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In this work, we have analytically devised novel vortex solutions in a rotating holographic superfluid. To
achieve this result, we have considered a static disk at the anti–de Sitter (AdS) boundary and let the
superfluid rotate relative to it. This idea has been numerically exploited in Chuan-Yin Xia et al., [Phys. Rev.
D 100, 061901(R) (2019)], where the formation of vortices in such a setting was reported. We have found
that these vortex solutions are eigenfunctions of angular momentum. We have also shown that vortices with
higher winding numbers are associated with higher quantized rotation of the superfluid. We have, then,
analyzed the equation of motion along the bulk AdS direction using the Stürm-Liouville eigenvalue
approach. A surprising outcome of our study is that the chemical potential must be purely imaginary. We
have then observed that the winding number of the vortices decreases with the increase in the imaginary
chemical potential. We conclude from this that an imaginary chemical potential leads to less dissipation in
such holographic superfluids.
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I. INTRODUCTION

The emergence of gauge/gravity duality in the past
decade has been instrumental in our understanding of
strongly correlated systems. This connection between a
d-dimensional gravity theory and (d − 1)-dimensional
quantum field theory has been applied to various physical
systems ranging from early universe cosmology to con-
densed matter systems like high-Tc superconductors and
strongly coupled superfluids [1,2], to name a few. The
holographic superconductors and superfluids have been
studied in various spacetime settings using numerical as
well as analytical methods. Some crucial properties asso-
ciated with these phenomenon have been shown in the past
few years [3–16]. In particular, formation of a vortex lattice
in holographic superconductors near a second critical
magnetic field has been shown [17–21]. Also, it has been
observed that vortices are formed if we rotate a superfluid
in a cylindical container. It is known from various experi-
ments that there are a variety of possible vortices in a
superfluid under rotation [22,23]. Existence of such vor-
tices is of prime interest in a holographic superfluid model.

Numerical studies leading to the existence of such vortices
in a rotating holographic superfluid have been carried out in
[24,25]. The study made use of the gauge/gravity duality to
investigate the dynamics of a strongly coupled superfluid in
an uniformly rotating disk at a finite temperature. As the
angular velocity of the disk is increased above a critical
value, a vortex with quantized vorticity gets excited. With a
further increase of the angular velocity, higher vortices are
generated. In this paper, we have analytically devised novel
vortex solutions for a rotating holographic superfluid model
proposed in [24]. In our study, we consider that there is a
static disk of radius R at the anti–de Sitter (AdS) boundary
and the superfluid rotates relative to this disk. The super-
fluid, being incompressible, demands no flow along the
radial direction, and hence, it is an equivalent description
for the alternate scenario where the superfluid is static in an
uniformly rotating disk. The vortex solutions that we have
constructed enjoy circular symmetry in the rotating disk of
radius R, and each of these solutions are eigenfunctions
of the angular momentum. To obtain vortices, we have
analyzed this model very near to the critical value of
rotation Ωc, where superfluid vortex state appears.
Remarkably, the rotating superfluid also shows the step
transitions of the angular velocity observed in [24], leading
to the excitation of vortices. Interestingly, we have also
discovered a linear relation between the winding number
associated with these vortices and the angular velocity of
the rotating superfluid.
It is well established that such a simple holographic

superfluid model is parametrized by the temperature and
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chemical potential [4]. If one keeps the temperature fixed
then there happens to be a phase transition at a critical value
of the chemical potential, μc. Above this critical chemical
potential, the system is in superfluid phase. We have
analyzed the equation along the bulk AdS direction above
μc but very close to it. To solve the holographic system in
the bulk direction, we have used a variational technique
known as Stürm-Liouville eigenvalue approach. From this
analysis, we observe that the chemical potential must be
purely imaginary in order to get a consistent solution.
Further, it turns out that there is a decrease in the winding
numbers with an increase in the imaginary chemical
potential. An appearance of an imaginary chemical poten-
tial has occurred earlier in the literature. A good motivation
to work with imaginary chemical potential arises in non-
perturbative studies in quantum chromodynamics (QCD)
carried out using techniques of lattice gauge theory. The
consequence of an imaginary potential in QCD is the
periodicity of the Roberge-Weiss (RW) phase transition
[26]. A holographic understanding of this phase transition
has been achieved on an Euclidean spacetime setup in
[27,28]. In our study, however, the need for an imaginary
chemical potential arises in a geometry whose signature is
Lorentzian. It would therefore be interesting to see whether
the results in the Euclidean setup would still be applicable
when the signature of the spacetime geometry is
Lorentzian. At present, we can only say it will since the
temporal component of the gauge field vanishes at the black
hole horizon as it happens in the Euclidean scenario. This
would require further investigation which we shall not carry
out here.
In order to understand imaginary chemical potential in

this holographic model, we have further solved the time-
dependent equations for the matter field. We have been able
to show that in this time-dependent case, the imaginary
chemical potential competes with the imaginary frequency,
which is related to the dissipation in the system. Hence,
we conclude that an increase in the imaginary chemical
potential leads to decrease in vortex number, which implies
less dissipation in the system. It should be noted that the
complex chemical potential has been related to dissipation
in [29]. Also, a holographic model for the color super-
conductivity in QCD with an imaginary chemical potential
was studied recently [30].
We have organized this paper in the following way.

In Sec. II, we set up the model for a holographic superfluid
in a static black hole background in AdS3þ1 spacetime. In
Sec. III, we have constructed vortex solutions, near the
critical rotation in the rotating disk. Section IV deals with
the Stürm-Liouville eigenvalue analysis. Then, in the last
Sec. V of this paper, we have concluded and made some
remarks on our results.

II. THE HOLOGRAPHIC SUPERFLUID

We start by writing down the metric for a static black
hole in AdS3þ1 spacetime with Eddington-Finkelstein
coordinates [24],

ds2 ¼ l2

u2
½−fðuÞdt2 − 2dtduþ dr2 þ r2dθ2�; ð1Þ

where the blackening factor is given by

fðuÞ ¼ ð1 − u3Þ:

Here, l is the AdS radius, and u is the bulk direction scaled
in such a way that u ¼ 0 is the AdS boundary and u ¼ 1 is
the event horizon of the black hole. The coordinates ðr; θÞ
define the 2D flat disk. For convenience, we take unit AdS
radius (that is, l ¼ 1) and the cosmological constant
Λ ¼ −3. The Hawking temperature associated with the
above black hole geometry is given by T ¼ 3

4π.
We now consider a simple model for holographic

superfluid on top of this geometry. The action for the
matter section in this model is given by

S ¼ l2

2κ24e
2

Z
M

d4xLm: ð2Þ

The matter Lagrangian density, Lm, consists of a Maxwell
field and a complex scalar field minimally coupled to Aμ.
More precisely Lm is given by following expression:

Lm ¼ −
1

4
FμνFμν − jDΨj2 −m2jΨj2 ð3Þ

Fμν ≡ ∂ ½μAν�; D≡ ð∇ − ieAÞ;

where m is the mass of the scalar field while e is its charge.
Note that we will be working in the probe limit. In this limit
any backreaction of the matter field in the metric is

neglected. To achieve this limit, we shall rescale Aμ →
Aμ

e and Ψ → Ψ
e and take the limit e → ∞. Mathematically, it

is equivalent to setting e ¼ 1 in the action of our theory.
Now varying the action, S, for Ψ and Aμ, we get the
following equations of motion for the matter and the gauge
fields, respectively:

ðD2 −m2ÞΨ ¼ 0 ð4Þ

∇νFμ
ν ¼ jμ; ð5Þ

where the bulk current is defined as

jμ ≔ ifðDμΨÞ†Ψ −ΨðDμΨÞg: ð6Þ

We shall now assume that all the fields are stationary as our
interest lies in equilibrium analysis of the rotating super-
fluid system. Also we would be working with the axial
gauge, that is, Au ¼ 0, in which case, Eq. (4) reduces to the
following equation:
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�
DðuÞ þDðrÞ þ 1

r2
DðθÞ

�
Ψðu; r; θÞ ¼ 0; ð7Þ

where the segregated derivative operators are given as

DðuÞ≡ u2∂u

�
fðuÞ
u2

∂u

�
þ iu2∂u

�
At

u2

�
þ iAt∂u −

m2

u2

DðrÞ≡ 1

r
∂rðr∂rÞ −

i
r
∂rðrArÞ − iAr∂r − A2

r

DðθÞ≡ ∂θ
2 − ið∂θAθ þ Aθ∂θÞ − Aθ

2:

III. THE VORTEX SOLUTION

Our interest is in the equilibrium state where vortices
exist. So we define a deviation parameter, ϵ, from the
critical rotation, Ωc, by the following relation:

ϵ ≔
Ω − Ωc

Ωc
; ð8Þ

where Ω is the constant angular velocity of the disk. As
argued in [24], one should notice that there is a relative
velocity between the superfluid and the disk. Hence, a static
superfluid in a rotating disk is justly represented by a
rotating superfluid in a static disk. In this analysis, we are
visualizing the latter scenario. Now, in order to study this
system very near toΩc, we series expand the matter fieldΨ,
the gauge field Aμ, and the bulk current jμ with respect to ϵ
in the following manner [17]:

Ψðu; r; θÞ ¼ ffiffiffi
ϵ

p ðΨ1ðu; r; θÞ þ ϵΨ2ðu; r; θÞ þ � � �Þ ð9Þ

Aμðu; r; θÞ ¼ ðAð0Þ
μ ðu; r; θÞ þ ϵAð1Þ

μ ðu; r; θÞ þ � � �Þ ð10Þ

jμðu; r; θÞ ¼ ϵðjð0Þμ ðu; r; θÞ þ ϵjð1Þμ ðu; r; θÞ þ � � �Þ: ð11Þ

A. Zeroth order solutions near the AdS boundary

The zeroth order solutions for gauge fields, in axial
gauge, that generates the critical rotation field and the
chemical potential are given by following relations:

Að0Þ
t ðuÞ ¼ μð1 − uÞ; Að0Þ

r ¼ 0; Að0Þ
θ ðrÞ ¼ Ωr2:

ð12Þ

Notice that Að0Þ
r ¼ 0 restricts any superfluid flow in the

radial direction, while Að0Þ
θ allows the superfluid to rotate.

Considering these zeroth order solutions for gauge fields
near the AdS boundary, we may rewrite Eq. (7) for the
lowest order in ϵ, that is, Oð ffiffiffi

ϵ
p Þ, in the following form:�

Dð0ÞðuÞ þDð0ÞðrÞ þ 1

r2
Dð0ÞðθÞ

�
Ψ1ðu; r; θÞ ¼ 0; ð13Þ

where the derivative operators become

Dð0ÞðuÞ≡u2∂u

�
fðuÞ
u2

∂u

�
þ iu2∂u

�
Að0Þ
t

u2

�
þ iAð0Þ

t ∂u−
m2

u2

Dð0ÞðrÞ≡1

r
∂rðr∂rÞ

Dð0ÞðθÞ≡∂θ
2− ið∂θA

ð0Þ
θ þAð0Þ

θ ∂θÞ−Að0Þ2
θ :

We now use the method of separation of variables to solve
Eq. (13) and write Ψ1ðu; r; θÞ as a function of u and ðr; θÞ
separately in the following manner:

Ψ1ðu; r; θÞ ¼ ΦðuÞξðr; θÞ: ð14Þ

With the above separation of matter field, Eq. (13) provides
the following separated equations:

Dð0ÞðuÞΦðuÞ ¼ λΦðuÞ ð15Þ
�
Dð0ÞðrÞ þ 1

r2
Dð0ÞðθÞ

�
ξðr; θÞ ¼ −λξðr; θÞ; ð16Þ

where λ is an unknown separation constant. Note that
both Eqs. (15), (16) are eigenvalue equations with eigen-
value λ. In the subsequent discussion, we shall proceed to
determine λ.

B. Solution for a vortex in the rotating superfluid

Given the 2D rotational symmetry, we may choose the
following ansatz:

ξðr; θÞ ¼ ηpðrÞeipθ; ð17Þ

where p ∈ Z for the single valuedness of the solution.
However, one should note that ηpðrÞ must satisfy certain
boundary conditions for regularity at the boundaries. In our
case, we would be working with the Neumann boundary
conditions at r ¼ 0 as well as at r ¼ R, that is,

∂rηpjr¼0 ¼ 0 ¼ ∂rηpjr¼R; ð18Þ

where R is the radius of the disk boundary.
Now using the above ansatz in Eq. (16), we get the

following differential equation to be solved under the
boundary conditions defined above:

∂2
rηpðrÞ þ

1

r
∂rηpðrÞ þ

�
λ −

�
p
r
−Ωr

�
2
�
ηpðrÞ ¼ 0:

ð19Þ

To solve for ηpðrÞ, we consider the following ansatz:

ηpðrÞ ¼ FpðrÞe−Ωr2=2: ð20Þ
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Utilizing this form of ηpðrÞ given by Eq. (20), Eq. (19)
takes the form,

∂2
rFpðrÞþ

�
1

r
−2pΩ

�
∂rFpðrÞþ

�
λ̃−2Ω−

p2

r2

�
FpðrÞ¼0:

ð21Þ
We now proceed to solve Eq. (21) using the Frobenius
series solution method. So we consider that FpðrÞ is given
by the following series:

FpðrÞ ¼
X∞
n¼0

anrnþk; ða0 ≠ 0Þ; ð22Þ

with k being an integer. The derivatives of the above series
solution with respect to r are given by

∂rFpðrÞ ¼
X∞
n¼0

anðnþ kÞrnþk−1; ð23Þ

and

∂2
rFpðrÞ ¼

X∞
n¼0

anðnþ kÞðnþ k − 1Þrnþk−2: ð24Þ

Using Eqs. (22), (23), and (24) in Eq. (21), we find the
following condition:

X∞
n¼0

anfðnþ kÞ2 − p2grnþk

þ
X∞
n¼0

anfλþ 2Ωðp − 1 − n − kÞgrnþkþ2 ¼ 0: ð25Þ

This implies that coefficient for each order of r should
separately satisfy Eq. (25), that is,

rk∶ a0ðk2 − p2Þ ¼ 0 ⇒ k ¼ �p

rkþ1∶ a1ððkþ 1Þ2 − p2Þ ¼ 0 ⇒ ðkþ 1Þ ¼ �p:

From the above conditions, we consider k ¼ p for the
regularity of the solutions at r ¼ 0, and this yields a1 ¼ 0.
The condition k ¼ p implies that p is an integer. Similarly
setting the coefficient for rðkþnþ2Þ equal to zero, we get the
following recurrence relation:

anþ2

an
¼ ðλ − 2Ωðnþ 1ÞÞ

ððnþ 2Þ2 þ 2pðnþ 2ÞÞ ; ð26Þ

where we have already used the condition k ¼ p. This
recurrence relation connects all the even coefficients with
a0 and all the odd coefficients with a1. Hence, we would
get series solution for FpðrÞ with even terms only. Now in
order to have normalizable solutions, we must terminate
this series at some point, which determines λ in terms of Ω
and n, that is,

λ ¼ 2Ωðnþ 1Þ: ð27Þ

The above relation implies that the eigenvalue λ is
quantized. With this condition, the above series solution
becomes a polynomial of order n. Thus, we can write the
solution for ηpðrÞ with an additional index depicting the
order of the polynomial as

ηp;nðrÞ ¼ a0e−Ωr
2=2Fp;nðrÞ; ð28Þ

where

Fp;nðrÞ ¼ rp
�
1þ a2

a0
r2 þ a4

a0
r4 þ � � � þ an

a0
rn
�
:

Let us now discuss the family of solutions with n ¼ 0. In
this case,

Fp;0ðrÞ ¼ rp;

and hence,

ηp;0ðrÞ ¼ a0rpe−Ωr
2=2; ðλ ¼ 2ΩÞ: ð29Þ

This solution is subjected to the Neumann boundary
conditions mentioned earlier. This means the following
first derivative of Eq. (29) must vanish at the disk
boundaries:

∂rηp;0ðrÞ ¼ a0rp−1e−Ωr
2=2ðp −Ωr2Þ: ð30Þ

Now the boundary condition at r ¼ 0 gives the following
lower bound for p:

∂rηp;0ðrÞjr¼0 ¼ 0 ⇒ p > 1: ð31Þ

Applying the boundary condition at the disk boundary at
r ¼ R gives the following linear relation between p and Ω:

∂rηp;0ðrÞjr¼R ¼ 0 ⇒ p ¼ ΩR2: ð32Þ

Since p is an integer, the above relation between p and Ω
implies a quantization of the angular velocity Ω and also a
quantization of the angular momenta in the rotating super-
fulid. Note that the radius R in the model is fixed. This
implies that there is a linear relation between p and Ω. This
is a nice result that comes from our analysis. Let us now
consider the solution for n ¼ 2, which is given as

ηp;2ðrÞ ¼ a0rpe−Ωr
2=2

�
1 −

2Ω
ðpþ 2Þ r

2

�
; ðλ ¼ 6ΩÞ:

ð33Þ

For this solution, we have
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∂rηp;2ðrÞ ¼ a0rp−1e−Ωr
2=2

�
p − 3Ωr2 þ 2ðΩr2Þ2

pþ 2

�
: ð34Þ

In this case, the boundary condition at r ¼ 0 gives us the
same lower bound for p,

∂rηp;2ðrÞjr¼0 ¼ 0 ⇒ p > 1: ð35Þ
However, the boundary condition at r ¼ R gives us the
following condition:

∂rηp;2ðrÞjr¼R ¼ 0 ⇒

�
p − 3ΩR2 þ 2ðΩR2Þ2

pþ 2

�
¼ 0: ð36Þ

From this condition, we get

ΩR2 ¼ 3
ðpþ 2Þ

4

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8p
9ðpþ 2Þ

s �
: ð37Þ

For p ≫ 2, the above result again provides a linear relation
between p and Ω, that is, ΩR2 ∼ p.

IV. STÜRM-LIOUVILLE EIGENVALUE ANALYSIS

In this section, we shall solve Eq. (15) using the Stürm-
Liouville eigenvalue approach. We shall consider the
analysis near the critical chemical potential (μ ∼ μc) so
that we may take the following ansatz for the gauge fields
near the AdS boundary [31]:

Að0Þ
t ðuÞ ¼ μ; Að0Þ

r ¼ 0; Að0Þ
θ ðrÞ ¼ Ωr2: ð38Þ

For simplicity, we shall consider m2 ¼ −2;Δ ¼ 1. With
these considerations, Eq. (15) reduces to the following
equation:

u2∂u

�
1 − u3

u2
∂uΦðuÞ

�
þ iu2∂u

�
μ

u2
ΦðuÞ

�

þ iμ∂uΦðuÞ þ 2

u2
ϕ ¼ 2ΩΦðuÞ: ð39Þ

Notice that we have considered only the case for n ¼ 0, and
hence, λ ¼ 2Ω. We now simplify Eq. (39) in the following
form:

ð1 − u3Þ∂2
uΦ −

�
u2 þ 2

u
− 2iμ

�
∂uΦ

−
�
2Ω −

2

u2
þ 2iμ

u

�
Φ ¼ 0: ð40Þ

Near AdS boundary (u → 0), we can write ΦðuÞ in the
following manner:

ΦðuÞ ≃ hO1iuΛðuÞ;

so that ΛðuÞ is subjected to the boundary conditions given
below,

Λð0Þ ¼ 1; ∂uΛð0Þ ¼ 0: ð41Þ

Using this in Eq. (40), we get an equation for Λ as given
below,

ð1 − u3ÞΛ00 − ð3u2 − 2iμÞΛ0 − ðuþ 2ΩÞΛ ¼ 0; ð42Þ
where 0 denotes derivative with respect to u. Considering Λ
to be real, Eq. (42) implies that μ must be purely imaginary
for Eq. (42) to have a consistent solution. So we have
ReðμÞ ¼ 0, and set ImðμÞ ¼ μI . With this, Eq. (42)
becomes

ð1 − u3ÞΛ00 − ð3u2 þ 2μIÞΛ0 − ðuþ 2ΩÞΛ ¼ 0: ð43Þ
In order to cast Eq. (43) into Stürm-Liouville form, we
multiply it with integrating factor RðuÞ given below,

RðuÞ ¼
�

1 − uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uþ u2

p
�2μI

3

exp

�
−
2μIffiffiffi
3

p arctan

�
1þ 2uffiffiffi

3
p

��
:

With this, Eq. (43) can be put into Stürm-Liouville form as
given below,

ðPðuÞΛ0ðuÞÞ0 þQðuÞΛðuÞ þΩSðuÞΛðuÞ ¼ 0; ð44Þ

where

PðuÞ ¼ ð1 − u3ÞRðuÞ
QðuÞ ¼ −uRðuÞ
SðuÞ ¼ 2RðuÞ:

Now the eigenvalue Ω is given by the following integral:

Ω ¼
R
1
0 duðPðuÞðΛ0ðuÞÞ2 −QðuÞΛ2ðuÞÞR

1
0 duSðuÞΛ2ðuÞ : ð45Þ

In order to proceed ahead, we take a trial function for ΛðuÞ
that satisfies the given boundary conditions, that is,
Λð0Þ ¼ 1; ∂uΛð0Þ ¼ 0. We assume the following trial
function:

ΛαðuÞ ¼ ð1 − αu2Þ:
With this trial function, we have the following equation to
determine Ωα:

Ωα ¼
R
1
0 duðPðuÞðΛ0

αðuÞÞ2 −QðuÞΛ2
αðuÞÞR

1
0 duSðuÞΛ2

αðuÞ
: ð46Þ

In order to compute Eq. (46), we approximate RðuÞ for
u → 0 in the following manner:

RðuÞ ≃
�
1 −

2μIffiffiffi
3

p arctan

�
1þ 2uffiffiffi

3
p

��
: ð47Þ

Using Eq. (47) into Eq. (46), we find the following equation
for Ωα:
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Ωα¼
R
1
0 duð1−2μIffiffi

3
p arctanð1þ2uffiffi

3
p ÞÞðuþ4α2u2−2αu3−3α2u5ÞR

1
0 duð1−2μIffiffi

3
p arctanð1þ2uffiffi

3
p ÞÞð1þα2u4−2αu2Þ

:

ð48Þ
We now need to extremize Ωα with respect to α. For a fixed
value of μI , it turns out that there are two values of α which
extremize Eq. (48). To understand the qualitative role of μI ,
we have calculated these extremized values of Ωα for a
range of values of μI . Extremized values of Ωα, corre-
sponding to both values of α, for μI between 4.0 and 4.5 are
shown in Fig. (2) and Fig. (3). These figures show a
remarkable trend; in both, the cases extremized values of Ω
consistently decreases with an increase in the value of
imaginary chemical potential. Now some subtle observa-
tions are in order here. As we have shown in Sec. III that
these Ω are quantized with the following relation:

Ω ¼ p
R2

;

where R is the radius of the disk. This relation in
conjunction with Figs. 2 and 3 implies that for a disk with
a fixed radius R, there is a decrease in the winding numbers
as the imaginary chemical potential rises. This seems to be
an interesting observation from holographic point of view.
In order to better understand this result, we have further
considered the time-dependent terms in the equation of
motions given by Eq. (7). The corresponding time-
dependent equation is given as�
DðuÞþDðrÞþ 1

r2
DðθÞ− 2∂u∂tþ

2

u
∂t

�
Ψðt;u; r;θÞ ¼ 0:

ð49Þ
Linearizing this equation with the following form of δΨ and
δAμ along with the boundary conditions expressed before:

δΨ ¼ pðu; rÞeiωtþinθ; δAμ ¼ atðu; rÞeiωtþinθ;

gives the following equations after separation of variables
for pðu; rÞ ¼ ΦðuÞηpðrÞ:

ð1 − u3Þ∂2
uΦ −

�
u2 þ 2

u
− 2iðμ − ωÞ

�
∂uΦ

−
�
−

2

u2
þ 2iðμ − ωÞ

u

�
Φ ¼ λΦ: ð50Þ

∂2
rηpðrÞþ

1

r
∂rηpðrÞþ

�
λ−

�
p
r
−Ωr

�
2
�
ηpðrÞ ¼ 0: ð51Þ

One should notice that these are similar equations that we
have found for stationary field case in Secs. III and IV. The
only difference is that in Eq. (50), μ is now replaced with
(μ − ω). This difference immediately points towards a
connection between imaginary chemical potential and
imaginary part of the frequency, ω. As it is well known
that the imaginary part of the frequency, ω, implies
dissipation in the system, we may attach a similar meaning
to μI. We observe from Fig. 2 and Fig. 3 that there is a
decrease in the number of vortices with a rise in the value of
the imaginary chemical potential. On the other hand, from

FIG. 1. Un-normalized lowest order (n ¼ 0) vortex solutions
for different winding numbers. (The value of R is set to be equal
to 10).

FIG. 2. Ω vs μI for lowest order (n ¼ 0) vortex solutions for
first values of α that extremize Ωα in eigenvalue equation (48).

FIG. 3. Ω vs μI for lowest order (n ¼ 0) vortex solutions for
second values of α that extremize Ωα in eigenvalue equation (48).
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Fig. 4, we observe that with an increase in ω, Ω increases,
which means that the number of vortices increases. Now an
increase in the vortex number can be understood as an
increase of dissipation in the system [16]. Hence, the
presence of both the imaginary chemical potential “μI”
and the frequency “ω” of the quasinormal modes reduces
the dissipation in the system.

V. CONCLUSION AND REMARKS

In this work, we have holographically devised vortex
solutions with different winding numbers in a rotating
superfluid. These solutions may be interpreted as vortices
placed at the center of the disk at r ¼ 0. Our analysis shows
that p ¼ ΩR2 is an exact condition for n ¼ 0 case, while it
is true for p ≫ 2 for higher order solutions, that is, n ≠ 0.
This linear relation between the winding number, p, and the
angular velocity,Ω, seems to be an universal feature of such
vortices, at least for large p. It is to be noted that due to the
Neumann boundary condition at r ¼ 0, the vortex solution
with a winding number p ¼ 1 is absent in this model.
However, if one considers the Dirichlet boundary condi-
tion, at r ¼ 0, instead of Neumann boundary condition,
then even solutions with a winding number p ¼ 1 are
allowed. In Fig. 1, we have shown some vortex solutions

with different winding numbers. We have further solved the
bulk equation using Stürm-Liouville eigenvalue approach
and have observed that the chemical potential must be
purely imaginary. A relation between winding numbers
associated with the vortices and the imaginary chemical
potential for the specific case of lowest order (n ¼ 0)
vortices have been found. We have given a novel inter-
pretation to this relation in terms of a reduction in the
number of vortices in rotating holographic superfluids, with
an increase in the imaginary chemical potential, which in
turn implies a reduction of the dissipation in the system. As
a final remark, we would like to emphasize that the results
in this work have been obtained analytically, making use of
the gauge/gravity duality and has similar features to those
found numerically.
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APPENDIX: VORTEX NUMBER DEPENDENCE
ON QUASINORMAL FREQUENCY

If we consider μ ¼ 0 in Eq. (50), then we get

ð1 − u3Þ∂2
uΦ −

�
u2 þ 2

u
þ 2iω

�
∂uΦ

−
�
−

2

u2
−
2iω
u

�
Φ ¼ λΦ: ðA1Þ

Now comparing Eq. (A1) with Eq. (40), we find that these
two equations are similar to each other with the difference
of sign in μ and ω. Now using the Stürm-Liouville
eigenvalue approach, we can solve Eq. (A1). The resulting
behavior between Ω and ω is given in Fig. 4. This figure
shows that vortex number increases with an increase of
quasinormal frequency, ω. This implies that the dissipation
of the system increases with an increase in ω.
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