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Anomaly-induced edge currents in hydrodynamics with parity anomaly
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In this paper, we discuss relativistic hydrodynamics for a massless Dirac fermion in (2 + 1) dimensions,
which has the parity anomaly—a global ’t Hooft anomaly between U(1) and parity symmetries. We
investigate how hydrodynamics implements the party anomaly, particularly focusing on the transport
phenomena at the boundary. Based on the parity anomaly matching and the second law of local
thermodynamics, we find U(1) and entropy currents localized at the boundary, as well as the bulk
anomalous current with vanishing divergence. These edge currents are similar to the (1 4 1)-dimensional
chiral transports, but the coefficients are given by half of theirs. We also generalize our discussion to more
general anomalies among multiple U(1) symmetries and single Z, symmetry.
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I. INTRODUCTION

An ’t Hooft anomaly represents an obstacle to introduc-
ing a background gauge field for a global symmetry of a
quantum field theory. The anomaly matching argument
states that the 't Hooft anomaly is invariant under the
renormalization group (RG) transformation and provides a
nontrivial constraint on symmetry structures in the ultra-
violet and infrared scales [1-3]. In particular, the anomaly-
matching constraint excludes possibilities of a unique
gapped ground state at zero temperature. Therefore, the
system with the 't Hooft anomaly must show a nontrivial
realization of the corresponding symmetry. The well-
known example of the ’t Hooft anomalies is the chiral
anomaly, which partially explains why the chiral symmetry
breaking occurs in quantum chromodynamics through the
anomaly matching argument [1-3].

Recent significant developments on the ’t Hooft anomaly
are based on a detailed understanding of global symmetries
and symmetry-protected topological (SPT) phases. The
former allows us to discuss subtle global anomalies
involving discrete [4] and higher-form symmetries [5].
These new anomalies impose nontrivial constraints on low-
energy behaviors of various systems in high-energy [6—23]
and condensed matter physics [4,24-41]. On the other
hand, a theory with an 't Hooft anomaly emerges on a
boundary of the corresponding SPT phase, which is
described by a topological field theory in higher spacetime
dimensions. Their relation is known as the bulk-edge
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correspondence: the topological action of the bulk SPT
phase inevitably links to the 't Hooft anomaly of the
boundary theory and vice versa [4,24,26,28].

In addition to the above formal development, it is
demonstrated that chiral anomalies survive in equilibrium
and nonequilibrium settings, yielding peculiar transport
phenomena present in both hydrodynamic and kinetic
theory regimes. Well-known examples of the transport
phenomena are the chiral magnetic effect (CME) [42—46]
and chiral vortical effect (CVE) [47-54] induced by the
chiral anomaly. The CME/CVE represents the parity-
breaking nondissipative currents along a magnetic field/
vorticity. These chiral transport phenomena have attracted
much attention in high-energy, condensed matter, and
nonequilibrium physics because they take place in diverse
systems: a quark-gluon plasma created in heavy-ion colli-
sions [45,55,56], Weyl semimetals [57,58], Floquet sys-
tems [59,60], and non-Hermitian systems [61-63].

The ubiquitous nature of the chiral transports comes
from the RG-invariant property of the 't Hooft anomaly.
Hence, the global anomalies are also expected to cause
intriguing transport phenomena analogous to the CME and
CVE. Nevertheless, in contrast to the chiral anomaly
containing only the continuous chiral symmetry, a global
anomaly often involves a discrete symmetry, so that the
associated transports are unclear and have not been studied
in detail until recently.

In this paper, we investigate relativistic hydrodynamics
consistent with the parity anomaly of the (24 1)-
dimensional massless Dirac fermion [64—67] to take a
closer look at transport phenomena induced by global
anomalies. We mainly focus on the system with a boundary,
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while the anomalous hydrodynamics with no boundary is
derived from the kinetic theory [68] and studied recently
from the SPT viewpoint [69]. We emphasize that consid-
eration of the boundary leads to peculiar edge transports
and is practically inevitable in laboratory experiments.

As we will show, the second law of local thermody-
namics combined with the parity anomaly in the (2 + 1)-
dimensional bulk requires nontrivial entropy and U(1)
currents localized on the spatial boundary, whose forms
are analogous to those of the chiral anomaly in (1 + 1)
dimensions [70-73]. Besides, we extend the discussion to
discrete anomalies among multiple U(1) symmetries and
single Z, symmetry. The extension may be helpful to
analyze systems with multiple massless Dirac fermions,
such as the graphene [74] and the CP! model, an effective
field theory of quantum antiferromagnets [75,76]. We
expect our analysis paves the way to formulate hydro-
dynamics with more generic global anomalies and sheds
light on an important relationship between the bulk and
edge from the thermodynamic viewpoint.

This paper is organized as follows. In Sec. II, we review
the parity anomaly and study the associated anomalous
hydrodynamics in the absence of the boundary from the
viewpoint of the anomaly matching. In Sec. III, we consider
the case with a boundary and show that the consistency with
the second law of local thermodynamics requests the
presence of the nontrivial U(1) and entropy currents along
the boundary. We then generalize the anomalous hydro-
dynamics to the more general class of global anomalies in
Sec. IV. We summarize our results in the last section (Sec. V).

Throughout this paper, we consider systemsin the (2 + 1)-
dimensional Minkowski spacetime R x X. Here, X is the
spatial manifold, whose boundary is OX. The spacetime
indices are u, v, - - - = 0, 1, 2, and the spacetime coordinates
are referred to as x* = (7, x) (1 € R, x € X). We employ the
mostly plus convention for the metric 7, = diag(-1,1,1)
and the Levi-Civita symbol e#*” with €"1? = +1.

II. PRELIMINARIES

In this section, we briefly review the parity anomaly and
the associated anomalous hydrodynamics in the absence of
the boundary (i.e., 0X = 0) from the anomaly-matching
viewpoint. It turns out that the discussion here is almost
parallel to the nonanomalous hydrodynamics, except for an
anomalous contribution to the U(1) current as studied in
Refs. [68,69]."

A. Parity anomaly

Let us consider the Dirac fermion in (2 + 1) dimensions.
The Dirac mass in (2 + 1) dimensions explicitly breaks the
parity symmetry, and the massless Dirac fermion is parity

'See also Ref. [77] for a general parity-violating hydrody-
namics in (2 + 1) dimensions.

symmetric classically. However, the symmetry is anoma-
lous, i.e., it is spoiled by quantum effects when we
introduce the background U(1) gauge field. This quantum
violation of the parity symmetry is known as the parity
anomaly [64-67].

The violation is manifest if one takes the Pauli-Villars
regularization: i.e., the cutoff parameter incorporated as the
Dirac mass of the Pauli-Villars regulator breaks the parity
symmetry. In the presence of the background U(1) gauge
field A, (x), the parity-violating contribution to the effective
action is given by [64—66]

Sanom[A} = _’/I[A]/z

—- [ @x(gewamoam) W

where 77[A] is the Atiyah-Patodi-Singer # invariant [78]. In
the second line, we expanded 7[A] perturbatively.

We shall rephrase the parity anomaly in a more formal
language for later convenience. Due to the background
gauge field A,(x), the partition function of the massless
Dirac fermion is not invariant under the parity trans-
formation and varies as

Z[PA, Py] = Z[A, yle"], (2)

with background sources y,(x) for arbitrary local operators
O%x). Here, we defined [PA],(x) = P;A,(Px) and
[Px]t = Pyx* with Py = diag(1,1,—1). The transforma-
tion rules for y,(x) are appropriately determined depending
on those for O%(x) so that the action is parity invariant. The
phase factor on the right-hand side results from the
contribution of, e.g., the Pauli-Villars regulator and is
the signal of the parity anomaly.
Differentiating Eq. (2) with respect to A,(x) yields

(PPN paipy = (g 50,8, (3), ()

where PJ#(x) = PyJ*(Px), and (---),, is the average in
the presence of the background fields. This equation
indicates that (J*(x)),, and the parity transformation of
(J#(x))pa.p, differ by the Hall current coming from 7[A].
Thanks to the background sources y,(x) in Eq. (2), we can
show Eq. (3) in the presence of arbitrary operators O%(x).
Therefore, it is a property of the U(1) current operator
rather than the ground state. Consequently, Eq. (3) must
survive even in a nonequilibrium regime, and it gives a
nontrivial constraint on the anomalous hydrodynamics of
the massless Dirac fermion.

B. Anomalous hydrodynamics without boundary

We then study how hydrodynamics incorporates the
parity anomaly in the absence of the boundary from the
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perspective of anomaly matching. First of all, the time
evolution of relativistic hydrodynamics is governed by the
conservation laws of the energy-momentum tensor 7#*(x)
and the U(1) current J*(x),

0,TH(x) = F(x)J ,(x), (4a)
d,J#(x) = 0. (4b)

Here, F,, (x) =0,A,(x) —0,A,(x) is the field strength
of A,(x).

The dynamical variables of hydrodynamics are given by
the energy density e(x), charge density n(x), and normalized
fluid velocity u* (x) with u*(x)u,(x) = —1. Throughout this
paper, we use the Landau-Lifshitz frame for the fluid
velocity [79], and thus the fluid velocity satisfies

Ty (x)u? (x) = —e(x)u”(x). (5)

We also use local thermodynamic variables f(x) =
1/T(x) and v(x) = p(x)u(x), where T(x) and u(x) are
the local temperature and chemical potential, respectively.
These variables are conjugate to ¢(x) and n(x) and defined
as the derivatives of the entropy density s(x)=
s(e(x),n(x)) as follows:

P = g (60
_ o)
v(x)=— ) (6b)

Note that the above definitions (6) are equivalent to the
first law of local thermodynamics,

T(x)ds(x) = de(x) — pu(x)dn(x). (7)

As we will show, the second law of local thermodynamics
leads to the Gibbs-Duhem relation,

T(x)s(x) + p(x)n(x) = e(x) + p(x), (8)

where p(x) denotes the pressure of the fluid. With the help
of this, one can also express the first law (7) in the
following conjugate form:

[e(x) + p(x)]dB(x) + (x)dp(x) = n(x)dv(x). (9)

The conservation laws (4) are closed once we find the
constitutive relations. For that purpose, we rely on the
derivative expansion. We employ the power-counting
scheme that counts all the dynamical variables p(x),
v(x) [or e(x), n(x)], u*(x), and the background gauge
field A,(x) as zeroth-order quantities with respect to the
derivative, i.e.,

{B(x). v(x). u(x). A, (x)} = O("). (10)

We then expand the energy-momentum tensor and U(1)
current with respect to the derivative as

T (x) = Tl (x) + T (x) + O@), (11a)
TH) = Ty () T (5) + Jinam () + O(@2). (1)

where T’(‘:) (x) and J’<‘n)(x) are O(0") terms, and Janom (%) is
an anomalous current required from Eq. (3).
The leading order contributions, 7% (’;) (x) and Ji (x), are

given by those of the relativistic perfect fluid,

T (%) = [e(x) + p(x)Ju (x)u* (x) + p(x)n,  (12a)
Ty (x) = n(x)u*(x). (12b)

These forms are determined from the condition that
T#(x) and J#(x) are related to the thermodynamic
quantities in the local rest frame (LRF), where
u(x)|.rr = (1,0,0). More precisely, we demand that
they satisfy T#(x)| grr = diag(e(x), p(x), p(x)) and
J#(x) = Jhnom (X) | gr = (n(x),0,0). Note that we adopt
the definition of n(x) as n(x)=—u,(x)(J*(x) -
Jhnom (X)) to simplify the following discussion.” We also
note that the first-order contributions satisfy
u, ()T (})(x) =0 and w,(x)J(}(x) =0 because of our
definition of e(x) and n(x) in the Landau-Lifshitz frame.
The forms of T’;f) (x) and J’;l)(x) are determined from the
second law of thermodynamics, as explained below.

To reproduce the anomalous property of the U(1) current
(3), Eq. (11b) needs to be equipped with the anomalous
current Jhnom(x) given by

Jla:nom(x) = CeﬂypauAp (X)
= —Cu*(x)B(x) + Ce"Pu,(x)E,(x),  (13)

with the constant C = —1/(4x). In the second line, we
defined the magnetic field B(x) = ¢*u,(x)0,A,(x) and
electric field E,(x) = F,,(x)u*(x). This Hall current
reproduces the equation (3) as follows:

Another familiar choice is to define the particle number
density as u,(x)J*(x) = —n(x) [68,69]. Since u,(x)Jhmom(x) =
CB(x), we can readily rephrase our hydrodynamic equations by
shifting the thermodynamic variables as n(x) — n(x) + CB(x),
p(x) = p(x) + (Op/0n) CB(x), e(x) — e(x), u(x) = u(x)+
(Ou/0n),CB(x), T(x) = T(x) + (0T /0n),CB(x), and
s(x) = s(x) —v(x)CB(x). Here, we differentiated the thermo-
dynamic variables fixing e(x) to keep the condition
u, (x)u, (x)T"(x) = e(x) and used the thermodynamic equa-
tions (6) to show (ds/dn), = —v(x).

125021-3



TAKUYA FURUSAWA and MASARU HONGO

PHYS. REV. D 104, 125021 (2021)

SN

PJlnom(¥)|pa = Cle?? Py PY, P10, A, (x)

1
= Jhnom (X) |4 + 7 oA, (x).  (14)
1

Here, J’;nom| 4 represents the anomalous current (13) com-
puted with the background field A,(x). Hence, we have
Jhnom (%) ps = —ﬁe’“’/"Pﬁ ,0,A,(Px). The parity transfor-
mation of this equation proves the first line in Eq. (14).
Note that we have also used the identity e"/’/ﬂ/PZ ,Pﬁ,Pﬁ , =
—e"” in the second line.

We emphasize that the anomalous current does not affect
the conservation law of J#(x) because Jynom(x) identically
satisfies @J’;nom (x) = 0. Hence, in contrast to the case with
the chiral anomaly [51], the hydrodynamics with the parity
anomaly is described by the same conservation laws as the
standard relativistic hydrodynamics [79].

We can also specify the constitutive relations for T’(‘]” ) (x)
and J’(‘1>(x) by requiring the second law of local thermo-

dynamics,
95" (x) >0, (15)

with the entropy current s#(x). Due to 9,,J4nom(x) = 0, one
can introduce the entropy current in the standard way,

$#(x) = s () — M (). (16)

whose divergence is readily computed from Eq. (4a) and
Eq. (4b) and given by

0y (x) = =[s(x) = f(x)(e(x) + p(x) = p(x)n(x))]0, " (x)

w (Ot (X) E,(x)
- (1)(X)W—J(l)(x) {8”1/()6)— T(x)]'

(17)

Thus, from the requirement of the second law (15), we
derive the Gibbs-Duhem relation® (8) and the following
constitutive relations:

Té’]” ) (x) = =1 (x) A#* (x) A (x) [ D5 (x) + Dty (x)]

= [8(x) =n(x)] A" (x) Opu® (x), (19a)
"o (x) = =T(x)o(x) A" (x vx—E”(x)
109 = =Tl |o,ut - 2] qaom

*One may find the possible derivative correction to the Gibbs-
Duhem relation as

T(x)s(x) = e(x) + p(x) = p(x)n(x) = —a(x)d,u*,  (18)

with a positive coefficient function a(x). However, we can
eliminate this correction by redefining the bulk viscosity ¢.

with A#(x) = n* 4+ u¥(x)u*(x) and three positive func-
tions of the thermodynamic variables, 7(x), {(x), and o(x).
These three coefficients are known as the shear viscosity,
bulk viscosity, and charge conductivity, respectively [79].

III. BOUNDARY ENTROPY PRODUCTION

Following the analysis given in the previous section, we
shall study how the presence of the boundary affects the
transport phenomena. The essential difference is that the
boundary modifies the conservation laws (4) as

0,T"(x) + 0,0(x € Z)T" (x) = F**(x)J ,(x),
d,J*(x) + 0,0(x € X)J#(x) = 0.

(20a)
(20b)

Here, we defined the Heaviside step function ®(x € X),
which takes one for x € X and otherwise vanishes. We can
write 9,0(x € ©) as —N,(x)é(x € 0Z) using the normal
vector N,(x) on OX with N,(x)N#(x) =1 and the delta
function §(x € 9X), which is nonzero only at the boundary
x € 0X. The boundary terms in Egs. 20 subtract the
currents flowing out of the bulk x4 Similarly, we need
to change the second law and require

d,8"(x) +0,0(x € X)s#(x) > 0. (23)

We then reexamine the second law (23) using the
modified conservation laws (20). Computing the left-hand
side of Eq. (23), we find

d,8"(x) +0,0(x € Z)s#(x)

" a,uuu(x)
= —T(l)(x> T(x)
u E,(x)
_ J(l)(x) [8”1/()() T }

+ 0,0(x € X)Cu(x)e" u,(x)E,(x), (24)

P

where we used the conservation laws (20), the definition of
conjugate variables (6), the Gibbs-Duhem relation (8), and

*One can understand the boundary contributions as follows.
Suppose a generic system with a dynamical field ¢(x) has a U(1)
symmetry as 53S[¢p] = 0, where 8, denotes the infinitesimal U(1)
transformation. Promoting 6 to the local function 6(x), we find
the induced variation of the action S[¢] under the U(1) gauge
transformation takes the following form:

50S[d] :A 2d%c@,ﬂ(x)]"(x)

—_ A xO()O(x € 2), " (x) +0,0(x € T/ (x)].

(21)

Requiring ¢(x) satisfies its equation of motion, we obtain the
conservation law in the presence of the boundary as

8,0"(x) + 8,0(x € £)J#(x) = 0. (22)

125021-4
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the boundary condition u*(x)0,0(x € X) = 0. This boun-
dary condition means the fluid velocity is always
perpendicular to the normal vector, and the energy current
cannot go through the boundary. The first two terms are
always positive if we take Eq. (19a) and Eq. (19b).
However, the last term can be negative and violate the
second law at the boundary (23). Note that the violation is
of order (") on 9%.

Hence, we have to introduce new terms to the currents to fix
the violation of the second law at the boundary. These terms
mustbe O(9°) quantities on O to cancel the O(9') violation,
be perpendicular to u¥(x), such as T’(‘]”) (x) and J’(‘]>(x), be
parity odd, and vanish in the absence of the boundary. These
four requirements allow us to add only the following
boundary contributions to the U(1) and entropy currents:

Jotge(¥) = E(x)0,0(x € Z)e" u,(x), (25a)
Sedge(X) = —V(X) g4 (¥) + D(x)0,0(x € Z)ePu,(x),

(25b)

with &(x) and D(x), local functions of the thermodynamic
variables. We will show the local second law determines these
coefficient functions up to a certain constant in the following.

Let us repeat the computation of the second law (23)
with the new currents. Thanks to additional contributions
from the edge currents (25), the entropy production now
takes the form

d,8"(x) + 0,0(x € X)s*(x)

w o Ot (X) u (%)
=-T7),(x) Ta) (l)(x)[aﬂl/(x)— T(x)}

+ 0,0(x € X)e" u,(x)
n(x)D(x) | &(x)
40 709 B
+0,0(x € X)e" u,(x)
D(x)9,p(x)
e(x) + p(x)

C
X _ u(x)—i—e

X _6‘pD(x) - - é(x)apv(x)] : (26)

Here, we have used the following equation derived from
Eq. (20a) and the identity €/70,0,0(x € X) = 0:
0,[e"70,0(x € Z)u,(x)]

n(x)E,(x) — 8,p(x) + O(0?%)

= e9,0(x € T)u,(x) e(x) + p(x)

(27)

*We regard 9,0(x € T) = —N,,(x)5(x € 9%) as O(2°) on the
boundary 0%

Therefore, we recover the second law if the coefficients
of the boundary currents satisfy the following relations:

n(x)D(x) _ ()

Cu(x) = — CETCRECE (28a)
_ D)
9,D(x) = ma,, p(x) + E(x)D,p(x).  (28b)

We can solve these relations in the following way.
Regarding D(x) and p(x) as functions of B(x) and v(x),
we can rewrite the second equation (28b) as

P (x)
ID(x) T(x)n(x)D(x)
*(&u> e(x) + p(x)

0= <8D () T(x)D(x)) 9,8(x)

—awymw»<w>

where we used the first law (9). This equation holds
identically when the following equations are satisfied:

D)

0="550 * TP, (30a)
_0D(x) T(x)n(x)D(x) .

0=l " et +pl) - (B0

One can immediately find the solution of Eq. (30a)
taking the form

D(x) = p~!(x)g(v(x)). (31)

Here, g(v(x)) is a certain function depending only on v(x).
Substituting this expression to Eq. (30b), we obtain

_dg(v(x)) [ n(x)D(x) | &(x)
0="00) et +p0 TG

)

= a0 + Cu(x), (32)

where we used Eq. (28a) to get the second line. We then
solve this equation for g(v(x)) and obtain the following
expressions for D(x) and &(x):

X 2
D(x) = — 2’;(()3) _ oT(x), (33a)
n(x) S92 4 T ()2
£(x) = —Cur) + MO T gy

e(x) + p(x)

with an integration constant c.
In summary, the parity anomaly induces the following
U(1) and entropy currents localized at the boundary:

125021-5
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u
‘]edge

(x) = =Cu(x)e"”0,0(x € X)u,(x)
o) [t
e(x) +plx) [ 2

x e"0,0(x € X)u,(x),

+ cT(x)z]
(34a)

s/;dge ()C) = _D(x)]gdge (x)

~ {Cﬂ(X)2
2T (x)

+ cT(x)} e0,0(x €X)u,(x). (34b)

Therefore, in the system with the parity anomaly, the finite
chemical potential and temperature induce the nonzero
edge currents automatically.

The anomaly-induced edge currents in Eqgs. (34) take
similar forms to (1 + 1)-dimensional analogs of the CME
and CVE associated with the Weyl fermion [70-73].
However, we emphasize that the coefficient C =
—1/(4x) is half of the (1 + 1)-dimensional ones. This
observation is plausible because the Weyl fermion appears
on the boundary of the Chern insulator, whose bulk SPT
action is given by the 7 invariant 5[A] and twice of Eq. (1).
We also note that the constant ¢, which we cannot
determine from our thermodynamic consideration, may
be determined from gravitational contributions to the 7
invariant, but clarifying this point is left for future work.

IV. GENERALIZATION TO U(1)" - Z, ANOMALY

Lastly, let us generalize the above discussion to systems
with a mixed anomaly among m-multiple U(1) symmetries
and a Z, symmetry. This generalization includes anomalies
of spinless electrons on a honeycomb lattice and the easy-
plane CP! model for quantum antiferromagnets.

Suppose that the Z, symmetry transformation S acts on
the partition function as

Z1SA,] = Z[AJe7 J ECac @MW (35

where we introduced an S-odd m x m symmetric matrix
C,;, and a set of the background gauge fields for the U(1)
symmetries {Af(x)}"_,. This class of anomalies often
appears in (2 + 1)-dimensional systems. First, Eq. (35)
reduces to the parity anomaly (2) if we take m = 1 and
Ci, = —1/(4rx) and regard the Z, symmetry as the parity
symmetry. Moreover, the case with m =2 and C,, =
—(0,) 4/ (47) corresponds to spinless electrons on a
honeycomb lattice [o, (@ = x, y, z) represents the Pauli
matrix], where the valley degrees of freedom suffer from
the parity anomalies [74]. Besides, the easy-plane CP'
model, an effective field theory for quantum antiferromag-
nets, has the O(2)g x U(1)y, anomaly with the coefficient
Cup = —(04) 4/ (47). (See Ref. [80] for example.)

Recalling the discussion in Sec. II, one can show this
anomaly induces the following bulk anomalous current in
hydrodynamics:

Janom.a(x) = Cape"?0,A}(x). (36)

We then repeat the entropy-current analysis in the presence
of the boundary and derive the following U(1) and entropy
currents on the boundary:

Jggea(¥) = =Cappt” (x)e0,0(x € E)u,(x),
na(x)  [Cpep” (x)p (x) >
| e
X e™0,0(x € Z)u,(x), (37a)
4(x Cpp® (x)ub (x
Slédge(x) = _% Z,edge(x) - [% + CT(X):|
X e"9,0(x € X)u,(x), (37b)

with an undetermined constant ¢. Here, n,(x) and p“(x)
(a=1,...,m) are the particle densities and chemical
potentials ~associated with the U(1) symmetries,
respectively.

V. SUMMARY AND DISCUSSIONS

In this paper, we studied nondissipative transports of
relativistic hydrodynamics with the parity anomaly, a
canonical example of global anomalies. In contrast to
the chiral anomaly, the parity anomaly induces the anoma-
lous current (13) with vanishing divergence, which implies
it does not affect the second law of local thermodynamics in
the absence of the boundary.

On the other hand, in the presence of the boundary, we
showed the existence of the nontrivial edge currents,
combining the anomalous bulk current and the local second
law. Notably, the derived transport phenomena involve not
only the U(1) current (34a) but also the entropy current
(34b) localized at the boundary. Hence, our hydrodynamic
equations clarify the nontrivial relation between the parity
anomaly and the thermodynamic transports. Besides, we
also generalized our discussions on the parity anomaly to
systems with the mixed anomaly among multiple U(1) and
Z, symmetries.

As a future study, it is worthwhile to identify the undeter-
mined constant ¢ in the edge currents. The transport associated
with ¢ is analogous to the energy current (or momentum
density) of (1 4 1)-dimensional Weyl fermion [§1-89]. This
becomes manifest when we move from the Landau frame to
another frame by redefining the fluid velocity as’

el 4 T (x)?

w(x) = u(x) — () + p(x)

e0,0(x € X)u,(x). (38)

6See, e.g., Refs. [90-92] for recent discussions about defi-
nitions of the fluid velocity in different frames in relativistic
hydrodynamics.
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In this new frame, the part of the anomalous edge current (34a)
iseliminated. Instead, we find the following anomalous energy
current at the boundary:

X 2
ngge (X) == |:C,u§ )

x [e79,0(x € Z)u, (x)u*(x)+ (u <> 4)]. (39)

—l—cT(x)Z}

The term involving ¢ is proportional to 7 (x)?, which is an
important feature of chiral transport in (1 + 1) dimensions
[81-89].

As discussed in the last paragraph of Sec. I, it is natural
that the edge currents in our constitutive relations are half of
the chiral transports of the (1 + 1)-dimensional Weyl
fermion. Therefore, it can be reasonable to speculate
¢ = —n/24, which is half of the coefficient of the energy
current [81-89]. One can perhaps figure out this coefficient
by combining the partition function analysis [93-99] and
the global anomaly matching in the thermal spacetime
[86-89,100].

Another interesting direction is to explore the possible
anomalous edge current for systems with various anomalies
in other dimensions. From this viewpoint, the chiral
anomaly may also give a nontrivial example since the
CME and CVE induce a seemingly dangerous term for the
local second law at the boundary. We expect that general-
izing our formulation of hydrodynamics in the presence of
the boundary can shed light on nontrivial dissipationless
transports associated with the 't Hooft anomaly.
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