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We point out little discussed phenomenon in elementary quantum mechanics. In one-dimensional
potential scattering problems, the scattering amplitudes are not uniquely determined at special points in
parameter space. We examine a few explicit examples. We also discuss the relation with the pole-skipping
phenomena recently found in holographic duality. In the holographic pole skipping, the retarded Green’s
functions are not uniquely determined at imaginary Matsubara frequencies. It turns out that this universality
comes from the fact that the corresponding potential scattering problem has the angularmomentum potential.
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I. INTRODUCTION AND SUMMARY

In this paper, we point out little discussed phenomenon
in an elementary quantum mechanics. Consider a one-
dimensional potential scattering problems:

−∂2
xψ þ VðxÞψ ¼ k2ψ ; ð1:1Þ

where we set ℏ2=ð2mÞ ¼ 1 for simplicity and E≕ k2. We
consider one-dimensional scattering problems with x > 0.
This corresponds to the radial motion problems in three
dimensions.
In such a problem, we show that the S matrix is not

uniquely determined by appropriately choosing the wave
number k (in the complex k plane) and potential param-
eters. The Smatrix is not unique because it takes the form at
the special points:

S ¼ 0

0
: ð1:2Þ

Namely, the residue of a pole vanishes. We call such a
phenomenon “pole skipping” because the would-be pole is
“skipped.”More precisely, near the pole-skipping point, the
S matrix typically behaves as

S ∝
δk − iδν
δkþ iδν

; ð1:3Þ

where ν is a parameter of the potential V. Thus, near the
pole-skipping point, the Smatrix is not unique and depends
on the slope δk=δν how one approaches the pole-skipping
point. We examine a few explicit examples in this paper.1

In particular, we mainly focus on the potentials with
angular momentum ν ≔ lþ 1=2. In such examples, the
pole-skipping points are located at

ν ¼ −
n
2
; ðn ¼ 1; 2;…Þ: ð1:4Þ

The S matrix is not uniquely determined because the
wave function is not uniquely determined. In our problems,
the point x ¼ 0 is a regular singularity. So, one can obtain
the solution via a power-series expansion around x ¼ 0:

ψ ¼ xλðψ0 þ ψ1xþ � � �Þ: ð1:5Þ

We show that the power-series expansion takes the form
0=0 at pole-skipping points. For example, the OðxÞ term
takes the form 0=0 at the first pole-skipping point
ν ¼ −1=2. Similarly, the Oðx2Þ term becomes 0=0 at the
second pole-skipping point ν ¼ −1. In this sense, the wave
function is not uniquely determined at pole-skipping
points, and this leads to the nonuniqueness of S.
We see a peculiar property in an elementary quantum

mechanics problem. But there is analogous phenomenon in
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1The pole skipping is little discussed in literature as far as we
are aware, but it is discussed briefly in Ref. [1].
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strongly coupled quantum field theories recently found
using holographic duality or AdS=CFT duality [2–5] (see,
e.g., Refs. [6–10]). Holographic duality is a powerful tool
to compute strongly coupled systems.2 Quantum field
theory is hard to solve at strong coupling. For example,
one would like to compute the retarded Green’s functions,
but it is difficult to compute them at strong coupling.
However, holographic duality enables one to obtain them
by solving classical gravitational problems.
Recently, using holographic duality, it is shown that

finite-temperature retarded Green’s functions are not
uniquely determined at special points in the complex
momentum space ðω; qÞ, where ω is frequency and q is
wave number [11–13]. Such a phenomenon is collectively
known as pole skipping. Just like the quantum mechanics
problem, the Green’s function takes the form GR ¼ 0=0.
More precisely, the Green’s function is not uniquely
determined. Near the pole-skipping point, the Green’s
function typically behaves as

GR ∝
δωþ δq
δω − δq

: ð1:6Þ

So, it depends on the slope δq=δω how one approaches the
pole-skipping point.
The holographic pole skipping shows a universal behav-

ior. The pole-skipping points are always located at
Matsubara frequencies. Typically, they are located at3

ω ¼ −ð2πTÞni; ðn ¼ 1; 2;…Þ; ð1:7Þ

where T is temperature. On the other hand, the value of q
depends on the system, but it is complex in general.
The pole skipping in holographic duality and the pole

skipping in quantum mechanics are not just mere analogy.
We show that the holographic pole-skipping problem can
be written as a quantum mechanical problem with angular
momentum. The universality of the pole-skipping points ω
is translated into the universality of the pole-skipping
points in ν.
The plan of the present paper is as follows. In Sec. II, we

utilize the power-series expansion to identify possible
locations where the wave function is not uniquely deter-
mined. In Sec. III, we examine a few explicit examples
where analytic solutions are available and locate the pole-
skipping points where the S matrix is not uniquely
determined. The results are consistent with the power-
series expansion method. In Sec. IV, we discuss the relation
with the holographic pole skipping.

II. POWER-SERIES EXPANSION

A. x= 0 expansion

We consider analytically solvable examples in Sec. III,
but it is worthwhile to consider a generic potential
scattering problem. The discussion below is also useful
for the potentials where analytic solutions are not available.
We consider

0 ¼ −∂2
xψ þ Vψ − k2ψ ; ð2:1aÞ

V ¼ ν2 − 1=4
x2

þ
X
n¼−1

vnxn; ð2:1bÞ

where we included the “angular part momentum”
ν ≔ lþ 1=2.
The point x ¼ 0 is a regular singularity, so one can solve

the problem by a power-series expansion:

ψðxÞ ¼
X
n¼0

ψnxnþλ: ð2:2Þ

Near x → 0, the angular momentum part dominates:

0 ∼ −∂2
xψ þ ν2 − 1=4

x2
ψ ; ð2:3Þ

so the solution is

ψ ∼ xλ� ; λ� ≔
1

2
� ν: ð2:4Þ

For physical angular momentum, ν ≥ 1=2, so we choose
λþ. More generally, one would impose the boundary
condition that the wave function is square integrable or
λþ with ν > −1.
The coefficient ψn is obtained by a recursion relation. At

the lowest order,

0 ¼ M11ψ0 − ð1þ 2νÞψ1: ð2:5Þ

Normally, this equation determines ψ1 from ψ0. However,
when ν ¼ −1=2 and M11 ¼ 0, both ψ0 and ψ1 are free
parameters. In this case, the wave function is not uniquely
determined but depends on ψ1=ψ0. M11 typically depends
on k2 and vn, so the solution M11 ¼ 0 depends on these
parameters. Thus, the nonuniqueness occurs at special
points of these parameters and ν ¼ −1=2. This determines
a pole-skipping point. As the result of the nonuniqueness of
the wave function, the S matrix is not unique. We see
explicit examples in next section.
In the power-series expansion, one generates two inde-

pendent solutions either by choosing λþ or by choosing λ−.
However, when two roots λþ and λ− differ by an integer or
λþ − λ− ¼ 2ν is an integer, the smaller root fails to produce
the independent solution, and the recursion relation breaks

2Readers who are interested only in quantum mechanics
problems may skip the following paragraphs and Sec. IV.

3More precisely, the first pole-skipping point is related to the
spin s of boundary operators as ω ¼ ðs − 1Þð2πTÞi.
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down at some order. What we see above is this situation. (In
this case, ν ¼ −1=2, so λþ is the smaller root.)
The nonuniqueness of the wave function continues at

higher orders in the recursion relation. One can write the
recursion relation in a matrix form:

0 ¼ Mψ ð2:6aÞ

¼

0
BBB@
M11 −ð1þ2νÞ 0 � � �
M21 M22 −2ð2þ2νÞ � � �
M31 M32 M33 � � �
� � � � � � � � � � � �

1
CCCA

0
BBB@
ψ0

ψ1

ψ2

� � �

1
CCCA: ð2:6bÞ

The matrix MðnÞ is obtained by keeping the first n rows
and n columns of M. The wave function is not uniquely
determined when

νn ¼ −
n
2
; ðn ¼ 1; 2;…Þ ð2:7aÞ

detMðnÞðνnÞ ¼ 0: ð2:7bÞ

Alternatively, one can solve the recursion relation
iteratively and analyze the pole-skipping points.

B. x=∞ expansion

In the examples below, we consider exponentially
decaying potentials as x → ∞:

V ∼ e−x þ � � � : ð2:8Þ
Then, the Schrödinger equation typically has a regular
singularity at x ¼ ∞ (by appropriately changing variables),
so let us consider a power-series expansion around x ¼ ∞.
In this case, ψ asymptotically behaves as

ψ ∼ e�ikx: ð2:9Þ

In order to analyze the point x ¼ ∞, set x̃ ¼ e−x and
consider the x̃ ¼ 0 behavior. By redefining

ψ ≕ x̃−1=2ψ̃ ; ð2:10Þ
the Schrödinger equation is transformed as

0 ¼ −∂2
x̃ψ̃ þ

�
ν̃2 − 1=4

x̃2
þ Ṽ

�
ψ̃ ; ð2:11aÞ

Ṽ ¼ V
x̃2

¼ 1

x̃
þ � � � ; ð2:11bÞ

ν̃2 ≔ −k2: ð2:11cÞ

Thus, the problem reduces to the power-series expansion
problem near x ¼ 0, where ν is replaced by �ik. The
boundary condition also reduces to

ψ̃ ∼ x̃1=2þν̃: ð2:12Þ

Following the same argument as the x ¼ 0 expansion,
one can write a recursion relation. If one chooses ν̃ ¼ −ik,
then

0 ¼ Mψ ð2:13aÞ

¼

0
BBB@
M11 −ð1−2ikÞ 0 ���
M21 M22 −2ð2−2ikÞ ���
M31 M32 M33 ���
��� ��� ��� ���

1
CCCA

0
BBB@
ψ0

ψ1

ψ2

���

1
CCCA: ð2:13bÞ

Thus, in this case, the nonuniqueness occurs at discrete
values of k:

ikn ¼
n
2
; ðn ¼ 1; 2;…Þ: ð2:14Þ

Similarly, if one chooses ν̃ ¼ ik, the nonuniqueness
occurs at

ikn ¼ −
n
2
: ð2:15Þ

C. Summary

We identify possible locations where the wave function
is not uniquely determined:
(1) If a potential has the “angular momentum" part and

has a regular singularity at x ¼ 0, then the wave
function is not unique at ν ¼ −n=2 with appropriate
k and parameters of V.

(2) If a potential exponentially decays asymptotically
and has a regular singularity at x ¼ ∞, then the wave
function is not unique at ik ¼ �n=2 with appro-
priate parameters of V.

We confirm this observation using explicit examples where
analytic solutions are available. As the result of the
nonuniqueness, we will see that the Smatrix is not uniquely
determined at these points.

III. EXAMPLES

If V vanishes fast enough asymptotically x → ∞, then
the asymptotic solution of the Schrödinger equation is

ψ ∼ Fþe−ikx − F−eikx; ðx → ∞Þ: ð3:1Þ

The first term represents the incoming wave, and the
second term represents the outgoing wave. The normali-
zation of ψ is specified at x ¼ 0 [see Eq. (3.7) and
Appendix A]. The functions F� are called the “Jost
functions.” Then the S matrix is given by
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S ¼ e2iδ ¼ F−

Fþ
: ð3:2Þ

We consider three examples below:
(1) A potential that has a regular singularity at x ¼ 0.
(2) A potential that has regular singularities at x ¼ 0

and x ¼ ∞.
(3) A potential that is regular at x ¼ 0 but has a regular

singularity at x ¼ ∞.

A. One-pole approximation

As a warm-up exercise, consider a simple S-matrix
problem. The S matrix satisfies the following conditions:
(1) The existence of a pole.
(2) jSj ¼ 1 for real k.
(3) S ¼ 1 for k ¼ 0.

Suppose that k is close to a pole and the other poles are far
away. Then, the simplest function that satisfies these
conditions is

S ¼ −
kþ ic
k − ic

; ð3:3Þ

where the parameter c is determined by an explicit form of
the potential.
For physical scattering, k is real, but make k complex.

The S matrix has a pole at

k ¼ ic: ð3:4Þ

If c > 0, then the pole lies on the positive imaginary axis.
Such a pole represents a bound state. To see this, write
k ¼ iκðκ > 0Þ. Then, the asymptotic behavior becomes

ψ ∼ Fþeκx − F−e−κx; ðx → ∞Þ: ð3:5Þ

So, the wave function is normalizable and is localized if
Fþ ¼ 0. Namely, a pole of S located on the positive
imaginary axis in the complex k plane corresponds to a
bound state.
On the other hand, if c < 0, the pole is located on

the negative imaginary axis. Such a pole is called an
“antibound state” or a “virtual state.” The wave function of
an antibound state is not normalizable and diverges at
x → ∞. Thus, the physical interpretation is rather obscure,
but it has a physical effect. An antibound state causes a
large cross section at low energy [14].
A bound state and an antibound state correspond to

Fþ ¼ 0. In addition, the S matrix can diverge when
F− ¼ ∞. These poles are called “redundant poles” or
“false poles” [15]. They do not correspond to physical
states. From the symmetry of the Smatrix SðkÞ ¼ 1=Sð−kÞ,
there are corresponding redundant zeros. When one iden-
tifies physical poles, it is useful to use the Jost functionsF�
instead of the S matrix itself.

Now, k ¼ c ¼ 0 is the pole-skipping point in the sense
that 0=0 appears. In particular, the pole skipping means that
the k → 0 limit and c → 0 limit do not commute:

(i) If one takes c → 0 limit first, S ¼ −1.
(ii) If one takes k → 0 limit first, then S ¼ 1.

One can understand this from Levinson’s theorem: the
phase shift at zero energy δð0Þ is related to the number of
bound states. For a single bound state, δð0Þ ¼ π. So, this
pole skipping is well understood. However, what we would
like to show below is that a similar phenomenon can occur
at nontrivial parameters.

B. Coulomb potential

We first consider the Coulomb potential with the
“angular momentum" ν ≔ lþ 1=2:

0 ¼ −∂2
xψ þ

�
ν2 − 1=4

x2
þ e2

x
− k2

�
ψ : ð3:6Þ

The equation has a regular singularity at x ¼ 0 and an
irregular singularity at x ¼ ∞. The equation takes the form
of Eq. (2.1). We denote the solution which satisfies the
x ¼ 0 boundary condition as φ:

φ ∼ x1=2þν; ðx → 0Þ: ð3:7Þ

The Coulomb potential is a long-range force that
changes the asymptotic behavior (3.1). Set the ansatz

ψ ∼ e�ikxþgðxÞ: ð3:8Þ

The Schrödinger equation behaves as

�2ikg0 ∼
e2

x
ð3:9aÞ

→ g ∼∓ ie2

2k
ln x ð3:9bÞ

→ ψ ∼ e�iðkx−κ ln xÞ; ð3:9cÞ

where κ ≔ e2=ð2kÞ. Thus, we choose the Jost functions as

ψ ∼ Fþe−ikxþiκ ln x − F−eikx−iκ ln x; ð3:10Þ

as x → ∞.
Changing the variable

ζ ¼ 2ikx; ð3:11Þ

the Schrödinger equation reduces to the Whittaker differ-
ential equation:

0 ¼ ∂2
ζψ þ

�
−
1

4
þ iκ

ζ
−
ν2 − 1=4

ζ2

�
: ð3:12Þ
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The Whittaker functions

Wiκ;νðζÞ; W−iκ;νð−ζÞ; Miκ;νðζÞ; Miκ;−νðζÞ; ð3:13Þ

are the solutions of the Whittaker differential equation.
The function Miκ;νðζÞ is ill defined when 2ν is a negative
integer. When 2ν ≠ Z, Wiκ;νðζÞ, and W−iκ;νð−ζÞ [or
Miκ;νðζÞ and Miκ;−νðζÞ] are independent solutions. We
choose Miκ;νðζÞ and Wiκ;νðζÞ as independent solutions.
The function Miκ;ν behaves as

Miκ;ν ∼ ζ1=2þν; ðζ → 0Þ: ð3:14Þ

So, the solution that satisfies the x¼0 boundary condition is

φ ¼ 1

ð2ikÞνþ1=2Miκ;ν: ð3:15Þ

As ζ → ∞,

φ ∼
1

ð2ikÞνþ1=2 Γð2νþ 1Þ
�
eiπðνþ1=2Þð2e−iπ=2kÞiκ

Γðνþ 1
2
þ iκÞ e−ikxþiκ ln x þ ð2eiπ=2kÞ−iκ

Γðνþ 1
2
− iκÞ e

ikx−iκ ln x
�

ð3:16aÞ

≕
1

−2ik
fFþe−ikxþiκ ln x − F−eikx−iκ ln xg; ð3:16bÞ

when −π=2 < arg ζ < 3π=2.
The Jost function is given by

Fþ ¼ ð2e−iπ=2kÞ1=2−νþiκ Γð2νþ 1Þ
Γðνþ 1

2
þ iκÞ : ð3:17Þ

The S matrix is given by

S ¼ e−iπðν−1=2Þð2kÞ−2iκ Γðνþ
1
2
þ iκÞ

Γðνþ 1
2
− iκÞ : ð3:18Þ

The S matrix has a branch point at k ¼ 0.
Let us analyze the pole skipping for the Coulomb

problem. Just like the one-pole approximation example,
we study the behavior of S as we vary parameters. At pole-
skipping points, a pole and a zero occur simultaneously,
and one gets 0=0. So, we first locate poles and zeros of S.
The S matrix has poles at

νþ 1

2
þ iκ ¼ −np; ð3:19Þ

(np ¼ 0; 1;…) or

k ¼ −
ie2

2np þ 2νþ 1
: ð3:20Þ

This is the Regge trajectory. Whether the pole corresponds
to a bound state or an antibound state depends on the sign
of e2. If e2 < 0 or if the potential is attractive, then one has
a bound state (for 2np þ 2νþ 1 > 0). The corresponding
energy eigenvalue is

E ¼ k2 ¼ −
e4

4n2
; n ¼ np þ νþ 1

2
: ð3:21Þ

This is the familiar hydrogen spectrum. On the other hand,
if e2 > 0 or if the potential is repulsive, one has an
antibound state.
The S matrix has zeros at

νþ 1

2
− iκ ¼ −nz; ð3:22Þ

(nz ¼ 0; 1;…). The pole skipping occurs at

ν ¼ −
np þ nz þ 1

2
; ð3:23aÞ

κ ¼ nz − np
2i

: ð3:23bÞ

Thus, the pole skipping occurs but it occurs in unphys-
ical region of the angular momentum ν ¼ lþ 1=2 < 0. The
first few pole-skipping points are

ν ¼ −
1

2
; κ ¼ 0; ð3:24aÞ

ν ¼ −1; κ ¼ � i
2
; ð3:24bÞ

ν ¼ −
3

2
; κ ¼ �i; 0;

� � � � � � ð3:24cÞ

Note that the pole skipping occurs at discrete values of ν,
and ν is evenly spaced. We see the holographic interpre-
tation in Sec. IV. In holography, the pole skipping occurs at
ω ¼ −ð2πTÞni, so ω is evenly spaced as well. We show
that ν corresponds to −iω=ð4πTÞ in the holographic
context.
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The S matrix has the slope dependence near pole-
skipping points. For example, near ðν; κÞ ¼ ð−1; i=2Þ,

S ∼ ð−2ikÞ δν − iδκ
δνþ iδκ

: ð3:25Þ

The Smatrix is not uniquely determined at pole-skipping
points because the wave function is not uniquely deter-
mined. This can be seen by a power-series expansion in
Sec. II, but an analytic solution is available, so it is enough
to expand the solution. In this case, the pole skipping
occurs at discrete values of ν, so the pole skipping can be
seen in the x ¼ 0 expansion. The solution is expanded as

φ ¼ xνþ1=2

�
1þ 2kκ

1þ 2ν
x −

k2ð1þ 2ν − 4κ2Þ
4ð1þ 2νÞð1þ νÞ x

2 þ � � �
�
:

ð3:26Þ

The power-series expansion indeed takes the form 0=0 at
pole-skipping points.4 For example, the OðxÞ term and
higher order terms take the form 0=0 at the first pole-
skipping point ν ¼ −1=2. Similarly, the Oðx2Þ term and
higher order terms become 0=0 at the second pole-skipping
points ν ¼ −1. In general, the OðxnÞ term is not unique at
pole-skipping points ν ¼ −n=2, and there are n pole-
skipping points.

C. Pöschl-Teller potential 1

As the next example, we consider a Pöschl-Teller
potential [16]:

0 ¼ −∂2
xψ þ

�
ν2 − 1=4
sinh2 x

− k2
�
ψ : ð3:27Þ

There is actually a large class of exponential type potentials
which includes the above potential as a special case [17].
The class includes the Eckart potential, the Morse potential,
and so on, and it is widely discussed in literature. The

1= cosh2 x potential is discussed in textbooks (see, e.g.,
[18]) and is discussed in next subsection.
The equation has regular singularities at x ¼ 0 and

x ¼ ∞ (by appropriately changing variables). The potential
has the same behavior as the Coulomb potential near
x → 0, so we impose the boundary condition

φ ∼ x1=2þν; ðx → 0Þ: ð3:28Þ

Introduce a new variable

u ≔ tanh x ð3:29Þ

(x∶0 → ∞; u∶0 → 1). As x → ∞, u ∼ 1–2e−2x, so the
incoming wave and the outgoing wave behave as

ψ in ∼ e−ikx ∼
�
1 − u
2

�
ik=2

; ð3:30aÞ

ψout ∼ eikx ∼
�
1 − u
2

�
−ik=2

: ð3:30bÞ

The solution which satisfies the x → 0 boundary con-
dition is given by a hypergeometric function:

φ ¼ ð1 − u2Þ−ik=2uνþ1=2
2F1ða; b; c; u2Þ; ð3:31aÞ

a ¼ 1

4
−
1

2
ikþ 1

2
ν; ð3:31bÞ

b ¼ 3

4
−
1

2
ikþ 1

2
ν; ð3:31cÞ

c ¼ 1þ ν: ð3:31dÞ

The hypergeometric function is ill defined when
c ¼ 0;−1;….
In order to extract the asymptotic behavior u → 1, it is

convenient to use the following formula:

2F1ða; b; c; u2Þ ¼
ΓðcÞΓðaþ b − cÞ

ΓðaÞΓðbÞ ð1 − u2Þc−a−b2F1ðc − a; c − b; 1þ c − a − b; 1 − u2Þ

þ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ 2F1ða; b; 1þ aþ b − c; 1 − u2Þ: ð3:32Þ

Then, as u → 1,

φ ∼
2νþ1=2

2
ffiffiffi
π

p Γð1þ νÞ
�

Γð−ikÞ
Γðνþ 1

2
− ikÞ e

−ikx þ ΓðikÞ
Γðνþ 1

2
þ ikÞ e

ikx

�
ð3:33aÞ

≕
1

−2ik
fFþe−ikx − F−eikxg; ð3:33bÞ

4Strictly speaking, this shows that the Whittaker function is ill defined at pole-skipping points, but this is not really a problem because
our real interest is the S matrix, such as Eq. (3.25), which is slightly away from the pole-skipping points.
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where we use

Γð2zÞ ¼ 22z

2
ffiffiffi
π

p ΓðzÞΓ
�
zþ 1

2

�
: ð3:34Þ

The Jost function is given by

Fþ ¼ 2νþ1=2ffiffiffi
π

p Γð1þ νÞΓð1 − ikÞ
Γðνþ 1

2
− ikÞ : ð3:35Þ

The S matrix is given by

S ¼ −
Γðνþ 1

2
− ikÞ

Γðνþ 1
2
þ ikÞ

ΓðikÞ
Γð−ikÞ : ð3:36Þ

We first locate poles and zeros of S.
The S matrix has poles at

Pole 1∶ Γðνþ 1

2
− ikÞ → k ¼ −iðnp þ νþ 1

2
Þ; ð3:37aÞ

Pole 2∶ ΓðikÞ → k ¼ iðn0p þ 1Þ; ð3:37bÞ

(np; n0p ¼ 0; 1;…). When ν > 0, the former gives an
infinite number of antibound states. The latter gives an
infinite number of redundant poles in the upper-half plane.
The S matrix has zeros at

Zero 1∶ Γðνþ 1

2
þ ikÞ → k ¼ iðnz þ νþ 1

2
Þ; ð3:38aÞ

Zero 2∶ Γð−ikÞ → k ¼ −iðn0z þ 1Þ ð3:38bÞ

(nz; n0z ¼ 0; 1;…). The latter gives an infinite number of
redundant zeros in the lower-half plane.
Because there are two sets of poles and zeros, the pole-

skipping analysis is more involved (Appendix B). The S
matrix satisfies SðkÞ ¼ 1=Sð−kÞ. Thus, if the pole skipping
occurs at k ¼ k�, the pole skipping also occurs at k ¼ −k�.
The pole skipping occurs in pairs at k ¼ �k�. So, it is
enough to analyze the pole skipping in the upper-half k
plane. Zero 2 is located in the lower-half k plane, so we do
not consider it. The pole-skipping points are given as
follows:

(i) Pole 1 and zero 1:

ν ¼ −n − 1; ð3:39aÞ

k ¼ iðn − np þ
1

2
Þ ð3:39bÞ

(n ¼ 0; 1;… and np < nþ 1=2). For example,

ν ¼ −1; 2k ¼ i; ð3:40aÞ
ν ¼ −2; 2k ¼ i; 3i;

� � � � � � ð3:40bÞ

Like the Coulomb potential example, the pole
skipping occurs at discrete values of ν, and ν is
evenly spaced. Unlike the Coulomb potential, ν here
is not the angular momentum, but the ν < 0 case is
singular under the boundary condition (3.28). So,
the pole skipping does not occur in a physical
region.

In addition,

ν ¼ −np −
1

2
; k ¼ 0: ð3:41Þ

The pole skipping again occurs when ν < 0, but
ν ¼ −1=2 or np ¼ 0 is square integrable under the
boundary condition (3.28).

(ii) Pole 2 and zero 1:

k ¼ iðn0p þ 1Þ; ð3:42aÞ

ν ¼ n −
1

2
ð3:42bÞ

(−n0p ≤ n ≤ n0p þ 1). For example,

k ¼ i; ν ¼ � 1

2
; ð3:43aÞ

k ¼ 2i; ν ¼ � 1

2
;� 3

2
;

� � � � � � ð3:43bÞ

The pole skipping occurs at discrete values of
imaginary k, and k is evenly spaced. In this case, the
pole skipping occurs when ν > 0, but pole 2 is a
redundant pole, and it does not corresponds to a
physical state, so the physical interpretation may be
subtle (see Sec. V and Appendix C).

Again, the S matrix has the slope dependence near pole-
skipping points. For example, near a pole 1–zero 1 pole-
skipping point ðν; kÞ ¼ ð−1; i=2Þ,

S ¼ 2
δk − iδν
δkþ iδν

: ð3:44Þ

Near a pole 2–zero 1 pole-skipping point ðk; νÞ ¼ ði; 1=2Þ,

S ¼ δk − iδν
δk

: ð3:45Þ

The S matrix is not uniquely determined because the
wave function is not uniquely determined. This can be seen
by a power-series expansion in Sec. II. For pole 1–zero 1,
the pole skipping occurs at discrete values of ν, so one
expects that this pole skipping can be seen in the x ¼ 0
expansion. Near x → 0, the solution is expanded as
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φ ∼ xνþ1=2

�
1þ 1 − 12k2 − 4ν2

48ðνþ 1Þ x2 þ � � �
�
: ð3:46Þ

The power-series expansion indeed takes the form 0=0 at
pole-skipping points for pole 1–zero 1. For example,Oðx2Þ
term takes the form 0=0 at the first pole-skipping points
ðν; kÞ ¼ ð−1;�i=2Þ.
For pole 2–zero 1, the pole skipping occurs at discrete

values of k, so it is appropriate to look at the x ¼ ∞
expansion. It is convenient to use a solution that satisfies
the x ¼ ∞ boundary condition, e.g., e−ikx. Such a solution
f− is given by

f− ¼ ð1 − e−2xÞ1=2−νe−ikx
× 2F1ð1=2 − ν; 1=2 − νþ ik; 1þ ik; e−2xÞ ð3:47aÞ

∼ e−ikx
�
1 −

ið4ν2 − 1Þ
4ðk − iÞ e−2x þ � � �

�
: ð3:47bÞ

The power-series expansion around x ¼ ∞ indeed takes
the form 0=0. The Oðe−2xÞ term takes the form 0=0 at the
first pole-skipping point ðk; νÞ ¼ ði;�1=2Þ.

D. Pöschl-Teller potential 2

Finally, we consider another type of Pöschl-Teller
potential:

0 ¼ −∂2
xψ þ

�
−
κðκ − 1Þ
cosh2x

− k2
�
ψ : ð3:48Þ

The equation is regular at x ¼ 0, and it corresponds to
ν ¼ 1=2. But it has a regular singularity at x ¼ ∞ (by
appropriately changing variables), so it is appropriate to
look at the x ¼ ∞ expansion and to use the solutions which
satisfy the x → ∞ boundary conditions e�ikx.
Introduce a new variable

u ≔ ð1 − tanh xÞ=2 ð3:49Þ

ðx∶0 → ∞; u∶1=2 → 0Þ. As x → ∞, eikx ∼ u−ik=2. The
solutions are

fþ ¼ u−ik=2ð1 − uÞik=22F1ðκ; 1 − κ; 1 − ik; uÞ; ð3:50aÞ

f− ¼ uik=2ð1 − uÞ−ik=22F1ðκ; 1 − κ; 1þ ik; uÞ: ð3:50bÞ

The function fþ is related to the Jost function
(Appendix A):

Fþ ¼ lim
x→0

fþ ð3:51aÞ

¼ 2ik
ffiffiffi
π

p Γð1 − ikÞ
Γð2−ik−κ

2
ÞΓð1−ikþκ

2
Þ ; ð3:51bÞ

where we use

2F1ða; 1 − a; c; 1=2Þ ¼ 21−cΓðcÞ ffiffiffi
π

p
Γðaþc

2
ÞΓðc−aþ1

2
Þ : ð3:52Þ

The S matrix is given by

S ¼ 2−2ik
Γð2−ik−κ

2
ÞΓð1−ikþκ

2
ÞΓð1þ ikÞ

Γð2þik−κ
2

ÞΓð1þikþκ
2

ÞΓð1 − ikÞ : ð3:53Þ

Note that

φ ∝ Fþf− − F−fþ ð3:54aÞ

¼ fþð0Þf−ðxÞ − f−ð0ÞfþðxÞ; ð3:54bÞ

so that φ satisfies φð0Þ ¼ 0.
The S matrix has poles at

Pole 1∶ Γ
�2 − ik − κ

2

�
→ k ¼ iðκ − 2 − 2npÞ; ð3:55aÞ

Pole 2∶ Γ
�1 − ikþ κ

2

�
→ k ¼ −iðκ þ 1þ 2n0pÞ; ð3:55bÞ

Pole 3∶ Γð1þ ikÞ → k ¼ iðn00p þ 1Þ ð3:55cÞ

(np; n0p; n00p ¼ 0; 1;…). The last one is the redundant poles
in the upper-half plane.
The S matrix has zeros at

Zero 1∶ Γ
�2þ ik − κ

2

�
→ k ¼ −iðκ − 2 − 2nzÞ; ð3:56aÞ

Zero 2∶ Γ
�1þ ikþ κ

2

�
→ k ¼ iðκ þ 1þ 2n0zÞ; ð3:56bÞ

Zero 3∶ Γð1 − ikÞ → k ¼ −iðn00z þ 1Þ ð3:56cÞ

(nz; n0z; n00z ¼ 0; 1;…). The last one is the redundant zeros in
the lower-half plane.
For the details of the pole-skipping analysis, see

Appendix B. Again, we analyze the pole skipping in the
upper-half k plane. Zero 3 is located in the lower-half plane,
so we do not consider it. The potential remains the same
under κ → 1 − κ, so we consider κ ≥ 1=2.
Also, summing the arguments of the gamma functions

for pole 1 and zero 2 give

ð2 − ik − κÞ þ ð1þ ikþ κÞ ¼ 3; ð3:57Þ

so they cannot be negative simultaneously, namely pole 1
and zero 2 never appear simultaneously. Similarly, pole 2
and zero 1 never appear simultaneously. The remaining
combinations are
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(i) Pole 1 and zero 1:

k ¼ 0; κ ¼ 2np þ 2: ð3:58Þ

The pole skipping occurs in a physical region.
(ii) Pole 2 and zero 2: the pole skip does not occur in the

region κ ≥ 1=2.
(iii) Pole 3 and zero 1/pole 3 and zero 2:

k ¼ ni; κ ¼ 1;…; n; ð3:59Þ

(n ¼ 1; 2 � � �). The pole skipping occurs at discrete
values of imaginary k, and k is evenly spaced like the
previous example. However, pole 3 is a redundant
pole, so the physical interpretation may be subtle.

The S matrix has slope dependence near pole-skipping
points. For example, near ðk; κÞ ¼ ði; 1Þ,

S ¼ δkþ iδκ
δk

: ð3:60Þ

The potential is regular at x ¼ 0, so it is appropriate
to look at the x ¼ ∞ expansion. The solution f− is
expanded as

f− ∼ uik=2
�
1þ kðikþ 1Þ þ 2iκðκ − 1Þ

2ðk − iÞ uþ � � �
�
: ð3:61Þ

The OðuÞ term takes the form 0/0 at the first pole-skipping
point ðk; κÞ ¼ ði; 1Þ.

IV. HOLOGRAPHIC POLE SKIPPING

According to holographic duality, a field theory (boun-
dary theory) is equivalent to a classical gravitational theory
(bulk theory). However, two theories live in different
spacetime dimensions. The field theory typically lives in
the four-dimensional spacetime whereas the gravitational
theory lives in the five-dimensional spacetime. For a finite-
temperature field theory, one considers the bulk spacetime
with a black hole. A boundary theory operator corresponds
to a bulk theory field. For example, a scalar operator O on
the boundary corresponds to a scalar field ϕ in the bulk. In
order to obtain the finite-temperature Green’s function for
O, one solves the scalar field equation in the black hole
background.
References [11–13] have shown that Green’s functions

are not unique at pole-skipping points (see also
Refs. [19–22]). Since then, various aspects of the pole
skipping have been investigated (see, e.g., Refs. [23–37]).
This phenomenon can be seen in various Green’s functions,
e.g., the Green’s functions for conserved quantities such as
energy density, momentum density, and charge density.
The pole skipping in holographic duality and the pole

skipping in quantum mechanics are not mere analogy.
A field equation in a black hole background can be written

as an effective one-dimensional Schrödinger problem and
the effect of the curved spacetime is encoded in an effective
potential (see, e.g., [38]). The pole skipping in quantum
mechanics is mathematically similar to the pole skipping in
holographic duality.
More explicitly, consider the following metric:

ds2 ¼ −FðrÞdt2 þ dr2

FðrÞ þ � � � : ð4:1Þ

For simplicity, we set the horizon radius r0 ¼ 1. Near the
horizon,

FðrÞ ∼ 4πTðr − 1Þ: ð4:2Þ

In the tortoise coordinate r�,

ds2 ¼ Fð−dt2 þ dr2�Þ þ � � � ; ð4:3aÞ

dr� ≔
dr
F
: ð4:3bÞ

For example, consider a minimally coupled scalar fieldϕ:

0 ¼ ð∇2 −m2Þϕ: ð4:4Þ

Consider the perturbation of the form ϕðrÞe−iωtþiqz. By
redefining ϕ appropriately ϕ≕GðrÞϕ̃ðrÞ, the field equation
reduces to the Schrödinger form:

0 ¼ −∂2�ϕ̃þ Vϕ̃ − ω2ϕ̃; ð4:5aÞ

V ¼ Fðm2 þ � � �Þ: ð4:5bÞ

In order to obtain the retarded Green’s function, one
imposes the “incoming-wave" boundary condition at the
horizon:

ϕ̃ ∼ e−iωr� ; ðr� → −∞Þ: ð4:6Þ

However, the tortoise coordinate r� covers −∞<r�<∞
(for asymptotically flat spacetimes) whereas our quantum
mechanics problem is a half-line problem with x > 0. In
order to compare the black hole problem with the quantum
mechanics problem, it is more appropriate to write Eq. (4.5)
as a half-line problem. This is possible by a coordinate
transformation5:

dr� ¼
dx
F

; ð4:7Þ

5We transformed the field equation first in terms of the tortoise
coordinate and transformed the equation again in terms of x. But
this is unnecessary. One may introduce x ≔ r − 1 and rewrite the
field equation in the Schrödinger form.
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where x and r are related by x ≔ r − 1. Near the horizon
x → 0, x ∼ e4πTr� . By redefining

ϕ̃≕
ffiffiffiffiffiffiffiffiffi
4πT
F

r
ψ ; ð4:8Þ

Eq. (4.5) is transformed as

0 ¼ −∂2
xψ þ Uψ ; ð4:9aÞ

U ¼ V − ω2

F2
þ 1ffiffiffiffi

F
p ∂2

x

ffiffiffiffi
F

p
ð4:9bÞ

∼
ν2 − 1=4

x2
þOðx−1Þ; ð4:9cÞ

ν ≔ −
iω
4πT

: ð4:9dÞ

The incoming-wave boundary condition is transformed
as our quantum mechanics boundary condition:

ψ ∼ x1=2þν; ðx → 0Þ: ð4:10Þ
Thus, the black hole problem with −iω reduces to the
half-line quantum mechanics problem with the angular
momentum ν ¼ lþ 1=2. In the black hole problem, the
pole-skipping points are located at negative imaginary
Matsubara frequencies ω ¼ −ð2πTÞni, where n ¼
1; 2;…. As a quantum mechanics problem, this is trans-
lated into the pole skipping at discrete negative angular
momentum ν ¼ −n=2. In other words, the holographic pole
skipping has the universality because it reduces to a
quantum mechanics problem with angular momentum.

V. DISCUSSION

(i) The pole skipping has the universality ν ¼ −n=2.
The holographic pole skipping also has the univer-
sality ω ¼ −ð2πTÞni. This is because the holo-
graphic pole skipping all reduces to quantum
mechanics problems with angular momentum. Vari-
ous other form of potentials is possible in quantum
mechanics, and it would be interesting to study the
other potentials, but probably there is no universality
for generic potentials.

(ii) In this paper, we examine the potentials where
analytic solutions are available, but our results
suggest that an analytic solution is not really
necessary to locate pole-skipping points. As long
as one can construct power-series solutions, one can
locate pole-skipping points, so one can analyze
various other potentials as well.

(iii) We examine the nonuniqueness of the S matrix and
the nonuniqueness of the wave function. They are
related to each other. The S matrix is given by the

Jost functions F�. The functions F� can be written
by the Wronskian of φ and f� (Appendix A). The
former is the wave function that satisfies the x ¼ 0
boundary condition, and the latter is the wave
function which satisfies the x ¼ ∞ boundary con-
dition. In this sense, the nonuniqueness of the S
matrix and the wave function is related, but they may
not be equivalent.

Also, we use the power-series expansion to
construct the wave functions. It is not entirely clear
if the power-series expansion can locate all pole-
skipping points. There may be some pole-skipping
points that may not be found in the power-series
expansion. (k ¼ 0 pole-skipping points may be such
examples.) Conversely, some pole-skipping points
found in the power-series expansion may not be the
correct ones. The expansion is a locally obtained
result, whereas the wave function itself and the S
matrix are globally obtained results. It is desirable to
find the necessary and sufficient condition for pole-
skipping points.

(iv) So far, we consider idealistic potentials. For exam-
ple, we consider the Coulomb potential which
diverges at x ¼ 0, but a realistic potential does
not really diverge. Similarly, we consider exponen-
tial type potentials that do not have a finite support.
A realistic potential may have a finite support. In
other words, we may truncate the potential in reality.
The cutoff may affect the pole skipping. We do not
have conclusive answers, but some pole-skipping
points seem to be sensitive to the deformations
(Appendix C).

However, the situation is different for the holo-
graphic pole skipping or the perturbation problem in
a black hole background. In this case, it is natural not
to impose such a cutoff. The presence of the horizon
requires that Eq. (4.2) is valid at x ¼ 0. The effective
potential U then must behave as Eq. (4.9c) as x → 0.

(v) It would be interesting to explore whether the pole
skipping has an observable consequence. In our
examples, the pole skipping in the x ¼ 0 expansion
does not occur in physical region in the sense that
ν < −1. The pole skipping in the x ¼ ∞ expansion
may occur in physical region. But it turns out that it
corresponds to a redundant pole, so the physical
interpretation is subtle. Namely, it may be sensitive
to an IR cutoff. On the other hand, the pole skipping
may occur when k ¼ 0, and it does not seem to be
problematic. Note that we are not completely ex-
cluding the pole skipping in physical region. There
may be some potentials which have the pole skip-
ping in physical region. It is interesting to find such
potentials.

(vi) As a quantum mechanics problem, the pole skipping
often occurs in unphysical region. However, as the
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corresponding black hole problem, the pole skipping
can have physical interpretations. In the holographic
pole skipping, ω is pure imaginary and the wave
number q is complex in general at pole-skipping
points. So, the physical interpretation is not straight-
forward as well. However, for the energy-density
Green’s function, the ω ¼ ð2πTÞi pole skipping is
related to the quantum many-body chaos, and the
imaginary q has the interpretation as the butterfly
velocity [19,20]. The quantummany-body chaos has
been widely discussed in holography [39–43]. Also,
for the charge density Green’s function, the pole
skipping occurs in physical region (lower-half ω
plane and real q). In practice, one should be able
to detect the pole skipping by tuning the wave
number q.

(vii) Finally, the pole skipping is not limited to holo-
graphic duality and quantum mechanics. The pole
skipping in a broad sense may be possible for the
other areas such as electromagnetism.
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APPENDIX A: PRELIMINARIES

First, it is convenient to introduce two sets of indepen-
dent solutions:
(1) The solutions that satisfy boundary conditions at

x ¼ 0: suppose that the Schrödinger equation is
approximated as

0 ∼ ∂2
xψ −

ν2 − 1=4
x2

ψ ; ðx → 0Þ: ðA1Þ

One can define two independent solutions:

φð�νÞ → x1=2�ν; ðx → 0Þ: ðA2Þ

The function φðνÞ is called the “regular solution.”
(2) The solutions which satisfy boundary conditions at

x ¼ ∞: if the potential decays fast enough asymp-
totically, one can define two independent solutions:

f� → e�ikx; ðx → ∞Þ: ðA3Þ

The functions f� are called the “irregular solutions”
or “Jost solutions.”

The Wronskian W½fþ; f−� is independent of x, so it can be
evaluated in the limit x → ∞:

W½fþ; f−� ¼ fþf0− − f0þf− ¼ −2ik: ðA4Þ

Similarly, using the boundary condition (A2), one gets

W½φðνÞ;φð−νÞ� ¼ −2ν: ðA5Þ

The solutions φð�νÞ and the solutions f� are the
solutions of the same Schrödinger equation, so

φðνÞ ¼ af− þ bfþ: ðA6Þ

Then,

W½fþ;φðνÞ� ¼ aW½fþ; f−� ¼ −2ika; ðA7aÞ

→ a ¼ 1

−2ik
W½fþ;φðνÞ�≕

1

−2ik
FþðνÞ: ðA7bÞ

Similarly,

b ¼ 1

2ik
W½f−;φðνÞ�≕

1

2ik
F−ðνÞ: ðA8Þ

The functions F� are called Jost functions. Then,

φðνÞ ¼ −
1

2ik
fFþðνÞf−ðxÞ − F−ðνÞfþðxÞg ðA9aÞ

∼ −
1

2ik
fFþðνÞe−ikx − F−ðνÞeikxg; ðA9bÞ

so the S matrix is given by

S ¼ F−ðνÞ
FþðνÞ

: ðA10Þ

Likewise,

φð−νÞ ¼ −
1

2ik
fFþð−νÞf−ðxÞ − F−ð−νÞfþðxÞg: ðA11Þ

The relation between φð�νÞ and f� are written in a
matrix form:

�
φðνÞ
φð−νÞ

�
¼ 1

2ik

�
F−ðνÞ −FþðνÞ
F−ð−νÞ −Fþð−νÞ

��
fþ
f−

�
: ðA12Þ

Its inverse is given by

�
fþ
f−

�
¼ 1

2ν

�−Fþð−νÞ FþðνÞ
−F−ð−νÞ −F−ðνÞ

��
φðνÞ
φð−νÞ

�
: ðA13Þ

Here, we use the relation
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FþðνÞF−ð−νÞ − Fþð−νÞF−ðνÞ ¼ 4ikν ðA14Þ

using Eqs. (A4) and (A5).
One can obtainF� from Eq. (A9). Alternatively, one can

obtain them from f�. Using Eq. (A13), one obtains

2νfþ ¼ FþðνÞφð−νÞ − Fþð−νÞφðνÞ ðA15aÞ

∼FþðνÞx1=2−ν; ðx → 0;Reν > 0Þ ðA15bÞ

→ FþðνÞ ¼ 2νlim
x→0

xν−1=2fþ: ðA15cÞ

APPENDIX B: DETAILS OF
POLE-SKIPPING ANALYSIS

The pole-skipping analysis is straightforward, but some
care is necessary. In some cases, an additional pole (or zero)
appears from the other Gamma functions. In such a case,
the S matrix has poles (or zeros) of degree 2, and the
nonuniqueness disappears. One has to exclude such cases.

1. 1= sinh2 x

The poles and zeros are given by

Pole 1∶ k ¼ −i
�
np þ νþ 1

2

�
; ðB1aÞ

Pole 2∶ k ¼ iðn0p þ 1Þ; ðB1bÞ

Zero 1∶ k ¼ i

�
nz þ νþ 1

2

�
; ðB1cÞ

Zero 2∶ k ¼ −iðn0z þ 1Þ; ðB1dÞ

It is enough to analyze the pole skipping in the upper-
half k plane. Zero 2 is located in the lower-half k plane, so
we do not consider it.

(i) Pole 1 and zero 1: the pole-skipping points are
given by

ν ¼ −
np þ nz þ 1

2
; ðB2aÞ

k ¼ i
2
ðnz − npÞ: ðB2bÞ

However, when k ¼ imðm ¼ ZþÞ, it coincides
with pole 2. To exclude it, set

np þ nz ¼ 2nþ 1; ðn ¼ 0; 1;…Þ: ðB3Þ

Then,

ν ¼ −n − 1; ðB4aÞ

k ¼ i

�
n − np þ

1

2

�
ðB4bÞ

(np < nþ 1=2). In addition, as a special case
np ¼ nz of Eq. (B2),

k ¼ 0; ν ¼ −np −
1

2
: ðB5Þ

(ii) Pole 2 and zero 1: the pole-skipping points are
given by

ν ¼ n0p − nz þ
1

2
¼ n −

1

2
; ðB6aÞ

k ¼ iðn0p þ 1Þ; ðB6bÞ

where n ≔ n0p − nz þ 1 ≤ n0p þ 1. Pole 1 should
not appear simultaneously, so νþ 1=2 − ik ¼
nþ n0p þ 1 > 0, or −n0p − 1 < n. Thus, −n0p ≤ n ≤
n0p þ 1.

2. 1= cosh2 x

The poles and zeros are given by

Pole 1∶ k ¼ iðκ − 2 − 2npÞ; ðB7aÞ

Pole 2∶ k ¼ −iðκ þ 1þ 2n0pÞ; ðB7bÞ

Pole 3∶ k ¼ iðn00p þ 1Þ; ðB7cÞ

Zero 1∶ k ¼ −iðκ − 2 − 2nzÞ; ðB7dÞ

Zero 2∶ k ¼ iðκ þ 1þ 2n0zÞ; ðB7eÞ

Zero 3∶ k ¼ −iðn00z þ 1Þ: ðB7fÞ

Zero 3 is located in the lower-half k plane, so we do not
consider it. The potential remains the same under
κ → 1 − κ, so we consider κ ≥ 1=2. Pole 1 and zero 2
never appear simultaneously. Similarly, pole 2 and zero 1
never appear simultaneously. The remaining combina-
tions are

(i) Pole 1 and zero 1:

k ¼ iðnz − npÞ; ðB8aÞ

κ ¼ np þ nz þ 2: ðB8bÞ

Pole 2 does not appear simultaneously with zero 1,
and zero 2 does not appear simultaneously with pole
1, but pole 3 (ik ¼ −n00p − 1) appears simultaneously

MAKOTO NATSUUME and TAKASHI OKAMURA PHYS. REV. D 104, 126007 (2021)

126007-12



(if np ≠ nz), so the pole skipping does not occur.
This leaves the case np ¼ nz only:

k ¼ 0; κ ¼ 2np þ 2: ðB9Þ

(ii) Pole 2 and zero 2:

k ¼ iðn0z − n0pÞ; ðB10aÞ

κ ¼ −n0p − n0z − 1; ðB10bÞ

but κ < 0, so we do not consider this case further.
(iii) Pole 3 and zero 1:

k ¼ iðn00p þ 1Þ; ðB11aÞ

κ ¼ 2nz − n00p þ 1: ðB11bÞ

Pole 2 does not appear simultaneously with zero
1. For zero 2, 1þ ikþ κ ¼ 2nz − 2n00p þ 1, which is
an odd integer. The gamma function argument
ð1þ ikþ κÞ=2 is not an integer, so zero 2 does
not appear simultaneously. But pole 1 should
not appear simultaneously, so 2 − ik − κ ¼
2n00p − 2nz þ 2 > 0, or 0 ≤ nz ≤ n00p (we impose
κ ≥ 1=2 later).
For example,

k ¼ i; κ ¼ 1; ðB12aÞ

k ¼ 2i; κ ¼ ð0Þ; 2;
� � � � � � ðB12bÞ

(iv) Pole 3 and zero 2:

k ¼ iðn00p þ 1Þ; ðB13aÞ

κ ¼ −2n0z þ n00p: ðB13bÞ

Pole 1 does not appear simultaneously with zero
2. For zero 1, 2þ ik − κ ¼ 2n0z − 2n00p þ 1, which is
an odd integer. The gamma function argument
ð2þ ik − κÞ=2 is not an integer, so zero 1 does
not appear simultaneously. But pole 2 should
not appear simultaneously, so 1 − ikþ κ ¼
2n00p − 2n0z þ 2 > 0, or 0 ≤ n0z ≤ n00p (we impose
κ ≥ 1=2 later).
For example,

k ¼ i; κ ¼ ð0Þ; ðB14aÞ

k ¼ 2i; κ ¼ ð−1Þ; 1;
� � � � � � ðB14bÞ

Pole 3, zero 1 and pole 3, zero 2 are summarized as

k ¼ ni; κ ¼ 1;…; n; ðn ¼ 1; 2 � � �Þ; ðB15Þ

where we restrict to κ ≥ 1=2.

APPENDIX C: CUTOFF DEPENDENCE

In this Appendix, we truncate the potentials at large x
and small x and see the effect on the pole-skipping analysis.
We do not have conclusive answers, but some pole-
skipping points seem to be sensitive to the deformations.

1. IR cutoff

For an exponential potential, we impose an “IR cutoff,”
namely we truncate the potential at large x:

VrðxÞ ¼
�
VðxÞ; x < R

0; x > R
: ðC1Þ

A characteristic feature of an exponential potential is the
existence of redundant poles. At a redundant pole,
F− ¼ ∞, so the asymptotic expansion (3.1) is not really
valid. If we impose the cutoff, the asymptotic expansion
should be now valid, so there should be no redundant poles.
On the other hand, the cutoff should not affect the bound
states. Cutting off the potential far away should not change
the wave functions of bound states which are localized at
small x. One can show this explicitly in simple examples
(see, e.g., Refs. [15]).
The IR cutoff affects our pole-skipping analysis. For the

1= sinh2 x potential, pole 2 and zero 2 are redundant poles
and zeros, respectively. If one imposes an IR cutoff, they
should disappear, and the corresponding pole-skipping
points also should disappear. We are not sure if the IR
cutoff affects the remaining pole-skipping points from pole
1–zero 1.

2. UV cutoff

For the Coulomb potential and the 1= sinh2 x potential,
we impose an “UV cutoff” at small x:

VrðxÞ ¼
�
VðxÞ; x > a

VðaÞ ¼ V0; x < a
: ðC2Þ

Below we use formal properties of Jost functions (see
Appendix A).
The renormalized Jost solution frþðxÞ is given by

frþ ¼
�
fþ; x > a

C−e−ik0x þ Cþeik0x; x < a
; ðC3Þ

where k20 ¼ k2 − V0. As usual, we impose the conditions
that frþ and its derivative are continuous at x ¼ a.
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The potential VrðxÞ is regular at the origin. The
renormalized solution φr near the origin is then given by

φrðxÞ ¼ 1

k0
sin k0x; ðC4Þ

where we impose the boundary condition φð0Þ ¼ 0;
φ0ð0Þ ¼ 1, which corresponds to the case ν ¼ 1=2
in Eq. (A2).
The renormalized Jost function FþrðνÞ is

FþrðνÞ ¼ W½frþðxÞ;φrðxÞ�: ðC5Þ

TheWronskian is independent of x, so one can evaluate it at
x ¼ a. Moreover, the function frþ and its derivative is
continuous at x ¼ a, so one can replace frþ by fþ:

FþrðνÞ ¼ W½fþðaÞ;φrðaÞ�: ðC6Þ

The function fþ is rewritten in terms of φðx;�νÞ as
Eq. (A13):

fþ ¼ 1

2ν
f−Fþð−νÞφðx; νÞ þ FþðνÞφðx;−νÞg: ðC7Þ

Thus,

FþrðνÞ ¼ 1

2ν
f−Fþð−νÞW½φða; νÞ;φrðaÞ�

þ FþðνÞW½φða;−νÞ;φrðaÞ�g: ðC8Þ

The functions φða; νÞ ∼ a1=2þν and φða;−νÞ ∼ a1=2−ν.
When Reν > 0, the second term dominates, so
FþrðνÞ ∝ FþðνÞ. Namely, the renormalized Jost function
is given by the original Jost function. When Reν < 0, the
first term dominates, so FþrðνÞ ∝ Fþð−νÞ. Then, the
renormalized Jost function is given by the original Jost
function with a positive value of ν. In both cases, the
renormalized Jost function is determined by the original
Jost function with Reν > 0.
Consequently, the S matrix shows the same behavior.

Namely, the renormalized S-matrix Sr is determined by the
Reν > 0 region of the original S matrix. In our examples,
the pole-skipping points are located at ν < 0, so these
pole-skipping points disappear in the presence of the
UV cutoff.
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