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(Received 26 February 2021; accepted 25 October 2021; published 2 December 2021)

In this paper, we show the relation between spð4;RÞ, the Lie algebra of the symplectic group, and the
elements of Spð4;RÞ. We use this result to obtain some special cases of symplectic matrices relevant to
the study of squeezed states. In this regard, we provide some applications in quantum mechanics and
analyze the squeezed polymer states obtained from the polymer representation of the symplectic group.
Remarkably, the polymer’s dispersions are the same as those obtained for the squeezed states in the usual
representation.
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I. INTRODUCTION

Squeezed states are broadly used in many areas of
physics [1–5]. Of particular interest is the use of these
squeezed states in cosmology [6–14], specifically when
arguing for the emergence of semiclassical behavior in the
early universe. Loop quantum cosmology (LQC) [15–19] is
another scenario in which squeezed states are relevant.
There, squeezed states for a single mode show some of the
features of the quantum bounce and closely approximate
solutions to the classical Einstein equations [20–25]. The
squeezed states used in LQC are constructed by hand,
imposing the Gaussian form of the states to obtain the
squeezing nature of the dispersion relations. Moreover, the
states describe systems with only one degree of freedom,
i.e., single-mode squeezed states [26,27].
In quantum optics, squeezed states can be used to

improve the sensitivity of measurement devices beyond
the usual quantum noise limits [2–5,28–31]. They are
defined by the squeeze operators’ action on coherent states,
or the vacuum state [2–4]. These operators are defined
within the Fock representation using the annihilation and
creation operators, or in the Wigner representation, using
the Wigner functional. A particular squeezed state used in
quantum optics is the two-mode squeezed state which plays
a prominent role in the study of entanglement for bipartite

systems. Particularly in the limit when the amount of
squeezing is infinitely large, the states become Eintein-
Podolsky-Rosen-like states [32].
Based on the relevance that squeezed states play in

cosmology, LQC, and quantum optics, one might ask
whether there is a relation between them and whether it
is possible to obtain squeezed states in LQC the same way
squeezed states are defined in quantum optics. Recall that
the construction used in LQC for the squeezed states is
somewhat artificial and does not correspond to any mecha-
nism in the cosmological events. Hence, exploring whether
LQC formulation admits an operator similar to the squeeze
operator and whose action on some state yields a squeezed
state might pave the way to construct such a mechanism
in LQC.
To do so, one must consider that in LQC, the repre-

sentation of the operators is not weakly continuous, hence
the Fock representation is not suitable for the physical
description. Instead, the Schrödinger representation, which
is the scheme inherited from the quantization procedure,
seems to be the natural scheme to be considered [33–38]. In
the standard quantum mechanics, the squeeze operator can
be obtained using the Schrödinger representation of the
infinitesimal squeeze operator via the exponential map
[39]. In such a picture, the squeeze operator can also be
considered as a unitary representation of an element of the
symplectic group Spð4;RÞ. However, in LQC this cannot
be done because there is no infinitesimal squeeze operator.
On the other hand, the representation of the symplectic

*gchacon@cua.uam.mx
†alechung@xanum.uam.mx

PHYSICAL REVIEW D 104, 126006 (2021)

2470-0010=2021=104(12)=126006(17) 126006-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7213-7386
https://orcid.org/0000-0002-8982-3569
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.126006&domain=pdf&date_stamp=2021-12-02
https://doi.org/10.1103/PhysRevD.104.126006
https://doi.org/10.1103/PhysRevD.104.126006
https://doi.org/10.1103/PhysRevD.104.126006
https://doi.org/10.1103/PhysRevD.104.126006


group Spð2n;RÞ was given in [38] but adapted to the
polymer quantum mechanics (PQM) formalism. This
formalism is a quantization scheme based on the same
mathematical tools (at kinematical level) used in LQC. For
this reason, in the present work, we will consider the
polymer representation of the bipartite squeeze operator
in LQC.
To analyze the bipartite squeeze operator in LQC, we

provide the explicit relation between the Lie algebra of the
symplectic group spð4;RÞ and the Lie group Spð4;RÞ. As
far as the authors’ knowledge, this relation has not been
reported before. With this result, we show some specific
cases and then move to the analysis within polymer
quantum mechanics. Also, this relation allows us to
describe the single-mode squeeze operator (specifically,
the product of two single-mode operators) as a particular
case of a symplectic matrix in Spð4;RÞ.
We will show that the squeezed states derived in this way

for LQC share the same features as those used in quantum
optics. In particular, the structure of the correlation is the
same for both the single-mode and the two-mode squeezed
states. However, there is no need for a Gaussian-like
structure for the initial states upon which the polymer
squeeze operators act and such structure is absent in the
polymer squeezed states.
This paper is organized as follows. In Sec. II we

calculate the relation between spð4;RÞ and Spð4;RÞ.
In Sec. III we discuss the isomorphism between spð4;RÞ
and the second-order polynomial operators Pð2;RÞ and
provide some examples. In Sec. IV, we show some of the
applications of the results given in Sec. III; in particular,
we determine the covariance matrix for the squeezed
states in standard quantum mechanics. In Sec. V, we
analyze the squeeze operators’ representation in polymer
quantum mechanics and construct the polymer squeezed
state. We also calculate the dispersion relations and show
that they are equal to those obtained for the standard
squeezed states. We give our conclusion in Sec. VI.

II. MATHEMATICAL PRELIMINARIES: Spð4;RÞ
GROUP AND ITS LIE ALGEBRA spð4;RÞ

In this section we will detail the relation between an
arbitrary element of spð4;RÞ and its corresponding
element in the group Spð4;RÞ. This relation is the main
result of this section and has not been reported as far as we
know. First, let us introduce some preliminary concepts and
notation, which we will use throughout the paper, to make
the presentation self-contained.
Let us begin by considering the Poisson manifold

ðR2n; f; gÞ with the Poisson bracket for the coordinates
qj and momenta pj ðj ¼ 1; 2; 3;…; nÞ given by

fqj;qkg¼0; fpj;pkg¼0; fqj;pkg¼δjk: ð1Þ

These coordinates are collected using the array
Y⃗T ¼ ðq1; p1; q2; p2;…; qn; pnÞ, for which the Poisson
bracket (1) takes the form

fY⃗; Y⃗Tg ¼

0BBBBB@
J 0 � � � 0

0 J � � � 0

..

. ..
. ..

. ..
.

0 0 � � � J

1CCCCCA ¼ 1n×n ⊗ J; ð2Þ

where the 0 is the 2 × 2 null matrix, 1n×n is the identity
matrix, and the matrix J is given by

J ¼
�

0 1

−1 0

�
: ð3Þ

The group action over the manifold R2n is

Spð2n;RÞ×R2n→R2n; ðM;Y⃗Þ↦ Y⃗ 0T¼MY⃗T; ð4Þ

provided that the matrix M satisfies the condition

ð1n×n ⊗ JÞ ¼ Mð1n×n ⊗ JÞMT; ð5Þ

where MT is the transpose matrix. That is, the symplectic
group Spð2n;RÞ can be defined as the set of 2n × 2n real
matrices satisfying (5) and, additionally, its group action on
the Poisson manifold ðR2n; f; gÞ is given by (4). Note that a
“coordinatization” of ðR2n; f; gÞ different from Y⃗ yields a
condition for the symplectic group matrices different to that
in (5). To show this, consider now the array X⃗T ¼ ðq⃗T ; p⃗TÞ
where q⃗T ¼ ðq1; q2;…; qnÞ and p⃗T ¼ ðp1; p2;…; pnÞ are
the coordinates on the space R2n. The Poisson bracket for
this array is given by

fX⃗; X⃗Tg ¼
�

0 1n×n
−1n×n 0

�
¼ J ⊗ 1n×n: ð6Þ

The group action is now given by Spð2n;RÞ ×R2n →
R2n; ð eM; X⃗Þ ↦ X⃗0 where X⃗0 is

X⃗0T ¼ eMX⃗T; ð7Þ

and the matrix eM satisfies

ðJ ⊗ 1n×nÞ ¼ eMðJ ⊗ 1n×nÞ eMT: ð8Þ

Hence, both conditions (5) and (8) can be considered as
definitions for the symplectic group in different “coordina-
tizations” of the phase space R2n. Naturally, both group
actions eM and M are related via the similarity trans-
formation ΓðnÞ [4] as
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eM ¼ ΓðnÞMΓ−1ðnÞ; ð9Þ

where ΓðnÞ is given by

X⃗T ¼ ΓðnÞY⃗T; ð10Þ

and is such that ΓTðnÞ ¼ Γ−1ðnÞ. Since the present work
concerns the case where n ¼ 2, it is worth showing the
explicit form of Γð2Þ, which is

Γð2Þ ¼

0BBB@
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1CCCA: ð11Þ

Having provided the two group actions over the mani-
fold R2n using different “coordinatizations” and their
relation for arbitrary n, let us now focus on the symplectic
group Spð4;RÞ. According to (5) this group is given by
4 × 4 real matrices M for which the following condition
holds �

J 0

0 J

�
¼ M

�
J 0

0 J

�
MT: ð12Þ

The matrix M can be written in block form as

M ≔
�
A B

C D

�
; ð13Þ

where the 2 × 2 block matrices A, B, C, and D satisfy the
conditions

J¼AJATþBJBT ¼CJCTþDJDT; 0¼AJCTþBJDT;

ð14Þ
which result from (12).
The Lie algebra of Spð4;RÞ, denoted as spð4;RÞ, is

given by 4 × 4 matrices m such that the exponential map
[39] of the Lie algebra element m yields symplectic
matrices M close to the identity, i.e.,

M ¼ em ≔ 1þmþ 1

2
m2 þ � � � þ 1

n!
mn þ… ð15Þ

It can be shown that the matrices in spð4;RÞ can be
written as the product

m ¼
�
J 0

0 J

�
L; ð16Þ

whereL is a real symmetric matrix written in block form as

L ¼
�

a b

bT c

�
; ð17Þ

and where b is a 2 × 2 real matrix, whereas a and c are also
real but 2 × 2 symmetric matrices.
If a matrix M can be written as in (15), then its inverse

M−1, its transpose MT , and the n-power matrix ðMÞn, can
be written respectively as follows:

M−1 ¼ exp

�
−
�
J 0

0 J

�
L

�
; ð18Þ

MT ¼ −
�
J 0

0 J

�
M−1

�
J 0

0 J

�
; ð19Þ

ðMÞn ¼ exp

��
J 0

0 J

�
ðnLÞ

�
: ð20Þ

Thus, the Lie algebra multiplication in spð4;RÞ is given
by the matrix commutator ½; �m. When this multiplication
acts on two arbitrary elements,m1 andm2 give the element
m3 defined as

m3≔ ½m1;m2�m¼
��

J 0

0 J

�
L1;

�
J 0

0 J

�
L2

�
¼
�
J 0

0 J

�
L3;

ð21Þ

where the matrix L3 is also a real symmetric matrix with
components of the form

L3 ¼
�
a1Ja2 þ b1JbT

2 − a2Ja1 − b2JbT
1 a1Jb2 þ b1Jc2 − a2Jb1 − b2Jc1

bT
1Ja2 þ c1JbT

2 − bT
2Ja1 − c2JbT

1 c1Jc2 þ bT
1Jb2 − c2Jc1 − bT

2Jb1

�
; ð22Þ

hence, m3 is clearly an element in spð4;RÞ. Up to this
point, we introduced the main concepts and notations
required to derive the relation between spð4;RÞ and its
corresponding Lie group Spð4;RÞ. Let us proceed then
to obtain the explicit relation between the block matrices

A, B, C, and D and the Lie algebra element L. It is
worth noting that the following procedure can be
applied to higher-order symplectic groups Spð2n;RÞ for
n ≥ 3, this being the main reason for its exposition in this
section.
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Let us collect the even and odd terms of the expansion in
(15) as follows:

M ¼
�
1þ 1

2!
m2 þ � � � þ 1

ð2nÞ!m
2n þ…

�
þm

�
1þ 1

3!
m2 þ � � � þ 1

ð2nþ 1Þ!m
2n þ…

�
; ð23Þ

where m2 takes the form

m2 ¼
 
−ðdet aþ detbÞ12×2 Jd

−JdT −ðdetbþ det cÞ12×2

!
ð24Þ

and the matrix d is defined as

d ¼ aJbþ bJc: ð25Þ

As can be seen from the expansion (23), to obtain the
expression for M we first need to determine m2n. In
Appendix A we obtain the expression for m2n given in
Eq. (A1). Let us replace this result in the series expansion
(23), which, after collecting the even and odd terms, gives
the following:

A ¼ αðeÞ þ ðαðoÞ − βðoÞ detbÞJaþ βðoÞJbJcJbT; ð26Þ

B ¼ ðγðoÞ − βðoÞ det aÞJbþ βðeÞðJaJbþ JbJcÞ
þ βðoÞJaJbJc; ð27Þ

C ¼ ðαðoÞ − βðoÞ det cÞJbT þ βðeÞðJbTJaþ JcJbTÞ
þ βðoÞJcJbTJa; ð28Þ

D ¼ γðeÞ þ ðγðoÞ − βðoÞ detbÞJcþ βðoÞJbTJaJb: ð29Þ

The coefficients αðeÞ, αðoÞ, βðeÞ, βðoÞ, γðeÞ, and γðoÞ were
defined in Appendix B.
These expressions for the matrices A, B, C, and D link

the components of the Lie algebra element L with the
corresponding symplectic matrix M and constitute the
main result of this section. Note also the “nonlinear matrix
relation” between the Lie algebra elements and the group
elements, particularly the role of the block matrix b.
In [26,40] an alternative (and different) formulation for

each of the symplectic group generators was provided. Our
approach, however, not only reproduces the same expres-
sions for the generators but also provides a direct relation to
the Lie algebra matrix generators a, b, and c a point that is
absent in [26,40]. As a result, we can relate a broader range
of Lie algebra elements with their corresponding group
elements.
Let us now show some of the relevant matrices and

examples in the next section in which this result can be
applied.

III. QUANTUM RELATIONS AND EXAMPLES

This section provides two examples where the relation
between the Lie algebra element and the group element is
explicit. However, before proceeding, let us introduce
additional concepts and notations (see [4,39] for more
details), which will be relevant for the quantum description.

A. Relation between spð4;RÞ and Pð2;RÞ
Consider the Lie algebra formed by second-order (oper-

ator) polynomials, denoted by Pð2;RÞ. An arbitrary
element ŝ is given as

ŝ ¼ −
i
ℏ

�
a11
2

q̂21 þ
a12
2

ðq̂1p̂1 þ p̂1q̂1Þ þ
a22
2

p̂2
1 þ b11q̂1q̂2 þ b12q̂1p̂2 þ b21p̂1q̂2 þ b22p̂1p̂2

þ c11
2

q̂22 þ
c12
2

ðq̂2p̂2 þ p̂2q̂2Þ þ
c22
2

p̂2
2

�
: ð30Þ

Here, q̂j and p̂j, with j ¼ 1; 2, are the position and
momenta operators satisfying the canonical commutation
relations ½q̂j; p̂k� ¼ iℏδj;k, and aij; bij, and cij are all real
coefficients. The reason for this notation is that formally
iℏŝ is a self-adjoint operator to be represented in a Hilbert
space H, hence the exponential map eŝ gives rise to a
unitary operator in H. Thus, in this sense, this notation
smooths the way to the quantum representation analysis in
Sec. IV. Depending on the values of their coefficients,
operators of the form (30) are used to describe the dynamics
of many entangled physical systems. These systems range
from two decoupled quantum harmonic oscillators to

models of quantum harmonic oscillators coupled to ex-
ternal electromagnetic fields in inhomogeneous media
[41,42], and to bipartite squeeze operators [4].
It is easy to check that ŝ can be written in the following

form:

ŝ ¼ −
i
2ℏ

R̂T

0BBB@
a11 a12 b11 b12
a12 a22 b21 b22
b11 b21 c11 c12
b12 b22 c12 c22

1CCCAR̂; ð31Þ
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that is a symmetric matrix, and where

R̂T ¼
�
q̂1 p̂1 q̂2 p̂2

�
: ð32Þ

Instead of the matrix commutator, the Lie algebra
multiplication in Pð2;RÞ is given by the operator commu-
tator ½; �. Therefore, the Lie algebra multiplication of two
elements ŝ1 and ŝ2 gives a third element ŝ3 of the form

ŝ3 ¼ ½ŝ1; ŝ2� ¼ −
i
2ℏ

R̂TL3R̂; ð33Þ

where the matrix L3 is given by (22). Due to the fact that
L3 is a symmetric matrix, the operator ŝ3 is clearly in
Pð2;RÞ. Naturally, this result provides the isomorphism
between spð4;RÞ and Pð2;RÞ, i.e., the map

ι∶spð4;RÞ→Pð2;RÞ; m↦ ŝ¼ ιðmÞ¼−
i
2ℏ

R̂TLR̂;

ð34Þ
and this map preserves the linear properties of both Lie
algebras, i.e., it is a Lie algebra isomorphism.
An implication of this isomorphism is that due to the fact

that Pð2;RÞ is a Lie algebra isomorphic to spð4;RÞ, then
the exponential map of its elements ðŝ ↦ eŝÞ gives a
(quantum) unitary operator ðeŝÞ which can be seen as
the (quantum) unitary representation of Spð4;RÞ as
showed in the following diagram:

spð4;RÞ ⇔
ι

Pð2;RÞ
↓ ↓

Spð4;RÞ → cSpð4;RÞ : ð35Þ

We can expect that if a representation of Pð2;RÞ in a
Hilbert spaceH is known, then there is also a representationofcSpð4;RÞ inH. However, in some scenarios such as polymer
quantum mechanics and LQC, it is not possible to obtain the
representation of Ŝ out of the representation of ŝ in H. The
reason is that someelements ofPð2;RÞ cannot be represented
in the corresponding Hilbert space. This difficulty can be
overcome if we can represent directly the exponential eŝ

instead of its infinitesimal generator ŝ. This approach was
done for the case of polymer quantum mechanics in [38].
Consequently, because the operators in (30) can be used to
describe the dynamics of many physical systems ranging
from two decoupled quantum harmonic oscillators to the
bipartite squeeze operators, a polymer representation of these
operators is possible, as we will show in Sec. V. More details
about these aspects will be provided in Sec. V.
In the next subsection, we show some of the explicit

forms of M.

B. Examples

1. Case a; c ≠ 0, and b= 0

Let us consider the Lie algebra element with b ¼ 0 and
a; c ≠ 0, which, according to the expression (31), implies
that there is no interaction between the subsystems, that is,
ŝ is of the form

ŝ ¼ −
i
2ℏ

½a11q̂21 þ a12ðq̂1p̂1 þ p̂1q̂1Þ þ a22p̂2
1

þ c11q̂22 þ c12ðq̂2p̂2 þ p̂2q̂2Þ þ c22p̂2
2�: ð36Þ

In this case, d ¼ 0 and λþ ¼ − det a and λ− ¼ − det c.
After inserting b ¼ 0 and the expressions for λ� in (B4)–
(B9), we obtain the following symplectic matrix:

M1 ¼

0B@ coshð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p �
þ sinhð ffiffiffiffiffiffiffiffiffiffi− det a

p Þffiffiffiffiffiffiffiffiffiffi
− det a

p Ja 0

0 coshð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þ þ sinhð ffiffiffiffiffiffiffiffiffiffi− det c
p Þffiffiffiffiffiffiffiffiffiffi
− det c

p Jc

1CA: ð37Þ

As can be seen, both block matrices in (37) are elements of
Spð2;RÞ; hence, the Lie algebra elements given by the
parameters a and c can be considered as the Lie algebra
generators of Spð2;RÞ ⊗ Spð2;RÞ ⊂ Spð4;RÞ. Moreover,
the matrix M1 is diagonal if and only if a and c are
antidiagonal matrices, i.e., only when there are no squared
terms in (30).
An important symplectic matrix of this type is

�
J 0

0 J

�
; ð38Þ

which is often used to derive the transpose matrix as in (19).
One can check that this matrix can be obtained from (37)
when a ¼ c ¼ diagðπ

2
; π
2
Þ, i.e.,�

J 0

0 J

�
¼ exp

�
π

2

�
J 0

0 J

��
: ð39Þ

2. Case a= c= 0 and b ≠ 0

In this case, the operator ŝ is of the form

ŝ ¼ −
i
ℏ
½b11q̂1q̂2 þ b12q̂1p̂2 þ b21p̂1q̂2 þ b22p̂1p̂2�; ð40Þ
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and this system corresponds, as we will see in the next
section, to the general case of the squeeze operator for a
bipartite system [4].
Note that in this case, not only the matrices a ¼ c are

null, but also the matrix d, which implies that
λþ ¼ λ− ¼ − detb. Once we replace these expressions in
(B4)–(B9), the symplectic matrix takes the form

M2 ¼

0B@ cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detb

p
sinh

ffiffiffiffiffiffiffiffiffiffi
− detb

pffiffiffiffiffiffiffiffiffiffi
− detb

p Jb

sinh
ffiffiffiffiffiffiffiffiffiffi
− detb

pffiffiffiffiffiffiffiffiffiffi
− detb

p JbT cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detb

p

1CA; ð41Þ

where the block matrices A and D are diagonal matrices.
Clearly, when detb < 0 the coefficients of M2 will be
given by hyperbolic functions. In the case detb > 0 the
coefficients are described by trigonometric functions
instead.
After giving some examples of symplectic matrices

obtained through the exponential map, we are ready to
show some of their quantum mechanics applications, both
in the standard representation and the so-called polymer or
loop representation.

IV. QUANTUM REPRESENTATION AND ITS
APPLICATIONS

The unitary representation of the group Spð2n;RÞ was
given by Moshinsky and Quesne in [43]. A review and a
historical analysis can be found in [44,45]. However, to be
self-contained, we will show the main aspects of this
group’s quantum representation in standard quantum
mechanics in the next subsection.

A. Schrödinger representation of Spð2n;RÞ
The symplectic group is a noncompact group which

implies an infinite-dimensional Hilbert space for its unitary
representation. Consider the Hilbert spaceH ¼ L2ðRn; dx⃗Þ
where dx⃗ is the standard Lebesgue measure. The unitary
representation of Spð2n;RÞ is the map

Ĉ∶Spð2n;RÞ → UðHÞ; M̃ ↦ ĈM̃; ð42Þ

where ĈeM is a unitary operator over H, i.e., formally

Ĉ†eM ¼ Ĉ−1eM . Note that the group action considered in this

map is eM instead ofM, i.e., we used the “coordinatization”
given by X⃗ introduced in Sec. I. Hence, in order to obtain a
quantum (unitary) representation of a given symplectic
matrix M we first have to transform it into the other group
action eM using Eq. (9) with the corresponding matrix ΓðnÞ
given by (10) or Γð2Þ for Spð4;RÞ given in (11).

The map Ĉ is given by the integral operator

ĈM̃Ψðx⃗Þ ¼
Z

dx⃗0CM̃ðx⃗; x⃗0ÞΨðx⃗0Þ; Ψðx⃗Þ ∈ H; ð43Þ

and the kernel CM̃ðx⃗; x⃗0Þ of this integral is

CM̃ðx⃗; x⃗0Þ ¼ e
i
2ℏ½x⃗TD̃B̃−1x⃗−2x⃗0T B̃−1x⃗þx⃗0T B̃−1Ãx⃗0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πiℏÞn det B̃
q : ð44Þ

According to [43], this representation results from
imposing two conditions on the operators ĈeM. The first
one is given by

ĈeM
 

⃗q̂T

⃗p̂T

!
Ĉ−1eM ¼ eM−1

 
⃗q̂T

⃗p̂T

!
; ð45Þ

and relates the symplectic group elements eM with
the operators ĈeM. Here, ⃗q̂ ≔ ðq̂1; q̂2;…; q̂nÞ and ⃗p̂ ≔
ðp̂1; p̂2;…; p̂nÞ are the coordinate and momenta operators
associated to the Heisenberg Lie algebra of the system. The
second condition is that

ĈeM · ðĈeMÞ† ¼ 1̂; ð46Þ

where 1̂ is the identity operator and this results in the
unitarity of ĈeM.

The factor detB in (44) gives rise to a well-defined
operator even in the case where the matrixB is singular (for
more details see [43,44]). Finally, it is worth mentioning
that this representation (43) is valid for the entire sym-
plectic group and not just for those elements close to the
group identity.
Since the fundamental operators are unbounded, the

condition (45) only holds in a subspace given by the
domain of the operators q̂j and p̂j in H. To obtain a
condition valid in the full Hilbert space, we are forced to
introduce the exponentiated version of q̂j and p̂j, that is to
say, the Weyl algebra. Briefly, the Weyl algebra is a C�-
unital algebra whose generators, denoted by Ŵða⃗; b⃗Þ, are
related with q̂j and p̂j with the following relation:

Ŵða⃗; b⃗Þ ≔ e
i
ℏða⃗ ⃗q̂Tþb⃗ ⃗p̂T Þ; ð47Þ

such that the real arrays a⃗ ¼ ða1; a2;…; anÞ and
b⃗ ¼ ðb1; b2;…; bnÞ, which have dimensions ½aj� ¼
momentum and ½bj� ¼ position, label the Weyl algebra
generators.
The standard Schrödinger representation of q̂j and p̂j is

now used to obtain a representation for the generatorsbWða⃗; b⃗Þ in H given by
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bWða⃗; b⃗ÞΨðx⃗Þ ¼ e
i
2ℏa⃗b⃗

T
e

i
ℏa⃗x⃗

TΨðx⃗þ b⃗Þ; ð48Þ

such that the canonical commutation relations give rise to
the Weyl algebra mutiplication

bWða⃗1; b⃗1Þ bWða⃗2; b⃗2Þ ¼ e−
i
2ℏða⃗1b⃗T2−b⃗1a⃗T2 Þ bWða⃗1 þ a⃗2; b⃗1 þ b⃗2Þ:

ð49Þ

Combining (45) and (47) to obtain the exponentiated
version of (45) yields

bCeM bWða⃗; b⃗ÞðbCeMÞ−1¼ bWða⃗eDT − b⃗eCT;−a⃗eBTþ b⃗eATÞ; ð50Þ

where eA, eB, eC, and eD are the block matrices in eM. This
relation allows us to obtain a representation of the sym-
plectic group in the Hilbert space used in polymer quantum
mechanics and in loop quantum cosmology [38].
We are now ready to show, in the next subsections, some

of the applications of the representation of Spð4;RÞ given
by (43) and (44).

B. Schrödinger representation of the
squeeze operator for a bipartite system

The squeeze operator bSðζÞ for a bipartite system is given
by the exponential map

bSðζÞ ¼ ebsζ ; ð51Þ

where the operator bsζ is given by

bsζ ≔ 1

2
ðζ�ba1ba2 − ζba†1ba†2Þ: ð52Þ

Here, ba1 and ba2 are the annihilation operators for each of
the subsystems (say, 1 and 2) of the bipartite system, ba†1 andba†2 are their adjoint operators, respectively, and ζ is a
complex number labeling the amount of squeezing. The
operator bSðζÞ, when acting on the vacuum state of the
bipartite quantum harmonic oscillators, gives a family of
squeezed states labeled by ζ.
The operators in (52) are in the Fock representation;

hence, let us transform (52) to the Schrödinger

representation described with operators bq1, bq2, bp1, andbp2. The relation between these representations is given by

baj¼ 1ffiffiffi
2

p bqj
lj
þ iffiffiffi

2
p ljbpj

ℏ
; ba†j ¼ 1ffiffiffi

2
p bqj

lj
−

iffiffiffi
2

p ljbpj

ℏ
; ð53Þ

for j ¼ 1, 2 and lj ≔
ffiffiffiffiffiffiffiffi
ℏ

mjωj

q
, where mj and ωj stand for the

masses and the frequencies of the oscillators. Inserting
these expressions for baj and ba†j in (52), the operator ŝζ takes
the following form:

bsζ¼ 1

2iℏ

�
ℏζy
l1l2
bq1bq2− l2ζx

l1
bq1bp2−

l1ζx
l2
bp1bq2− l1l2ζy

ℏ
bp1bp2

�
;

ð54Þ

where ζx and ζy are the real and imaginary parts of ζ.
We now rewrite this operator in the form

bsζ ¼ −
i
4ℏ

ðb⃗RT
1 ; b⃗RT

2 Þ
�

0 b

bT 0

� b⃗R1b⃗R2

!
; ð55Þ

where the matrix b is the following:

b ¼

0B@ ℏζy
l1l2

− l2ζx
l1

− l1ζx
l2

− l1l2ζy
ℏ

1CA: ð56Þ

Using the isomorphism ι−1 defined in (34) we obtain that
the corresponding Lie algebra element mζ ¼ ι−1ðbsζÞ is
given by

mζ ¼
�
J 0

0 J

��
0 b

bT 0

�
: ð57Þ

Note that the Lie algebra matrix mζ isomorphic to the
squeeze operator bsζ, is of the type given in the second case
(Sec. III B 2).
To obtain the symplectic matrix associated with this Lie

algebra element,we insertmζ and its expressions fora,b, and
c in (41). This results in the following symplectic matrix:

Msðr;ϕÞ ¼

0BBBBBBBB@

coshðrÞ 0 − sinhðrÞ cosðϕÞ l1l2 − sinhðrÞ sinðϕÞ l1l2ℏ
0 coshðrÞ − sinhðrÞ sinðϕÞ ℏ

l1l2
sinhðrÞ cosðϕÞ l2l1

− sinhðrÞ cosðϕÞ l2l1 − sinhðrÞ sinðϕÞ l1l2ℏ coshðrÞ 0

− sinhðrÞ sinðϕÞ ℏ
l1l2

sinhðrÞ cosðϕÞ l1l2 0 coshðrÞ

1CCCCCCCCA
; ð58Þ
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where r and ϕ are defined as ζ ¼ reiϕ. Matrix Msðr;ϕÞ can be considered as the classical symplectic transformation such
that when represented in L2ðR2; d2x⃗Þ, it gives rise to the quantum operator bSðζÞ. Naturally, this also means that the unitary

representation of bSðζÞ in the Schrödinger representation is given by bCMs
, i.e., bCMs

¼ ebsζ .
Finally, observe that Ms is given in the Y⃗ “coordinatization,” which is not suitable for its quantum representation. To

make it suitable, let us provide the expression for the matrix eMs, which is given by

eMs ¼

0BBBBBBBB@

coshðrÞ − l1 sinhðrÞ cosð2ϕÞ
l2

0 − l1l2 sinhðrÞ sinð2ϕÞ
ℏ

− l2 sinhðrÞ cosð2ϕÞ
l1

coshðrÞ − l1l2 sinhðrÞ sinð2ϕÞ
ℏ 0

0 − ℏ sinhðrÞ sinð2ϕÞ
l1l2

coshðrÞ l2 sinhðrÞ cosð2ϕÞ
l1

− ℏ sinhðrÞ sinð2ϕÞ
l1l2

0
l1 sinhðrÞ cosð2ϕÞ

l2
coshðrÞ

1CCCCCCCCA
: ð59Þ

This expression will be used to explore the analog of the
bipartite squeeze operator in polymer quantum mechanics
in Sec. V.
It is worth mentioning that both expressions (58) and

(59) only depend on the proper lengths l1 and l2. Although
these lengths are ℏ-dependent, the ratios l1=l2 and l1l2=ℏ
are independent of ℏ, so we can say that the matrix
Msðr;ϕÞ is entirely a classic object. Also, matrix Ms
produces classical squeezing but of course, adapted to the
classical phase space, which in this case is ðR4; f; gÞ. To
illustrate the squeezing and the rotation properties
of the matrix Ms as a canonical transformation for
different values of r and ϕ we consider its action
on a circular trajectory ðq1ðtÞ; p1ðtÞ; q2ðtÞ; p2ðtÞÞ where,
qjðtÞ ¼ cosðtÞqj þ sinðtÞpj and pjðtÞ ¼ − sinðtÞqjþ
cosðtÞpj, for j ¼ 1; 2.
The action of Ms on the trajectories is explicitly of the

form

0BBBBB@
q01ðtÞ
p0
1ðtÞ

q02ðtÞ
p0
2ðtÞ

1CCCCCA ¼ Msðr;ϕÞ

0BBBBB@
q1ðtÞ
p1ðtÞ
q2ðtÞ
p2ðtÞ

1CCCCCA: ð60Þ

In Fig. 1 we showed the plot of ðq01ðtÞ; p0
1ðtÞÞ. As

expected, we note in Fig. 1(a), that the amount of squeezing
r squeezes the circular trajectory. Recall that symplectic
transformations also preserve the area, hence the trajecto-
ries are squeezed but the area is preserved. On the other
hand, the rotation angle ϕ, as showed in Fig. 1(b), rotates
the trajectories and also preserves the area.

C. Covariance matrix for squeezed states

Now we will show the relation between the covariance
matrix, denoted by Vð2Þ, and the symplectic matrix eM.

–1.5 –1.0 –0.5 0.5 1.0 1.5
q1

–2

–1

1

2

p1

(a)

–2 –1 1 2
q1

–2

–1

1

2

p1

(b)

FIG. 1. In both figures, the solid, the dashed and the dotted lines correspond to: (a) r ¼ 0, r ¼ 0.3, and r ¼ 0.6, respectively, and (b) to
ϕ ¼ 0, ϕ ¼ π=4, and ϕ ¼ π=2, respectively.
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Let us consider the state jΨeMi ∈ L2ðRn; dx⃗Þ related with

the symplectic matrix eM as

jΨeMi ¼ bCeMj0i; ð61Þ

where j0i ¼ R dx⃗Ψ0ðx⃗Þjx⃗i is the state j0i ¼ j0i1 ⊗
j0i2…j0in, and the ket j0ij is the vacuum state of the
j-th quantum harmonic oscillator. Note that this construc-
tion can be extended to other states in L2ðRn; dx⃗Þ and not
only for j0i. However, for simplicity in our exposition, let
us consider the simplest example of the covariance matrix
for bCeMj0i.
To obtain the covariance matrix we first calculate the

following amplitude:

hΨeMj bWða⃗; b⃗ÞjΨeMi ¼ h0jbC†eM bWða⃗; b⃗ÞbCeMj0i; ð62Þ

where bWða⃗; b⃗Þ is the Weyl algebra generator introduced in
(47). Combining (43), (48), and the Gaussian form of the
vacuum state of the system given by n decoupled harmonic
oscillators, we obtain the following expression for the
amplitude in (62):

hΨeMj bWða⃗; b⃗ÞjΨeMi ¼ exp

�
−
1

4

�
a⃗ b⃗

�
T
Λ
�
a⃗

b⃗

�	
; ð63Þ

where the matrix Λ is given by

Λ ≔ eM 1
ℏ2 L

2 0

0 L−2

! eMT; ð64Þ

andL ¼ diagðl1; l2;…; lnÞ, where lj was defined earlier (53).
The covariance matrix Vð2Þ has components given by

Vð2Þ ¼

0B@ hΨeMjbxjbxkjΨeMi 1
2
hΨeMjfbxj; bpkgjΨeMi

1
2
hΨeMjfbpj;bxkgjΨeMi hΨeMjbpjbpkjΨeMi

1CA;

ð65Þ

and these components can be obtained from (63) using the
following relations:

hΨeMjbxjbxkjΨeMi¼−ℏ2∂2
ajakhΨeMj bWða⃗; b⃗ÞjΨeMija⃗;b⃗¼0

; ð66Þ

1

2
hΨeMjfbxj; bpkgjΨeMi ¼ −ℏ2∂2

ajbk
hΨeMj bWða⃗; b⃗ÞjΨeMija⃗;b⃗¼0

;

ð67Þ

1

2
hΨeMjfbpj;bxkgjΨeMi ¼ −ℏ2∂2

bjak
hΨeMj bWða⃗; b⃗ÞjΨeMija⃗;b⃗¼0

;

ð68Þ

hΨeMjbpjbpkjΨeMi¼−ℏ2∂2
bjbk

hΨeMj bWða⃗; b⃗ÞjΨeMija⃗;b⃗¼0
: ð69Þ

Remarkably, the resulting expression for Vð2Þ in terms of
the symplectic matrix eM is

Vð2Þ ¼ 1

2
eM�L2 0

0 ℏ2L−2

� eMT; ð70Þ

and this shows the direct relation between the covariance
matrix Vð2Þ for the state jΨeMi and the symplectic matrix eM
associated with the unitary operator bCeM. Moreover, if we

now consider the definition (8), it can be shown that 2
ℏV

ð2Þ

is actually a symplectic matrix. Let us apply this formula to
some of the systems considered before.
Consider the matrix M1 given in (37). Using (9) we

obtain the expression for eM1 which is then replaced in (70),
giving rise to the following covariance matrix:

Vð2Þ
1 ¼ 1

2

0BBBBB@
Vð2Þ
11 0 Vð2Þ

13 0

0 Vð2Þ
22 0 Vð2Þ

24

Vð2Þ
13 0 Vð2Þ

33 0

0 Vð2Þ
24 0 Vð2Þ

44

1CCCCCA: ð71Þ

Its components are given in Appendix C, and in the
particular case where a11 ¼ a22 ¼ c11 ¼ c22 ¼ 0 the

covariance matrix Vð2Þ
1 reduces to

Vð2Þ
1 ¼ 1

2

0BBBBBB@
l21e

2a12 0 0 0

0 l22e
2c12 0 0

0 0 ℏ2

l2
1

e−2a12 0

0 0 0 ℏ2

l2
2

e−2c12

1CCCCCCA: ð72Þ

We use this result to derive the uncertainties in the
coordinates Δxj for j ¼ 1; 2, which according to (72) are
given by

Δxj ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨeM1

jbx2j jΨeM1

i − hΨeM1

jbxjjΨeM1

i2
q

¼ ljeαjffiffiffi
2

p ; ð73Þ

where due to the symmetry of the vacuum wave function
we have hΨeM1

jbxjjΨeM1

i ¼ 0. This can be verified by

calculating the first derivatives in (63). Here, for simplicity,
we make α1 ¼ a12 and α2 ¼ c12. Note the remarkable
property of the squeezed states such as in (61), which is that
Δxj can be smaller than the proper length of the vacuum
state lj when αj < 0.
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Similarly, the uncertainties in the momenta Δpj are

Δpj ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨeM1

jbp2
j jΨeM1

i − hΨeM1

jbpjjΨeM1

i2
q

¼ ℏffiffiffi
2

p
ljeαj

;

ð74Þ

which can also be smaller than ℏ
lj
when αj > 0, and also

hΨeM1

jbpjjΨeM1

i ¼ 0 as the previous case. Nevertheless, both

uncertainties satisfy Heisenberg’s uncertainty principle [2–4]:

ΔxjΔpj ¼
�
ljeαjffiffiffi

2
p

��
ℏffiffiffi
2

p
ljeαj

�
¼ ℏ=2: ð75Þ

Another interesting covariance matrix is the one related
to the bipartite squeeze operator (59) derived in the
previous subsection. Inserting (59) in (70) yields

Vð2Þðr;ϕÞ ¼

0BBBBBBBB@

l2
1
coshð2rÞ

2
− l1l2 sinhð2rÞ cosð2ϕÞ

2
0 − l1ℏ sinhð2rÞ sinð2ϕÞ

2l2

− l1l2 sinhð2rÞ cosð2ϕÞ
2

l2
2
coshð2rÞ

2
− l2ℏ sinhð2rÞ sinð2ϕÞ

2l1
0

0 − l2ℏ sinhð2rÞ sinð2ϕÞ
2l1

ℏ2 coshð2rÞ
2l2

1

ℏ2 sinhð2rÞ cosð2ϕÞ
2l1l2

− l1ℏ sinhð2rÞ sinð2ϕÞ
2l2

0
ℏ2 sinhð2rÞ cosð2ϕÞ

2l1l2
ℏ2 coshð2rÞ

2l2
2

1CCCCCCCCA
; ð76Þ

and this allows us to determine the correlation between the
second moments of subsystem 1 and subsystem 2

hΨeMs
jðbx1 � bx2Þ2jΨeMs

i ¼ e2r

4
½l21 þ l22 ∓ 2l1l2 cosð2ϕÞ�

þ e−2r

4
½l21 þ l22 � 2l1l2 cosð2ϕÞ�;

ð77Þ

hΨeMs
jðbp1�bp2Þ2jΨeMs

i¼ℏ2e2r

4l21l
2
2

½l21þ l22�2l1l2cosð2ϕÞ�

þℏ2e−2r

4l21l
2
2

½l21þ l22∓2l1l2cosð2ϕÞ�:

ð78Þ

In the particular case where l1 ¼ l2 ¼ l and ϕ ¼ π
2
, the

uncertainties ðΔx1ÞΨ̃ and ðΔx2ÞΨ̃ for the state Ψ̃ are
correlated as follows:

ðΔx1Þ2Ψ̃ þ ðΔx2Þ2Ψ̃ ¼ l2 coshð2rÞ: ð79Þ

These are the main results, at the standard quantum
mechanics level, which we want to show regarding the
representation of the symplectic group in quantum mechan-
ics. There are others applications like the analysis of the
Bohmian trajectories for bipartite squeezed states, the
analysis of the fidelity for bipartite or tripartite squeezed
states, and others which are currently in preparation. For
now, let us move to the analysis of the squeezed states in
polymer quantum mechanics given in the next section.

V. SQUEEZED STATES IN POLYMER QUANTUM
MECHANICS

Polymer quantum mechanics [33,34,36,37] is a quanti-
zation scheme which is nonunitarily equivalent to the
standard quantum mechanics. At the kinematical level,
i.e., when no dynamics are involved, both LQC and PQM
share the same Hilbert space. Hence, exploring the nature
and properties of squeezed states in polymer quantum
mechanics will help study those scenarios in loop quantum
cosmology where such states might play a significant role.
For this example, we will consider a system with two

degrees of freedom and both will be polymer quantized.
Therefore, the Hilbert space of the entire system is given by

Hpoly ¼ Hð1Þ
poly ×Hð2Þ

poly; ð80Þ

where the Hilbert spacesHðjÞ
poly with j ¼ 1; 2 are of the form

HðjÞ
poly ¼ L2ðR̄; dpðjÞ

BohrÞ; ð81Þ

where R̄ is the Bohr compactification of the real line and

dpðjÞ
Bohr is the Bohr measure (see [36] for more details). This

Hilbert space resembles the momentum representation used
in the standard quantum mechanics.
An arbitrary state in this Hilbert space Hpoly is given by

Ψðp1; p2Þ ¼
X
fx⃗jg

Ψx⃗je
i
ℏx⃗

T
j p⃗; ð82Þ

where fx⃗jg is a shorthand notation for the graph

fðxð1Þj ; xð2Þj Þgj¼n
j¼1 associated with the state Ψðp⃗Þ. In this

notation, the array p⃗ ¼ ðp1; p2Þ denotes the momentum
variables for system 1 and 2, respectively. The coefficients
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Ψx⃗j provide the value for the norm of the state, which is
given by

jjΨðp⃗Þjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
fx⃗jg

jΨx⃗j j2
s

; ð83Þ

hence these coefficients are different from zero and the sum
converges (they are non-null over a countable number of
points in the graph fx⃗jg). This norm arises from the inner
product

hΨjΦi ¼ lim
L1;L2→∞

1

4L1L2

Z
L1

−L1

Z
L2

−L2

Ψ�ðp⃗ÞΦðp⃗Þdp1dp2;

ð84Þ
which for the specific case of the plane waves takes the
form of the Kronecker delta

hei
ℏx⃗

T p⃗jei
ℏx⃗

0T p⃗i ¼ δx⃗;x⃗0 : ð85Þ
This inner product is the main signature of the polymer

quantization as it violates the Stone-von Neumann theorem.
Consequently, polymer quantum mechanics is not unitarily

equivalent to the standard Schrödinger representation.
Moreover, in polymer quantum mechanics there is no
momentum operator, hence infinitesimal spatial transla-
tions cannot be implemented. Nevertheless, we can obtain a
representation for the position operator, which in the
present case is given by

bq1Ψðp1;p2Þ¼ iℏ
∂

∂p1

Ψðp1;p2Þ¼−
X
fx⃗jg

Ψx⃗jx
ð1Þ
j e

i
ℏx⃗

T
j p⃗; ð86Þ

bq2Ψðp1;p2Þ¼ iℏ
∂

∂p2

Ψðp1;p2Þ¼−
X
fx⃗jg

Ψx⃗jx
ð2Þ
j e

i
ℏx⃗

T
j p⃗: ð87Þ

Despite these peculiarities with the nonregularity of the
polymer representation, the representation of the symplec-
tic group Spð2n;RÞ on the Hilbert space of polymer
quantum mechanics was provided recently by one of the
authors in Ref. [38]. There, the representation is given by

the map bCðpolyÞ∶Spð2n;RÞ → LðHpolyÞ; eM ↦ bCðpolyÞeM ,

where the linear operator bCðpolyÞeM acts on Hpoly as

bCðpolyÞeM Ψðp⃗Þ ¼ lim
L1;L2→∞

1

4L1L2

Z
L1

−L1

Z
L2

−L2

CðpolyÞeM ðp⃗; p⃗0ÞΨðp⃗0Þdp⃗0: ð88Þ

The polymer kernel CðpolyÞeM ðp⃗; p⃗0Þ is given by

CðpolyÞeM ðp⃗; p⃗0Þ ¼ detðeDeATÞ−1
4e−

i
2ℏp⃗

TeBeD−1
p⃗
X
x⃗

e
i
ℏp⃗

T x⃗− i
ℏp⃗

0TeDT
x⃗þ i

2ℏx⃗
TeDeCT

x⃗; ð89Þ

and note that when the factor detðeDeATÞ−1
4 ≠ 1 it implies

that this representation is not unitary [38].
Recall that one of the main features of loop quantum

cosmology is its intrinsic length scale given by the Planck
length. Polymer quantum mechanics does not have an
intrinsic length scale. However, it admits a length scale that
mimics some of the features of loop quantum cosmology.
This length scale is introduced at hand and is called
polymer scale, usually denoted by μ. This polymer scale
constitutes the analog of minimum length for polymer
quantum mechanics models, and therefore, it can be
considered as a lower bound for the uncertainties. In the
present analysis, each system admits a polymer scale μ1 and
μ2 when the dynamics is considered.
Let us now consider the following questions. (1) Is it

possible to have polymer states such that their uncertainties
are lower than the polymer scale? Furthermore, (2) do the
correlations found in (77) have an analog in polymer
quantum mechanics?
To answer these questions let us consider the matrix eM1

with a11 ¼ a22 ¼ c11 ¼ c22 ¼ 0, used to calculate the

covariance matrix Vð2Þ
1 in (72), but now with a12 ¼ −r1

and c12 ¼ −r2. The explicit form is eM1:

eM1 ¼

0BBB@
e−r1 0 0 0

0 e−r2 0 0

0 0 er1 0

0 0 0 er2

1CCCA: ð90Þ

The action of the group element bCðpolyÞeM1

on an arbitrary

polymer state (82) gives the following state:

Ψ̃eM1

ðp1; p2Þ ¼ bCðpolyÞeM1

Ψðp1; p2Þ

¼
X
fx⃗jg

Ψx⃗je
i
ℏðe−r1p1x

ð1Þ
j þe−r2p2x

ð2Þ
j Þ: ð91Þ

Using the representation of the position operators bq1 andbq2 given in (86) and (87) we obtain the dispersion relations
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ðΔx1ÞΨ̃ ¼ e−r1ðΔx1ÞΨ; ðΔx2ÞΨ̃ ¼ e−r2ðΔx2ÞΨ; ð92Þ

which show that the squeezed polymer state is indeed
squeezed by a factor e−r1 or e−r2. Consequently, if the initial
dispersion of the polymer state is given by ðΔx1ÞΨ or

ðΔx2ÞΨ, then the squeeze operator bCðpolyÞeM1

gives rise to a

polymer state Ψ̃ (91) whose dispersion is smaller than that
of the initial polymer state Ψ. Moreover, due to the fact that
there is no upper bound for the parameter r, these
dispersion relations can be smaller than the corresponding
polymer scales μ1 and μ2. This result is consistent with the
fact that the position operator has well-defined eigenstates,
given by the Kronecker deltas δxj;x, in Hpoly [46].
Let us now consider the analog of the correlations (79)

but for polymer states. To do so, consider the polymer
representation bCðpolyÞeMs

of the symplectic matrix (59) corre-

sponding to a bipartite system. The action of bCðpolyÞeMs

on an

arbitrary polymer state (82) is given by

eΨs ¼ bCðpolyÞeMs

Ψðp1; p2Þ

¼
X
fx⃗jg

Ψx⃗je
i
ℏ½ðcoshðrÞxð1Þj þsinhðrÞxð2Þj Þp1þðcoshðrÞxð2Þj þsinhðrÞxð1Þj Þp2�;

ð93Þ

where again the representation in (88) was used.
We combine this result with the representation of the

position operators in (86) and (87) and obtain the following
relations:

ðΔx1Þ2eΨs

− ðΔx2Þ2eΨs

¼ ðΔx1Þ2Ψ − ðΔx2Þ2Ψ; ∀ Ψ ∈ Hpoly;

ð94Þ

where the conditions l1 ¼ l2 and ϕ ¼ f0; π
2
; πg were

imposed. Remarkably, this result not only is independent
of the parameter r (which labels the amount of squeezing)
but also applies to any polymer state Ψ ∈ Hpoly. As can be
seen, the difference of dispersions squared is conserved,
regardless of the amount of squeezing. Also, note that l1
and l2 are considered group parameters and have no
relation to the dynamics, i.e., we are considering general
states in Hpoly. The same applies for ϕ.
Let us now consider pure and symmetric polymeric

states. The pure states are those that can be written as the
following product:

ΨðpÞðp1; p2Þ ¼

0B@X
fxð1Þj g

Ψð1Þ
xð1Þj

e
i
ℏp1x

ð1Þ
j

1CA
0B@X

fxð2Þj g
Ψð2Þ

xð2Þj

e
i
ℏp2x

ð2Þ
j

1CA:

ð95Þ

Secondly, both lattices fxð1Þj g and fxð2Þj g are symmetric,

i.e., for every positive point 0 < xðsÞj ∈ fxðsÞj g there exists a

negative point 0 > xðsÞj0 ∈ fxðsÞj g, such that xðsÞj þ xðsÞj0 ¼ 0,
and the states are also symmetric which implies that

ΨðsÞ
xðsÞj

¼ ΨðsÞ
xðsÞ
j0
. These states are the analog of the states

described with even functions in the standard quantum
mechanics.
The dispersion relation for squeezed pure symmetric

polymer states is given by

ðΔx1Þ2eΨs

þ ðΔx2Þ2eΨs

¼ coshð2rÞððΔx1Þ2ΨðpÞ þ ðΔx2Þ2ΨðpÞ Þ;

ð96Þ

which takes the form

ðΔx1Þ2eΨs

þ ðΔx2Þ2eΨs

¼ l2 coshð2rÞ ð97Þ

when the dispersion of the pure states are
ððΔx1ÞΨðpÞ ¼ ðΔx2ÞΨðpÞ Þ ¼ l=

ffiffiffi
2

p
. Notably, Eq. (97) is the

same as that obtained in (79) for the Schrödinger repre-
sentation. This shows that the correlations present in the
standard quantum mechanics using the bCeM operator for

both symplectic matrices eM1 and eMs are the same as those
obtained in polymer quantum mechanics using the operatorbCðpolyÞeM . This is noteworthy since the Hilbert spaces of both

approaches, namely, H and Hpoly, are mathematically
different.

VI. CONCLUSIONS

In this paper we provided the direct relation between the
Lie algebra spð4;RÞ and the symplectic group Spð4;RÞ.
The expression shows the link between the block matrices
A, B, C, and D with those of the Lie algebra a, b, and c
given in Eqs. (26)–(29). This result has not been reported
before.
In Sec. IV we analyzed the classical description of

squeeze operators. We showed that the symplectic matrix
Ms is the classical analog of the squeeze operatorbSðζÞ ¼ ebsζ ¼ bCeMs

. Also, we remarked the isomorphism

between the Lie algebra spð4;RÞ and Pð2;RÞ.
Additionally, the general form of the covariance matrix
Vð2Þ for the squeezed vacuum state jΨeMiwas derived using
the Weyl algebra representation and the symplectic matrix
M1. The components of this covariance matrix were used to
calculate the dispersion relations (73) and (74) for the
particular case where a11 ¼ a22 ¼ c11 ¼ c22 ¼ 0. As is
already known, these dispersions can be smaller than the
vacuum characteristic length for the harmonic oscillators.
They also satisfy the Heisenberg uncertainty principle, as
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was shown in (75). We then calculated the covariance
matrix for the symplectic matrix Ms corresponding to the
classical analog of the bipartite squeeze operator. With this
matrix we determined the correlation (79). We also pro-
vided the general expressions for these correlations in
Eqs. (77) and (78).
Applying the previous results, it is also possible to

represent operators in nonregular Hilbert spaces that are
nonunitarily equivalent to the Fock-Schrödinger represen-
tation, so in Sec. V we analyzed polymer quantized
systems. We calculated the dispersion relation for an
arbitrary polymer state using the representation of the
symplectic group in polymer quantum mechanics. We
obtained that the polymer representation of the squeeze

operator given by bCðpolyÞeM1

yields a dispersion relation (92)

which can be smaller than those of the initial state. This

implies that bCðpolyÞeM1

is indeed a polymer squeeze operator,

and (91) describes a polymer squeezed state.
The polymer representation of the bipartite squeeze

operator given by bCðpolyÞeMs

was used to derive the polymer

correlations (94) and (97). The first correlation, (94), shows
that the difference of the dispersion square is preserved and
is independent of the initial polymer state. Clearly, this

result only holds for bCðpolyÞeMs

so a symplectic matrix different

to the one used in (90) will produce a different result. In the
case of (97), the result has the same form as the standard
correlation in Eq. (79); hence, the polymer representation

of bCðpolyÞeMs

can be used to construct correlated squeezed

states for bipartite polymer systems. Naturally, this brings
up some questions like whether there is any mechanism in
nature (say, loop quantum cosmology or the interior of a
black hole) from which a polymer squeezed state can be
created.
Moreover, establishing that squeezing is a property also

present in nonregular representations questions its role in
the classicality of some cosmological models. As we
showed, it is possible to construct entangled polymer states

using bCðpolyÞeMs

. Such polymer entangled state correlations

satisfy a relation identical to the one obtained in the
standard quantum mechanics. In this case, the states are
polymer bipartite squeezed states, similar to those used in
the quantum description of the inflaton field. Actually, this
is directly connected to our previous observation regarding
the emergence of relational time using a polymer quantized
clock. The presence of bipartite squeezing in PQM and
LQC allows us to study the interaction between the matter
and geometry using some of the tools currently used in
quantum optics, for example, the von Neumann entropy of
the reduced density matrix of the matter subsystem, or its
decoherence once the geometry is traced out, etc.

Finally, it is worth mentioning that the polymer squeezed
states obtained as a result of the representation of Spð4;RÞ
in Hpoly, given in (91) and (93), differ from those reported
in the LQC literature [20–25]. In these references, a
Gaussian form of the states is considered, whereas in
our case, the polymer state (91) is a general polymer state.
In LQC, the squeezed states are constructed by hand after
imposing some conditions to achieve the squeezed nature
of the dispersion relations. In our case, the squeezed state
results from the action of the squeeze operator.
These results serve as an avenue between the physics in

quantum optics and those in loop quantum cosmology.
Consequently, many exciting questions arise, e.g., what is
the information interchange between matter and gravity
degrees of freedom? and how does the dust-time notion
emerges from a polymer system? We believe this paper sets
the basis to explore these and others questions.
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APPENDIX A: CALCULATION OF m2n

In this Appendix the expression for the matrix m2n is
obtained. To do so, recall that the matrix m2 is formed by
four 2 × 2 block matrices where the upper left and the
lower right matrices are multiples of the identity matrix
12×2. The upper right block is the matrix Jd whereas the
lower left is −JdT . Notably, we found that this block
structure is preserved after exponentiating the matrixm2 an
integer number of times. That is to say, the n-power of
matrix m2 yields a new matrix ðm2Þn, given by

ðm2Þn ¼
�

αn12×2 βnJd

−βnJdT γn12×2

�
: ðA1Þ

It is this pattern that is to be considered when this procedure
is applied to higher-order symplectic groups.
The coefficients αn, βn, and γn are to be determined and

they depend on the values of the matrices a, b, c, and d. For
n ¼ 1, these coefficients are given by the factors in the
block matrices of m2 given in (24) and can be directly
defined as

α1≔−ðdetaþdetbÞ; β1≔þ1; γ1≔−ðdetcþdetbÞ:
ðA2Þ

To calculate αn, βn, and γn for arbitrary n, first note that
they can be generated with the ðn − 1Þ power of the matrix
T as
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0B@ αn

βn

γn

1CA ¼ Tn−1

0B@ α1

β1

γ1

1CA; ðA3Þ

where the matrix T is given by

T ¼

0B@α1 β1 detd 0

β1 γ1 0

0 β1 detd γ1

1CA: ðA4Þ

The calculation shows that Tn−1 is a matrix of the form

Tn−1 ¼
 

Un−1 0⃗
T

u⃗Tγn−21

P
n−2
j¼0 γ

−j
1 Uj γn−11

!
; ðA5Þ

where 0⃗ ¼ ð0; 0Þ and u⃗ ¼ ð0; β1 detdÞ and matrix U is
given by

U ¼
�
α1 β1 detd

β1 γ1

�
: ðA6Þ

Then, using (A3), we have the following relation for the
coefficients:�
αn

βn

�
¼Un−1

�
α1

β1

�
; γn¼ γn1þ u⃗Tγn−21

Xn−2
j¼0

γ−j1 Uj

�
α1

β1

�
:

ðA7Þ
In order to calculate Un−1 we need to diagonalize the

matrix U. Let P be the matrix diagonalizing U, then

U ¼ PD0P−1; ðA8Þ

where the matrix P is

P ¼
 ðλþ−γ1Þ

β1
k1

ðλ−−γ1Þ
β1

k2

k1 k2

!
: ðA9Þ

The real arbitrary parameters k1 and k2 result from the
diagonalization procedure. Its values will be automatically
canceled as part of the calculation of Un−1 further below.
The eigenvalues of U, denoted by λ�, have the following
expression:

λ� ¼ α1 þ γ1
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα1 − γ1Þ2 þ 4β21 detd

q
;

¼ −
det aþ det cþ 2 detb

2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

q
; ðA10Þ

and the diagonal matrix D0 is

D0 ¼
�
λþ 0

0 λ−

�
: ðA11Þ

We now take the n − 1 power of U given in (A8) to
obtain the following result:

Un−1 ¼
 ðλþ−γ1Þ

β1
k1

ðλ−−γ1Þ
β1

k2

k1 k2

! 
λn−1þ 0

0 λn−1−

! ðλþ−γ1Þ
β1

k1
ðλ−−γ1Þ

β1
k2

k1 k2

!−1

; ðA12Þ

which, when combined with the result in (A7) together with
the expression for u⃗, gives

αn¼
ðλþ−detb−detcÞλnþ−ðλ−−detb−detcÞλn−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdeta−detcÞ2þ4β21detd
p ; ðA13Þ

βn ¼
λnþ − λn−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdet a − det cÞ2 þ 4β21 detd
p ; ðA14Þ

γn¼
½ðλþ−detb−detcÞλn−−ðλ−−detb−detcÞλnþ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdeta−detcÞ2þ4β21detd
p : ðA15Þ

These are the final expressions for the coefficients
in ðm2Þn.

APPENDIX B: SERIES ANALYSIS

In this Appendix we calculate the series expansion
terms. To do so, note that once the expression for ðm2Þn
is inserted and the expansion (23) and the even and
odd terms are collected, the matrix Mða;b; cÞ takes the
form

Mða;b; cÞ ¼
�

αðeÞ12×2 βðeÞJd

−βðeÞJdT γðeÞ12×2

�
þm

�
αðoÞ12×2 βðoÞJd

−βðoÞJdT γðoÞ12×2

�
; ðB1Þ

where the following coefficients are given by
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αðeÞ ≔ 1þ
Xþ∞

n¼1

1

ð2nÞ! αn; βðeÞ ≔
Xþ∞

n¼1

1

ð2nÞ! βn; γðeÞ ≔ 1þ
Xþ∞

n¼1

1

ð2nÞ! γn; ðB2Þ

αðoÞ ≔ 1þ
Xþ∞

n¼1

1

ð2nþ 1Þ! αn; βðoÞ ≔
Xþ∞

n¼1

1

ð2nþ 1Þ! βn; γðoÞ ≔ 1þ
Xþ∞

n¼1

1

ð2nþ 1Þ! γn: ðB3Þ

We now insert (A13), (A14), and (A15) in the relations (B2)–(B3) to obtain

αðeÞ ¼ 1

2
½coshð ffiffiffiffiffi

λþ
p Þ þ coshð

ffiffiffiffiffi
λ−

p
Þ� þ ðdet c − det aÞ½coshð ffiffiffiffiffi

λþ
p Þ − coshð ffiffiffiffiffi

λ−
p Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p ; ðB4Þ

αðoÞ ¼ 1

2

�
sinhð ffiffiffiffiffi

λþ
p Þffiffiffiffiffi
λþ

p þ sinhð ffiffiffiffiffi
λ−

p Þffiffiffiffiffi
λ−

p
�
þ ðdet c − det aÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p �
sinhð ffiffiffiffiffi

λþ
p Þffiffiffiffiffi
λþ

p −
sinhð ffiffiffiffiffi

λ−
p Þffiffiffiffiffi
λ−

p
�
; ðB5Þ

βðeÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p ½coshð ffiffiffiffiffi
λþ

p Þ − coshð
ffiffiffiffiffi
λ−

p
Þ�; ðB6Þ

βðoÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p �
sinhð ffiffiffiffiffi

λþ
p Þffiffiffiffiffi
λþ

p −
sinhð ffiffiffiffiffi

λ−
p Þffiffiffiffiffi
λ−

p
�
; ðB7Þ

γðeÞ ¼ 1

2
½coshð ffiffiffiffiffi

λþ
p Þ þ coshð

ffiffiffiffiffi
λ−

p
Þ� − ðdet c − det aÞ½coshð ffiffiffiffiffi

λþ
p Þ − coshð ffiffiffiffiffi

λ−
p Þ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p ; ðB8Þ

γðoÞ ¼ 1

2

�
sinhð ffiffiffiffiffi

λþ
p Þffiffiffiffiffi
λþ

p þ sinhð ffiffiffiffiffi
λ−

p Þffiffiffiffiffi
λ−

p
�
−

ðdet c − det aÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdet a − det cÞ2 þ 4 detd

p �
sinhð ffiffiffiffiffi

λþ
p Þffiffiffiffiffi
λþ

p −
sinhð ffiffiffiffiffi

λ−
p Þffiffiffiffiffi
λ−

p
�
; ðB9Þ

where we have to recall the expression for the eigenvalues λ� in (A10).

APPENDIX C: COVARIANCE MATRIX COEFFICIENTS

In this Appendix we show the explicit form of the coefficients of the covariance matrix Vð2Þ.

Vð2Þ
11 ¼ −

sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p Þða212l41 þ a222ℏ
2Þ

l21 det a
þ a12l21 sinhð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p þ l21 cosh
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p
Þ ðC1Þ

Vð2Þ
22 ¼ −

sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þðc212l42 þ c222ℏ
2Þ

l22 det c
þ c12l22 sinhð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p þ l22 cosh
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p
Þ ðC2Þ

Vð2Þ
13 ¼ sinhð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det a
p Þða22ℏ2 − a11l41Þ

2l21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p þ a12 sinh2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p Þða11l41 þ a22ℏ2Þ
l21 det a

ðC3Þ

Vð2Þ
24 ¼ sinhð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det c
p Þðc22ℏ2 − c11l42Þ

2l22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p þ c12 sinh2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þðc11l42 þ c22ℏ2Þ
l22 det c

ðC4Þ

Vð2Þ
33 ¼ −

sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p Þða211l41 þ a212ℏ
2Þ

l21 det a
þ a12ℏ2 sinhð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det a
p Þ

l21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p þ ℏ2 cosh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det a

p Þ
l21

ðC5Þ

Vð2Þ
44 ¼ −

sinh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þðc211l42 þ c212ℏ
2Þ

l22 det c
þ c12ℏ2 sinhð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

− det c
p Þ

l22
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p þ ℏ2 cosh2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det c

p Þ
l22

ðC6Þ
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