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We consider the loop quantum theory of the spherically symmetric model of gravity coupled to Gaussian
dust fields, where the Gaussian dust fields provide a material reference frame of the space and time to
deparametrize gravity. This theory, used to study the quantum features of the spherically symmetric BH, is
constructed based on a 1-dimensional lattice y C R. Taking advantage of the path integral formulation, we
investigate the quantum dynamics and obtain an effective action. With this action, we get an effective
continuous description of this quantum lattice system which is not the same as the one described by the
effective Hamiltonian used in [M. Han and H. Liu, Improved effective dynamics of loop-quantum-gravity
black hole and Nariai limit], i.e., the classical Hamiltonian with the holonomy correction. It turns out that,
the Hamiltonian derived in this paper can return to that used in [M. Han and H. Liu] only for macro black
holes, since the lattice y is required to be sufficiently fine. Indeed, it is necessary to propose this fine-
grained lattice structure in order to well describe the underlying lattice theory by the continuous

description.
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I. INTRODUCTION

Loop quantum gravity (LQG), as one of the most
promising candidate for the theory of quantum gravity
[1-4], has led to several significant achievements on the
quantum features of spacetime [5-9]. However, there are
still many unsettled issues, particularly those on the
dynamics of LQG. In spite of these efforts toward the full
LQG dynamics [10-20], one applied the loop quantization
procedures to symmetry-reduced models of gravity. The
resulting models (see, e.g., [21-27] for cosmological case,
and see, e.g., [28—45] for black hole case), regarded as
some type of symmetry-reduced sectors of LQG, yield
valuable insight into the full LQG theory, regardless of the
debates on embedding them into the full LQG [46—48].

There are two approaches to study the quantum nature of
the spherically symmetric black hole (BH) with loop
quantum method. An approach is to loop quantize the
Schwarzschild interior. By virtue of the homogeneity of
the Schwarzschild interior, this approach leads to models of
finite degrees of freedom [30-33,36—44]. In this frame work,
the effective dynamics was investigated in details based on
various quantization strategies (see e.g., [32,33] for p-
scheme and ji-scheme, and see [36,38] for the modified
scheme balancing the zy-scheme and zi-scheme). According
to these works, the BH singularity is resolved. Particularly,
the singularity is replaced by quantum bounce, which
connects the BH with a white whole in the framework of
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[32] for uy-scheme and the framework of [38] for a modified
scheme. However, for the ji-scheme, according to the
analysis in [32,33], jumping over the quantum bounce,
the classical BH gives birth to ababy BH which brings forth
its own baby BH. This scenario continuous, giving the
extended spacetime fractal structure, until reaching even-
tually a Nariai type spacetime. Moreover, the quantum
dynamics, in this framework, was also investigated by [42],
which supports the existence of BH remnant by consider-
ing a general assumption on the quantization strategies.
The other approach to investigate the quantum nature of
BH is to consider the BH interior and exterior as a whole
(see,e.g., [28,34,35,45]). These works consider the spheri-
cal symmetry to reduce gravity, which leads to models of
(1 + 1)-dimension field theory on R. An advantage of these
models is that they treat both the black hole interior and
exterior in a unified manner.

The current work adapts the latter approach to the
spherically symmetric model of gravity coupled to
Gaussian dust fields as in [28]. In this model, gravity is
deparametrized by the Gaussian dust fields which provide a
material reference frame for both time and space. Thus its
dynamics is governed by a physical Hamiltonian H, which
is identical to the Hamiltonian constraint of pure gravity
with the lapse function N = 1. Classically, this dynamics
gives the Lemaitre-Tolman-Bondi spacetimes. By applying
the loop quantization procedure to this model, we construct
the quantum theory of this model. As the usual loop
quantum theory, the states of this quantum model are
constructed based on some graph y. In this paper, y is
chosen to be a I-dimensional lattice, i.e., y C R, whose
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vertices are denoted by v € V/(y). Each vertex carries some
quantum numbers denoted by {(v) and v(v), where () is
interpreted as the volume of some region containing the
vertex v. To promote the physical Hamiltonian to an
operator, we use the ji-scheme regularization strategy to
get a regularized physical Hamiltonian H,. The

Hamiltonian operator H, is thus derived by quantizing
|

A(Ei,ﬁ,»ff,ﬁf,T):/ I] pive)D

vVeEV(y)

where b and ¢ are variables introduced during the deriva-
tion. According to (1.1), the classical path can be obtained
by the method of stationary phase approximation, i.e., the
equation &S = 0. S(E b.b, C) is thus referred to as the
effective action, from which the effective Hamiltonian
H(E v, C, 1;) is deduced.

We are now in a position to reconstruct an effective
classical theory from the path integral formulation. This
effective theory is a l-dimensional lattice field theory
whose dynamics is govern by H(C, v, ¢, b). An important
result of our work is that H (E .0, G, Z;) is not the same H,,
while the former can return to the latter if the volume of each
vertex v, i.e., »(v), is much larger than the Planck volume.
Here, it should be recalled that H, is the regularized
Hamiltonian and its quantization gives the Hamiltonian
operator H a- In the work like [28], one usually uses the
continuous limit of H,, denoted by H., to study the
effective dynamics with the holonomy corrections.
However, according to our analysis, this treatment is valid
only if the following inequality holds,

2GM >
¢

4ty
ag Ox

(1.2)

P

where M is the ADM mass of the Schwarzschild BH (the
dynamics given by H.; can recover the Schwarzschild
solution in Lemaitre coordinate according to [28]), ox,
taking small values, is some specific coordinate length of
the edges in y and a is some constant. Since dx takes small
values, this inequality tells us that the effective description
by H, is valid for macro BHs but not for small BH. In other
words, the macro and small BHs behave differently once the
loop quantum effects are considered.

For a macro BH, its dynamical behavior is described by
H_.; which has been studied in [28]. According to the
results therein, the BH singularity is resolved by quantum
bounce. Far away from quantum bounce, there are two
asymptotic regimes sandwiching the quantum-bounce
region. In one regime, the solution is semiclassical
and reduces to the Schwarzschild spacetime in Lemaitre

[e(v")|DlIn(|¢(+/)])] Dlp (")) eir €02

H,. To study the quantum dynamics, the path integral
formulation is borrowed to calculated the transition ampli-

tude A(Ei, 5,-, Ef Sf, T) from the initial state \Z’, B,-) at time
T; = 0 to the final state |C;, b,) at time T, = T [12,49-51].
It turns out that this transition amplitude can be simplified
in the standard form,

(1.1)

I

coordinates. In the other asymptotic regime, the effective
spacetime looks like the Nariai geometry which takes the
metric of dS, x S?. Moreover, in the Nariai regime, both
the area of S? and the dS-radius of the Nariai geometry are
of quantum size. Thus, our model predicts a quantum
final fate of Schwarzschild BH. However, it should be
emphasized again that this is credible for the case where
(1.2) hold.

It is worth noting that the current work is only concerned
about the vacuum solution which can recover the
Schwarzschild BH, even though the Gaussian dusts are
considered for deparametrization. For these solutions, the
physical Hamiltonian, identical to the energy of the dusts
field, vanishes. Thus they do not possess any evolution with
respect to the dust fields. Thinking of the object evolving
here as a moving particle, we can analogize these vacuum
solutions to a particle at rest, regardless of 7 = 0 which
means that the “time” itself also disappears in our situation.
Moreover, let us return to the original constraint theory
where the deparametrization has not done. Then the
solutions to the constraint equations are identical to the
dynamical solutions derived from the deparametrized
model where we regard the dynamical solutions as func-
tions of both gravity and dust fields. This identity tells us
that, for the cases with nonvanishing dusts, one can pick the
dust fields as time to endow the physical states with a
relational-evolution picture, while for vanishing-dust case,
one should choose other fields to do this. From these
perspectives, it makes sense to consider the vacuum
solution even in the deparametrization model.

This paper is organized as follows. In Sec. II, we review
briefly the classical deparametrized model of spherically
symmetric gravity coupled to Gaussian dust. Then the
quantum kinematical theory of this model is introduced in
Sec. III. Adapting the ji-scheme, Sec. IV presents the
physical Hamiltonian operator and its the action. With these
results, the quantum dynamics is studied by using the path
integral formulation in Sec. V, where the transition ampli-
tude is rewritten in the standard path integral form. Finally,
the effective dynamics is studied in Sec. VI. Sec. VII
summarizes the present work and gives some outlook on it.
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II. CLASSICAL THEORY

A. Deparametrized gravity with Gaussian dust

The current work considers the model of gravity coupled
to the Gaussian dusts [28,52,53]. The classical phase space
of this model contains the Ashtekar-Barbero canonical
conjugate pairs (Ai(y), E¢(y)) for gravity and, (T, P) and
(8%, P,) with (a = 1,2,3) for the Gaussian dusts, where
T, S%=123 will be the clock fields and define the time and
space coordinates in the dust reference frame.

The dynamics of this model is encoded in the
Gaussian constraint, the diffeomorphism constraint and
the Hamiltonian constraint [52,53], where the diffeomor-
phism and Hamiltonian constraints read

COU=P+h, h=C\/1+q®T ,T5—q"°T Cp.  (2.1)
C =Cy + PT 4+ P;S% (2.2)

with C, C, being the purely gravitational Hamiltonian and
diffeomorphism constraints. Let (7, 5) denote the physical
time and space coordinates respectively, where their values
t(y) and o(y) at a given spacetime point y is given by
T(y) =t and S%(y) = o respectively. Then one can para-
metrize (A, E) with respect to the dust field 7,S% to
construct the relational observables A’ (, o) and Ef(t,0) as

: ay*
Al(t.0) = AL0) 5 ,
o )=t.5%(y)=c"
a a
mu@=@waa
T(y)=t,5(y)=0"

Here one should distinguish the usual coordinate index a =
1, 2, 3 and the dust coordinate index a = 1, 2, 3. It turns out
that these relational observables are commutes with the
diffeomorphism and the Hamiltonian constraints [54-56].
Thus they are Dirac observables. Moreover, A{;(t, o) and
E{(t,0) satisty the standard Poisson bracket in the dust
frame:
{A}(1.0). E¢(1.0)} = kpo]636° (/. 0)  (2.3)
where f is the Barbero-Immirzi parameter and x = 8zG.
Taking advantage of the deparametrization procedure
with respect to the dust fields, we now have a natural
picture of evolution 7 — (Aj(z, ), E4(t,6)). This evolu-
tion is generated by the physical Hamlltoman H, which is
the integration of A on the slice S given by T(y) = ¢, for
some t,. S is referred to as the dust space where a natural
coordinate is S 3 s — o(s) € R*[53,56]. Since T, = O on
S, one has

2w 5
H, — /S $oC(o), (2.4)

K

where C(o) is expressed in terms of the Dirac observables
Ai(0) = Au(ty,0), Ef(o) = Ei(ty,0). We now have a
usual Hamiltonian system which is constructed by choose
a spatial slice T(y) =1t for some t. However, by this
expression, H is the smeared gravity Hamiltonian C with
the lapse function N = 1.

B. Spherical symmetry reduction

We assume the dust space S~R x S and define the
spherical coordinate ¢ = (x, 8, ¢). We further reduce the
reduced phase space to the phase space I',q of spherical
symmetric field configurations. The spherically symmetric

conjugate variables (A,’l E?) take the form [30,34,35]

L e + A6

Al de® = A, (x)7,dx +
1()1 \/E

1

+ NG (A2 (x)73 — A3(x)72) sin(0)dg
+ cos(0)7,dg
Ed7) — 0 = E'(x)sin(0)7,0 +L(E2(x)r
80 1Y% \/i 2
1
+ E3(x)73) sin(0) 0, + E(Ezﬁ - E%1)9,
(2.5)
where 7; = —i/2(Paulimatrix);. Let I’y denote the

reduced phase space of the spherically symmetric
Ashtekar variables. The symplectic form Q on I'.4 reads

1 .
9(51,52) = _E/d3651A?(6) A\ 52E{1(0')

:-iﬁ/@ﬂﬂ@A%F@)
+61A5(x) A S E*(x) +51A3(x) A8 E3(x))dx

(2.6)

where §; and 8, are two tangent vectors in the tangent space
T(A.E)Fred and (le VAN 52G = 51F52G - 52F51G ACCOI'ding
to Q, one has the Poisson bracket

{Al(x)’ E’

The symmetry-reduced theory is an (1 + 1)-dimensional
field theory.

The procedure of the deparametrization in Sec. II A does
not solve the Gauss constraint. We still need to impose
Gauss constraint to I',.4. Substituting (2.5) into the general
expression of the Gaussian constraint, one has the

I1,J =1,2,3.

(v)} = 2Gps(x, y)8]. (2.7)
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expression of G[4], associated to a 81(2)-valued smeared
function A(x) = Ai(x)z; [29,34],

G[A] = 4= / A (0)[Az(x) > (x) = A3(x)E*(x) + O, E' (x)).
(2.8)

Then the gauge transformation L; generated by the
Gaussian constraint, i.e.,

Lo(F) = elFGU)

1y R GGl ) o) 29)
n=1"""

nfolds

gives
L6(A1(x)) = Ay (x) — kA (x) (2.10)
L;(E'(x)) = E'(x) (2.11)
Lo(Ay(x) + iA5(x)) = eV (A, +iA)  (2.12)
L(EX(x) 4+ iE3(x)) = e®P ' W(E2 4 iE3).  (2.13)

That is, A; transforms as a U(1) gauge field and A, + iA3
transforms as a U(1) Higgs field.

Given a state (A;, E') €T, one can always gauge
transform it with some A to vanish E3. Thus we introduce a
gauge fixing condition

E3(x) = 0. (2.14)
The gauge fixed phase space then is coordinatized by

(A;(x), E'(x)) with I = 1,2 and, the Gaussian constraint
(2.8) solves As(x), leading to

As(x) = a;fég) (2.15)
We introduce the following variables'
K0)=qp (), Ex) = E\(a),
J(x) = szﬁAQ(x), Eo(x) = \/L§E2(x). (2.16)

The gauge-fixed reduced phase space P C I',q consist of
canonical pairs (K,(x),E*(x)) and (K,(x),E?(x)).
Restricting the symplectic form on P, we get the non-
vanishing Poisson brackets

'K (x), E*(x), K, (x), E?(x) are the same as in, e.g., [28,35],

{Ki(y).E'(2)} =Go(y—2). I=x¢. (217)
The classical physical Hamiltonian on P is obtained
from H; in (2.4) by implementing the spherical symmetry,

and adding a boundary term Hyg,
2n

where C(x) is expressed as

ey - BAE (T
B\ 2E7
2EFEY !

+ N

(\/ IEXIIE‘”I>
The equations of motion from H is formally the same as the
pure gravity dynamics with unit lapse, although the
foliation is provided by the Gaussian dust.

The space of x is noncompact so boundary condition is
necessary. We follow [28] to discuss the boundary con-
ditions and the corresponding boundary terms Hyg,. Firstly,
since we are going to discuss the quantum effective
modification of the Schwarzschild black hole. It is useful
to introduce the asymptotic boundary condition of the
Schwarzschild at x — oo. A foliation of the Schwarzschild
spacetime with unit lapse is the Lemaitre coordinate. The

asymptotic boundary condition in the Lemaitre coordinate
reads

- 8E*K K, — 2E’K? — 2E’/’>

(2.19)

3 4/3 R
E~(2yRx) . Ko~ : . (220
<2 “x) sk (E0)
3 1/3 (2/3)'3\/R;
Er /Ry (/R K~ 2DV g0
(GvR)" m e e

The following boundary Hamiltonian at x — oo turns out to
be suitable for this boundary condition for canceling
boundary terms of SH.

4z ([ 2E'EY
Hyy=—(—F——=—-2V|EF 2.22
w == (e )| e

Alternatively, instead of the above Schwarzschild asymp-
totic boundary condition, we may make an infrared cutoff
at x = L > 1 and impose the Dirichlet boundary condition

SE*|,_;, =0 (2.23)

In this case, Hyg, is the same except for locating at the finite
boundary x = L:
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4z ( 2E°EY
Hbdy _ = ( (224)

VIE||E?]

In addition, on the other side x > —c0 or x = —L, we
impose the Neumann boundary condition

_2\/@)

x=L

EY =0. (2.25)

This boundary condition will be manifest in the effective
dynamics of the black hole. We do not need any boundary
Hamiltonian for the Neumann boundary condition. By
using Hygy, the Hamiltonian H can be simplified to the
following form

== [ at) + VBT (226)

with
_ sgn(E¥) (E* x 0 K2 v
hx) = \/W 2Ew+8E K.K,+2E?K, + 2E |.

(2.27)

Let V(x) denote the diffeomorphism constraint of pure
gravity. Then V(x) in the reduced model reads
V(x) = K (x)EY(x) — E?(x)K,(x). (2.28)
It can be verified that {H,V(x)} =0. Thus the time
evolution by H has infinitely many conserved charges
V(x). It turns out that the Schwartzchild solution in
Lemaitre coordinates is obtained with setting the initial
condition V(x) = 0. Then {H, C(x)} « V(x) also vanishes,
which gives another conversed charges C(x).

III. QUANTUM KINEMATICS

Discretize x-space to 1-dimensional equidistant lattice y
whose vertices are denoted by v. e(v) denotes the edge
starting at v and oriented toward the positive direction. The
sets of edges and vertices in y are denoted by E(y) and V(y)
respectively. It is worth noting that, to make y finite, we
restrict ourselves in the interval [-L, L] with L > 1 and
consider the fields satisfying the boundary conditions
aforementioned.

To do quantization, the fields K; and E! (I = x, ) are
first smeared by using y as follows

0(v) = dxK,,
e(v)

p(v) = E¥(mid,(,).  (3.1)

®(v) = K, (mid,(,), - / B (3.2)

where mid,(, is the middle point within e(v). Here, K (x)
is gauge fixed from the U(1) gauge field and, thus, e?(*) is

its holonomy along e(v). However, K, is gauge fixed from
the U(1) Higgs field, and, thus, e/®(”) is its point holonomy
at v.

With the variables 8(v) and ®(v), the Hilbert space,
constructed by the polymer quantization procedure, reads

H= (Lz(va d,uh) ® Lz(va dﬂh))IV(y)‘ (33)
where R,, is the Bohr compactification of the real line R
and dy;, is its Haar measure. To represent the elements in H
explicitly, let us define the space Cyl of almost periodic

functions of 6 = {0(v)},ev(,) and = {@(v)}ev(y)- In

other words, elements in Cyl are finite linear combination
of the functions Tﬂ

Tﬁj(e, D) = H 2 iH0)0(0)+in(v)®(v) (3.4)
veV(y)
Equipping Cyl with the inner product
¥, | . 2v(y)| [T
(¥, [¥3) = lim 2T /_T
/ H d0(v)dD(v) ¥, (0,8)¥,(0,B). (3.5)
LGV
we have
TanlTam) = G20 (3.6)

where the right hand side is the Kronecker delta. The
Hilbert space ‘H is identical to the Cauchy completion of
the space Cyl with respect this inner product. By using the
Dirac bra-ket notions, we will denote

).

Ty (3.7)

,U) forms a family of orthonormal basis
of H. — —

In H, thf,re are the basic operators e’ (1)0(v) - gito(1)®(v)
p(v) and TI(v) with constants 4,(v) and p,(v):

PO = 1+ 2,(03,8)  (38)

OO ) = L+ p,(0)5)  (39)

p(0)|4.Ji) = £34(0)[2.70). (3.10)

M(0)|4, ) = E3p(v) |2 i), (3.11)

where ¢ = kh and 5, is defined by
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(3.12)

It is remarkable that operators e™(")?(*) and e(")®(t) are
not strongly continuous. Therefore, there is no operators
O(v) and ®(v) such that e (") = exp(id(v)B(v)) and
(2] = exp(iA(v)®(v)) in this model.

Let V, denoted the volume of the region e(v) x S%. By
definition, V, is

v, :l dx/”de/z”d(pwﬂ\/@sin(e)
IVIp@)l,

where we used that sgn(E"’) is a constant. Thus its
correspondmg operator V,, = 4z|[1(v)|\/|p(v)]| takes the

= 47[TI(v) (3.13)

basis |/1,,u> as its eigenstate, i.e.,

¥ |1.70) = 4n3|u(v

)IVIA@)I12 f).

For convenience V, as well as V,, will be referred to as the
volume (operator) at v.

(3.14)

IV. THE PHYSICAL HAMILTONIAN OPERATOR

A. ji-scheme regularization and quantization
Due to the absence of the operators §(v) and ®(v), the
classical expression (2.27) of the physical Hamiltonian
needs to be regularized in terms of ¢*4(")%(?) and e#(1)0(v),
One can refer to [28,34] and references therein for the
detailed derivations on the regularization. Generally speak-
ing, the regularization procedure results in a family of
regularized expressions Hiﬁ’ depending on parameters 7
and j. Classically, it has
lim H
7ji—0
H falls

to exist, where H; ii denotes the quantlzatlon operator of

However, in the quantum theory the limit hm

HZ;T To overcome the failure of the limit to exist, the idea
proposed in loop quantum cosmology model [21,23] is

borrowed, which lead to the operator fI, i.e., the quantiza-
tion operator of H, defined as

N

H=_lim H;,
isijimi
|
—4 x 27
V(R)™ =

6 (Kﬁ) / |€abctr {A ( ) V(R)U?}{Ab( ) V(R)l/%}{A ( ) ( )1/3})|.

with some nonvanishing quantities A= {A(v)} and
fi = {u(v)}. There are several strategies to choose J and

=

4. The current work focus only on the p-scheme as in

[28,34] where Z and ji are

_2pVAr,/Ip(0)]

1(v)
= ﬁ\/Kfp
sgn(p(0)/Ip (V)]

(4.1)

This strategy leads to the regularized physical Hamiltonian
H,, referred as the improved Hamiltonian. Indeed, the
improved Hamiltonian is equal to the effective Hamiltonian
used in [28], but replacing the integral over x and, the
variables K; as well as E! (I = x, @), respectively, by
discrete sum over v € V(y) and, the corresponding
smeared variables. Explicitly, H, reads

(4.2)

1 1
A= —ngm +E Ip(vp)]

with

. A, . (25JE IO
V”“n(sgn(p(v» |p<v>|(b(”))sm< i) 9(0))

[)A,v =

4nf*AL?
V, : 22 /}\/Kfp @
. oS0 <sgn(p<v>> (o) (”>> RO
87 AL’ v,
- 1 4,
+2v [p(v+1)=p(v)]? (4.3)

where v, denotes the source of the edge e, connecting to
the boundary and v + 1 denotes the target of e(v) and v,
denote the boundary vertices. It is noted that ), b, ,
reproduce [ dxf(x) in the limits of low curvature and
lattice refinement (e, shrinks to zero size while vertices
become dense).

The expression of h, , contains the inverse volume 1/V,
whose naive quantization 1/V, usually cause divergence at
the zero eigenvalue of V,. Due to this difficulty, we need
the trick

(4.4)
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which can be verified by applying the Thiemann’s trick [4]. Applying this formula to our current model, one finally gets, by

a straightforward calculation, that
1 . 27
o= im o
Vo  Aw-0\877iG u-A
where

QXA)L(U) — ei/lH(U)/Z{e—MH(v)/Z’ VZ} _ e—iﬁ&(v)/Z{eMG(v)/Z’ VZ}

(4.6)

Qg)ﬂ(v) — eiﬂd)(v)/Z{e—iﬂd)(v)/Z’ V;}

— g HP()/2f piu®(0)/2 yrY (4.7)
Then the inverse volume operator can be quantized through
replacing the Poisson brackets by the commutators.

Because of the expression (4.3) of b, ,,, we consider the
new holonomy operators

hg.a(v) = expliZ(0)0(v)]

~

ho.a(v) = explif(v)®(v).

Because of the dependence of A(v) and ji(v) on p(v) and
II(v), to define these two operators, we use the idea
proposed by [23] and set

2 d 2
O0) =il gy ) =if)

(4.8)

rg i 5 (4.9)
Then the right-hand sides of (4.8) are written as
26VAV/A(v)] d -
e e 2
bVAL, . ]w@ A)
sen(p(v))y/[p(w)] du(®)] "
(4.10)

hua 0w (i.7) = exp -

hoa(0w(i. /) = exp [—

Denoting

s(x) = sgn(x) /],

one can calculate the right-hand sides of (4.10) to get

) = w(s™[s(2) = pVAu(v)” %M

(4.11)

and s~! denotes its inverse

where s(A ) = {5(4(v)) }reviy
s(2)

function. For convenience, we use é’ = [7— instead of 1 to

re-label the state |4, ) Then we have

p(0)[IC. i) = BVAL,L()IC.
(v)|C. i) = Su(v) L,

sgn(p(v))

A),
my (4.12)

)sgn<p<v>>9 ()04 (1) Q0 (w),

(4.5)
|
With the new conventions, (4.11) becomes
hoa(W)IZ.ji) = IC + p(v)~'5,. /i),
hoa(W)C.i) = EJ+E(0)715,).  (4.13)

Here, the derivation uses (Ow)(C,ji) = (C.ji|Oly) for
operator 0. Moreover, the action of the volume operator
at v with the new convention is

V,|C. ) = 4nl3 VA lu(v)E (0)| I, ).

In the framework of the ji-scheme, the inverse volume in
(4.5) is quantized as

(4.14)

I/VU = }j%‘}; (I/VL)Zﬁ’
27 (1/3)
117215 = (gm0 9070

x 04/ (1)Q4)) (v). (4.15)
This equation leads to the operators Q % Qg?ﬁ

defined as

H(r) 2 iA0(v) /2] ,—i20(v)/2 r
QG‘,E(’U) HEQ lfle )/ [6 @/ ’ Vv]
1 -
_ —120( /271 ,iA0(v)/2 vr
lh [e 4 L]’
Qcp,,(”) - thq}ﬂ h o iA®(v )/2[ —ip®(v)/2 V7
1 .
- e~ i®(v)/2 [etwb(v)/{ /A
where the second qualities used [4, V,]
straightforward calculation gives that

—0=[nV,]. A

A, A,

O(v) = O (v) = OV (v) (4.16)
with
0(0)E.7) = YA ie(0) ). 1)
and
BE(0). (o)) =u(0)e(0) + 5 = o)) =5
(4.17)

Therefore, the inverse volume operator reads

126003-7



CONG ZHANG

PHYS. REV. D 104, 126003 (2021)

V() u(v)) = (ﬁ)B<c<v>u<v>>|c<v>,u<v>>

(4.18)
with
B(x) = |x|||x + 1/2]'3 = |x = 1/2|'3]3.

Taking advantage of the blocks defined in the last
section, we can now quantize the expression (4.3) to get
the operator b, ,

(4.19)

—

- in ®(v)) sin (A(v)0(v ~
o= 7 <<>4<ﬂ;32f2<<><>>ﬁ

+\/7$1n ﬂzAfZ \/7+2V (v

With this expression, the physical Hamitonian operator I-/I\A
reads

i, - Z(f)AﬂrhMHl Bl (421)

Since V, annihilates |, i) when A(v) = 0 or u(v) = 0, the
operator orderings in the first and second terms of b, ,
ensure that § A 18 densely defined on the entire H.

B. The action of the physical Hamiltonian operator

It is sufficient to present the action of f) A, instead of I-/I\A
itself. To calculate the action, we convert the trigonometric
functions in (4.20) to exponentials and define

Ba0 = 5i(v) + b (v) + B3(v) + Ba(v),  (4.22)
F IV 1)~ ). @20)
|

hoa(V) = hoa(0)) (Ao a(v) = hga(v)™) /A
b, (v) :_\/;U(htl),A( ) — ho, <167;ﬁ)2(£;§( ) = hpa(v) )\/VT

hoa(V) — hea(v)™)? /=
o 7l Tl
by(2) = 22V; AL(0)?
buv) =SV p(v+1) = p(o). (4.23)

Consider the action of operators fig, 5 (v)"hg ()" and g ()" he(v)™ at first. We have

- i oVIE(). ulo) — |e(p) o T AWE@) +ntm
Foa (6o (016001 u(0) = [¢l0) + 1 MO ELEY
[0 £ m g m
a0 (0110 (0) = | SIS ) (4.24)

Because /i 2 (v) and i o (v) shift only the components of ¢ and fiatv,ie. ¢(v)and u(v), b;(v), and h,(v) preserve the

values of ¢(1') and p(v') with o' # v. Thus we are only concerned on the actions of §;(v) and §,(v) on |¢(v). u(v)). A
straightforward calculation gives that

Bu(0le(o).u(e) = o I(W SO0 >+z|\c<v>+

L)) N
ﬂ(v)’é(v)—l/,,(v)> S (v)u(v)

- o 1 pu(w)l(v) -2
)l[u(v)E(v) ZI‘C() ,,(v)’g(v)—l/u(v>>)'

Since h;(v) is not symmetric, we also need to consider its adjoint b, (v),

1 ﬂ(v)C(v)+2>
u(v) ¢(v) +1/u(v)
1 u(v)(v) >

= [¢(v)u(v) u(v) ¢(v) 4+ 1/u(v)

+V/Iu(v)

(v) =

(v) +

(4.25)

whose action reads
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B0 1600 (0)) = = 2 BT + 2| 2 ) + o)

- |C(”)ﬂ(”)|‘ﬂ7(5)(v)ﬁ(/?( )+ ﬁ> - |c<v>u<v>|}ﬂ—(f)(?ﬁ(/?(v) u(v) i>

VRO —|'ff/g(2) ﬂ(v)—g(lv)>- (4.26)

For the operator §,(v), we have

- 2
Bu(0)le(o). (o) = =7 \/—<\/Iu O+ 2¢(0h) + 20 ) = (o)), ()

VIR = 2w a0 - ) ) (427)

For the operators §;(v) and B, (v), the basis |i,{) are their eigenvectors. Their actions are

b3 (0)[£(0), u(v)) = 27¢,, ;ﬂ(f/); ()L (v). p(v)), (4.28)

and

3 3 >
IO oo senC((o + DL+ 1P = sen @D PED. (629

|
Substituting the expression (4.25), (4.27), (4.28), and By this equation, the ji-scheme holonomies are not densely

(4-29) in.to 4.22), one ﬁnally. can get the action of ha,,  defined on H, since they cannot act on state E , 5) when
which will not be written again. b(v) = 0. Moreover, they are not commutative:
It is worth noting that the quantity
b(v) ={(v)u(v)
often appears in the right-hand sides of (4.25)—(4.29) as a 6.4 (v). hoo 5 (0)]IE. )
whole. Then, these equations can be simplified in more = |E +¢(v)(v(v) + 1)—13'”, b+ 2§L>
compact forms. To do this, we will use b = {p(v)},ecy(,) - 2 oo a2
instead of ji to re-label the basis |, /i). However, this re- =+ ¢(v)n(v)7'6,, 0+ 25,). (4.32)
labeling can only be defined for those |, i) satisfying
{(v) # 0 for all v, because this condition guarantees the R A
solvability of u(v) through v(v) = {(v)u(v). Given a state Even though these holonomies /iy 5 (v) and hg A (v) are
Z,v) with £(v) #0, V o, it has not well-defined for |Z, b) with b(v) = 0, the Hamiltonian
. . operator fj, , does. For b(v) = 0, it has
sgn(p(v))V/|p(v)I|1E.0) = BVAL,L(v)[. D).
V,IC.B) = 4npV AL |o(v)[|C. D) (4.30)
D, |0, D) =
According to (4.13), one has Ba.sl¢, ®)
ho.a(0)IE.B) = £ +¢(0)p(0)715,.0 +5,)
N S5 o For v(v) # 0, the formulas (4.25), (4.27), (4.28), and (4.29)
he a(0)[.0) =[C, 0 +6,). (4.31) " can be rewritten as

126003-9



CONG ZHANG

PHYS. REV. D 104, 126003 (2021)

v v = v D(U v - v v D(U) -1 v
Bu(olet0)n(0)) = = 2 (VRGT0) T 202 o)+ 2) = o)t "0 wt)
- e L o)) + \/|n<v>||v<v> =2 ™05 o) - 2)) (433)
A B b(v) +2 TN P, v(v) ”
B0 1200 0(0)) = =2 (BOTRGT+ 21| 0) o m(0)+.2) = o)) s 0 ) )
—|n<v>|¢<v>b(y()ﬂl n<v>>+\/|n<v>||n<v>—2|\c<v>"<”>‘2 )-2). (4.34)
b (0)IE(v), v(v)) = Sﬂ\/_ (VIp(@)[Iv(v) +2[[¢ () +2) =2v(v)[[¢(v), v(v))
[o(v)[[o(v) = 2[[{(v). 0(v) = 2)). (4.35)
. 272, vo(v)? NE(D). bl
b3(v)[¢(v), v(v)) _2/3\/ZC(U)ZB(D( DIE(v), v(v)), (4.36)
and
- 3 3 - o
BuC0).8) = YA (o)) fn(E((o -+ 1)EC0 -+ 17 = senC(o) 2P 5. (4.37)
As a well-defined Hamiltonian operator, I-/I\A should be ”ITI\AV/H <c| NWH, VY yeD
self-adjoint. Noting that the Hilbert space H is not . o .
separable, we thus need to choose a separable Hilbert [(Hay, Ny) — (Ny, Hpay)| < d”Nl/z‘//”zv vV yeD,
subspace 7 which is preserved by H . Given |Z,b) € H, a (4.38)

natural choice of the separable subspace is the one spanned
by (H)"[C.B) for all ne Zso. In H, we choose the
domain D of ITI\A as the subspace consisting of finite linear
combinations of the basis |E ,b) € H. Then, let us define a
self-adjoint operator in H as

N=14+ > (V

veV(y)

It is easy to shown that there exist numbers c, d € R such
that

<§1’b1|h1|C2’b2 4,6\/_

v v

where (-, -) denotes the inner product in 7{. Then according

to Theorem X.37 in [57], IL/I\A defined on D CH is
essentially self-adjoint.

V. PATH INTEGRAL FORMULATION

Let us define ; = 3, §;(v). By (4.33)—(4.37), one has
the matrix element of f)l- which reads

=2 [T 80098 wmme) Vi (0)02(0)]

(5§1( (01 (1)=2).£2 (1) (02(0) +1) Py (0).02(0) 42~ O, ()04 (0).22(0) (02 (0)=1) Py (1), (1)
= O, (o)1 (0).22(0) (02 (0)+1) Py (0) iy () T 541@)(1’1(v)+2),§z(v)(bz(v)—1)5b1(U)qbz(v)—Z)’
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<C1,Dl|f) |4:2,D2

4ﬂ\/_z [L20

v v'#p

X (B¢, (5) (01 (0)=1).22(0) (02 (0)+2) O, () 3 () +2

(@) V02 ()] [0y (2)]

l ) 2

= Og, (0) (01 (2)+1).¢2 (2)9 () O, (0),95 (v)

= 8, (0) (01 (1)=1)-L2(0)02() O, (1) 3 () T O, (0) (0 () +1) L) (02 ()=2) Oty () s (0)=2) (5.2)
<C1,D1|f)2|52,bz Sﬂ\/—zb:g (0.6 () Oy ()0, () V01 (0) [[D2()]
X (8%, (0).22(0) Oy (1),02(0)+2 = 262, (1).22(6) Py (1) 2 () T B2, ().2(0) Oy (0), 03 (0)2) (5.3)
27¢,
(C1.31]B318,.5,) = 2% \/—Z B(”2(”>)H5¢1(v’J,cz<v'>5n1<v/>,nz(v’J’ (5:4)

and

o o L 278, BV
(C1.01[94]¢5.05) = pﬁ

ZB 0, (v

Moreover, for the boundary term fﬁ;y =

(€101 |Hpgy |00, 0y) = BVAZ |, (Ub)|H5C|(v’),{z(y’)5b,(v’),bz(v’)

In order to simplify the matrix elements of f),-, consider
the space of almost periodic functions and define a func-
tional yu;, of these functions by

)= Tim — (5.7
TTJOQT/f )

Then, it can be verified that

Mmf/%U

010 = /R dup(x)e™, (5.8)
where 6, is the Kronecker delta. This formula provide an

approach to rewrite the Kronecker-delta functions
|

A (o ()¢, (1).B(02(1))Ca (0)

Taking advantage of this identity and (5.8), we finally get

)sgn(&o((v+1))5 (v +1)* —sgn(&s (v

|p(vy), one has

= sgn(, (1) sn(Z (1) Oin(| (1)) =, (v)).n(|B (o) (1)) /A (1)) -

H(SQ & ( 51’1 (v').oy(v')

(5.5)

(5.6)

|
appearing in the expressions of the matrix elements of
f)l-, so that we can simplify these expressions to get the final
path integral formula. Before proceeding further, let us
consider an issue on how to deal with the delta functions
taking the form 64w, (1))¢, (v).B(v,(v))cs(v)» Which appears in
the expressions (5.1)—(5.5). The deep idea is to reexpress
5A(D1(l/))fl(v),B(bz(v))Cz(v) such that it takes the form
8r(c,(0)-F(&r(v)),g With g independent of {;(v) and {5 (v).
Then, Lemma V.2 stated below can be used to rewrite the
transition amplitude in the standard path integral form, i.e.,
the form in present of the Lebesgue measure. Thus, we
need the identity

N 1 . ~
<Z.:lv b |Z§ (f)AL + f]z,z) Hbdy|€1v b2 |:H5§gn (&1 (v)).sgn(&y( 1))):| /zv Hdﬂh b(’U ))dﬂh(c(v ))

x exp [j{jiUn<cz<z/>>-1n<cl<vw>1c<vﬂ T i(o(0!) — ()b ()

v

XH(Chgl’Cz,Bz,b’Z)

(5.10)
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where

HE 5. y505.0) = Z{ (-2 ':;%2(”)') (exoin(
—exp [m(

bziv) >c(v)] —exp [iln<

1 1

—exp [iln( l(v)—l >c(v)} +exp {iln( o () +1

f 2/ 01 (v)oa (v 27¢,0,(v)?
VA n*(b (U))+WB(D2(U))

3 3
+%B<»2<u>>[sgn<cz<<v+1>>cz<v+1)2—sgn<cz<v>>cz<v>212}—WM e
(5.11)

bi?j) )c(v)+2ib(v)]
1

o]0 reso i

>c(v)+2ib(0)} —exp [iln( 1-

)c(v)—Zib(v)])

1- 1-

>c(y)—zib(v)D

1))

v, (v)

1+

1+ 1-

Then the matrix element of ¢d, with § := >us (f)AJ; + f)IM) - Ii;y, reads
(C1.011e|C5,8,) = (£1.8(1 + ieB)| Sy, By)

|:H5sgn (&1 (v)),sgn(¢s (v :|/,V Hdﬂh dﬂh ))
X exp {Zi(ln(léz(v’)l) —In(|Z; (v)])e(v") + i(02(2") — 1 (")) b(v')

v

- 5 - 5 >

x [1 +ieH (L1, 01,8y, 0,,b,8)] + O(€2). (5.12)

To simplify the last equation, we claim the following theorem
Theorem 1. Given F({In(|{(v)[),»(v)|},ey(,)) @ Schwartz function. Then

F({In(|Z(0)]). 2 (v) [ }reviy) = Z <51,51I(1 — ieh)|Z. D) F({In(|¢(0)]). 2(2) }eviy)

{In(|¢(@)).2(v)[}rev(
|:H(sbgn (¢1(v)),sgn(¢a (v :| /R“/ Hdb d;:(< )) db( )
X exp [Zi(ln(léz(v’)l) —In(|Z,(2")]))e(v) + i(0a(v") = 01 (¢/))b(v)

v

- 5 > 5 >

X (1 —ieH (.01, 85,05, b.€))F({In(|{(v)]). 0(0)[ },ev(y)) (5.13)

with db(v'), de(v'), d{(v'), do(v') being the Lebesgue measure.
This theorem can deduced straightforwardly by the following lemmas V.2 and V.3.
Lemma 2. Given a function

) =3 (i y)erx (5.14)

JeL

where L C RY is a finite lattice in RY, g(jl) is a real function of 4, and ,u(;{ y) satisfies that ,u(;f -) is a Schwartz function for
each /. Then
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Z/dﬂh eI F(x y) / dx/ dye~i0Fax f(x, y). (5.15)

with a being a constant.
Proof.—By definition,

1

— dx dye~ibta)x dx [ d (4, o) 5.16

o / ye T f(x,y) = / / yEﬂ y)e (5.16)
Because L is a finite lattice, one exchanges the order between the summation and the integrals to get

1 —ax
| dx/ dye~iraxf(x y) = Z/ dx/ dyu(%, y)eltod-=a) (5.17)

Since u(4, ) is Schwartz function for each 4, by using the inverse Fourier inversion theorem, we have

1 oo oo - o
_ dx d i(g(d)—y—a)x 1
| /_ yu(d, y)e (5.18)
dxel(9(A)—a)x d /1 —ixy 5.19
2;:/ ( T;z/ yu(d. y)e ) (5.19)
— (A, 9(3) - ). (5.20)
Thus
— dx/ dye i0Tax f(x y) Zﬂ (1. g(A) — ) (5.21)
JeL
where the right-hand side (rhs) is just >, [ duy(x)e ™ f(x,y) by definition of ,,(x). u

Lemma 3. Given a function H(x,y) taking the form

N
H(x, y1.y2) = ka()’h)’z)eig"x’ (5.22)

where we assume that f;(y;,y,) are continuous and, there exist some a and £ such that

Fr(i.y2)

< © 5.23
(5 0P+ (2P 2
Let F(y) € S(R), with S(R) being the space of Schwartz functions. Then
F(y) ZZ/duh(X)e’i(yz‘y'>x(1 +ieH(x, y1,y2))F(v2)
Y2
1 © o0 .
o [ [T a1 4 b ) FO2) (5.24)

To prove this lemma, one only needs to verify pu(k,y;,) € S(R) by (5.23). Then, Lemma V.2 can be applied to
get (5.24). R L
According to Theorem V.1, (£}, b;]e’Y|{,,b,) can be written as

<Cl b, |€lé[’|§2 ’32 |:H5§gn (&1 (0))sgn(&a( 11)):| <21ﬂ> Azw Hdb
X exp {Zi(ln(léz(v’)l) —In(|¢; (V)]))e(v') + i(02(v) — 0y (v/)) b (V)

v

x (14 ieH(Zlvgl,ELBZ’E’ ) + O(e?). (5.25)

126003-13



CONG ZHANG PHYS. REV. D 104, 126003 (2021)

It is noted that the rhs is understood as a functional on the space of Schwartz functions of Z , and b, as stated in
Theorem V.1. With these formulas, let us consider the transition amplitude A(¢;, Bi, e Bf, T)

A(Ci 91,8507, T) = (5, Bfle_"TTmI’Mi b;) = <Cf,5f|(€%f’)N|Ci,5i>

— 1; /’7N
—A}I_TBO Z ka+1,bk+1|€’ |Z.:kvbk>

“NkO

-/ HD ) Dlin(( (@) Dlo()]e TP (5.26)

where Eo = Z i Z’ Nil = Z £ BO = Bi and BN-H = Bf and, with excluding the boundary term,

S(E,B,az}’)—AszL(E,B,E,B)—ATd(Z C&“i”)c(v)—hd’;(t”)b(v)+éﬂ(z,s,a5)> (5.27)

HE$.2.5) Z{ (- fgﬂ’j?') <exp [i ln< 1+ ﬁ’) c(v) + Zib(v)} —exp [i ln< |
P >c(v) - zib(u)D

)<
-oofin{ |1+ 5 )etw] + ool |1 -1
(e (el gyl 2000 - - o)
o1+ g )ew] + o - et 200

In(v)|Z, 27¢ ,0(v)> 27¢ VA’
+ Zﬁ\/_ sin(b(v)) +WB p(v)) +TB(D(U))[S§%H(C((U+ D)¢(v+1)2
- sgn<c<v>>c<v>2]2} — BB, (). (5.28)

VI. THE EFFECTIVE DYNAMICS

To consider the classical limit # — 0, we introduce the classical fields as

o(v) =4apVALD(v),  {(v) =pVALL(v)  b(v) =

The nonvanishing Poisson brackets between these fields are

{b(v).0(v)} =G, {c(v).L(v)} = GL(v). (6.2)

In terms of the classical fields, H can be simplified as
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#E5.2.5) = Y{ (~ggmzn ) o (cos o 14 SV )+ sapvae i)
— cos {m( - 4”i$f?’ )CL%)] ~ cos [m( I +4”ﬂ2‘(/v;f§ )C;g)}

_4ﬂﬂff3 ()_ . ()| sin2(4x
+ cos {m(l 2(0) ) 8apV AL ,b(v )]) g ﬁ2Ai2 2(4apvV/ AL ,b(v))
27n(v)? B[ o(v) ]
327[2,6\/_ L) [AnpyVALS
27 b(v) 2 _sen(¢((v V)2 — v
iV gz O s D)EOPT | =BV (63)

To investigate the effect of the holonomy correction but ignore the 7-order correction, we consider the limit £, — 0 but
P*A¢?% = constant. Then H can be simplified to the form

HE5.25) = Z{W 1o(1)| sin [4V/A, b(v)] sin 4”@{?‘@@) ¥ 4nﬂmp@<v>}
e s VA 0) 4 S fsan(E(o-+ 1))+ 1) sl |
~ e (64

where it is used that

1 AnpVALL\ | 4npVAL,
f%,h‘('l =) =
1 o(v) 1 _ 4apVA
P [47zﬂx/&fﬁj = 2n()| 03
It is worth noting that the rhs of (6.7) returns to that of (4.3) with the assignment
0 R 1000 .
00) = Seamoey P = e
=4nl(v v) = o(v)
(v) = 4n{(v)b(v) I(v) 1200) (6.6)

In the following discussion, we a
term in (6.4) and redefine H({, v,

4np/AC
(v)

H(8.2.b) =Z{Wg(v)lsin [42p/AL,b(v)]sin
v p
LIGINN

1 1
TN 87 (v)? 2|b( )l

Lc(v) +4npv/AL ,b(v)

7 [0(v)[sin*(4zpV/AL ,b(v)) + [sgn(€(v+1)¢(v+1)* = Sgn(é(v))é(wz]z}-

(6.7)
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A. The equations of motion

According to the above discussions, we get an effective Hamiltonian as

1
G

[=g%
o
IS

He(C,5,8,b) = ——H(

™l

.0,C,b). (6.8)

9

Due to the Poisson brackets (6.2), the EOMs are

do(v)  b(v)(2sin[26(v) + ¢(v)] + sin [26(v)])

dr 2pVAE,
db(v) _ sin(b(v)) [2sin[b(v) + c(v)] +sin [b(v)] c(v) cos [b(w ol - 1 1 N2 — £

=S [ A £ cos[o(0) + 0] szl 2y C0F =Ll 1
df(v)  {(v)sin[b(v)]cos [b(v) + ¢(v)]

i BVAZ,
de(v) »(v) 5 C(v+ 1)? - g(v)2 g(v)2 —{(v—- 1)?
= (U ) 09
where

b(v) = 4zpVAL,b(v),  (v) =4npVAL, % (6.10)

In (6.9), we have assumed that {(v) > 0 without loss of generality, since, as seen below, sgn({(v)) is kept along the
concerning dynamical trajectary.

In order to discuss the continuous limit of the EOMs (6.9), we introduce the continuous variables b(x), b(x),
¢(x), which are related to the classical variables b(v), b(v), {(v) and c(v) via

EAY

(x) and

b(v) = Av)dxﬁ(x), b(v) = b(midy)  L(v) = E(midyy). (o) = L(U)dxax). (6.11)

With the continuous variables, (6.6) is rewritten as

(x) + b(x)b(x)

+
2(x)

Moreover, substituting the continuous variables into the EOMs (6.9) and considering the continuous limit of the lattice y,
we get

oY

K. (x) = , EX(x) = sgn@(x))g(x)z, K,(x) = 4ﬂ{,’(x)é(x), E?(x) =—*—. (6.12)

- 4ng(x)

- B(2sin [2b + €] + sin [2B))

o 2pVAL,
5= o) (2enfr ol £ ) L 2000
o = ¢ sin[;}\;%sf [:) +
0,8 = % + 27870, (i ax@) (6.13)

where
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b(x) = 4npV/A¢,b(x),

E(x) = dnpVAL, £

50r) (6.14)

The same EOMs as (6.13) can be obtained if one consider a system of the phase space of (B(x), b(x),{(x), &(x)), with the

nonvanishing Poisson brackets

{b(x).5(y)} = G3(x.y).

and the Hamiltonian

G

; I L5000 si b(x)] si
Heyr = —_A{W [5(x) sin 428 VAL, b()] sin | =7

1.
—— D
T o

In this sense, this system described by (6.15) and (6.16) are
the continuous limit of effective dynamics based on the
lattice y and encoded in (6.2) and (6.8). Since (6.16) is the
same as the effective Hamiltonian used in [28] if (6.12) is
substituted, (6.13) is the same as the EOMs used in [28].

B. A solution to the EOMs

The continuous effective Hamiltonian (6.16) returns to
the classical Hamiltonian (2.26) in the low curvature region
where b(x) < 1 and ¢(c)/0(x) < 1. As is known in [28],
solving the EOMs generated by the classical Hamiltonian
(2.26) gives the Schwarzschild metric in Lemaitre coordi-
nates. For this solution, all of the dynamical variables
depend only on x — ¢, which represents homogeneity of
the interior and the static feature of the exterior of the
Schwarzschild solution. In this section, we are also con-
cerned about the solutions depending only one x — #, that is,
solutions taking the form

b(x,t) = b(x—1),

E(x.1) = E(x —1).

b(x,1) = b(x 1),
é(x, 1) = é(x — 1),

Before proceeding further, it is helpful to investigate
constants of motion in the effective dynamics. As men-
tioned in (2.28), V(x) is a conversed charge in the classical
dynamics. Fortunately, this feature is kept in the effective
dynamics, because of 0 = {V(x), H.x}. In terms of the
continuous variables, V(x) is

E(x)0,E(x)
X)=—=2""
¢(x)
Since we are concern on the effective solutions which can

recover the Schwarzschild metric in the low curvature
region, it has

| S

(6.17)

—5(x)0,b(x) (6.18)

oY

(x)9
&(

with recalling the statements below (2.28).

V() = B2 g abw =0 (619)

~— ||Uqt

X
X

(x)|sin>(4npv/ AL ,b(x)) +

(200200} = GZx)a(x.) (6.15)
RS0 a(0) + 4ap VB2, b
()] 7 1 sgn(C(x))E(x)?))?
o St WP ] (616

Substitute the ansatz (6.17) in to the EOMs (6.13) and
(6.19). With denoting y = x — ¢, we have

_dﬁ(y) _ B(y)(2sin [2b(y) + €(y)] + sin [2b(y)]) (6.20)

dy ApVAL,

_db(y) _sin(b(y)) (2 sin [b(y) + &(y)] + sin [b(y)]
dy BVAL, 87pVAL,

d”wwmw+aw0

b(y)
1 1 (dl(y)*\2
_Sﬂg(y)ﬁii(y?( dy ) (621)
dZ(y)  Z(y)sin[b(y)] cos [b(y) +E(y)]
= A7, (6.22)
dz(y)  B(y) o ood (1 d@)?
S dy _4ﬂ§(y)2+2ﬂ§(y)2@<@ dy ) (6:23)
and
ey k) . db(y)
o =0 e

To get the solutions, the Egs. (6.20), (6.22), (6.23), and
(6.24) are chosen. A set of numerical results is shown in
Fig. 1. Since (6.21) is used to get the solution, we can use it
to check the accuracy of our solutions. Substituting the
numerical solutions achieved from (6.20), (6.22), (6.23),
and (6.24) into (6.21), we have the residuals plotted in
Fig. 2. According to the numerical results, fory = x —t —
—o0, the variables behaves as

(x _ t) — ea+b\x—t\f;l’ é(x _ t) =,

Er—1)=b

EaEmi-g

(x — 1) = rp, (6.25)
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FIG. 1. Solutions to (6.20), (6.22), (6.23), and (6.24). The initial data are chosen such that B(y,) = 62Fyo, b(vy) = — ~

6y’

L(vo) = GVFoyo)¥3, E(v) = 3%, and &'(yo) = 2(3/Foyo)~/? with y; = 10°¢, and F, = 10*#,. The initial data are choose by
considering the Schwarzschild solution with 2GM = F in Lemaitre coordinate at x — t = y,. The parameters are set to be A = 0.1 and

B = 0.2375.

where a, b, ¢, ry and d are constants. Thus, at y - —oo is
the spacetime is diffeomorphism to Nariai geometry taking
dS, x §? metric

ds? = —dr + (’3(?’ 2
¢

2
) dx? +22dQ?,  (6.26)

where the metric in terms of the variables b and g is given in

[28,34]. This result is the same as the results given in [28],

which is not surprising because the equations (6.20), (6.21),
x107%

7% L N B AR

(:L'—t)[p_l

FIG. 2. The residuals of (6.21) by substituting the numerical
solutions shown in Fig. 1.

(6.22) and (6.23) are the same as that used in [28]. Thus one
can refer to [28] for more details on this solution.
According to the analysis there, both the area of S? and
the dS radius of the Nariai geometry obtained in this model
are of quantum size. In other words, the current model
predicts a quantum final fate of Schwarzschild BH.
However, it should be emphasized that this is not credible
always, which will be shown below by discussing the scope
of the continuous effective descriptions.

Let us discuss the scope of continuous effective differ-
ential equations (6.20)—(6.23). At first, the derivation from
(6.3) to (6.7) requires

v(v) > 4npVAL,

Voevl). (627)

According to (6.11), this means
/ dxb(x) > 4zpVALS, Y veV(y).  (6.28)
e(v)

Let b,;,, be the smallest value of b(x,7). Since
fe(v) dxd(x) > 8xb,;,, where Sx denotes the coordinate
length of e(v), it is concluded that (6.28) can be satisfied
provided that

SxByiy > 4V AL, (6.29)

The solutions to (6.20)—(6.23) is determined by the
initial data. Meanwhile, the initial data are chosen such

126003-18
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FIG. 3. Dependence of b, on M for various values of A. As
shown in the figure, for M > 1, D,;, can be well approximated by
(6.30). In this plot, the values of «;, corresponding to A;, with
i =1, 2 are computed by (6.31). The parameters are chosen as
p = 0.2375.

that in the low curvature region the effective dynamics
returns to the Schwarzschild metric which depends only on
its mass M. As a consequence, the value D, as the
minimal value of the solution, is related to the mass of the
Schwarzschild spacetime to set the initial data. According
to our numerical computation shown in Fig. 3, the
correlation between b, and M, for M > 1, can be well
approximated by a formula of the form

Bin = a(2GM)7,. (6.30)

where « is some coefficient depends only on fv/A¢ s 1€,
a= a(ﬁ\/Zf p), because the coefficients in (6.20)—(6.23)
depends on pv/AZ » merely. The dependence of a on

pVAC » can be investigated numerically, which, as shown
in Fig. 4, is
a(BVAL,) = aypVA (6.31)

with ay = 3.0000. Therefore, for M > 1, b, is approxi-
mated by

Bouin = agBVAQRGM)Z,. (6.32)
Substituting (6.32) into (6.29), we finally obtain that

2GM
4

Art,
ag Ox

> (6.33)

P

which presents the scope of the continuous effective EOMs.
It should be emphasized that ox is the coordinate length of
each edge in a specific coordinate such that the effective
metric depends only on x —¢ and, takes the limit of
Schwarzschild metric in Lemaitre coordinate in the low

FIG. 4. Plot of the values a, introduced in (6.32), depending on
SVAC »- As shown in the figure, a depends on SV/A linearly.

More explicitly, @ = apfv/A with ay = 3.0000 according to the
numerical results shown here.

curvature region. Moreover, the above discussion assumed
that the lattice y is equidistant in this specific coordinate.

According to (6.33), ox should take large values to
enlarge the scope of the continuous effective EOMs.
However, since we used differentials to approximate the
differences in (6.9), a tension arises that éx cannot be too
large. To see more explicitly how this tension limits dx, one
notices that the approximations of differences by differ-
entials in (6.9) are

:@@w+n%¢wmg :

{12 =L()? L)’ -¢- 1)2>

ga(ﬂﬁm@uﬁ)

The last equations omit the dependence of all variables on ¢
for simplicity. That is, we are discussing the validity these
two equations for a fixed 7. Consider the first equation as an
example. According to (6.11), one has

I-2

7 N
I-2
—
<
N—
|
o
—
<
|
—_
SN—

(6.34)

x:mide(,,)

L v 2_r(p)?
NOLCARIOR

o ax <§2> (mlde(v))

1%@x&&> i
0,0(c)éx
1 + é(midk(n))

(6.35)

where ¢ and ¢’ are some points in e(v) and the mean-value
form of the remainder of the Taylor series is applied.
As mentioned above, in the region x — ¢ > 1, the solutions
to the effective continuous EOMs converge to the
Schwarzschild metric in Lemaitre coordinate, i.e.,
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o) = (3VF=1)
b(x,1) = 6xF(x — 1) (6.36)

with some constant F. Substituting these expressions into
(6.35), we have

Thus in the region x —¢> 1, the differentials can well
approximate the differences if 6x ~ 1. Moreover, because

{(x.1) keeps constant in the region x — ¢ < —1, the differ-
entials can well approximate the differences in this region
for any value of ox. As a summary, the approximation of the

differences by differentials is well behaved in the region

1 8,.(22)(mid, ) |x — #| > 1. Thus, we only need to check the validity of this
—(L(v+1)*=¢(v)?) :x:,—e(”)—i—o(éx/(x—t)). approximation in the region of |x —t| ~ 1. To do this, we
o(v) b(mid,(,)) substitute (6.11) into (6.9) and numerically compute the

(6,37) following dimensionless variables
|
ety (1.1) = — ¢, do(v,1) N (2sin [2b(v, 1) + ¢(v, 1)] + sin [2b(v, 1)]) ’
. o(v,7) dr 2pVA
db t i t 2 si t t i t
err, (v.1) = —£2 b(v.t) sin(b(v,)) [2sin[b(v, ) + ¢(v,7)] +sin[b(v, )] ¢, (v, cos [B(v, 1) + ¢(v, [)]]
= dr SVA 87V A n(v,
% x 3
_ P Tty 12— 1.1)2)2,
Be(0. )2 2n(o, 2 G T e A L)
err,(v,1) 1= — £, df(v,1) N sin [b(v, 1)] cos [b(v, 1) + ¢(v, 1)] 7
- {(v,0) dr pVA
2 de(v,t % 0,0 (C(+ 1,02 =C(v, 1) C(v, )2 =C(v—1,1)?
S’ U W SN U (GRS < At 10 L i WO
< v(v,t) dt 4rg(v, 1) (v, 1) (v, 1) v(v—1,1)
|
Figure 5 plots the values of max[erry|, max|err,|, &x by (6.33) are those satisfying 8x£7,' > 4.19 x 1072

max |err;| and max |err, | which are defined by

max |err,| == max |err, (v, t
X fery teRve)\(/(y)| ot 1)
max |err,| == max |err,(v, 1
X| é' teR,vE)\(/(y)| é(U’ )|’
= t
max [err | te[&g(y)krré(v, )]s
max lerr.| == max )|err£(v, 1)]. (6.39)

teR,veV(y

According to (6.33), the minimal values of 2GM f;l for a
fixed ox is (2GM£3") i = 4.19/(8x£5,"), which is 4.19 x
10~* for the case plotted in Fig. 5. Thus, the inequality of
(6.33) is satisfied for 2GM > 10°¢ »- Moreover, as shown

in Fig. 5, the values of max |err, |, max |err,, |, max |err,| and
max |err.| are tiny. Thus the solutions to the differential

equations (6.13) approximate well the solutions to the
difference EOMs (6.9) for large 2GM. Note that for large
2GM, 6x can be chosen small. However, for small 2GM,
this conclusion is no longer valid due to the large value of
the allowed 6x. This can be seen intuitively from the
numerical results. Figure 6 plots the values of max |err,|,
max |err,|, max |erry| and max |err.| depending on éx for

2GM = 1007 - For 2GM = 1007 »» the allowed values of

which are indicated by the red lines in Fig. 6. However, as
shown in Fig. 6, the values of max |erry|, max [err,],

max |err;| and max |err,| are no longer small for the

allowed ox. Thus the solutions to the differential equa-
tions (6.13) no longer well approximate the solutions to the
difference EOMs (6.9).

By this analysis, the discrete EOMs (6.9) have correct
classical limit only if the inequality (6.33) is satisfied and,
simultaneously ox is so small that solutions to (6.9) are
compatible with that of the continuous effective dynamics
which ensures that the classical Schwarzschild solutions are
recovered asymptotically. However, these two conditions
lead to opposite tendencies for the values of dox. According
to (6.33), 6x should be large so that (6.9) can be valid for a
large scope, which is contradictory to the second require-
ment that 6x should be small such that the continuous
EOMs can well approximate the discrete ones. This tension
prevent the value of dx to vanishing, because for vanishing
ox, the effective EOMs are no longer valid for any 2GM.
However, on the other hand, this tension requires dx to be
small enough, because otherwise the continuous EOMs
cannot give well-approximated solutions to the discrete
EOMs. This argument implies that ox should be some
finitely small value. Recalling that §x is the length of the
edges in y, we conclude that the current model does not
allow y to shrink to a continuous line, even though the
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max |err|

max |errc|

FIG. 5.
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minimal values of (2GM)¢," in this case is 47/ (apdx¢,") ~4.19 x 10%.

FIG. 6. The values of max |err,|, max |err, |, max |err;| and max |err,| depending on éx for 2GM = 100Z,, (black dots). 6x£,' =

il
108

@amy;!

|
10°

Plots of the values of max |err, |, max |err, |, max |err;| and max [err,| depending on 2GM for 5x = 107*7,,. By (6.33), the

4r/(ag(2GM)¢;,") is plotted by the red lines which indicate the allowed values of 5xZ,' by (6.33).
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classical theory is presented based on a continuous line.
Thus, the lattice structure underlying the current model is
fundamental. However, this conclusion does not mean that
the current lattice model never owns continuous limit.
Since 6x is small, the discrete EOMs can be well approxi-
mated by the differential EOMs (6.13), which can be
derived from a continuous Hamiltonian (6.16) together
with the Poisson brackets (6.15). Thus, the continuous
description of the lattice model is the model where the
phase space, consisting of fields (b(x), b(x),Z(x),&(x)) on
R, is endowed with the Poisson brackets (6.15) and the
Hamiltonian (6.16). This continuous description is usually
referred to as the effective dynamics and has been studied
in [28]. However, according to our analysis, this continuous
description is only valid for black holes with macro masses
satisfying (6.33) but not for small BHs. In other words,
macro BHs and small BHs could behave differently if the
LQG effects are considered.

VII. CONCLUSION AND OUTLOOK

This paper considers the loop quantum theory of spheri-
cally symmetric gravity coupled to Gaussian dusts where
the Gaussian dusts provide a material reference frame of the
space and time to deparametrize gravity. Classically, the
dynamics of this model can give the Schwarzschild solution
in Lemaitre coordinate. Thus this model provide an
approach to study the spherically symmetric BH. As in

the usual loop quantum theory, the present model is
constructed base on some graph y which is an 1-dimen-
sional lattice here. By using the ji-scheme to regularize the
physical Hamiltonian, we obtain an Hamiltonian operator
which governs the quantum dynamics. Then the quantum
dynamics is studied by the path integral formulation and an
effective action is obtained. With this effective action, an
effective continuous description of the quantum lattice
model is derived which is encoded in (6.16). Noted that
(6.16) is indeed the classical Hamiltonian with the hol-
onomy correction which is usually used in literature like
[28]. However, according to our analysis, this effective
continuous description is valid only if (6.33) holds. In other
works, this effective description, roughly speaking, is valid
for macro BHs but not for small BHs. Therefore, it is
natural to ask questions on the dynamics of small BHs.
Moreover, it is also interesting to introduce BH evaporation
to the current model and consider the issue on the final fate
of the evaporation. These topics will be left for our further
studying.
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