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Models of spin foam quantum gravity come in different spacetime signatures, either Euclidean or
Lorentzian. The choice is reflected in the use of Spinð4Þ or SLð2;CÞ as gauge groups for the holonomies of
the connection. In this work we show that a rotation of the Immirzi parameter to purely imaginary values
maps the Euclidean Engle-Pereira-Rovelli-Livine spin foam model to its Lorentzian version and vice versa.
Our methods provide a general recipe for relating spin foam models of different signature through analytic
continuation of the gauge groups and their unitary irreducible representations.
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I. INTRODUCTION

The importance of working with theories defined on
Euclidean spacetime in modern physics can hardly be
overstated. In quantum field theory, one can recover the
Wightman distributions from the analytic continuation of
Schwinger functions in imaginary time. The Feynman path
integral quantization is much more under precise math-
ematical control when working with Euclidean signature,
as oscillatory integrals turn into Gaussian integrals. This
opens the door to, among others, analytical methods from
statistical mechanics and numerical methods such as
Monte Carlo integration that are routinely employed for
gauge theories on lattices. In gravitation, the Hartle-
Hawking or Euclidean vacuum provides a route to under-
stand the thermodynamical properties of spacetime and the
initial conditions of the universe.
Yet one wants, in the end, to recover physical laws in

Lorentzian spacetime. In quantum field theories, where the
background metric is constant and flat, the Wick rotation is
the prescription for switching signature by “rotating” the
physical time variable t to a purely imaginary time variable
τ ¼ it. This is not limited to flat spacetimes, as for example
the same rotation works for extending the Schwarzschild
solution to its Euclidean sector. It is not clear, however, how
to generalize this procedure to nonflat or nonstationary
metrics.
When working with generally curved spacetime, the

choice of signature is enforced from the start. The Ashtekar
formulation [1] of general relativity as a gauge theory of

spacetime connections comes in two versions, Euclidean
and Lorentzian. This formulation is the starting point for
the quantization program of loop quantum gravity (LQG),
which then necessarily picks one of the two signatures.
This is especially the case for spin foam models [2], which
define the dynamics of SUð2Þ spin networks by regular-
izing the gravitational path integral over simplicial com-
plexes. Spin foam models come in two versions, Euclidean
and Lorentzian, which differ by the gauge groups of the
holonomies on the spin foam edges. Euclidean models are
defined with the compact group Spinð4Þ while the non-
compact group SLð2;CÞ is used in Lorentzian ones. This is
true also for the Engle-Pereira-Rovelli-Livine (EPRL)
model [3,4], which is currently the standard model
employed in calculations. Most of the results in the
literature have been obtained in the Euclidean model, with
a few exceptions [5–7]. The calculations in the Euclidean
version are generally much simpler, but it is not clear if and
how the results can be applied to the Lorentzian version.
In this work we show that the Euclidean and Lorentzian

EPRL models are related through the “rotation” of the
Immirzi parameter, a fundamental constant of LQG quan-
tization, to purely imaginary values. To do so, we use two
analog decompositions of the gauge groups Spinð4Þ and
SLð2;CÞ to rotate their “boost” parts in their complex-
ification. Our methods can be used to build a relation
between these two groups that are fundamental to quantum
gravity theories. In the spin foam setting, this relation
provides an analytic continuation between Euclidean and
Lorentzian models in close analogy with the analytic
continuation in complex time of n-point correlation func-
tions of ordinary quantum field theories.
The paper is organized as follows. We start by defining

the decomposition of the two gauge groups using similar
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notation to highlight the analogies. Then we show how to
relate their algebras, group elements and unitary irreducible
representation through analytic continuation. After a brief
presentation of the EPRL model, we prove our result about
the Euclidean and Lorentzian vertex amplitudes. We con-
clude discussing the applications of our findings to quan-
tum gravity and spin foam theory.

II. MATHEMATICAL PRELIMINARIES

We start by discussing how to decompose the gauge
groups to isolate a one-dimensional subgroup of boost
transformations.

A. Decomposition of SLð2;CÞ
The algebra of SLð2;CÞ is generated by L⃗, the generators

of the spatial rotation subgroup, and K⃗, the generators of
the corresponding boosts. The two Casimir operators are
K2 − L2 and K⃗ · L⃗. The unitary irreducible representations
in the principal series are labeled by ðρ; kÞ where ρ is a real
number and k is a half-integer [8]. The Casimirs in this
representation take the values

ðK2 − L2Þjρ; ki ¼ ðρ2 − k2 þ 1Þjρ; ki;
K⃗ · L⃗jρ; ki ¼ ρkjρ; ki: ð1Þ

Since the representation ð−ρ;−kÞ is unitarily equivalent to
the representation ðρ; kÞ we restrict ourselves to only
positive values of ρ and k. The group SLð2;CÞ is non-
compact so the generic unitary representation ðρ; kÞ is
infinite dimensional. The canonical basis for the represen-
tation ðρ; kÞ, given by jρ; k; jmi with j ≥ k and
m ¼ −j;…; j, diagonalizes L2 and L3. The Cartan decom-
position of the group SLð2;CÞ is

SUð2Þ × Aþ × SUð2Þ → SLð2;CÞ
ðu; er

2
σ3 ; vÞ ↦ ue

r
2
σ3v†; ð2Þ

where Aþ is the diagonal subgroup fer
2
σ3 jr ≥ 0g. The Haar

measure with respect to this decomposition is

dμSLð2;CÞ ¼
1

π
sinh2r dr du dv: ð3Þ

Note we choose a normalization factor that slightly differs
from the one used in the literature [9] by a factor 4 to
uniform our notation with the Spinð4Þ case.

B. Decomposition of Spinð4Þ
The algebra of Spinð4Þ ≃ SUð2Þ × SUð2Þ is generated

by two commuting SUð2Þ algebras with generators J⃗L and
J⃗R. For our purposes it is convenient to parametrize the
algebra in terms of Li, the generators of the spatial rotation
subgroup, and Ai, the generators of time rotations or

(Euclidean) boosts, as we will call them with a slight
abuse of language. We define the rotations and boost
generators as

L⃗ ¼ J⃗L þ J⃗R; A⃗ ¼ J⃗L − J⃗R: ð4Þ

From the standard Casimirs J2L and J2R we obtain an
equivalent set of two Spinð4Þ invariant operators:

A2 þ L2 ¼ 2ðJ2L þ J2RÞ; L⃗ · A⃗ ¼ J2L − J2R:

We parametrize the representation ðjL; jRÞ in terms of two
other half-integer quantum numbers p≡ jL þ jR þ 1 and
k≡ jL − jR [10]. Without loss of generality wewill assume
that jL ≥ jR such that p > k ≥ 0. The canonical basis for
the representation ðp; kÞ, given by jp; k; jmi with p − 1 ≥
j ≥ k and m ¼ −j;…; j, diagonalizes L2 and L3. In this
basis, the Casimirs assume the values

ðA2 þ L2Þjp; ki ¼ ðp2 þ k2 − 1Þjp; ki;
L⃗ · A⃗jp; ki ¼ pkjp; ki: ð5Þ

There exists a decomposition analog to (2) for the group
Spinð4Þ. We parametrize an arbitrary element ðgL; gRÞ ∈
Spinð4Þ using two copies of the diagonal subgroup
ða; aÞ ¼ D ≃ SUð2Þ. We define the map

SUð2Þ × Tþ × SUð2Þ → Spinð4Þ
ðu; e−it2σ3 ; vÞ → ðue−it2σ3v†; ueit2σ3v†Þ; ð6Þ

where Tþ ¼ fexpð−i t
2
σ3Þjt ∈ ½0; 2πÞg. Let also Eþ be the

subgroup fðg; g†Þjg ∈ Tþg of Spinð4Þ. We show that the
map (6) is surjective. Let ðgL; gRÞ be a generic element of
Spinð4Þ. The equations

gL ¼ ue−i
t
2
σ3v†

gR ¼ uei
t
2
σ3v†

imply

gLg
†
R ¼ ue−itσ3u†

g†RgL ¼ ve−itσ3v†:

The elements gLg
†
R and g†RgL are conjugate, and every

element of SUð2Þ is conjugate to a diagonal matrix of the
form expðitσ3Þ. Hence we can solve the last equations for u,
v. Notice, importantly, that it is enough to require t ∈
½0; 2πÞ to get a unique solution. We have thus shown that
(6) is the sought for Cartan decomposition for Spinð4Þ. The
Haar measure with respect to this decomposition is

dμSpinð4Þ ¼
1

π
sin2t dt du dv: ð7Þ
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III. ANALYTIC CONTINUATION

We use the decompositions (2) and (6) to relate the groups
SLð2;CÞ and Spinð4Þ through analytic continuation.

A. Algebras and group elements

To start, we map the Lie algebras and group elements.
From the (real) algebra of Spinð4Þ we get the (realification
of the) algebra of SLð2;CÞ by rotating half of the algebra to
purely imaginary generators:

spinð4Þ ≃ suð2Þ ⊕ suð2Þ → suð2Þ ⊕ isuð2Þ ≃ slð2;CÞ:

In terms of the previously defined generators, the rotation
maps the generators of Euclidean boosts to the generators
of Lorentzian boosts and vice versa:

ðL⃗; iK⃗Þ ≃ spinð4Þ and ðL⃗;−iA⃗Þ ≃ slð2;CÞ: ð8Þ

We write these isomorphisms of (real) Lie algebras as
A⃗ ↔ iK⃗ and K⃗ ↔ −iA⃗. From the decompositions (2) and
(6) we see also that (8) induces a map between the compact
subgroup Eþ and the noncompact subgroup Aþ seen as
subgroups of the complexified groups Spinð4ÞC ≃
SLð2;CÞC. For example, the map from Eþ to Aþ can be
achieved by sending t → ir where t ∈ ½0; 2πÞ parametrizes
Eþ and r ∈ Rþ parametrizes Aþ.
This relation between the Eþ and Aþ subgroups has an

interesting geometrical interpretation. Since the action of
Spinð4Þ is transitive on SUð2Þ ≃ S3 ⊂ H, where H is the
group of quaternions, and the diagonal subgroup D
stabilizes the identity, the 3-sphere S3 is a homogeneous
space for Spinð4Þ. We can thus identify the quotient
subgroup Spinð4Þ=D with the 3-sphere. There is a similar
result for SLð2;CÞ (a well-known construction of geo-
metric analysis [11]): the quotient group SLð2;CÞ=SUð2Þ
can be identified with hyperbolic 3-spaceH3. In light of the
decompositions (2) and (6), write an element of the quotient
Spinð4Þ=D as deðtÞD, eðtÞ ∈ Eþ; d ∈ D, and an element
of SLð2;CÞ=SUð2Þ as kaðrÞK, aðrÞ∈Aþ;k∈K¼SUð2Þ.
The parameters r, t act as radial coordinates in the
corresponding 3-manifolds. Hence the inverse map
r → −it from Aþ to Eþ can be interpreted geometrically
as mapping hyperbolic 3-space to spherical 3-space,
similarly to the usual rotation t → iτ from physical time
to Euclidean time that transforms Lorentzian metrics into
Riemannian ones (and in particular Minkowski space to
Euclidean space). This becomes manifest if we consider the
metric of hyperbolic 3-space in radial coordinates,

dH2 ¼ dr2 þ sinh2rdΩ2
2;

where dΩ2 is the metric on the 2-sphere. The map r → −it
maps this metric to (up to a minus sign)

dS2 ¼ dt2 þ sin2tdΩ2
2

which is exactly the metric of the 3-sphere. From these
metrics we can also read the Jacobian factors that enter the
Haar measures (3) and (7).

B. Representations

The isomorphisms (8) can be used to find a correspon-
dence between the unitary irreducible representations of
Spinð4Þ and SLð2;CÞ. We compute the action of the
Casimirs (1) and (5) in the complexified algebras and find
the map between representations looking at their eigenval-
ues on the respective canonical bases. From A⃗ ↔ iK⃗ we get

p2 þ k2 − 1 ↔ −ρ2 þ k2 − 1;

pk ↔ iρk: ð9Þ

Looking at the second Casimir we read the maps between
SLð2;CÞ and Spinð4Þ representations

ðρ → −ip; kÞ ≃ ðp; kÞ;
ðp → iρ; kÞ ≃ ðρ; kÞ: ð10Þ

In the following we write ðp; kÞ ↔ ðiρ; kÞ to denote both
maps. The maps (10) can be realized explicitly in terms of
matrix elements. Using these maps between representa-
tions, we can define a generalized reduced matrix element

that we denote dða;kÞjlm ðzÞ, z ∈ C, which represents both the
Aþ and Eþ subgroups. For a ¼ iρ, ρ ∈ R and z ¼ e−r it
reduces to

dðρ;kÞjlm ðrÞ≡ hρ; k; j; mjer
2
σ3 jρ; k; l; mi ð11Þ

in the SLð2;CÞ case, and for a ¼ p, p > k ∈ Z=2 and
z ¼ eit to

dðp;kÞjlm ðtÞ≡ hp; k; j; mje−it2σ3 jp; k; l; mi ð12Þ

in the Spinð4Þ case.
We outline a derivation of the expression for the

generalized matrix elements dða;kÞjlm ðzÞ using only elemen-
tary algebra and properties of the hypergeometric func-
tions. The complete proof can be found in [12] by one of
the authors. Similar results appear in [13–16] but using
different conventions.
The boost matrix elements for SLð2;CÞ can be written as

analytically continued SUð2Þ Clebsch-Gordan coefficients
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dðρ;kÞjlm ðrÞ ¼
X
n

e−ðiρ−k−1þm−2nÞr
�
iρþ k − 1

2
;
iρ − k − 1

2
þm − n;

iρ − k − 1

2
; n −

iρ − k − 1

2

����j; m
�

×

�
iρþ k − 1

2
;
iρ − k − 1

2
þm − n;

iρ − k − 1

2
; n −

iρ − k − 1

2

����l; m
�

þ ½ρ → −ρ; k → −k� ð13Þ

using the expression of the Clebsch-Gordan coefficients in terms of 3F2 hypergeometric functions and factorials (continued
to Gamma functions) (pages 240 and 241 of [17]). The last line corresponds to the same expression as in the first sum

P
n …

but with the signs of ρ and k flipped. Sending ρ → −ip, equivalently iρ → p, and r → −it, equivalently ir → t, we obtain

dð−ip;kÞjlm ðitÞ ¼
X
n

eðp−k−1þm−2nÞit
��

pþ k − 1

2
;
p − k − 1

2
þm − n

�
;

�
p − k − 1

2
; n −

p − k − 1

2

�����j; m
�

×

��
pþ k − 1

2
;
p − k − 1

2
þm − n

�
;

�
p − k − 1

2
; n −

p − k − 1

2

�����l; m
�

þ ½p → −p; k → −k�: ð14Þ

The second term vanishes identically since k ≤ j; l ≤ p − 1 while the Clebsch-Gordan coefficients vanish if
j; l ≤ −p − 1. If we shift the first summation n → n0 þ ðp − k − 1Þ=2 we obtain the expression for the reduced matrix

elements of Spinð4Þ. The complete expression for dða;kÞjlm ðzÞ, which covers both the previous cases, is

dða;kÞjlm ðzÞ ¼ ð−1Þj−l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − j − 1Þ!ðjþ aÞ!
ða − l − 1Þ!ðlþ aÞ!

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2jþ 1Þð2lþ 1Þp
ðjþ lþ 1Þ! z−ða−k−m−1Þ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ kÞ!ðj − kÞ!ðjþmÞ!ðj −mÞ!ðlþ kÞ!ðl − kÞ!ðlþmÞ!ðl −mÞ!

p

×
X
s;t

ð−1Þsþtz2t
ðkþ sþmþ tÞ!ðjþ l − k −m − s − tÞ!

t!s!ðj − k − sÞ!ðj −m − sÞ!ðkþmþ sÞ!ðl − k − tÞ!ðl −m − tÞ!ðkþmþ tÞ!
× 2F1½fl − aþ 1; kþmþ sþ tþ 1g; fjþ lþ 2g; 1 − z2�; ð15Þ

where z ∈ C, k ∈ Z=2 and either a ¼ p ∈ Z=2; p > 1 or
a ¼ iρ; ρ ∈ Rþ. If a ¼ iρ and z ¼ e−r then (15) turns into
the SLð2;CÞ reduced matrix elements (11). If a ¼ p and
z ¼ eit then (15) turns into the Spinð4Þ reduced matrix
elements (12). The formula for the minimal case l ¼ j ¼ k
is much simpler:

dðρ;kÞkkm ðzÞ¼ zk−aþmþ1

× 2F1½k−aþ1;kþmþ1;2kþ2;1− z2�; ð16Þ

where 2F1 is the Gauss hypergeometric function. This is the
formula that will be used later in the proof of the main
result.

IV. THE EPRL MODEL

The harmonic analysis of Spinð4Þ and SLð2;CÞ is
central to spin foam models of quantum gravity. The
EPRL model is built upon the spin foam quantization
of topological BF theory. Topological invariance is bro-
ken implementing at the quantum level the simplicity

constraints of the Plebanski formulation of general rela-
tivity via the so-called Yγ map [2].
In the Lorentzian model, the linear simplicity constraints

impose the linear relation K⃗ ¼ γL⃗ between the boost and
rotation generators of the SLð2;CÞ algebra. In terms of the
representations ðρ; kÞ on the canonical basis, these are
implemented as the map Yγ from the suð2Þ representation
of spin j to a subspace of the slð2;CÞ representation
ðρ; kÞ ¼ ðγj; jÞ:

Yγ∶jj; mi → jγj; j; j; mi: ð17Þ

In the Euclidean model, similarly, the constraints A⃗ ¼ γL⃗
between the (Euclidean) boost and rotation generators are
implemented through the same map (17) where, in this
case, the embedding is in the ðp; kÞ ¼ ðγj; jÞ representation
on the canonical basis for spinð4Þ. Requiring this map to
be valid for all j ∈ Z=2 imposes γ ∈ Z. To be consistent
with the convention of taking p > k we restrict to the case
of γ > 1.
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The decompositions (2) and (6) allow to recast the EPRL
vertex amplitude as a sum of SUð2Þ 15j-symbols weighted
by the product of four booster functions B4 [18]:

Avðjf; ieÞ ¼
X
lf;i0e

�Y
e

di0eB4ðjf; lf; ie; i0eÞ
�
f15jgðlf; i0eÞ;

where di0e ¼ 2i0e þ 1 and jf, ie are spin and intertwiner
variables on the vertex boundary. The dependence on the
Immirzi parameter γ is in the functions B4. The formula
holds both for the Lorentzian and Euclidean models, with
the following differences. First, the lf spins are unbounded
in the Lorentzian case while they are bounded in the
Euclidean case. Second, the Lorentzian booster functions
contain the integral over Aþ of the product of SLð2;CÞ
reduced matrix elements while the Euclidean ones contain
the integral over Eþ of the product of Spinð4Þ matrix
elements (with the corresponding Haar measures). We
denote BL

4 the former and BE
4 the latter, and similarly AL

v

and AE
v for the vertex amplitudes.

V. ANALYTIC CONTINUATION
OF VERTEX AMPLITUDES

We now prove that the Lorentzian and Euclidean vertex
amplitudes can be related through the rotation γ ↔ iγ of the
Immirzi parameter. We do so by showing how to relate the
booster functions BL

4 and BE
4 . For simplicity of notation, we

focus on the minimal case B4ðjf; jf; ie; i0eÞ but the proof
applies also to the case lf > jf with minimal modifications.
For further ease of notation, we set in the following ki ≡ jf
and we drop the indices ie; i0e.
Using the generalized matrix element (16), the booster

function B4 can be written as

B4ðki; kiÞ ¼
Z
Ω
dμΩðzÞfðai; ki; zÞ; ð18Þ

where Ω can be either Aþ ≃ ð0; 1� or Eþ ≃ S1 embedded in
the complex plane C, dμΩðzÞ is the Haar measure (3) or (7)
in the z ¼ e−r or z ¼ eit variable and

fðai; ki; zÞ ¼
X
mi

�
ki
mi

�Y4
i¼1

dðai;kiÞkikimi
ðzÞ

�
ki
mi

�

with 4jm-symbols in round parentheses. The value of ai
depends on the signature as discussed previously. It is
easily seen that the Haar measures on Aþ and Eþ are the
same up to a factor of i when embedded into the complex
plane. In the Euclidean case, where ai ¼ pi, let us denote
IEðpi; kiÞ the integral (18), considering it as a function
of the representation labels. In the following formulas we
also drop the 4jm-symbols which come from the double
SUð2Þ integration in the Haar measures, and assume

M ¼ P
i mi ¼ 0 (since otherwise the 4jm-symbols vanish

and the result is zero). After these simplifications, we have

IEðpi; kiÞ

¼ i
4π

I
S1
dzð1− z2Þ2zK−Aþ1

×
X
mi

Y4
i¼1

2F1½ki −pi þ 1; ki þmi þ 1;2ki þ 2; 1− z2�

ð19Þ

with K ¼ P
i ki and A ¼ P

i ai ¼
P

i pi. The first argu-
ment of all the hypergeometric functions is a strictly
negative integer since ki < pi, therefore they reduce to
polynomials in 1 − z2. The prefactor zK−Aþ1 introduces a
pole singularity in z ¼ 0 and the complete integrand is
meromorphic, or analytic in the punctured plane.
Therefore, it is irrelevant which contour one uses, as long
as it contains z ¼ 0. Let us consider the contour Cε
represented in red in Fig. 1. The horizontal segments have
small distance ε from the real axis. The semicircles around
0 and 1 have small radius ε. The integral IE can be
equivalently evaluated on Cε, in the limit ε → 0.
Let us now consider (18) in the Lorentzian case, when

ai ¼ iρi. As in the previous case, we denote the integral
with M ¼ 0 and dropping the 4jm-symbols as

ILðρi; kiÞ

¼ 1

4π

Z
ð01�

dzð1− z2Þ2zK−Aþ1

×
X
mi

Y4
i¼1

2F1½ki − iρi þ 1; ki þmi þ 1;2ki þ 2;1− z2�;

ð20Þ

where now A ¼ P
i ai ¼ i

P
i ρi.

A. Rotation IE → IL
The substitution pi ↔ iρi maps the integrand of IE into

the integrand of IL and vice versa, up to a factor of i. We
now show that this provides a rotation of the Euclidean
integral IE to the Lorentzian integral IL, up to a prefactor.

FIG. 1. The contour Cε. The point z ¼ 0 is a pole singularity in
the Euclidean case and a branch point singularity in the
Lorentzian case.
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In the Lorentzian case the integrand is not meromorphic
because both the hypergeometric functions and the pre-
factor zK−Aþ1 develop a branch point singularity in z ¼ 0.
Consider first the hypergeometric part. The analytic con-
tinuation of the hypergeometric series outside of the unit
disk using Euler’s formula has a branch cut discontinuity
along real numbers x ≥ 1 (Chapter 15 of [19]). When
computed in 1 − z2, the branch cut discontinuity is along
the whole imaginary axis, represented as a dot-dashed line
in Fig. 1, and there are two disconnected domains of
analyticity. We assign the principal branch j argðzÞj < π=2
on both sides of the imaginary axis and we define the value
on the imaginary axis minus the origin by continuity from
the left.
At the origin each one of the hypergeometric functions

in (20) is in general divergent. This happens when
Reðδi − αi − βiÞ < 0, where αi, βi, δi are the three param-
eters of 2F1½fαi; βig; fδig; 1 − z2� (Sec. 15.4(ii) of [19]). In
our case Reðδi − αi − βiÞ ¼ −mi, therefore for somemi the
hypergeometric function is divergent at most of order
di ¼ 2maxð0; miÞ, i.e.

lim
z→0−

zdiþσ
2F1½fki−aiþ1;kiþmiþ1g;f2kiþ2g;1−z2�¼0

for any real σ > 0. The product of four hypergeometric
functions in (20) is divergent at most logarithmically in the
origin, i.e.

P
i di ¼ 2maxð0;Pi miÞ ¼ 2maxð0;MÞ ¼ 0,

since we can always take M ¼ 0. This implies that the
prefactor zK−Aþ1 cures any potential divergence in z ¼ 0.
This is not peculiar for the minimal case ji ¼ li ¼ ki, as can
be verified using (15).
The prefactor zK−Aþ1 also has branch point singularities

in 0 and ∞ since A is purely imaginary. For this term we
consider the branch j argð−zÞj < π so that the discontinuity
is along the positive real axis (represented in Fig. 1 as a dot-
dashed line). We note, however, that the hypergeometric
functions are continuous across the positive real axis.
We split the contour Cε in four pieces: let Cε0 be the small

semicircle around 0, Cε1 be the small semicircle around 1,
Cεþ be the straight line above the real axis and Cε− be the
straight line below the real axis. The integral along Cε1

vanishes since ReðK − Aþ 1Þ > 0 and the hypergeometric
function is regular there. The integral along Cε0 vanishes
for the same reason, since the eventual logarithmic
divergence at z ¼ 0 of the product of the four hyper-
geometric functions is more than canceled by the prefactor
zK−Aþ1. The integrals along Cεþ, Cε− differ by a factor
exp 2πiðK − Aþ 1Þ due to the presence of the branch
cut of zK−Aþ1 while the hypergeometric function is con-
tinuous in the right half-plane Re z > 0. In the limit ε → 0
we obtain

IEðpi; kiÞ ⟶
pi→iρi iðe2πi

P
i
ðki−iρiÞ − 1ÞILðρi; kiÞ; ð21Þ

concluding the proof of the rotation IE → IL. The gener-
alization of (21) to any ji; li ≥ ki, and in particular to the
case ki ¼ ji and li ≥ ji, relevant for the booster functions,
is straightforward. All the previous arguments are immedi-
ately extended, since the prefactor zK−Aþ1 remains the same
and all the considerations about the product of the hyper-
geometric functions with minimal arguments apply also to
the more complicated sum over si, ti of products of
hypergeometric functions.

B. Rotation IL → IE
The converse direction IL ⟶

iρi→pi IE holds too after regu-
larizing the divergent prefactor with a limit. Write the
rotation iρi → pi as

IEðpi; kiÞ ¼ i lim
qi→pi

ðe2πi
P

i
ðki−qiÞ − 1ÞILð−iqi; kiÞ; ð22Þ

where first we do the analytic continuation ρi → −iqi of
ILðρi; kiÞ with qi ∈ RnZ and then we take the limit
qi → pi ¼ ki þ ni and ni ∈ Nþ to regularize the product
of the vanishing prefactor with the divergent function
ILð−iqi; kiÞ. In fact, the defining integral representation
(20) of ILðρi; kiÞ is divergent if we perform the substitution
iρi → pi, for any half-integer pi > ki ≥ 0. However,
we can overcome this difficulty noticing that the same
apparent obstruction appears for example in the Euler’s
integral representation of the standard Gamma and Beta
functions. After the substitution iρi → pi the integral in
(20) reduces to

Z
1

0

dzð1 − z2Þ2z1þ
P

i
ðki−piÞP½1 − z2�; ð23Þ

where P½1 − z2� stands for a generic polynomial in the
variable 1 − z2. Changing variables z2 → w we can write
this integral as a finite sum of Beta functions

Z
1

0

dww−2þ1
2

P
i
ðki−piþ1ÞP0½1 − w�

∼
X
j

B

�
−2þ 1

2

X
i

ðki − pi þ 1Þ; nj
�

ð24Þ

with the first argument always a negative integer and the
second argument a positive integer. The Beta function can
be analytically continued to complex values of its argu-
ments using for example the Pochammer contour, possibly
with simple poles at the negative integers. Since
ILð−iqi; kiÞ tends to (24) continuously for qi → pi, it is
possible to analytically extend ILðρi; kiÞ to generic com-
plex values of the first parameter, again possibly with
simple poles at the negative integers, i.e. at the values
ki − pi þ 1 relevant for our case. The simple form (24)
holds however only in a small neighborhood of the poles
since in general the hypergeometric functions will not be
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expressible as simple polynomials. Remarkably, the van-
ishing prefactor in (22) exactly cancels the divergence of
the analytically continued ILð−iqi; kiÞ at its simple poles.
Since each ρi spans an open subset of C, the previous

considerations support strongly the conjecture that the two
functions IEðpi; kiÞ and ILðρi; kiÞ are particular integral
representations of a unique function Iðai; kiÞ defined on the
whole spaceC4 × Z4, which agrees with IEðpi; kiÞ for ai ¼
pi and with ILðρi; kiÞ for ai ¼ iρi. Hence, we can speak
unambiguously of the analytic continuation of IE and IL.
We do not provide a rigorous proof of this claim here,
which would require a more careful treatment of the
interplay between the analytic continuation of the hyper-
geometric functions, the prefactor zK−Aþ1 and the integra-
tion on the unit interval.

C. Rotation of vertex amplitudes

Imposing the Yγ map to both IE and IL integrals we find
the desired relation between the Lorentzian and Euclidean
booster functions. The analytic continuation pi → iρi reads
γji → iγji and corresponds to the rotation of the Immirzi
parameter γ → iγ. In terms of the vertex amplitudes we get

AL
v ðjf; ieÞ ¼

�Y
e

i

1 − e2πγ
P

i∈e
ji

�
AE
v ðjf; ieÞðγ→iγÞ; ð25Þ

where the superscript ðγ → iγÞ means that equality holds
after performing the rotation, or analytic continuation, of
the expression. The converse rotation iγ → γ gives the other
direction

AE
v ðjf;ieÞ¼ i

�Y
e

�
e2πγ

P
i∈e

ji−1

�
AL
v ðjf;ieÞ

	ðiγ→γÞ
; ð26Þ

where the prescribed regularization is implicit. This com-
pletes the proof of the relation between the analytic
continuations of the vertex amplitudes.

VI. CONCLUSIONS

Our result explains the many similarities between results
obtained in the two versions of the EPRL model. It is
important to remark that formulas (25) and (26) are exact,
while all the known results in the literature use the saddle-
point approximation to estimate the amplitudes when the
spin labels are large. Care is needed when analytically
continuing the saddle-point expressions, since the relevant
terms for the rotation may have been discarded in the
approximation. The Euclidean asymptotic formula is [20]

AE
v ≈

1

λ12
ðN1 cosðλγSRÞ þ N2eiλSR þ N3e−iλSRÞ;

where SR is the Regge action of the reconstructed 4-simplex
and λ gives the scaling. In the rotation γ → iγ, the cosine

term vanishes since the corresponding saddle-point dis-
appears, while the two exponentials survive the rotation and
contribute to the “degenerate” sector of the Lorentzian
model. The converse rotation holds too. We show the
details in the Appendix.
The map between the saddle-point expressions implies a

map between derived results. An example is given by the
“flatness problem” of spin foam models [21–24]. Various
analyses suggested that the curvature of spin foam models,
measured by interpreting the holonomies around internal
faces as Regge deficit angles, might be accidentally
suppressed in the large-spin limit. Most of the analyses
have been done in the Euclidean model, with the last work
[25] considering a particular configuration with three
vertices. Our result implies that the flatness constraint
θ ¼ 0 mod 4π=γ holds in both models, with the rotation
γ → iγ mapping Euclidean to Lorentzian angles. The
presence of the flatness constraint within Lorentzian
EPRL has recently been verified numerically [26].
Another compatible result pertains to the divergence of
the self-energy graph, i.e. the one-loop correction to the
spin foam propagator. The Lorentzian analysis [7] seems to
match the Euclidean analysis [27]. This is implied by our
result since the leading order of divergence does not
depend on γ.
In the context of computer simulations, we expect our

result to contribute to existing numerical codes [26,28,29].
A complicated simulation can be performed with the
computationally simpler Euclidean vertex and then general
results can be inferred to be valid also in the Lorentzian
case, similarly to what is done in lattice gauge theories. Our
result can also be compared to other proposed analytic
continuations of the EPRL model [30–32] or to effective
spin foam models [33].
It is interesting to relate our findings to the early

formulation of loop quantum gravity. The original canoni-
cal formulation of LQG was based on complex (self-dual)
Ashtekar variables that require the imposition of “reality
conditions” to recover real Lorentzian general relativity.
Since the quantization of these reality conditions is prob-
lematic, the focus of the LQG community soon shifted to
the use of real Barbero-Immirzi variables [34,35]. The price
to pay is a more complicated form of the constraints and a
less clear geometric interpretation of the real connection
[36]. In the Euclidean signature these problems do not arise
since the self-dual connection is real, and a “Wick trans-
form” has been proposed for mapping the Euclidean
constraints of general relativity to the Lorentzian ones
[37–39]. Our result implements this classical construction
into the quantum theory.
The applications of our methods go beyond spin foam

models. For example, the booster functions are related to
the Clebsch-Gordan coefficients of the respective groups
[18]. Our results can be used to relate the Clebsch-Gordan
coefficients of SLð2;CÞ in the principal series to the
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analytic continuation of the ones of Spinð4Þ (given by a
9j-symbol) [13,16]. In addition, our construction strongly
suggests that the integral forms of the booster functions,
hence of the Clebsch-Gordan coefficients, are special cases
of a general meromorphic function defined in the whole
complex plane, a point already raised in the group theory
literature [40].
In general, our prescription for mapping through analytic

continuation the algebras, group elements and unitary
irreducible representations of Spinð4Þ and SLð2;CÞ can
be adapted to any physical model based on each of the two
groups. Unitary irreducible representations of the Lorentz
group are surely relevant to quantum gravity, but the
possibility of finding other physical realizations of these
representations is certainly worth considering, and indeed
may be suggested by this relation.
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APPENDIX: ON THE LARGE-SPIN
APPROXIMATION

Here we show how to apply the rotation γ → iγ to the
large-spin asymptotic approximation of the Euclidean
EPRL model. The Euclidean EPRL amplitude for γ > 1
with coherent boundary data represented by the set of
spinors jζabi can be written as the exponential of the action

S ¼
X
a<b

ðγ þ 1Þjab loghζLbajgLbajζLabi

þ ðγ − 1Þjab log hζLbajgRbajζLabi
þ 2jab log hζbajζLbaihζLabjζabi; ðA1Þ

where gba ¼ ðgLba; gRbaÞ ∈ Spinð4Þ, gba ¼ g−1b ga and
ζLba; ζLab are dummy spinors part of the integration
variables.
The critical point equations for (A1) are given by

alignment conditions of the dummy spinors, closure con-
ditions on the boundary data and orientation conditions.
The solutions of these are straightforward and we find that,
for suitable boundary data representing a Euclidean
4-simplex, θLba ¼ �θba and θRba ¼ �θba where θba is the
dihedral angle between the tetrahedron a and b in the

4-simplex [20]. The plus or minus signs in θLba and θRba are
independent, therefore we have four critical points:

hζbajgbajζabi ¼ e�i
2
θba :

Two of these satisfy the condition gLba ¼ gRba while the
other two satisfy gLba ¼ g†Rba. The critical points satisfying
gLba ¼ gRba belong to the diagonal SUð2Þ subgroup of
Spinð4Þ and has zero (Euclidean) boost parameter t ¼ 0.
We refer to them as “topological” critical points since they
reduce to the BF SUð2Þ ones if restricting the amplitude to
the diagonal SUð2Þ subgroup. Moreover, the dihedral
angles are always defined as positive and by definition
both angles θL;Rba ∈ ½0; 2πÞ, therefore −θba must be taken as
2π − θba. The contribution to the amplitude from the
topological critical points is given by

A≈
1

λ12
e−iγ4π

P
a<b

jab


N1e

i
P

a<b
2jabθba þN2e

−i
P

a<b
2jabθba

�
:

When performing the rotation, the prefactor e−iγ4π
P

a<b
jab

cancels the one of (25) in the large-spin limit.
The contributions of the critical points are rotated from

the Euclidean to the Lorentzian asymptotic formula only if
they are also critical points of the Lorentzian action,
otherwise their contributions vanish. The topological criti-
cal points are present both in the Euclidean and Lorentzian
model, and in fact their contribution is correctly rotated
since they do not depend on the γ.
On the contrary, it is readily seen that in general the

nontopological points are not critical points of the
Lorentzian action. Using the decomposition (6), the rota-
tion from Spinð4Þ to SLð2;CÞ acts on gba ∈ Spinð4Þ as

ðgLba; gRbaÞ → ðhba; ðh−1baÞ†Þ:

The property gLba ¼ g†Rba that defines the nontopological
points is mapped into hba ¼ h−1ba , which in general is not
satisfied by critical points of the Lorentzian action. These
latter however satisfy hba ¼ ðh−1ba Þ†, which is compatible
with the topological points as we have just argued. This
shows that the rotation (25) maps also the asymptotic
Euclidean formula into the (degenerate sector of the)
Lorentzian one, for boundary data corresponding to a
Euclidean 4-simplex and after all the details are taken into
account. The converse rotation (26) and the case of
Lorentzian boundary data require a similar analysis.
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