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In this paper, we show the relation between sp(4, R), the Lie algebra of the symplectic group, and the
elements of Sp(4,R). We use this result to obtain some special cases of symplectic matrices relevant to
the study of squeezed states. In this regard, we provide some applications in quantum mechanics and
analyze the squeezed polymer states obtained from the polymer representation of the symplectic group.
Remarkably, the polymer’s dispersions are the same as those obtained for the squeezed states in the usual

representation.
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I. INTRODUCTION

Squeezed states are broadly used in many areas of
physics [1-5]. Of particular interest is the use of these
squeezed states in cosmology [6—14], specifically when
arguing for the emergence of semiclassical behavior in the
early universe. Loop quantum cosmology (LQC) [15-19] is
another scenario in which squeezed states are relevant.
There, squeezed states for a single mode show some of the
features of the quantum bounce and closely approximate
solutions to the classical Einstein equations [20-25]. The
squeezed states used in LQC are constructed by hand,
imposing the Gaussian form of the states to obtain the
squeezing nature of the dispersion relations. Moreover, the
states describe systems with only one degree of freedom,
i.e., single-mode squeezed states [26,27].

In quantum optics, squeezed states can be used to
improve the sensitivity of measurement devices beyond
the usual quantum noise limits [2-5,28-31]. They are
defined by the squeeze operators’ action on coherent states,
or the vacuum state [2-4]. These operators are defined
within the Fock representation using the annihilation and
creation operators, or in the Wigner representation, using
the Wigner functional. A particular squeezed state used in
quantum optics is the two-mode squeezed state which plays
a prominent role in the study of entanglement for bipartite
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systems. Particularly in the limit when the amount of
squeezing is infinitely large, the states become Eintein-
Podolsky-Rosen-like states [32].

Based on the relevance that squeezed states play in
cosmology, LQC, and quantum optics, one might ask
whether there is a relation between them and whether it
is possible to obtain squeezed states in LQC the same way
squeezed states are defined in quantum optics. Recall that
the construction used in LQC for the squeezed states is
somewhat artificial and does not correspond to any mecha-
nism in the cosmological events. Hence, exploring whether
LQC formulation admits an operator similar to the squeeze
operator and whose action on some state yields a squeezed
state might pave the way to construct such a mechanism
in LQC.

To do so, one must consider that in LQC, the repre-
sentation of the operators is not weakly continuous, hence
the Fock representation is not suitable for the physical
description. Instead, the Schrodinger representation, which
is the scheme inherited from the quantization procedure,
seems to be the natural scheme to be considered [33-38]. In
the standard quantum mechanics, the squeeze operator can
be obtained using the Schrodinger representation of the
infinitesimal squeeze operator via the exponential map
[39]. In such a picture, the squeeze operator can also be
considered as a unitary representation of an element of the
symplectic group Sp(4, R). However, in LQC this cannot
be done because there is no infinitesimal squeeze operator.
On the other hand, the representation of the symplectic

© 2021 American Physical Society
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group Sp(2n,R) was given in [38] but adapted to the
polymer quantum mechanics (PQM) formalism. This
formalism is a quantization scheme based on the same
mathematical tools (at kinematical level) used in LQC. For
this reason, in the present work, we will consider the
polymer representation of the bipartite squeeze operator
in LQC.

To analyze the bipartite squeeze operator in LQC, we
provide the explicit relation between the Lie algebra of the
symplectic group sp (4, R) and the Lie group Sp(4,R). As
far as the authors’ knowledge, this relation has not been
reported before. With this result, we show some specific
cases and then move to the analysis within polymer
quantum mechanics. Also, this relation allows us to
describe the single-mode squeeze operator (specifically,
the product of two single-mode operators) as a particular
case of a symplectic matrix in Sp(4, R).

We will show that the squeezed states derived in this way
for LQC share the same features as those used in quantum
optics. In particular, the structure of the correlation is the
same for both the single-mode and the two-mode squeezed
states. However, there is no need for a Gaussian-like
structure for the initial states upon which the polymer
squeeze operators act and such structure is absent in the
polymer squeezed states.

This paper is organized as follows. In Sec. II we
calculate the relation between sp(4,R) and Sp(4,R).
In Sec. III we discuss the isomorphism between sp(4, R)
and the second-order polynomial operators P(2,R) and
provide some examples. In Sec. IV, we show some of the
applications of the results given in Sec. III; in particular,
we determine the covariance matrix for the squeezed
states in standard quantum mechanics. In Sec. V, we
analyze the squeeze operators’ representation in polymer
quantum mechanics and construct the polymer squeezed
state. We also calculate the dispersion relations and show
that they are equal to those obtained for the standard
squeezed states. We give our conclusion in Sec. VI.

II. MATHEMATICAL PRELIMINARIES: Sp(4,R)
GROUP AND ITS LIE ALGEBRA sp(4,R)

In this section we will detail the relation between an
arbitrary element of sp(4,R) and its corresponding
element in the group Sp(4,R). This relation is the main
result of this section and has not been reported as far as we
know. First, let us introduce some preliminary concepts and
notation, which we will use throughout the paper, to make
the presentation self-contained.

Let us begin by considering the Poisson manifold
(R?",{,}) with the Poisson bracket for the coordinates
q; and momenta p; (j =1,2,3,...,n) given by

{a;.a:} =0.

{P,vpk} =0, {Clj,Pk} =G (1)

These coordinates are collected using the array

Y = (41s P1+492+ P2y -+ qns Pn)» for which the Poisson
bracket (1) takes the form

J 0 0

. 0 J 0

{Y, YT} = = 1n><n ®J, (2)
00 - J

where the 0 is the 2 x 2 null matrix, 1,,, is the identity
matrix, and the matrix J is given by

- (_01 é) ()

The group action over the manifold R>" is
Sp(2n,R) xR >R, (M,Y)—~Y T =MY", (4)
provided that the matrix M satisfies the condition
(Lixn ® J) = M(1L,, @ MY, (5)

where M is the transpose matrix. That is, the symplectic
group Sp(2n, R) can be defined as the set of 2n x 2n real
matrices satisfying (5) and, additionally, its group action on
the Poisson manifold (R?", {, }) is given by (4). Note that a
“coordinatization” of (R, {,}) different from ¥ yields a
condition for the symplectic group matrices different to that

in (5). To show this, consider now the array X” = (g7, p")

where §' = (91,45, ---,q,) and pT = (py, pa, ..., p,) are
the coordinates on the space R?". The Poisson bracket for
this array is given by

{????T}—< ! 1"”‘)—J@l (6)
’ - —lan 0 - nxn-

The group action is now given by Sp(2n,R) x R** —
R2"; (M, X) > X' where X' is

X7 =mx", (7)
and the matrix M satisfies

J®1,,)=MJI®1,,)M". (8)

Hence, both conditions (5) and (8) can be considered as
definitions for the symplectic group in different “coordina-
tizations” of the phase space R>". Naturally, both group

actions M and M are related via the similarity trans-
formation I'(n) [4] as
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M = I'(n)MI~(n), (9)

where I'(n) is given by
X' =rn)Y", (10)
and is such that I'7(n) = I'"!(n). Since the present work

concerns the case where n = 2, it is worth showing the
explicit form of I'(2), which is

rQ) = (11)

S = O O
- o O O

0
1
0
0

oS O O =

Having provided the two group actions over the mani-
fold R?" using different “coordinatizations” and their
relation for arbitrary n, let us now focus on the symplectic
group Sp(4,R). According to (5) this group is given by
4 x 4 real matrices M for which the following condition

holds
0 0
(J ) :M<J )MT. (12)
0 J 0 J
The matrix M can be written in block form as
A B
M := ( >, (13)
C D

where the 2 x 2 block matrices A, B, C, and D satisfy the
conditions

J=AJA"+BJB"=CJC"+DJD’, 0=AJC"+BJD’,

(14)

which result from (12).

The Lie algebra of Sp(4,R), denoted as sp(4,R), is
given by 4 x 4 matrices m such that the exponential map
[39] of the Lie algebra element m yields symplectic
matrices M close to the identity, i.e.,
|

B < alJaQ + leb%w - 32.]31 - szb{
’ bTJa, + ¢ Jb} —blJa;, — ¢, JbT ¢ Jey + bTIb, — cyJe; — bIJb,

hence, mj is clearly an element in sp(4,R). Up to this
point, we introduced the main concepts and notations
required to derive the relation between sp(4,R) and its
corresponding Lie group Sp(4,R). Let us proceed then
to obtain the explicit relation between the block matrices

1 1
M =™ :=1+m+§m2+~~+—'m"+... (15)
n.

It can be shown that the matrices in sp(4,R) can be
written as the product

J 0
m = L, (16)
0 J
where L is a real symmetric matrix written in block form as
a b
L = , 17
(o 2) (17)

and where b is a 2 x 2 real matrix, whereas a and ¢ are also
real but 2 x 2 symmetric matrices.

If a matrix M can be written as in (15), then its inverse
ML, its transpose M7, and the n-power matrix (M)", can
be written respectively as follows:

woe-(0 ]
Wy M) @
N T T R

Thus, the Lie algebra multiplication in sp (4, R) is given
by the matrix commutator [,],.. When this multiplication
acts on two arbitrary elements, m; and m, give the element
m; defined as

ot [ e (-

(21)

where the matrix L5 is also a real symmetric matrix with
components of the form

a;Jb, +biJe, — aJb; — byJe > (22)

|
A, B, C, and D and the Lie algebra element L. It is
worth noting that the following procedure can be
applied to higher-order symplectic groups Sp(2n,R) for
n > 3, this being the main reason for its exposition in this
section.
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Let us collect the even and odd terms of the expansion in
(15) as follows:

1
M=|[1+—m?+--- mo .
{ +2!m + +(2n)!m + }
+m 1+1m2+ + : m?" + (23)
3! (2n+1)! Ty
where m? takes the form
By —(deta + detb)12><2 Jd
m- =
—JdT —(detb + detc)lzxz
(24)
and the matrix d is defined as
d =aJb+ bJc. (25)

As can be seen from the expansion (23), to obtain the
expression for M we first need to determine m?". In
Appendix A we obtain the expression for m?>" given in
Eq. (A1). Let us replace this result in the series expansion
(23), which, after collecting the even and odd terms, gives
the following:

A =al® + (a9 — ) detb)Ja + O JbJeIbT,  (26)

B = (y1?) — p©) deta)Jb + ) (JaJb + JbJc)
+ pJaJble, (27)

C = (a? = p@) dete)Jb” + ) (Jb” Ja + JeJbT)

+ ) JeJbT Ja, (28)
|

llay .,  an an

w>

al2 7 2

Cil o €120 4 PP 2 4
5 q; + > (G2P2 + D282) + > P

Here, g; and p;, with j=1,2, are the position and
momenta operators satisfying the canonical commutation
relations [§;, py] = ihd;, and a;;, b;;, and c;; are all real
coefficients. The reason for this notation is that formally
ins$ is a self-adjoint operator to be represented in a Hilbert
space H, hence the exponential map e° gives rise to a
unitary operator in H. Thus, in this sense, this notation
smooths the way to the quantum representation analysis in
Sec. IV. Depending on the values of their coefficients,
operators of the form (30) are used to describe the dynamics
of many entangled physical systems. These systems range
from two decoupled quantum harmonic oscillators to

D =y + (500 — gl detb)Jc + 5 Jb" JaJb. (29)

The coefficients a(®), a(@), ﬁ(e), ﬂ<”>, y(e>, and y(") were
defined in Appendix B.

These expressions for the matrices A, B, C, and D link
the components of the Lie algebra element L. with the
corresponding symplectic matrix M and constitute the
main result of this section. Note also the “nonlinear matrix
relation” between the Lie algebra elements and the group
elements, particularly the role of the block matrix b.

In [26,40] an alternative (and different) formulation for
each of the symplectic group generators was provided. Our
approach, however, not only reproduces the same expres-
sions for the generators but also provides a direct relation to
the Lie algebra matrix generators a, b, and ¢ a point that is
absent in [26,40]. As a result, we can relate a broader range
of Lie algebra elements with their corresponding group
elements.

Let us now show some of the relevant matrices and
examples in the next section in which this result can be
applied.

III. QUANTUM RELATIONS AND EXAMPLES

This section provides two examples where the relation
between the Lie algebra element and the group element is
explicit. However, before proceeding, let us introduce
additional concepts and notations (see [4,39] for more
details), which will be relevant for the quantum description.

A. Relation between sp(4,R) and P(2,R)

Consider the Lie algebra formed by second-order (oper-
ator) polynomials, denoted by P(2,R). An arbitrary
element § is given as

- g+~ (@ pr + P1y) + 713% + 5114142 + b12G1 P2 + b2 P1Gs + b p1 P2

(30)

|
models of quantum harmonic oscillators coupled to ex-
ternal electromagnetic fields in inhomogeneous media
[41,42], and to bipartite squeeze operators [4].

It is easy to check that § can be written in the following
form:

ay ap by by

N b b N
lRT app  dp 21 22 R (31)

biy by cip cpn
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that is a symmetric matrix, and where

75 f’z)-

Instead of the matrix commutator, the Lie algebra
multiplication in P(2, R) is given by the operator commu-
tator [, |. Therefore, the Lie algebra multiplication of two
elements §; and §, gives a third element 553 of the form

R” = (ezl P (32)

TR R
83 = [81,8,] = —=—R"LsR,
§3 = [31. 3] 2% 3
where the matrix Lj is given by (22). Due to the fact that
L; is a symmetric matrix, the operator §; is clearly in
P(2,R). Naturally, this result provides the isomorphism
between sp(4,R) and P(2,R), i.e., the map

(33)

m—§=i(m)= —LIA{TLIA(,

1:sp(4,R) - P(2,R); 7

(34)

and this map preserves the linear properties of both Lie
algebras, i.e., it is a Lie algebra isomorphism.

An implication of this isomorphism is that due to the fact
that P(2,R) is a Lie algebra isomorphic to sp(4, R), then
the exponential map of its elements (5 +> €*) gives a
(quantum) unitary operator (e*) which can be seen as
the (quantum) unitary representation of Sp(4,R) as
showed in the following diagram:

|sp(4, R) | & |77(2, IR)|
} N
Sp(d.R)] - |Sp(4.R)

(35)

M1 _ v —deta

0

As can be seen, both block matrices in (37) are elements of
Sp(2,R); hence, the Lie algebra elements given by the
parameters a and ¢ can be considered as the Lie algebra
generators of Sp(2,R) ® Sp(2,R) C Sp(4, R). Moreover,
the matrix M, is diagonal if and only if a and ¢ are
antidiagonal matrices, i.e., only when there are no squared
terms in (30).
An important symplectic matrix of this type is

(o 2)

cosh(v/—det a) - Sinh(V—deta) g,

We can expect that if a representation of P(2,R) in a
Hilbert space H is known, then there is also a representation of

§;7(4, R) in H. However, in some scenarios such as polymer
quantum mechanics and LQC, it is not possible to obtain the
representation of 8 out of the representation of § in H. The
reason is that some elements of (2, R) cannot be represented
in the corresponding Hilbert space. This difficulty can be
overcome if we can represent directly the exponential e°
instead of its infinitesimal generator §. This approach was
done for the case of polymer quantum mechanics in [38].
Consequently, because the operators in (30) can be used to
describe the dynamics of many physical systems ranging
from two decoupled quantum harmonic oscillators to the
bipartite squeeze operators, a polymer representation of these
operators is possible, as we will show in Sec. V. More details
about these aspects will be provided in Sec. V.

In the next subsection, we show some of the explicit
forms of M.

B. Examples
1. Case a,c #0, and b=0

Let us consider the Lie algebra element with b = 0 and
a, ¢ # 0, which, according to the expression (31), implies
that there is no interaction between the subsystems, that is,
§ is of the form

l

lang} + an(gipr + p1q1) + anp?

>

2n
+cnds + (@b + Padn) + b3l (36)
In this case, d =0 and 1, = —deta and A_ = —detc.

After inserting b = 0 and the expressions for A, in (B4)—
(B9), we obtain the following symplectic matrix:

0

sinh(v/—detc)
cosh(v/—dete) + — e J¢

which is often used to derive the transpose matrix as in (19).
One can check that this matrix can be obtained from (37)
when a = ¢ = diag(5.5). ie.,

(o 3)=r 55 )]
o 3) " P2\o 1))
2. Case a=c=0and b #0

In this case, the operator § is of the form

(39)

i

§= h[bnf]lf]z+b125]1l32+b21131512+b22f71f72], (40)
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and this system corresponds, as we will see in the next
section, to the general case of the squeeze operator for a
bipartite system [4].

Note that in this case, not only the matrices a = ¢ are
null, but also the matrix d, which implies that
A, = A_ = —detb. Once we replace these expressions in
(B4)-(B9), the symplectic matrix takes the form

M= . (41)
%JbT cosh v/—detb

where the block matrices A and D are diagonal matrices.
Clearly, when detb < O the coefficients of M, will be
given by hyperbolic functions. In the case detb > 0 the
coefficients are described by trigonometric functions
instead.

After giving some examples of symplectic matrices
obtained through the exponential map, we are ready to
show some of their quantum mechanics applications, both
in the standard representation and the so-called polymer or
loop representation.

IV. QUANTUM REPRESENTATION AND ITS
APPLICATIONS

The unitary representation of the group Sp(2n, R) was
given by Moshinsky and Quesne in [43]. A review and a
historical analysis can be found in [44,45]. However, to be
self-contained, we will show the main aspects of this
group’s quantum representation in standard quantum
mechanics in the next subsection.

A. Schrodinger representation of Sp(2n,R)

The symplectic group is a noncompact group which
implies an infinite-dimensional Hilbert space for its unitary
representation. Consider the Hilbert space H = L?(R", dX)
where dXx is the standard Lebesgue measure. The unitary
representation of Sp(2n, R) is the map

C:Sp(2n,R) = U(H); M Cy.,  (42)

where 61\71 is a unitary operator over H, i.e., formally
é‘;} = (A?;Il. Note that the group action considered in this
map is M instead of M, i.e., we used the “coordinatization”
given by X introduced in Sec. I. Hence, in order to obtain a
quantum (unitary) representation of a given symplectic
matrix M we first have to transform it into the other group
action M using Eq. (9) with the corresponding matrix I'(n)
given by (10) or I'(2) for Sp(4,R) given in (11).

The map C is given by the integral operator

o W(E) = / FCyEFE),  WEEH (43)

and the kernel Cy;(X,X’) of this integral is

o F DB 2T B4 T B AY)
Cu(X¥) = - . (44)
(2zih)" det B

According to [43], this representation results from
imposing two conditions on the operators Cﬁ. The first
one is given by

T T
N ~_1<q>
e~ ez =m' 1), (45)
M(ﬁT> M lr\)T

and relates the symplectic group elements M with
the operators Cﬁ. Here, ¢ = (4:,4>,...,§,) and p:=
(P1» P2y ---» Py) are the coordinate and momenta operators
associated to the Heisenberg Lie algebra of the system. The
second condition is that

T

CM (CM) 1, (46)
where 1 is the identity operator and this results in the
unitarity of (:’1\7[.

The factor detB in (44) gives rise to a well-defined
operator even in the case where the matrix B is singular (for
more details see [43,44]). Finally, it is worth mentioning
that this representation (43) is valid for the entire sym-
plectic group and not just for those elements close to the
group identity.

Since the fundamental operators are unbounded, the
condition (45) only holds in a subspace given by the
domain of the operators g; and p; in H. To obtain a
condition valid in the full Hilbert space, we are forced to
introduce the exponentiated version of g; and p;, that is to
say, the Weyl algebra. Briefly, the Weyl algebra is a C*-

unital algebra whose generators, denoted by W(a, b), are
related with g; and p; with the following relation:

W(d,b) = eil@ +b"), (47)
such that the real arrays a= (a;,as,...,a,) and
b= (by,by,...,b,), which have dimensions [a j] =

momentum and [b;] = position, label the Weyl algebra
generators.

The standard Schrodinger representation of g; and p; is
now used to obtain a representation for the generators

W(a.b) in H given by

126006-6
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-~ -

W (@, b)¥(F) = efi i@ (3 + b), (48)

such that the canonical commutation relations give rise to
the Weyl algebra mutiplication

~

W(ay, b))W(ds, by) = e 5 @R D@ W(G, + Gy, by + by).
(49)

Combining (45) and (47) to obtain the exponentiated
version of (45) yields
C-W(@.b)(C;)"' =W(aD" -bC",—aB" +bA"), (50)
where A, I~3, C, and D are the block matrices in M. This
relation allows us to obtain a representation of the sym-
plectic group in the Hilbert space used in polymer quantum
mechanics and in loop quantum cosmology [38].

We are now ready to show, in the next subsections, some
of the applications of the representation of Sp(4, R) given
by (43) and (44).

B. Schrodinger representation of the
squeeze operator for a bipartite system

The squeeze operator §(§ ) for a bipartite system is given
by the exponential map

S(0) = e, (51)

where the operator ; is given by
oo iy
Sp = E(C a,a, —{a,a,). (52)

Here, a; and @, are the annihilation operators for each of

the subsystems (say, 1 and 2) of the bipartite system, 3’1‘ and

ﬁ; are their adjoint operators, respectively, and ¢ is a

complex number labeling the amount of squeezing. The

operator E(C), when acting on the vacuum state of the
bipartite quantum harmonic oscillators, gives a family of
squeezed states labeled by £.

The operators in (52) are in the Fock representation;
hence, let us transform (52) to the Schrodinger
|

cosh(r) 0
0 cosh(r)
M o) cos@) e —sinh(r) sin()
—sinh(r) sin(¢) ;7 sinh(r) cos(¢b)

Ll

representation described with operators g, ¢,, p;, and
D». The relation between these representations is given by

a:i@ i Lp; 5‘ljzii_il-f_ﬁi (53)
/\/Elj V2 R f\/ilj\/ih’
forj=1,2and[; := ﬁ where m; and w; stand for the

7T
masses and the frequencies of the oscillators. Inserting

these expressions for a; and aji in (52), the operator § takes
the following form:

B B N L TSP /T
) 1112611‘12 I, q1P2 L P19 A pPip2 |,

(54)

where ¢, and ¢ are the real and imaginary parts of ¢.
We now rewrite this operator in the form

i 2T =T 0O b
5, =——(R.R R
5=~ R ( 0)<R2> (53

where the matrix b is the following:

M _>:J>l

ny _ ke
Il I,
b= ) 56
_h& _hbé (56)
A h

Using the isomorphism ~! defined in (34) we obtain that
the corresponding Lie algebra element m, =:7'(5;) is

given by
J 0 0O b
= . 57
e (0 J)(bT 0> 7

Note that the Lie algebra matrix m; isomorphic to the
squeeze operator s, is of the type given in the second case
(Sec. III B 2).

To obtain the symplectic matrix associated with this Lie
algebra element, we insertm, and its expressions for a, b, and
¢ in (41). This results in the following symplectic matrix:

—sinh(r) cos(¢) - —sinh(r) sin(¢) 42

—sinh(r) sin(¢) ;&= sinh(r) cos(¢) 5—2
L . L 58
42 cosh(r) 0
% 0 cosh(r)
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where r and ¢ are defined as ¢ = re?. Matrix M (r, ¢) can be considered as the classical symplectic transformation such

that when represented in L?(R?, d*X), it gives rise to the quantum operator 3‘(4‘ ). Naturally, this also means that the unitary

representation of §(C ) in the Schrodinger representation is given by 6‘Ms, ie., /C\‘Ms = e,
Finally, observe that M is given in the Y “coordinatization,” which is not suitable for its quantum representation. To

make it suitable, let us provide the expression for the matrix 1\715, which is given by

cosh(r) - M
— loshir) os(24) cosh(r)
M, = h
T 0 _ #sinh(r) sin(2¢)
~ hh
_ hsinh(r) sin(2¢) 0

Ll

This expression will be used to explore the analog of the
bipartite squeeze operator in polymer quantum mechanics
in Sec. V.

It is worth mentioning that both expressions (58) and
(59) only depend on the proper lengths /; and /,. Although
these lengths are #-dependent, the ratios /,/l, and I,1,/h
are independent of 7, so we can say that the matrix
M, (r,¢) is entirely a classic object. Also, matrix Mg
produces classical squeezing but of course, adapted to the
classical phase space, which in this case is (R*, {,}). To
illustrate the squeezing and the rotation properties
of the matrix Mg as a canonical transformation for
different values of r and ¢ we consider its action
on a circular trajectory (q,(¢), p1(), g2(t), p2(¢)) where,
q;(t) = cos(t)q; +sin(t)p; and  p;(t) = —sin(t)q;+
cos(t)p;, for j =1,2.

The action of M on the trajectories is explicitly of the
form

-,"‘ ot

(a) Squeezing a circular trajectory.

FIG. 1.
¢ =0, ¢p=r/4, and ¢ = r/2, respectively.

111, sinh(r) sin(2¢)
0 -
L sinh(frl) sin(2¢) 0
. (59)
[, sinh(r) cos(2¢)
cosh(r) T
A sinh(rl)zcos(ZqS) COSh(I")
¢ (1) q:1(1)
1 (z t
PO | g | 0 o
45(1) 95(1)
(1) pa(1)

In Fig. 1 we showed the plot of (¢(t),p}(1)). As
expected, we note in Fig. 1(a), that the amount of squeezing
r squeezes the circular trajectory. Recall that symplectic
transformations also preserve the area, hence the trajecto-
ries are squeezed but the area is preserved. On the other
hand, the rotation angle ¢, as showed in Fig. 1(b), rotates
the trajectories and also preserves the area.

C. Covariance matrix for squeezed states

Now we will show the relation between the covariance
matrix, denoted by V), and the symplectic matrix M.

Ll

(b) Rotating a squeezed trajectory with r = 0.6.

In both figures, the solid, the dashed and the dotted lines correspond to: (a) r = 0, r = 0.3, and r = 0.6, respectively, and (b) to
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Let us consider the state |lP1\~/1> € L*(R", dX) related with

the symplectic matrix M as
W) = C10). (61)

where |0) = [dx¥y(X)|X) is the state |0) =|0); ®
0)5...10),,, and the ket [0); is the vacuum state of the
Jj-th quantum harmonic oscillator. Note that this construc-
tion can be extended to other states in L?(R”", dx) and not
only for |0). However, for simplicity in our exposition, let
us consider the simplest example of the covariance matrix

for 61\~4|O>.
To obtain the covariance matrix we first calculate the
following amplitude:

~W(a. DI¥~) = OIC_W(z.b\C~
(‘I’M|W(a,b)|‘PM> = <0|C1\~/1W(a’ b)CM|O>, (62)
where W (a, l_;) is the Weyl algebra generator introduced in
(47). Combining (43), (48), and the Gaussian form of the
vacuum state of the system given by n decoupled harmonic

oscillators, we obtain the following expression for the
amplitude in (62):

i@ hieg —ew{-1 (7 7)'a(5) @

where the matrix A is given by

aemi( Y0 Ve (64)
0 L2

and L = diag(l, 1, ....[,), where [; was defined earlier (53).
The covariance matrix V) has components given by

(W [ )

LW () T

3 (P {3 PPy
(W=1p;pelVs)

v =

’

(65)

and these components can be obtained from (63) using the
following relations:
(P X3 W ) =107, (P [W(d.b) W)

|a,5:o’ (66)

1 L .

5 (Pal{%) P y) = =120, (YW (@ b)Y 5o
(67)

1 o .

5 (PP 3 y) = =120}, (YW@ b)Y ) 5o
(68)

(PP Pl =120, (Yo IW(d.D) W) 25 (69)
Remarkably, the resulting expression for V(®) in terms of
the symplectic matrix M is

2
V(Z)Z%M(L 0

v
0 h2L—2>M ’ (70)

and this shows the direct relation between the covariance
matrix V(?) for the state |‘I‘1\~4> and the symplectic matrix M
associated with the unitary operator 61\71' Moreover, if we

now consider the definition (8), it can be shown that % v®@
is actually a symplectic matrix. Let us apply this formula to
some of the systems considered before.

Consider the matrix M; given in (37). Using (9) we

obtain the expression for 1\7[1 which is then replaced in (70),
giving rise to the following covariance matrix:

vl o v oo

oo v oo v
v 0 Ve o
0o v o0 i

Vi = (71)

Its components are given in Appendix C, and in the

particular case where a;; = ay =cj;; =cp =0 the
(2)

covariance matrix V|’ reduces to
e 0 0 0
0 Be*r 0 0
v =l : (72)
7 0 0 B e72an 0
1
0 0 0 L2

2

We use this result to derive the uncertainties in the
coordinates Ax; for j = 1,2, which according to (72) are
given by

l.e%

Ay \flag TG ) — (g R P = (73)

where due to the symmetry of the vacuum wave function
we have (‘1’1\71 |5c\/-|‘I‘I\~4 ) =0. This can be verified by
1 1

calculating the first derivatives in (63). Here, for simplicity,
we make a; = a|, and @, = c|,. Note the remarkable
property of the squeezed states such as in (61), which is that
Ax; can be smaller than the proper length of the vacuum
state /; when a; < 0.
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Similarly, the uncertainties in the momenta Ap; are

h
\/zljea/ '
(74)

Apy= ¥ PG ) - (¥ 5,15 ) =

which can also be smaller than - when a; > 0, and also

(P~ [p;|¥~ ) =0 as the prev1ous case. Nevertheless, both
Ml M, |

uncertainties satisfy Heisenberg’s uncertainty principle [2—4]:

Lie% h B
Ax;Ap; = (\/f) (\/Elje”f) = h/2. (75)

Another interesting covariance matrix is the one related
to the bipartite squeeze operator (59) derived in the
previous subsection. Inserting (59) in (70) yields

P2 cosh(2r) __ Ly sinh(2r) cos(2¢) 0 __Lihsinh(2r) sin(2¢)
2 2 20
_ Ll sinh(2r) cos(2¢) 13 cosh(2r) __ Lhsinh(2r) sin(24) 0
B ) = 2 (76)
’ 0 I, sinh(2r) sin(2¢) 7% cosh(2r) 7% sinh(2r) cos(2¢) ’
- 21, 28 21,1,
__ 1 hsinh(2r) sin(2¢) 0 h? sinh(2r) cos(2¢) 7% cosh(2r)
20 20,5 22

and this allows us to determine the correlation between the
second moments of subsystem 1 and subsystem 2

2r
- |~ e
(Wi |G £ Y5 ) = [ + 5 F 20y cos(29)]
e—2r
(3 + 3 & 21,1, cos(29)],
(77)
h2 2r
(P 1P ip2)2|wl\7[s> W2 o+ BE2L1c05(24)]
h2e—2r
tare (3415 F 21,1, cos(2)].
142
(78)
In the particular case where [} = [, = [ and ¢ = 7, the
uncertainties (Ax;)g and (Ax,)g for the state ¥ a
correlated as follows:
(Axl)é + (sz)é = [?>cosh(2r). (79)

These are the main results, at the standard quantum
mechanics level, which we want to show regarding the
representation of the symplectic group in quantum mechan-
ics. There are others applications like the analysis of the
Bohmian trajectories for bipartite squeezed states, the
analysis of the fidelity for bipartite or tripartite squeezed
states, and others which are currently in preparation. For
now, let us move to the analysis of the squeezed states in
polymer quantum mechanics given in the next section.

V. SQUEEZED STATES IN POLYMER QUANTUM
MECHANICS

Polymer quantum mechanics [33,34,36,37] is a quanti-
zation scheme which is nonunitarily equivalent to the
standard quantum mechanics. At the kinematical level,
i.e., when no dynamics are involved, both LQC and PQM
share the same Hilbert space. Hence, exploring the nature
and properties of squeezed states in polymer quantum
mechanics will help study those scenarios in loop quantum
cosmology where such states might play a significant role.

For this example, we will consider a system with two
degrees of freedom and both will be polymer quantized.
Therefore, the Hilbert space of the entire system is given by

Hpgly == H

x H (80)

p()ly ]mlv’

where the Hilbert spaces H;jo) Iy with j = 1, 2 are of the form

HEJ(ZI} - Lz(R dpj?())hr) (81)

where R is the Bohr compactification of the real line and

d pgg 4 18 the Bohr measure (see [36] for more details). This
Hilbert space resembles the momentum representation used
in the standard quantum mechanics.

An arbitrary state in this Hilbert space H ,,,, is given by

= W o7, (82)

{x;}

P1,P2

where {X;} is a shorthand notation for the graph

{(x}l),xﬁz)) 77" associated with the state W(p). In this
notation, the array p = (py, p,) denotes the momentum

variables for system 1 and 2, respectively. The coefficients
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‘P};j provide the value for the norm of the state, which is  equivalent to the standard Schrodinger representation.

given by Moreover, in polymer quantum mechanics there is no
momentum operator, hence infinitesimal spatial transla-

1% (5 ZP{; (83) tions cannqt be 1mp1emented.. Nevertheless, we can obta1n a

representation for the position operator, which in the

present case is given by

hence these coefficients are different from zero and the sum
converges (they are non-null over a countable number of

0
o - P
points in the graph {X;}). This norm arises from the inner 0¥ (p1.p2) _lha ¥(pi.p2)= ZT" x/ . (86)
product )
3 1 2 * (2 ol a -
(P|®) = Ll,lLlir—lmo4L1L2 /—L1 /—sz (p)®(p)dpdp;. %\P(pl’pQ)_lha—lP PLpa)= Zly x Ve 7 (87)
{x;}
(84)
which for the specific case of the plane waves takes the Despite these peculiarities with the nonregularity of the
form of the Kronecker delta polymer representation, the representation of the symplec-
tic group Sp(2n,R) on the Hilbert space of polymer
(e Plei"P) = 8 5. (85)  quantum mechanics was provided recently by one of the

authors in Ref. [38]. There, the representation is given by

This inner product is the main signature of the polymer o map Clpoly) . Sp(2n,R) = L(H,op), M > ’C\,(i)ol)')’
quantization as it violates the Stone-von Neumann theorem. M
Consequently, polymer quantum mechanics is not unitarily where the linear operator Cl(é;o )

poly

acts on H,,;, as

~(poly) poly = N Y
CI"Y(p) = lim Y(p'dp'. 88
M (p> Ly L2—>0<>4L LZ/ / ) (p) p ( )
The polymer kernel 2 OZV)( p') is given by

(poly) (= =\ _ —ip— % BD X-i D X4 DC x

Cc* det(DA” i7BD iD= 89
25 = deuDAT) ek T e 5 (59)
_ [

and note that when the factor det(DA")™ # 1 it implies covariance matrix V<12) in (72), but now with a;, = —r,
that this representation is not unitary [38]. and ¢y, = —r,. The explicit form is 1\7[1:

Recall that one of the main features of loop quantum
cosmology is its intrinsic length scale given by the Planck o 0 0
length. Polymer quantum mechanics does not have an ¢
intrinsic length scale. However, it admits a length scale that ~ 0 e2 0 O
mimics some of the features of loop quantum cosmology. M, = 0 0 et 0| (90)
This length scale is introduced at hand and is called
polymer scale, usually denoted by p. This polymer scale
constitutes the analog of minimum length for polymer
quantum mechanics models, and therefore, it can be The action of the group element C2%")
considered as a lower bound for the uncertainties. In the M
present analysis, each system admits a polymer scale y; and
1>, when the dynamics is considered.

0 0 0 en

on an arbitrary

1
polymer state (82) gives the following state:

Let us now consider the following questions. (1) Is it \PI\N,II(PhPZ) Cl(\i y>\P(P1,P2)
possible to have polymer states such that their uncertainties l R
are lower than the polymer scale? Furthermore, (2) do the = ‘I‘;/_eﬁ( Lpixy e (91)
correlations found in (77) have an analog in polymer %}
quantum mechanics?

To answer these questions let us consider the matrix Ml Using the representation of the position operators g; and
with a;; = ax» =c¢;; =c¢»n =0, used to calculate the g, given in (86) and (87) we obtain the dispersion relations
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(Axi)g = €71 (Ax))y. (Axy)g = e (Axz)y,  (92)
which show that the squeezed polymer state is indeed
squeezed by a factor e~ or e~"2. Consequently, if the initial

dispersion of the polymer state is given by (Ax;)y or

~(poly)

(Ax,)y, then the squeeze operator C°"’ gives rise to a
M

1

polymer state ¥ (91) whose dispersion is smaller than that
of the initial polymer state . Moreover, due to the fact that
there is no upper bound for the parameter r, these
dispersion relations can be smaller than the corresponding
polymer scales y; and u,. This result is consistent with the
fact that the position operator has well-defined eigenstates,
given by the Kronecker deltas 6xj,x> in H,, [46].

Let us now consider the analog of the correlations (79)
but for polymer states. To do so, consider the polymer

representation C C'P°) of the symplectic matrix (59) corre-

(poly)

sponding to a blpartite system. The action of 2" on an

s

arbitrary polymer state (82) is given by

¥, = 5;‘4’”’”‘1‘@1,192)

_ § :111 e" [(cosh(r

{35}

e 2)

J sinh(r)x}?) pi-+ (cosh(r)x? +sinh(r)oi!) )]

(93)

where again the representation in (88) was used.

We combine this result with the representation of the
position operators in (86) and (87) and obtain the following
relations:

(Axl)%

s

(Axl)?{, — (Ax2>\21” VY¥e H

poly>

(94)

—(Ax,)2 =
(xz)lyx

where the conditions /; =1, and ¢ = {0,5,7} were
imposed. Remarkably, this result not only is independent
of the parameter r (which labels the amount of squeezing)
but also applies to any polymer state ¥ € H ;.. As can be
seen, the difference of dispersions squared is conserved,
regardless of the amount of squeezing. Also, note that /4
and [, are considered group parameters and have no
relation to the dynamics, i.e., we are considering general
states in H ;. The same applies for ¢.

Let us now consider pure and symmetric polymeric
states. The pure states are those that can be written as the
following product:

lP( plvpz

E \P 1] hplx() E lP ( ehpzx
]

]

("} (P
(95)

Secondly, both lattices {xg-l)} and {xj@} are symmetric,

()

i.e., for every positive point 0 < x; € {xﬁ-s)} there exists a

: : () () (s) (s) _
negative point 0 > x; € {xj }, such that Xpxy = 0,
and the states are also symmetric which implies that
‘I‘(‘zg) = ‘I’(fx)). These states are the analog of the states

X. X

J 4
described with even functions in the standard quantum
mechanics.

The dispersion relation for squeezed pure symmetric
polymer states is given by

(Axp)2 4 (Ax)2 = cosh(2r)(Axi )y, + (Axa)y, ).
(96)
which takes the form
(Ax))% + (sz)é = I’ cosh(2r) (97)
lPS s
when the dispersion of the pure states are

((Ax))gpo = (Axy)gn) = 1/+/2. Notably, Eq. (97) is the
same as that obtained in (79) for the Schrodinger repre-
sentation. This shows that the correlations present in the

standard quantum mechanics using the 61\7[ operator for

both symplectic matrices 1\7[1 and 1\7[S are the same as those
obtained in polymer quantum mechanics using the operator
C?™ This is noteworthy since the Hilbert spaces of both
M

approaches, namely, H and H,,;,, are mathematically

different.

VI. CONCLUSIONS

In this paper we provided the direct relation between the
Lie algebra sp(4,R) and the symplectic group Sp(4, R).
The expression shows the link between the block matrices
A, B, C, and D with those of the Lie algebra a, b, and ¢
given in Egs. (26)—(29). This result has not been reported
before.

In Sec. IV we analyzed the classical description of
squeeze operators. We showed that the symplectic matrix
M, is the classical analog of the squeeze operator

S(¢) = o = C~ Also, we remarked the isomorphism

between the Lle algebra sp(4,R) and P(2,R).
Additionally, the general form of the covariance matrix
V) for the squeezed vacuum state |‘Pl\~/[> was derived using

the Weyl algebra representation and the symplectic matrix
M;. The components of this covariance matrix were used to
calculate the dispersion relations (73) and (74) for the
particular case where ay; = ay =c¢;; =cpn =0. As is
already known, these dispersions can be smaller than the
vacuum characteristic length for the harmonic oscillators.
They also satisfy the Heisenberg uncertainty principle, as
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was shown in (75). We then calculated the covariance
matrix for the symplectic matrix M corresponding to the
classical analog of the bipartite squeeze operator. With this
matrix we determined the correlation (79). We also pro-
vided the general expressions for these correlations in
Egs. (77) and (78).

Applying the previous results, it is also possible to
represent operators in nonregular Hilbert spaces that are
nonunitarily equivalent to the Fock-Schrodinger represen-
tation, so in Sec. V we analyzed polymer quantized
systems. We calculated the dispersion relation for an
arbitrary polymer state using the representation of the
symplectic group in polymer quantum mechanics. We
obtained that the polymer representation of the squeeze
(poly)
M,
which can be smaller than those of the initial state. This

implies that 6’%01y )

operator given by c yields a dispersion relation (92)

is indeed a polymer squeeze operator,

1
and (91) describes a polymer squeezed state.
The polymer representation of the bipartite squeeze

(poly)

operator given by 6;4 was used to derive the polymer

correlations (94) and (97). The first correlation, (94), shows
that the difference of the dispersion square is preserved and
is independent of the initial polymer state. Clearly, this
(poly)
M,

to the one used in (90) will produce a different result. In the
case of (97), the result has the same form as the standard
correlation in Eq. (79); hence, the polymer representation

result only holds for C so a symplectic matrix different

of C2") can be used to construct correlated squeezed

states for bipartite polymer systems. Naturally, this brings
up some questions like whether there is any mechanism in
nature (say, loop quantum cosmology or the interior of a
black hole) from which a polymer squeezed state can be
created.

Moreover, establishing that squeezing is a property also
present in nonregular representations questions its role in
the classicality of some cosmological models. As we
showed, it is possible to construct entangled polymer states

(Poly) " Such polymer entangled state correlations
M,

satisfy a relation identical to the one obtained in the
standard quantum mechanics. In this case, the states are
polymer bipartite squeezed states, similar to those used in
the quantum description of the inflaton field. Actually, this
is directly connected to our previous observation regarding
the emergence of relational time using a polymer quantized
clock. The presence of bipartite squeezing in PQM and
LQC allows us to study the interaction between the matter
and geometry using some of the tools currently used in
quantum optics, for example, the von Neumann entropy of
the reduced density matrix of the matter subsystem, or its
decoherence once the geometry is traced out, etc.

using C

Finally, it is worth mentioning that the polymer squeezed
states obtained as a result of the representation of Sp(4, R)
in H,,;, given in (91) and (93), differ from those reported
in the LQC literature [20-25]. In these references, a
Gaussian form of the states is considered, whereas in
our case, the polymer state (91) is a general polymer state.
In LQC, the squeezed states are constructed by hand after
imposing some conditions to achieve the squeezed nature
of the dispersion relations. In our case, the squeezed state
results from the action of the squeeze operator.

These results serve as an avenue between the physics in
quantum optics and those in loop quantum cosmology.
Consequently, many exciting questions arise, e.g., what is
the information interchange between matter and gravity
degrees of freedom? and how does the dust-time notion
emerges from a polymer system? We believe this paper sets
the basis to explore these and others questions.
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APPENDIX A: CALCULATION OF m?*"

In this Appendix the expression for the matrix m?”" is
obtained. To do so, recall that the matrix m? is formed by
four 2 x 2 block matrices where the upper left and the
lower right matrices are multiples of the identity matrix
1,,,. The upper right block is the matrix Jd whereas the
lower left is —Jd”. Notably, we found that this block
structure is preserved after exponentiating the matrix m? an
integer number of times. That is to say, the n-power of
matrix m? yields a new matrix (m?)", given by

(m2)n _ < ai112><2 ﬂan ) (A])
_ﬂanT 7n12><2

It is this pattern that is to be considered when this procedure

is applied to higher-order symplectic groups.

The coefficients «,, f,, and y,, are to be determined and
they depend on the values of the matrices a, b, ¢, and d. For
n =1, these coefficients are given by the factors in the
block matrices of m? given in (24) and can be directly
defined as
a, :=—(deta-+detb),

pr=+1, y;:=—(detc+detb).

(A2)

To calculate «,, f,, and y, for arbitrary n, first note that
they can be generated with the (n — 1) power of the matrix
T as

126006-13



CHACON-ACOSTA and GARCIA-CHUNG

PHYS. REV. D 104, 126006 (2021)

an ay
P | = ! I E (A3)
Vn 71
where the matrix T is given by
a ﬁl detd 0
T=|/5h 71 0 (A4)
0 /}1 detd Y1

The calculation shows that T"~! is a matrix of the form
Ul 0"
™ !'=| _ L , (A5)
(uTr’f‘2 vy )
where 0 = (0,0) and i = (0,8, detd) and matrix U is

given by
detd
U= (al b )
b 71

Then, using (A3), we have the following relation for the
coefficients:

n—=2
a, a; _io .01
:Un—l< >’ yn:},n+ﬁ”l‘yn—2 % JU]< >
</fn> B b ; SV

(A7)

(A6)

In order to calculate U"~! we need to diagonalize the
matrix U. Let P be the matrix diagonalizing U, then
|

—_— (/Hﬂ—lh) k, (’1—/}_]71) k, li—l
ki ky 0

which, when combined with the result in (A7) together with
the expression for u, gives

A, —detb—dete)A" — (A_ —detb —dete)A™
a, =+ a (A13)
" deta—detc)? +442detd ’
V( T

an

P = Jaeta— detey £ apderd

(A14)

[(4; —detb—detc)A” —(A_—detb —detc)A |

Al5
\/(deta—dete)? +4p7detd (AL5)

Yn=

These are the final expressions for the coefficients
in (m?)".

U = PD,P, (A8)

where the matrix P is

(Ae=11) (G—=r1)
P= b Sk b “ky .
ky ky

The real arbitrary parameters k; and k, result from the
diagonalization procedure. Its values will be automatically
canceled as part of the calculation of U"™! further below.
The eigenvalues of U, denoted by 4., have the following
expression:

(A9)

1
_ % er” ii\/(al — 11 + 462 detd,
deta + detc +2detb

2
1
ii\/(deta —detc)? + 4 detd,

As

(A10)

and the diagonal matrix Dy is

A 0
DOZ( " )
0 1

We now take the n — 1 power of U given in (AS8) to
obtain the following result:

— — -1
0 (Mﬂ]}’l) ky (Lﬂ]}’]) k,
! ki ks

APPENDIX B: SERIES ANALYSIS

(A1)

(A12)

In this Appendix we calculate the series expansion
terms. To do so, note that once the expression for (m?)"
is inserted and the expansion (23) and the even and
odd terms are collected, the matrix M(a, b, ¢) takes the
form

a(e)lzxz ﬁ(e)Jd >
_ﬂ(e)JdT ),(e>12X2
(o)1 (o) Jd
m(“ 2x2 £ ) (Bl)
_ﬂ(O)JdT J,(0) 1,.,

where the following coefficients are given by
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+00 1 +00 1 +o00 1
() := 1 i (=)~ (¢) =1 i B2
(©) +00 1 ©) 400 1 © +o00 1
%) =1 —a,, 9) = —f, 9) =1 ——n- B3
. +;(2n+1)!“’“ g ;(211—1—1)!'6 d +;(2n+1)!7 (B3)
We now insert (A13), (A14), and (A15) in the relations (B2)—(B3) to obtain
1 (dete — deta)[cosh(y/A, ) — cosh(y/2_)]
(©) = —[cosh(+/.) + cosh(y/2_)] + s B4
a cos cos _ ,
3 leosh(v/24) (Vi) 2,/(deta — detc)? + 4 detd (B4)
o) — 1 [sinh(y/4) N sinh(\/Z)] N (detc — deta) [Sinh(\ /) sinh(VZ0) (BS)
21 24, VA 2/(deta —detc)? + 4detd | \/2; VZE
1
ﬁ(e) = cosh(4/4A,) —cosh(+/A_)], B6
\/(deta—detc)2+4detd[ (Vi) ( ) (BO)
g0) 1 [sinh(\/lg B sinh(\/Z)} (BY)
V/(deta —dete)? +4detd | /A VA
1 (detc — deta)[cosh(y/A, ) — cosh(y/2_)]
(¢) = ~[cosh(+/2 ) + cosh(y/A_)] — s BS
y cos cos _ )
2[ (Vi) (Vi) 24/(deta — detc)? + 4 detd (B8)
o) — 1 [sinh(y/4;) N sinh(\/Z)] B (detc — deta) [Sinh(\ /4+) sinh(VZ0) (B9)
21 Ay vz 2¢/(deta —detc)? +4detd [ /4, vZau
where we have to recall the expression for the eigenvalues A, in (A10).
APPENDIX C: COVARIANCE MATRIX COEFFICIENTS
In this Appendix we show the explicit form of the coefficients of the covariance matrix V().
VEZ]) _ sinh? (v/— detza) (a%zl? + a%zhz) + alzl% sinh(2v/— deta) + l% coshz(m) (C1)
l{deta V—deta
ngz) _ sinh?(y/— detzc)(cle‘zt + ¢3,h?) N c1203 sinh(2v/— detce) T B cosh?(v/=dete) ()
I5detc V—dete
() _ sinh(2v/—deta)(aph® —aylf)  aj;sinh?(v/—deta)(aylf + aynh?)
Vis = + 2 (C3)
203\/—deta [3deta
() _ sinh(2v/—detc)(conh® — ¢1113) | ¢y sinh?(vV/—dete)(cy 5 + cxnh?)
Vi = > + 5 (C4)
215y —dete [5detc
v _ sinh?(v/—deta) (a3, I} + a3,h?) N aj,h? sinh(2v/— deta) N h? cosh?(v/—deta) (C5)
. [} deta B\/—deta i
v _ sinh?(v/—dete)(c3, 15 + ¢2,h?) N ¢12h? sinh(2v/— det ¢) N h? cosh?(v/—detc) (C6)
“ 13 detc v/~ dete 5
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