for reasons of simplicity
chosen to coincide with the origin xi0 ¼ 0. Considering the
nonvanishing commutator of positions and momenta, this
clearly leads to operator ordering ambiguities analogous to
the ones appearing in the kinetic energy of a particle on a
curved background. Similarly, they can be resolved repre-
senting the squared geodesic distance as the Laplace-
Beltrami operator in momentum space

σ̂2ψ ¼ −ℏ2
1ffiffiffi
g

p _∂ið ffiffiffi
g

p
gij _∂jψÞ; ð20Þ

which is clearly Hermitian with respect to the measure (14).
Evidently, this description bears much resemblance to

quantum mechanics on a spatially curved manifold. Keep
in mind, though, that this picture does not hold under
general coordinate transformations.

III. GUP-DEFORMED QUANTUM MECHANICS

In contrast to the theory described in the previous
section, quantum mechanics with a minimum length is
derived from a deformed algebra of observables

½x̂a; x̂b� ¼ iℏf̃abðx̂; p̂Þ; ð21aÞ

½p̂a; p̂b� ¼ 0; ð21bÞ

½x̂a; p̂b� ¼ iℏfabðp̂Þ; ð21cÞ

where we introduced the tensor-valued functions f̃abðx̂; p̂Þ
and fabðp̂Þ which are not independent. Instead, they are
constrained by the Jacobi identity

½f̃ab; p̂c� ¼ 2½f½ac ; x̂b��; ð22Þ

where the square brackets denote antisymmetrization.
The usual way to go at this point consists in finding a

representation in momentum space for this algebra. For
example, the position operator may read [35]

x̂aψ ¼ iℏfabðpÞ _∂bψ : ð23Þ

Within this representation, the Jacobi identity (22) can be
solved yielding

f̃ab ¼ 2f½ac _∂ jcjfb�d ðf−1Þdexe ∝ Ĵba; ð24Þ

where we introduced the angular-momentum operator
Ĵab ¼ 2x̂½ap̂b�.
At first glance, the theory of GUPs and the theory of

curved momentum space differ substantially. How, then,
can they be reconciled with each other?

IV. EQUIVALENCE OF THE MODIFICATIONS

The algebra (21) indicates that the kinematical descrip-
tion in the GUP approach is based on unusual coordinates
in phase space. In particular, they are not of Darboux form
which would imply the canonical commutation relations
(13) to be satisfied. The Darboux theorem [115], however,
states that symplectic manifolds, like phase space, have
vanishing curvature. Thus, provided the necessary trans-
formation is found, every system can be expressed in terms
of Darboux coordinates. The task of this section entails
finding new operators

x̂a → X̂iðx̂; p̂Þ p̂a → P̂iðp̂Þ; ð25Þ

such that X̂i and P̂i satisfy the Heisenberg algebra (13).
A similar approach, albeit with different realization and
goals, was followed in Ref. [116] in the context of doubly-
special relativity.

A. Transformation

Let us, in particular, assume that the transformation take
the shape

x̂a ¼ ðe−1Þai ðP̂ÞX̂i ð26aÞ

p̂a ¼ eiaðP̂ÞP̂i; ð26bÞ

where the coordinates transform according to the operator
ordering imposed by geometric calculus [117] applied to
momentum space. Note that other operator orderings would
yield equivalent theories [118,119] which, however, would
not manifestly unveil the nontriviality of momentum space.
This transformation immediately implies that the

Hamiltonian describing the dynamics of a nonrelativistic
particle may be reexpressed as

Ĥ ¼ 1

2m
P̂iP̂jeiae

j
bδ

ab þ V½ðe−1Þai X̂i�: ð27Þ

Moreover, the geodesic distance in the original flat back-
ground transforms in a similar way to the kinetic energy

σ̂2 ¼ δabx̂ax̂b ¼ δabðe−1Þai X̂iðe−1Þbj X̂j: ð28Þ

Thus, the matrix eia may be understood as vielbein. Then,
we may construct the metric and its inverse as

gij ¼ δabeiae
j
b; ð29Þ

gij ¼ δabðe−1Þai ðe−1Þbj : ð30Þ

Correspondingly, the Hamiltonian acts in momentum
space as
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ĤψðPÞ ¼ PiPjgij

2m
ψðPÞ þ V½iℏðe−1Þai _∂i�ψðPÞ; ð31Þ

while the geodesic distance exactly follows Eq. (20).
For this structure to be consistent, the measure has to read

dμ ¼ detðeiaÞddp; ð32Þ

i.e., represent the volume form derived from the metric.
Under the assumption, that the transformed phase space

coordinates obey the Heisenberg algebra, the commutator
of positions and momenta (21) implies the Jacobian

_∂aPj ¼ ðf−1Þabðe−1Þbj ; ð33Þ

which may be rewritten as a condition on the vielbein

f½ad
h
_∂ jdjðe−1Þb�j ejc − _∂ jdjfb�d ðf−1Þdc

i
¼ 0: ð34Þ

Then, after some algebra the tensor measuring the spatial
noncommutativity reads

f̃ab ¼ 2f½ac _∂ jcjfb�d ðf−1Þdexe: ð35Þ

Fortunately, this relation, derived from the assumptions
that the new phase space coordinates obey the Heisenberg
algebra and that the original variables satisfy the commu-
tation relations (21) and the Jacobi identity (22), reproduces
the condition on the noncommutativity of space in the
original representation (24). Thus, the transformation
introduced in this paper can always be performed.
To put it in a nutshell, it is possible to describe the

dynamics implied by any set of deformed commutators of
the form (21) by Darboux coordinates defined in Eqs. (26a)
and (26b) if the matrix characterizing the transition satisfies
the consistency condition (34) and the noncommutativity of
the spatial coordinates is of the form (35). The background,
which the system is moving on, will then necessarily be
nontrivial.
Note, though, that this is how the metric can be

determined in terms of the original momenta p̂a. In
principle, as can be seen from the equation

eiaðp̂bÞ ¼ eia½ejbðp̂cÞP̂j� ¼ …; ð36Þ

trying to express the result in terms of the transformed
momenta P̂i, leads to an infinite regress. Yet, this problem
can be circumvented by solving it iteratively as in pertur-
bation theory. Before we get to this point, though, it is
instructive to show how the consistency conditions turn
out when f̃ab, fab, and eia are expressed in terms of scalar
functions.

B. Conditions on scalars

As may be deduced from the Jacobi identity (22), the
spatial noncommutativity depends on the original phase
space variables as

f̃ab ¼ f̃ðp̂2ÞĴba; ð37Þ

where the newly introduced dimensionful scalar f̃
measures the noncommutativity of space. Furthermore,
expressed in a way similar to Refs. [61,101,120], the
quantity fab, being a tensor, assumes the form

fab ¼ Aðp̂2Þδab þ Bðp̂2Þ p̂
ap̂b

p̂2
; ð38Þ

where we introduced the dimensionless scalars A and B.
Note that they have to satisfy the conditions Að0Þ ¼ 1 and
Bð0Þ ¼ 0 for the given phase space variables to reduce to
ordinary canonical conjugates in the low-energy limit. Both
scalars are related to the function f̃ according to Eq. (35)

f̃ ¼ 2ðlogAÞ0ðAþ BÞ − B
p̂2

; ð39Þ

where the prime denotes derivation with respect to p̂2.
Furthermore, providing the vielbein in the most general

form compatible with the GUP

eia ¼ Cðp̂2Þδia þDðp̂2Þ p̂
ip̂a

p̂2
; ð40Þ

Eq. (34) suffices to determine the newly introduced dimen-
sionless scalar functions C and D implying the relation

D
C

¼ ½f̃ þ 2ðlogCÞ0ðAþ BÞ�p̂2 ¼ A − 1; ð41Þ

which, assuming that the background reduces to flat space in
the low-energy limit, i.e., Cð0Þ ¼ 1 and Dð0Þ ¼ 0, can be
solved to yield

C ¼ exp

�
1

2

Z
p̂2

0

A − 1 − f̃
Aþ B

ðqÞdq
�
; ð42Þ

D ¼ ðA − 1ÞC: ð43Þ

Bear in mind, though, that the expression for the vielbein
(40) needs to be translated to a description in terms of the
canonical momenta in accordance with Eq. (36). The metric
can then be obtained from Eq. (29) as

gij ¼ C2δij þ ð2CDþD2ÞP̂iP̂j: ð44Þ

In short, we can understand the GUP as dual description
to a quantum theory on nontrivial momentum space.
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Additionally, the newly found set of phase space variables
allows for applications in its own right.

C. Note on canonical variables

Classically, the dynamics of any system are governed by
the action describing it. Alternatively, in quantum theory it
suffices to provide a Hamiltonian and an algebra relating
the dynamical variables. In the Heisenberg picture the
evolution of the system may then be obtained according to
the Heisenberg equations. To provide the corresponding
Schrödinger equation and the action of a system, it is
compulsory to find canonically conjugate variables, i.e., a
set obeying the Heisenberg algebra (13). By construction,
this is the case considering the phase space coordinates
introduced in the preceding section (26). Furthermore, it is
evident that the Heisenberg equations of motion in terms of
both sets provided in this paper are equivalent. Thus, the
action of the system, subject to a GUP including spatial
noncommutativity, reads

S ¼
Z

dt½ _XiPi −HðX;PÞ�: ð45Þ

Up until now, this kind of result had only been obtained in
the case of a commutative space [110,111] which is related
to the one provided in the present paper by a canonical
transformation.

D. Iterative approach

For all intents and purposes, it suffices to solve Eqs. (39)
and (41) iteratively. Assume as given the coefficients of a
power series expansion of A and B

A ¼
X
n

An

�
lp̂
ℏ

�
2n
; B ¼

X
n

Bn

�
lp̂
ℏ

�
2n
; ð46Þ

with some length scale l and where B0 ¼ 0 to avoid
divergences. Similarly, describe the scalars f̃, C, and D
using the power series

f̃ ¼ 1

p̂2

X
n

f̃n−1

�
lp̂
ℏ

�
2n
; ð47Þ

C ¼
X
n

Cn

�
lp̂
ℏ

�
2n
; ð48Þ

D ¼
X
n

Dn

�
lp̂
ℏ

�
2n
; ð49Þ

where now D0 ¼ f̃−1 ¼ 0. Then, Eq. (39) becomes at
Nth order

XN
n¼0

AN−n½2ðN − nÞðAn þ BnÞ − Bn − f̃n� ¼ 0 ð50Þ

determining the coefficients fn order by order. Moreover,
Eqs. (41) uniquely specify the dependence of the coef-
ficients Cn and Dn on An and Bn in an analogous fashion

DN ¼
XN
n¼0

CN−n½f̃n þ 2ðN − nÞðAn þ BnÞ� ð51Þ

¼
XN
n¼0

CN−nAn − CN: ð52Þ

In short, the coefficients of the power series expansions
describing the functions C and D are related to the ones
representing the given scalars A and B such that there is no
ambiguity. This opens up the possibility for a perturbative
treatment.

E. Application to the quadratic generalized
uncertainty principle

As mentioned above, under the assumption that the
GUP recovers Heisenberg’s relation in the low-energy
limit, the unperturbed scalars have to satisfy A0 ¼ 1 and
B0 ¼ f̃−1 ¼ 0. Furthermore, denote A1 ¼ β, B1 ¼ β0, and
choose the Planck length to describe the scale to compare to
(l ¼ lp) in accordance with the literature [54,121,122].
Accordingly, we find

f̃0 ¼ 0; f̃1 ¼ 2β − β0; ð53Þ

C0 ¼ 1; C1 ¼
β0 − β

2
; ð54Þ

D0 ¼ 0; D1 ¼ β: ð55Þ
At second order, the contribution stemming from the
iterative appearance of the vielbein (36) is trivial. Thus,
the metric reads

gij ¼ δij þ hij; ð56Þ

where the correction to the Euclidean part is given by

hij ¼ ðβ0 − βÞ
�
lpP̂

ℏ

�2

δij þ 2β

�
lp
ℏ

�
2

P̂iP̂j: ð57Þ

Hence, we can derive the Cartan tensor from it yielding

Cijk ¼ 2

�
lP
ℏ

�
2
�
ðβ0 − βÞP̂iδjk þ 2βP̂ðjδkÞi

�
: ð58Þ

The Cartan tensor is totally symmetric if and only if
β0 ¼ 2β, i.e., f̃ ≃ 0, implying a commutative background.
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Then the scalar (8) derived from it reads in the low-energy
limit

CjP̂¼0 ¼ 2dðdþ 2Þβ
�
lp
ℏ

�
2

: ð59Þ

Otherwise, this metric does not belong to the class of
Hamilton spaces as claimed in Sec. II B. Nevertheless,
assuming a vanishing nonlinear connection as was argued
in the same section, the curvature tensor in momentum
space (9) can be determined. In the low-energy limit it reads

SikjljP̂¼0 ¼ 2f̃1

�
lp
ℏ

�
2

ðδijδkl − δilδkjÞ: ð60Þ

Given this result, it is possible to compute the Ricci scalar
in accordance with Eq. (10)

SjP̂¼0 ¼ 2dðd − 1Þf̃1
�
lp
ℏ

�
2

: ð61Þ

Thus at first order, the curvature of momentum space
(provided the system is represented canonically) measures
the noncommutativity of space described in terms of the
original coordinates. This is why the Cartan tensor is
totally symmetric in the case of a GUP with a commutative
background. Note, though, that, despite the background
being flat, the momentum basis in terms of which the
system is described is not the usual one. As the symplectic
structure is not invariant under nonlinear transformations of
momenta, the resulting theory is not equivalent to ordinary
quantum mechanics—notwithstanding the flat background.
This effect is measured by the quantity C (59).
In short, quadratically deformed Heisenberg algebras

may be understood as a normal-frame description of a
momentum space harboring essentially Planckian curvature
if the space is noncommutative. Thus, we can import much
information from the phenomenology of the GUPs to
this arena.

V. CONSTRAINTS FROM EXISTING
LITERATURE

In the preceding section, a correspondence between
models of the quadratic GUP and quantum mechanics
on a non-Euclidean momentum space was pointed out. This
connection implies that bounds on the noncommutativity of
space f̃1 immediately carry over to the curvature tensor in
momentum space in accordance with Eq. (60). Some of
these, mostly extracted from Ref. [123], are displayed
in Table I. The dominating constraint on the curvature
scalar (61) stems from Lorenz-invariance violation
yielding

Sjp¼0 < 1027m−2
p : ð62Þ

Note that spatially noncommutative geometry may lead to
direct violations of Lorentz invariance [124], which would
push this bound into the Planckian regime. However,
depending on the relativistic generalization of the model,
the symmetry might only be deformed, yielding much
weaker constraints.
Furthermore, in the case of a commutative background

space (f̃1 ¼ 0) bounds on the parameter β can be translated
as limits to the deviation from the usual momentum basis
embodied by the scalar C (59). A selection of bounds
obtained this way is shown in Table II. Note here, that
experiments involving pendulums [39], harmonic oscillators
[40], and optomechanical setups [138], deal with macro-
scopic quantum objects. As there are reservations towards
the direct adoption of results from multiparticle states to the
mechanics of single particles (see e.g., Ref. [55]), those
should be taken with a grain of salt. The strongest constraint
excluding macroscopic experiments is derived from the
anomalous magnetic moment of the muon [41] implying that

Cjp¼0 < 1017m−2
P : ð63Þ

TABLE I. Upper bounds on the low-energy limit of the scalar
curvature in momentum space as in Eq. (61) given in units of
l2p=ℏ2 ¼ m−2

p .

Experiment References Upper bound on Sm2
p

Electron dipole moment [125] 1027

Lamb shift [126,127] 1029

9Be decay [128] 1029

Composite quarks/leptons [129,130] 1029

Møller scattering [131] 1031

Muon g − 2 [132] 1031

Hydrogen spectrum [133,134] 1033

133Cs decay [128] 1035

Star energy loss [135] 1035

Pauli oscillator [136] 1041

Aharonov-Bohm [137] 1043

TABLE II. Upper bounds on the deviation from the canonical
basis in momentum space C as in Eq. (59) given in units of
l2p=ℏ2 ¼ m−2

p .

Experiment References Upper bound on Cm2
p

Pendulums [39] 105

Harmonic oscillators [39,40] 108

Muon g − 2 [41] 1017

Equivalence principle [42] 1020

Quantum noise [43] 1022

Tunneling microscope [44] 1022

Hydrogen spectrum [45,46] 1023

Gravitational bar detectors [47,48] 1033

Lamb shift [44,49] 1037

87Rb interferometry [50,51] 1040
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Summarizing; both the curvature of momentum space as
well as the deviation from the canonical momentum basis
in the flat case are constrained experimentally from bounds
on the noncommutativity of space and on the β-parameter
of the commutative quadratic GUP, respectively.

VI. CONCLUSION

Modifications to the Heisenberg algebra yields a con-
venient way to incorporate minimum length effects; a
generic prediction of quantum gravity into nonrelativistic
quantum mechanics. Recent results [97–100] suggest a
deep connection between such generalized and extended
uncertainty principles and non-Euclidean momentum and
position spaces, respectively. In this paper we further
strengthened this connection presenting a noncanonical
transformation which provides a direct map from theories
involving GUPs to quantum mechanics on curved momen-
tum space.
In that vein, we first introduced quantum mechanics on a

background described by a purely momentum-dependent
metric. We further gave an account of the kind of general
changes to the canonical commutation relations which are
usually associated to generalized uncertainty relations
including noncommutativity of the position coordinates.
Bringing those two lines of thought together, we found an
explicit dual description of this type of deformation in
terms of a nontrivial momentum space. In other words,
every GUP entailing a certain set of non-Darboux coor-
dinates yields its counterpart in a specific set of canonically
conjugated phase space variables. The resulting dynamics
strongly indicate the presence of a nontrivial momen-
tum space.
In particular, in the case of the quadratic GUP the

curvature tensor in momentum space is proportional to
the spatial noncommutativity. However, the dual descrip-
tion of a commutative space does not imply a trivial
background because the corresponding basis in momentum
space is curvilinear. As nonlinear basis transformations in

momentum space are not canonical, the resulting theory is
inequivalent to ordinary quantum mechanics. The deviation
from Riemannian geometry induced by this unusual
basis can then be measured by a scalar derived from the
Cartan tensor.
This allows us to import constraints on the curvature of

momentum space from bounds on the noncommutativity of
space yielding for the Ricci scalar in momentum space
Sjp¼0 < 1013m−2

p . Moreover, the literature on GUPs with
commutative space is helpful in constraining the deviation
from Riemannian geometry when the curvature is vanish-
ing, yielding Cp¼0 < 1017m2

p.
Evidently, the reasoning applied in the present paper is

general enough to be applied to extended uncertainty
principles in an analogous fashion. Correspondingly, those
can be mapped to theories of quantummechanics on curved
position space, thus establishing the connection hinted at in
Refs. [97–100].
To make a long story short, the interplay of GUPs and

non-Euclidean momentum space as well as extended
uncertainty principles and curved position space, yields a
rich phenomenology that justifies further investigation. In
particular, a formulation of quantum mechanics on gener-
alized Hamilton spaces away from Cartesian coordinates,
such that the metric may depend on positions and momenta,
may be seen as a goal to achieve in future work.
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