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In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute
gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is
computed as a function of the baryon chemical potential in the probe approximation. Then the equation of
state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-
Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the
star, which is similar to the one for the quark star. This similarity implies that the instanton gas given here is
a kind of self-bound matter.
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I. INTRODUCTION

Many analyses of the holographic quantum chromody-
namics (QCD) imply a schematic phase diagram shown by
Fig. 1, where μ and T denote the chemical potential of
the quark and the temperature of the system, respectively.
The solid curve represents the confinement/deconfinement
transition, which is obtained as the Hawking-Page tran-
sition points from the anti–de Sitter (AdS)-soliton to the
Reissner-Nordstrom (RN) background configurations
through the following bulk action

SBulk ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p �
Rþ dðd − 1Þ

L2
−
1

4
F2

�
; ð1:1Þ

for d ¼ 5 [1,2]. This bulk action is written by the Einstein-
Hilbert action with a negative cosmological constant,
dðd − 1Þ=L2, and (dþ 1)-dimensional Uð1Þ gauge field,
F2 ≡ FμνFμν. The first gravitational part is proposed as a
model dual to the Yang-Mills (YM) theory with strongly-
interacting flavor fermions, and the gauge-field part is dual
to the baryon-number current.
We notice that, for the bulk background of d ¼ 5, the

dimension of the boundary spacetime is effectively (3þ 1)

since one space dimension is compactified by the Sherk-
Schwarz compactification. The above action has been first
used to examine the electric superconductivity for d ¼ 3
[3–7] and theory with R-symmetry for any d [8].
Recently, Eq. (1.1) has been used as a bottom-up holo-

graphic QCD model to study color superconductivity
[1,2,9,10] in the region (C) of Fig. 1. The analysis has been
performed under the assumption that the Uð1Þ gauge field is
dual to the baryon number current. The model is extended
up to small Nc, where Nc is the number of colors and the
authors of Ref. [2] pointed out that the color superconducting
(CSC) phase could not be found for Nc ≥ 2. However, the
existence of the CSC phase has been pointed out when the
model is improved by adding the higher-derivative terms,
the Gauss-Bonnet term, to Eq. (1.1) [10].
Another point to be noticed is the dotted line shown in

Fig. 1. In the confined phase (A), baryons are constructed
from Nc quarks. Then, at a certain chemical potential, they
are assembled as nuclear matter. The region (B) is called the
nuclear matter phase. In previous studies, this phase has
been foreseen in terms of the top-down model [11–13],
based on the Sakai-Sugimoto D4/D8 model [14,15]. In
these models, the baryon is introduced as an instanton
which is a soliton constructed from the flavored vector
mesons.
Here, based on our bottom-up holographic model (1.1),

we study the nuclear matter according to the idea that it is
constructed from the instanton gas. In order to provide
baryons, we add the SUðNfÞ gauge-field sector to Eq. (1.1)
[11,14–16], where Nf is the number of flavors. Then the
dilute gas of instantons is examined at finite chemical
potential and at low temperature with the Chern-Simons
(CS) term which connects the instantons and the Uð1Þ
gauge field [15]. From the model of the nuclear matter
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given here, we can derive the equation of state (EoS). Then
it can be applied to the compact cold star (like the neutron
star) to estimate the relation of the mass and the radius.
For the deconfined phase (C), up to now, some holo-

graphic models have been applied to investigate the neutron
star with a quark matter core [17–19]. On the other hand,
the holographic investigation of the matter in the region
(B) has not been performed well to study the neutron star,
particularly for the mass-radius relation. Of course, several
investigations for baryons have been done with the
holographic models; see Refs. [20–25] for examples of
previous studies.
In our approach, instead of solving the equations of

motion, the flavored gauge fields are replaced by the
instanton solution given in R4 flat space with an instanton
of size ρ. The solution is regarded as a trial function of the
solutions of their equations of motion. Since, in our case,
the instanton is embedded in a deformed 4D space of the
curved 6D background spacetime, then the size of ρ is not
arbitrary, and it should be fixed at a suitable value [2,15].
This value is determined here by minimizing the free
energy of the system at ρ ¼ ρmin. Then the other physical
quantities (the free energy, the chemical potential, and
others) are obtained by using this ρmin and other parameters
of the theory. As a result, the resultant free energy can be
expressed as a function of μ [2]. Then, through this
approach, we can obtain the EoS of the instanton gas;
namely, the nuclear matter.
Another quantity which characterizes the instanton gas is

the speed of sound (Cs) of the system. We find the condition
of its value as 1=2 < C2

s < 1; although it preserves the
causality since it is smaller than unity, the lower bound is
1=2, which is large compared to that of the nuclear matter.
In this article, SUð2Þ flavored vector fields are intro-

duced. And the instanton-type soliton solution of the vector
fields is considered as the baryon, which can be observed
in the confined region as shown in Fig. 1. In the confined
phase, the CSC phase is realized for μ > 4.7 [2]. However,

when the backreaction is considered as in the present case,
this CSC phase region is replaced by the newly appeared
RN deconfined phase, which becomes dominant for μ >
1.7 [2]. Since we are considering the baryons in the
confined phase, we avoid discussing the EoS in CSC phase.
In the next section, our bottom-up model is proposed

by introducing a dilute gas of instantons. In Sec. III, we
explain how to embed the instantons in the confined
background metric. In Sec. IV the free energy of the
system is computed according to our method, and EoS for
the instanton gas is obtained at low temperature. In Sec. V,
using the EoS, the Tolman-Oppenheimer-Volkov (TOV)
equations for a compact star are solved to find the mass-
radius (M-R) relation. In Sec. VI, our results are compared
with the ones from nuclear physics and astronomical
observations. In the final section, the summary and dis-
cussions are given.

II. BOTTOM-UP CSC MODEL
WITH NUCLEAR MATTER

We start from the bottom-up holographic model which
is proposed as Yang-Mills theory with a color super-
conducting phase. It is given by the following gravitational
theory [2–4].

S ¼
Z

ddþ1ξ
ffiffiffiffiffiffi
−g

p
L; ð2:1Þ

L ¼ LGravity þ LCSC; ð2:2Þ

LGravity ¼ Rþ dðd − 1Þ
L2

; ð2:3Þ

LCSC ¼ −
1

4
F2 − jDμψ j2 −m2jψ j2; ð2:4Þ

Fμν ¼ ∂μAν − ∂νAμ; Dμψ ¼ ð∂μ − iqAμÞψ : ð2:5Þ

This describes (dþ 1)-dimensional gravity coupled to a
Uð1Þ gauge field, Aμ, and a charged scalar field, ψ . Here
we consider the case of d ¼ 5. The charge q denotes
the baryon number of the scalar ψ, and it is chosen as
q ¼ 2=Nc to represent the quark-Cooper pair formation. The
mass m is given to reproduce the corresponding conformal
dimension of the diquark operator dual to the scalar field ψ
with the charge q ¼ 2=Nc. Here, we put 1=2κ26 ¼ 1, and the
dimensionful Uð1Þ gauge-coupling constant is set as unit.
So, the metric is dimensionless and Aμ has dimension one as
in the (3þ 1)-dimensional case.
Previously, the above holographic model, has been

considered to be dual to the superconductor of the
electric charge [3,4] and of the R charge [6], and it was
recently extended to a theory dual of the color super-
conductor in [1,2,9].

Reissner Nordstrom

deconfined phase

C

AdS Soliton
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A

B
0

T

FIG. 1. A schematic phase diagram of QCD in (μ, T) plane.
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Here we add the sector of the SUðNfÞ gauge fields,
which is used to build the nuclear matter through the
instanton configuration, which generates the baryon num-
ber in QCD. Here, the instanton configuration is deformed
since it is embedded in a higher- dimensional curved space.

L ¼ LGravity þ LCSC þ LV; ð2:6Þ

LV ¼ −
1

4
trF2

SUðNfÞ; ð2:7Þ

where F2
SUðNfÞ denotes the two-form SUðNfÞ gauge field.

The coupling constant g2YM is set as one. The mass
dimension of the gauge field is taken to be one. Then, in
order to pick up the coupling of the baryon number current
and the instanton configuration, we add the CS term,

S ¼
Z

ddþ1x
ffiffiffiffiffiffi
−g

p
Lþ SCS: ð2:8Þ

We notice that there are two ways to proceed with the
analysis based on this model since both the matter and
the gravity fields are living in the same 6D spacetime.
Therefore, the matter fields are not confined to special
D-branes:

(i) So, in one way, we can solve the equations of motion
of all fields, gauge fields, and the gravity, in the same
way. In this case, the backreaction of the gauge fields
are included in the metric.

(ii) On the other hand, it is possible to restrict our
calculation to the probe approximation where the
equations of motion of the matter fields are solved
on a fixed background given by the solution of the
Einstein equations of LGravity. This approximation is
assured for the large gauge couplings.

Hereafter, we proceed the analysis according to the probe
approximation (ii). The matter parts are considered as
the probe of the system. So, first we fix the gravitational
background by solving LGravity.

A. Instanton in R4

Before solving the equation of motion of our model, the
ansatz for the Uð1Þ gauge field and the instanton configu-
rations for SUð2Þ gauge fields are given. The coordinates
are denoted as ðξ0; ξ1; ξ2; ξ3; ξ4; ξ5Þ ¼ ðx0; x1; x2; x3; w; zÞ.
Then, we set the ansatz for Uð1Þ gauge field as

Ab ¼ AbðzÞδ0b: ð2:9Þ

The SUð2Þ vector fields are set as

f⃗1 ¼ Fi
abτi; ð2:10Þ

and the following ansatz are imposed,

ðf⃗1Þij ¼ Qðxm − am; ρÞϵijkτk; ð2:11Þ

ðf⃗1Þiz ¼ Qðxm − am; ρÞτi; ð2:12Þ

where ρ (am) denotes the instanton size (position),
ϵ123z ¼ 1, i, j ¼ 1; 2; 3, and m ¼ 1;…; 4, where x4 ¼ z.
Then the SUðNfÞ vector part (2.7) is given for Nf ¼ 2 as

LV ¼ −
3

2
Q2½ðg11Þ2 þ g11gzz�: ð2:13Þ

In order to see the baryon, Q is given as an instanton
solution in flat 4D space fxmg [15],

Q ¼ 2ρ2

ððxm − amÞ2 þ ρ2Þ2 : ð2:14Þ

However, in general, this is not a solution of our bottom-up
model since this configuration is embedded in a curved space.
So, here we introduce it as a trial function which is supposed
to be a solution of the system under an appropriate condition.
The trial function is given in our formulation such that the
size parameter ρ of the instanton configuration is determined
to satisfy the variational principle of the energy density in
our bottom-up model. We determine it by minimizing the
embedded instanton energy as in Refs. [13,15]. We notice
that there is an another method giving Q—including its
z dependence—by solving the embedded equations of
motion [12]. Here we solve only for the size parameter.
According to the above strategy, we study the multi-

baryon state by replacing QðzÞ by the multi-instanton form
with the dilute gas approximation. Then we rewrite Q as

Q2 ¼
XNI

i

4ρ4

ððxm − ami Þ2 þ ρ2Þ4 ; ð2:15Þ

where the overlap among the instantons are suppressed in
obtaining Q2. This point is checked for our solutions.
In the case of the flat space in R4, we find the energy

density as a sum of each single instanton,

Z
d4ξmQ2 ¼ 2NI

Z
∞

0

dzq̄ðzÞ2 ¼ 2π2

3
NI; ð2:16Þ

where

q̄2 ¼ π2ρ4

2ðz2 þ ρ2Þ5=2 ; ð2:17Þ

for the case of a dilute gas, where the interactions between
instantons are neglected. Then the result is given by one
instanton “mass” times its number, NI.
In the present case, the instantons are embedded in a

curved space. The metrics are functions of the coordinate z.
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This implies that the state of the baryon is affected dynami-
cally by the gluons. In other words, the baryon is stable
when it is embedded in the background corresponding to the
confined phase. Furthermore, these baryonswould construct
a nuclear matter like the neutron star as we see below.

III. LOW TEMPERATURE CONFINED PHASE
AND THE FOURTH COORDINATE z

We suppose the nuclear matter would be the gas of
instantons made up of the SUð2Þ gauge fields in the confined
phase. The spacetime background solution, which is dual to
the low temperature confined phase, is given by LGravity at
low temperature as the AdS-soliton solution. It is obtained as

ds2 ¼ r2ðημνdxμdxν þ fðrÞdw2Þ þ dr2

r2fðrÞ ; ð3:1Þ

where

fðrÞ ¼ 1 −
�
r0
r

�
5

; r0 ¼
2

5Rw
; ð3:2Þ

and 2πRw denotes the compactified length of w, which
denotes the coordinate of the compact S1. We notice that this
solution is also a backreacted one when the SUð2Þ gauge
fields are set to be zero. In this case, the phase diagram in the
μ–T plane is given in Ref. [2].
Here we restrict the region of the parameters, T and μ, to

the confined phase. In fact, under the configuration (3.1), one
finds a linear potential between the quark and antiquark by
evaluating the Wilson loop [26]. Hence the vacuum stays in
the confined phase, and the instanton number is identified
with the baryon number. Then, in this confined phase, we
can examine the nuclear matter through the gas of instantons.

A. Coordinate z and embedding of the instanton

In proceeding the analysis mentioned above, it is neces-
sary to choose the coordinate z carefully. For example, we
may choose the four coordinates to make the instanton as

ðξ0; ξ1; ξ2; ξ3; ξ4Þ ¼ ðx0; x1; x2; x3; rÞ; ð3:3Þ

namely as z ¼ r. In this case, using (2.13) and (3.1), we have

SV ¼
Z

d6ξ
ffiffiffiffiffiffi
−g

p
LV;

¼
Z

dx0dx1dx2dx3dwdrr4
�
−
3

2
Q2

�
1

r4
þ fðrÞ

��

¼
Z

dx0dwdrr4
�
−
3

2
2NIq̄2

�
1

r4
þ fðrÞ

��

¼ NI

Z
dx0dwdrr4

�
−
3

2

π2ρ4

ðr2 þ ρ2Þ5=2
�
1

r4
þ fðrÞ

��
:

ð3:4Þ

Here we find a logarithmic divergence in the integration
over r. It is understood as follows:

SV ∝
Z

∞

r0

drr4
�
−
3

2

π2ρ4

ðr2 þ ρ2Þ5=2
�
1

r4
þ fðrÞ

��

∼
r→∞

Z
∞
dr

�
−
3

2

π2ρ4

r

�
∼ −

3

2
π2ρ4 logð∞Þ: ð3:5Þ

This fact implies that we should reset z to another coordinate
which leads to a finite energy density of the instanton.
A clue to finding such coordinate is seen in the top-down

model of D4/D8 model [2,14,15]. In the case of the top-
down model, D8-flavor brane is embedded in a set of
special coordinates, which provide a flat space of the r–w
plane near the point r ¼ r0 by avoiding a conical singu-
larity. This is performed in the present case by changing the
coordinates from ðr; wÞ to ðz; θÞ as,

r5 ¼ r50 þ r30z
2 ≡ k; ð3:6Þ

θ ¼ 5

2
w: ð3:7Þ

In fact, in this case, the two dimensional part of (3.1) is
rewritten as

ds2ð2Þ ¼ r2fðrÞdw2 þ dr2

r2fðrÞ

¼ 4

25

�
r0
r

�
3
�
dz2

r2
þ z2dθ2

�
: ð3:8Þ

The second equation shows that the two dimensional metric
is the polar coordinate of 2D flat space. Hereafter, we take
r0 ¼ 1 for simplicity as in the top-down case. In this
coordinate, the bulk 6D metric is written as

ds2¼k2=5ημνdxμdxνþ
4

25
k−3=5ðk−2=5dz2þz2dθ2Þ; ð3:9Þ

where k ¼ 1þ z2.
Here, noticing

ffiffiffiffiffiffi−gp ¼ ð4=25Þz, the energy of the
embedded instantons is given as

SV¼
Z

dx0dx1dx2dx3dz
4

25
z

�
−
3

2
Q2

�
k−4=5þ25

4
k3=5

��

¼NI

Z
dx0dz

4

25
z

�
−
3

2

π2ρ4

ðz2þρ2Þ5=2
�
k−4=5þ25

4
k3=5

��
;

ð3:10Þ

where the factor
R
dθ ¼ 2π is absorbed to the gauge

coupling constant. We can assure the finiteness of the z
integration of the above action.
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B. CS term

The baryon number is given by

NB ¼ 1

32π2

Z
d3xdzϵm1���m4 trðFm1m2

Fm3m4
Þ: ð3:11Þ

Then, the coupling of A0 to the baryon number is given by
the following CS term,

SCS ¼ κCSϵ
m1���m4

Z
d4xdzA0trðFm1m2

Fm3m4
Þ

¼ 24κCS

Z
d4xdzA0Q2

¼ 48nκCS

Z
d4xdzA0q̄2; ð3:12Þ

where

n ¼ NI

V3

; V3 ¼
Z

d3x ¼
Z

dx1dx2dx3: ð3:13Þ

IV. EFFECTIVE ACTION AND THE SIZE
OF THE INSTANTON

The matter action with embedded instantons is obtained
here as

Smatter ¼
Z

d6ξ
ffiffiffiffiffiffi
−g

p �
−
1

4
F2 −

1

4
trF2

SUð2Þ

�
þ SCS

¼
Z

d4xdz

�
1

2
zk3=5A0

0
2 − nz

12

25
q̄2
�
k−4=5 þ 25

4
k3=5

�

þ nn0A0q̄2
�
; ð4:1Þ

where A0
0 ¼ ∂zA0ðzÞ and n0 ¼ 48κCS. In order to estimate

this action, we solve the equation of motion of A0ðzÞ. It is
obtained as

−∂zðzk3=5A0
0Þ þ nn0q̄2 ¼ 0: ð4:2Þ

Then we have

zk3=5A0
0 ¼ d̄ ¼ π2

6
nn0

2z3 þ 3zρ2

ðz2 þ ρ2Þ3=2 þ c: ð4:3Þ

Here, c denotes an integration constant of Eq. (4.2) over z.
We take c ¼ 0 to set as d̄ðz ¼ 0Þ ¼ 0. Due to this
condition, the matter action, Smatter of (4.1), is written as

Smatter ¼
Z

d4x

�
μQ̄ −

Z
dz

�
d̄2

2zk3=5

þ nz
12

25
q̄2
�
k−4=5 þ 25

4
k3=5

���
; ð4:4Þ

where the chemical potential μ and the charge density
Q̄≡ d̄ð∞Þ are given as

μ ¼ A0ð∞Þ ¼
Z

∞

z1

dz
d̄

zk3=5
þ A0ðz1Þ

¼
Z

∞

z1

dz
d̄

zk3=5
; ð4:5Þ

Q̄ ¼ d̄ð∞Þ ¼ π2

3
nn0; ð4:6Þ

where z1 is an arbitrary positive value and A0ðz1Þ is set as

A0ðz1Þ ¼ 0; ð4:7Þ

which is the boundary condition in solving the differential
equation of A0ðzÞ, Eq. (4.3). Then the free energy density E
of the instanton system is given as

Smatter ¼ −
Z

d5ξEðρ; μÞ ð4:8Þ

Eðρ;μÞ¼
Z

dz

�
d̄2

2zk3=5
þnz

12

25
q̄2
�
k−4=5þ25

4
k3=5

��
−μQ̄:

ð4:9Þ

A. Size of the instanton

The free energy density Eðρ; μÞ in (4.9) is given as a
function of ρ for fixed n; n0; z1. Then we find the value of
ρ ¼ ρmin where Eðρ; μðρÞÞ takes its minimum for a set of
ðn; n0; z1Þ; for this ρmin, μ and Eðρ; μÞ are determined.
Repeating this procedure by changing only the value n of
the set ðn; n0; z1Þ, we find different ρmin. As a result, we
obtain the relationship between μ and Eðρ; μÞ.
We notice that the results obtained in this way depend

on the other two parameters ðn0; z1Þ. We give a
comment related to the parameter z1. For z1 ¼ 0, we
have a problem that the values of μ and E at ρ ¼ 0 are
divergent,

μjρ→0 ¼
Z

∞

0

dz
d̄ð∞Þ
zk3=5

∼
z→0

d̄ð∞Þ
Z
0

dz
z
→ þ∞; ð4:10Þ
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Eðρ ¼ 0; μÞj ∼
z→0

Z
0

dz

�
−
d̄ð∞Þ2
2zk3=5

�
→ −∞: ð4:11Þ

In the present model these divergences are evaded by
setting z1, the lower bound of z, at a finite value. On the
other hand, in the case of the top-down model [13], there
are no such divergences. In fact, we can see that μ is finite
even if ρ is zero for z1 ¼ 0. Therefore, we expect the
existence of some improvement of the present bottom-up
model to resolve the above divergences. Here, this point
remains as an open problem, and z1 is introduced as a
simple cutoff parameter for the above undesirable infrared
divergences.

B. EoS for nuclear matter

By giving n; n0; z1, (which are the parameters of the
present bottom-up model), μðρÞ and EðρÞ are calculated
according to the Eqs. (4.5) and (4.9) as functions of ρ.
Then a minimum point of EðρÞ is found at ρ ¼ ρmin. Thus,
we can obtain EðρminÞ and μðρminÞ for the given parame-
ters n; n0; z1.
Repeating this procedure by changing only n with

ðn0; z1Þ fixed, we get the relationship of μ and E. From
this relationship we obtain the EoS of the instanton gas as
mentioned above.
In Table I, we show a resultant example of such

calculations for n0 ¼ 1.5, z1 ¼ 0.1. The regions of the
calculations are restricted to the region for μ < 1.7 [2]. On
the other hand, the pressure p, which is given by p ¼ −E,
of the instanton gas is negative for μ < μc ∼ 0.17. So in this
region, the gas is in an undesirable phase as a nuclear matter
considered here.1

Thus, we find that the stable nuclear matter exists in
the region, 1.7 > μ > μc ∼ 0.17. In this region of the
nuclear matter, its dilute gas picture is reasonable since
vmin ∼Oð10−4Þ ≪ 1, where vmin ¼ 4

3
πρ3minn indicates

the volume which is occupied by instantons in a unit 3D
volume.
Here we proceed with the analysis, and we can arrive at

the following approximate formula

p ¼ aμðμ − μcÞ; ð4:12Þ

where a ¼ 0.13 and μc ¼ 0.17 (see Fig. 2). Then using
(4.12), the energy density is given at T ¼ 0 as [18]

ϵ ¼ μq − p ¼ μ
∂p
∂μ − p ¼ aμ2; ð4:13Þ

and the speed of sound is obtained as

C2
s ¼

∂p
∂ϵ ¼ ∂p=∂μ

∂ϵ=∂μ ¼ 1 −
μc
2μ

: ð4:14Þ

This leads to the following bound of C2
s ,

1

2
< C2

s < 1: ð4:15Þ

We notice that the lower bound 1=2 is fairly large compared
to that of the ordinary nuclear matter. We should however
notice that the constraint (4.15) for C2

s comes from the
formula (4.12), which is an approximate formula available
at small μ. It is possible to improve (4.12) by adding
correction terms of higher powers of μ. For example,
by adding a term like μ4, we can find a new formula,
p ¼ a0μðμ − μ0cÞ þ b0μ4 with appropriate values for the
parameters, a0; μ0c; b0. In this case, we can see that the
maximum value of Cs is realized at μ smaller than 1 and its
maximum value is suppressed from 1, then it decreases to
Cs ¼ 1=

ffiffiffi
3

p
in the large μ region. However, as we can see,

the correction term of μ4 becomes small in the small μ
region. Then it is difficult to suppress the lower bound of
1=2. We find a small value of sound speed in region of
0 < C2

s < 1=2 for μ < μc, where μcð≠ μ0cÞ denotes the
critical point and it satisfies pðμcÞ ¼ 0. In this region of
μ, however, the pressure p is negative, then the instanton
gas cannot make a nucleon matter like a star. This implies
that our model cannot cover the low-density part of
the normal nuclear matter, in which the sound velocity
decreases to zero from its upper bound ð1= ffiffiffi

3
p Þ. How to

overcome this point remains as a future problem.
In this sense, the nuclear matter given here might be

a special one. Our model is considered in a restricted
region of density or μ, μc < μ < 1.7, where 1.7 denotes the
transition point to the deconfined RN phase. Therefore, we
continue our analysis by using a simple model with (4.12)
and (4.13), and we arrive at the EoS of the nuclear matter
given as the instanton gas. It is written as

p ¼ ϵ −
ffiffiffiffiffi
aϵ

p
μc: ð4:16Þ

TABLE I. EoS of the nuclear system at low temperature for
n0 ¼ 1.5, z1 ¼ 0.1, and vmin ¼ 4

3
πρ3minn.

n μðρminÞ EðρminÞ ρmin vmin

0.005 0.0688 0.00031 0.01 2.09 × 10−8

0.01 0.138 0.0000393 0.02 3.35 × 10−7

0.015 0.209 −0.00022 0.03 1.70 × 10−6

0.02 0.275 −0.00178 0.04 5.36 × 10−6

0.03 0.411 −0.00829 0.06 2.75 × 10−5

0.05 0.68 −0.0368 0.09 1.52 × 10−4

0.1 1.335 −0.2075 0.13 9.2 × 10−4

1The negative pressure state might be constructed under a
delicate balance of two kinds nuclear forces [27,28]. Although
this point is very interesting, we will discuss it in future work.
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C. Alternative approach to find the EoS

In the present scheme, the free energy density (4.9) takes
n, n0, ρ, and z1 as independent variables. Among them, n0
is an intrinsic parameter of the theory and ρ is determined
dynamically such that E takes its minimum value, while z1
is set to be a plausible value for the moment. The free
energy density is expanded in a power series of n,

Eðn; ρ; n0; z1Þ ¼ nc1ðρÞ − n2n20c2ðρ; z1Þ; ð4:17Þ
in which

c1ðρÞ ¼
12

25

π2ρ4

2

Z
∞

0

dz
z

ðρ2 þ z2Þ5=2
�
ð1þ z2Þ−4=5

þ 25

4
ð1þ z2Þ3=5

�
; ð4:18Þ

c2ðρ; z1Þ ¼
�
π2

3

�
2
Z

∞

0

dz
1

ð1þ z2Þ3=5
�
1

2

2z2 þ 3ρ2

ðρ2 þ z2Þ3=2

−
1

8

zð2z2 þ 3ρ2Þ2
ðρ2 þ z2Þ3

�

−
�
π2

3

�
2
Z

z1

0

dz
1

ð1þ z2Þ3=5
1

2

2z2 þ 3ρ2

ðρ2 þ z2Þ3=2 :

ð4:19Þ

In order to change the independent variable from n to μ,
we notice that μ can be written as

μðn; ρ; n0; z1Þ ¼ nn0hðρ; z1Þ ð4:20Þ

with

hðρ; z1Þ ¼
π2

6

Z
∞

z1

dz
1

ð1þ z2Þ3=5
2z2 þ 3ρ2

ðρ2 þ z2Þ3=2 : ð4:21Þ

Now, eliminating n by (4.20), the free energy density is
rewritten as

E ¼ −
c2ðρ; z1Þ
ðhðρ; z1ÞÞ2

μ2 þ c1ðρÞ
n0hðρ; z1Þ

μ: ð4:22Þ

From Eq. (4.22) one finds that the coefficients (a and b) and
the critical chemical potential (μc) are given by

a¼ c2ðρ; z1Þ
hðρ; z1Þ2

; b¼ c1ðρÞ
n0hðρ; z1Þ

; μc ¼
c1ðρÞhðρ; z1Þ
n0c2ðρ; z1Þ

:

ð4:23Þ

Given μ, z1, and n0, the minimum point of E (i.e., the
maximum point of p) in the ρ space can be sought
numerically.
The minimum energy point depends on the variable

which is taken to be fixed. Actually, two types of differ-
ential coefficients have different values as

�∂E
∂ρ
�

n
−
�∂E
∂ρ
�

μ

¼
�∂E
∂μ
�

ρ

�∂μ
∂ρ
�

n
¼ −

�∂E
∂n
�

ρ

�∂n
∂ρ
�

μ

:

ð4:24Þ

At the point ρ ¼ ρmin such that ð∂E=∂ρÞn ¼ 0, it holds that

�∂E
∂ρ
�

μ

¼ −
�∂E
∂μ
�

ρ

�∂μ
∂ρ
�

n
¼ ð−bþ 2aμÞnn0hρðρ; z1Þ:

ð4:25Þ

In (4.25), one finds that

hρðρ; z1Þ≡ ∂hðρ; z1Þ
∂ρ

¼ −
π2

2ð2a0Þ
Z

∞

z1

dz
1

ð1þ z2Þ3=5
ρ3

ðρ2 þ z2Þ5=2 < 0;

ð4:26Þ

−bþ 2aμ ¼ aðμ − μcÞ þ aμ > 0; ð4:27Þ

in the present situation, i.e., a > 0 and μ > μc. Therefore,
we conclude that

�∂E
∂ρ
�

μ

< 0 ðat ρ ¼ ρminÞ: ð4:28Þ

This means that the minimum energy point along an
n-fixed curve has much lower energy points towards the
ρ-increasing direction with μ being kept constant. However,
the problem is whether the minimum energy significantly
depends on the fixed variable or not.

z1 0.1

For n0 1.5

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

0.5

P

FIG. 2. p ¼ −EðμÞ versus μ at stable instanton size ρmin near
the phase transition point μc ¼ 0.17. The solid curve denotes
the numerical calculations, and the dotted curve represents
p ¼ 0.13μðμ − μcÞ.
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To estimate the difference between the two types of
minimum energies, one should continue numerical calcu-
lations on E from ρmin by fixing μ and by increasing ρ until
one finds another minimum energy density E0

min. In the
range of 0.015 ≤ ρ ≤ 0.1 according to Table I, the calcu-
lations make the difference of the minimum energies
explicit quantitatively such as ðE0

min − EminÞ=Emin ≲ 0.028.
We may consider that such differences do not affect the

characteristic features of the EoS, and we again employ n as
the independent variable of E in the succeeding sections.

V. TOV EQUATION AND M-R RELATION OF
NEUTRON STARS

The TOV equations for a star with mass m, and p as the
radius r in the star are given as

dp
dr

¼ −Gðϵþ pÞ mþ 4πr3p
rðr − 2GmÞ ; ð5:1Þ

dm
dr

¼ 4πr2ϵ: ð5:2Þ

Here, G denotes the gravitational constant. They can be
solved by using the EoS given in (4.16) with the boundary
condition, pðr ¼ 0Þ ¼ pc andmðr ¼ 0Þ ¼ 0. Solving these
equations we obtain the mass of the star,M ¼ mðRÞ, and its
radius R, where R is defined by pðRÞ ¼ 0.
In order to obtain the numerical results with dimension-

ful quantities, we must adjust the scale parameters for
each dimensionful quantity (x̃). To do so, the above
TOV equations are rewritten by using the dimensionless
quantities as [19]

dp̃
dr̃

¼ −Bðϵ̃þ p̃Þ m̃þ 4πAr̃3p̃
r̃ðr̃ − 2Bm̃Þ ; ð5:3Þ

dm̃
dr̃

¼ 4πAr̃2ϵ̃; ð5:4Þ

where

A ¼ r30ϵ0
m0

; B ¼ Gm0ϵ0
p0r0

; ð5:5Þ

and the various variables (x) are replaced by the dimen-
sionless quantities (x̃) by using its typical dimensionful
value x0 as x ¼ x0x̃. For example, we rewrite as p ¼ p0p̃.
Here we give a comment on the replacement, ϵ ¼ ϵ0ϵ̃

and how ϵ0 is determined. In order to solve the TOV
equation, ϵðrÞ in the equation is replaced using Eq. (4.16)
as a function of pðrÞ,

ϵ ¼ aμ2c
4

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

aμ2c

s !
2

: ð5:6Þ

Similar to the above, we introduce the dimensionless
quantities as a ¼ a0ã, μc ¼ μ0μ̃c, and

ϵ ¼ ϵ0ϵ̃; ð5:7Þ

by imposing reasonable conditions

ϵ0 ¼ p0 ¼ a0μ20: ð5:8Þ

Then in Eqs. (5.3) and (5.4), we find

ϵ̃ ¼ ãμ̃2c
4

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p̃

ãμ̃2c

s !
2

; ð5:9Þ

where we put the dimensionless number as ãμ̃2c ¼
0.13 × 0.172 ¼ 3.76 × 10−3.
Then the solutions of (5.3) and (5.4) with A ¼ B ¼ 1 are

equal to the one of (5.1) and (5.2) with G ¼ 1. Thus, the
solution of the latter equations are translated to the one
of the former ones as shown in Fig. 3.; it is given
for r0 ¼ 3.0 km in natural units. In this case, we find
m0 ¼ 2.03 M⊙

2 and ϵ1=40 ¼ 0.896 GeV, which provides
physical units to the quantities given in the Table 1. For
example, the energy density of the center of the star, whose
mass is about two solar masses, is given by 0.00242 GeV4.
This is about twice as large as the one of normal nuclear
matter.
We can see that the radius and the mass increase with

increasing pc, the central value of the pressure. The
resultant curve rotates anticlockwise toward the smaller
radius in the large mass region. However from the point II
to the point III in Fig. 3, the state would be unstable since
∂MðϵcÞ=∂ϵc < 0 [19]. On the other hand, in the region
from I to II, we can see the behavior ∂MðϵcÞ=∂ϵc > 0.

III
II

I

0 2 4 6 8 10
R km

0.5

1.0

1.5

2.0

2.5

M MSolar

FIG. 3. Plot of the neutron mass MðRÞ (in units of solar mass
M⊙) versus the radius R for p ¼ ϵ −

ffiffiffiffiffi
aϵ

p
μc [or p ¼ aμðμ − μcÞ],

μc ¼ 0.17, and a ¼ 0.13.

2The symbol M⊙ denotes the solar mass.
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Thus, the results given here indicate the possibility of the
existence of a star with ðM;RÞ ∼ ð2 M⊙; 10 kmÞ.

VI. COMPARISON WITH
OBSERVATIONAL DATA

There are some important observational data which can
constrain the theoretical EoS. We now have at least three
important constraints for the M-R relation;
(1) Two solar mass (2 M⊙) neutron star observation

from the Shapiro-delay measurement [29,30].
(2) The radius constraint from GW170817 via the

gravitational wave observation. The actual constraint
is 9.0 km<R<13.6 km for M ¼ 1.4 M⊙ [31–33].

(3) The upper bound of M for cold spherical neutron
stars which is estimated from no detection of
relativistic optical counterpart in the analysis of
GW170817. The actual limit is estimated as the
range 2.15 M⊙–2.26 M⊙ [34].

To support 2 M⊙ neutron stars in the theoretical calcu-
lation, we need a sufficiently stiff EoS which is closely
related to the large value of the speed of sound. Then, the
pressure of the matter in the inner neutron star core should
be large. From the second constraint—the radius is rela-
tively small in the moderate M region—it requires that the
pressure of the matter in the outer neutron core should be
relatively small. It is interesting that our bottom-up model is
quite simple, but our EoS can manifest the 2 M⊙ constraint
and the restriction that the M-R curve must go through
9.0 < R < 13.6 around M ∼ 1.4 M⊙. However, a too rigid
EoS is not preferable because of the third constraint.
Unfortunately, the maximum mass Mmax overshoots the
2.15 M⊙–2.26 M⊙ constraint, but we can expect that there
are some phase transitions at high density such as the chiral,
deconfined, and color superconducting phase transitions
which we do not consider in this study. Then, the EoS can
be softer than the present one at high density and thusMmax
should be smaller than the present value. Particularly, the
EoS becomes soft if there is a first-order phase transition;
for example, see Ref. [35].
It should be noted that the above constrains can restrict

the large and moderateM regions, but the lowerM region is
not restricted so much. Of course, there are several nuclear
theoretical EoS and thus we can qualitatively discuss the
lower M region where the low density part of the EoS
dominates the M-R curve. With our EoS, the M-R curve
flows down to the bottom left, but severalM-R curves with
different EoSs flow down to the bottom right. This result
may be induced from the fact that our C2

s cannot be less
than 1=2 even in a sufficiently low-density region. Such
behavior is similar to the M-R curves obtained with EoS
proposed in Ref. [36]; the actual behavior of the curves can
be seen in Refs. [37,38] denoted as “SQM1-3” and these
EoS which contain the quark matter make self-bounded
neutron stars which do not have minimum masses. The
tendency of the M-R curves in the small M region in our

model may be modified when we suitably introduce
“interactions” to the present model because we employ
the dilute instanton gas approximation; the baryonic con-
tribution can be expected to have relatively strong effects
on the EoS at low density. In addition, we here use the
dilute gas of the instanton of the SUð2Þ gauge field and thus
the number of flavors is considered as two; the system
contains the up and down quarks and thus there is no
strange quark. This may explain the unclearness of the
presentM-R curves because the EoS will be softer than the
present one if hyperons appear in the system; since the core
of the neutron star is very dense, the hyperon degree of
freedom can join the game as the baryonic mode in addition
to nucleons. This softening problem induced by the hyper-
ons is the so-called hyperon puzzle which is a long standing
problem in the study of the neutron stars with EoS; see
Ref. [39] as an example. To discuss this problem in the
present bottom-up holographic model, we must consider
differences between the light quarks and the strange quark,
interactions and bound states, more deeply. In the present
study, we consider the simple symmetric nuclear matter
because the difference between the flavors and the effects
of the electrons are difficult to include in the model at
present. Therefore, the inclusion of the effects such as the
beta equilibrium and charge neutrality are left for our
future work.

VII. SUMMARY AND DISCUSSIONS

In this paper, we have studied cold nuclear matter and its
equation of state based on the six-dimensional holographic
model, which was investigated previously to realize the
color superconducting phase of QCD. The nuclear matter
was introduced as a dilute gas of deformed instantons in the
AdS soliton background. The instantons are electric-charge
neutral and they are made up of the SUð2Þ gauge fields;
the action includes the Chern-Simons term as well as the
kinetic term. Owing to the energy balance between these
two terms in the action, the size of the instanton can be
determined for fixed parameters of the model. As the result,
the EoS for nuclear matter, i.e., pressure as a function of
energy density, is obtained. Through the evaluation of the
instanton size, it turns out that the number of instantons in a
unit volume is very small so that our dilute gas picture is
consistent. Furthermore, there exists a critical value for the
chemical potential below which the pressure becomes
negative. The EoS obtained here is very stiff because the
speed of sound C2

s > 1
2
. As discussed in the Sec. IV B, this

constraint is reduced to our simplified form of the pressure,
pðμÞ. The lower bound 1=2 can be suppressed when the
functional form of pðμÞ is modified.
Here, we however consider an EoS which is obtained

from the simplified pðμÞ to see the characteristic properties
of our model. Then, we applied the simplified EoS to solve
the Tolman-Oppenheimer-Volkov equations for a compact
star numerically and found theM-R relationship. The curve
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is somewhat similar to the one for strange quark matter in
Refs. [36,38] and we provided a certain interpretation for
that. Our result is compared with the observational data and
it is seen that the maximum mass overshoots the current
constraint since our EoS for the nuclear matter is very stiff.
This might suggest that we have more phases such as quark
matter, which softens the current EoS, than that of the
nuclear matter. As we have shown in Sec. IV, our dilute gas
picture is appropriate. There is a reason why we could
achieve two solar mass neutron stars in spite of the
diluteness of the instanton gas. In our approach, it might
be possible that the mass of an instanton is very heavy
compared with an ordinary nucleon, which is a specific
property in holographic QCD since the nucleon mass is
proportional to the number of colors Nc. So far we have no
definite answer and this is a future issue.
In order to improve our current study, several ingredients

are taken into account. One is to go beyond the dilute gas
approximation of instantons. By doing this, our EoS is
modified and eventually the M-R curve might be changed

so as to be more consistent with the observational data. The
other is to study whether the system enjoys the phase
transition from nuclear matter to (perhaps color super-
conducting) quark matter at higher baryon density. If such a
phase transition is present, the EoS gets softened and the
resultantM-R curve could be modified. Furthermore, it will
be interesting to extend our current study into the case with
hyperon degrees of freedom. To this end, the holographic
treatment of the heavy-light meson system (for instance,
see [40]) must be instructive. These issues will be consid-
ered in the future.
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