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Subdominant contributions to the entanglement entropy of quantum fields include logarithmic corrections
to the area law characterized by universal coefficients that are independent of the ultraviolet regulator and
capture detailed information on the geometry around the entangling surface. We determine two universal
coefficients of the entanglement entropy for a massive scalar field in a static closed universe R × S3

perturbatively and verify the results numerically. The first coefficient describes a well-known generic
correction to the area law independent of the geometry of the entangling surface and background. The second
coefficient describes a curvature-dependent universal term with a nontrivial dependence on the intrinsic and
extrinsic geometries of the entangling surface and curvature of the background. The numerical calculations
confirm the analytical results to a high accuracy. The first and second universal coefficients are determined
numerically with a relative error with respect to the analytical values of the orders 10−4 and 10−2, respectively.
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I. INTRODUCTION

Correlations of vacuum fluctuations of a quantum field in
a curved background carry information on the geometry of
the background. A key example of the interrelation between
the entanglement of field fluctuations and geometry is the
celebrated area law [1,2], which states that the dominant
contribution to the entanglement entropy of the vacuum for
any finite region A of space is proportional to the area A of
its boundary Σ ¼ ∂A,

S ¼ c2
εd−2

Aþ…; ð1Þ

where ε is an ultraviolet regulator and d is the dimensionality
of spacetime. This geometric entropy was originally pro-
posed as a source of entropy for black holes in [1,2]. Since
then, several works have been devoted to clarifying its role in
the quantummechanics of spacetime, from the formulation of

the holographic principle [3] and the description of geometric
entropies through the AdS=CFT correspondence [4] to the
analysis of emergent properties of spacetime from quantum
information-theoretic properties of quantum fields [5–9].
The fact that properties of the background geometry are

imprinted in the field correlations allows one to extract
information on the geometry from the network of corre-
lations among the entangled spatial subsystems. In this
regard, the area law (1) suffers from the drawback that,
in general, it depends on the choice of regularization.
However, subdominant terms in the entropy formula (1)
include logarithmic divergences that are expect to be
regularization independent [10]. These can be used to
reliably extract geometric information from the entropy
function, and provide a natural tool to study the relation
between entanglement and geometry.
Universal contributions for the entropy of massive fields

were first obtained in [11], where the case of a flat
waveguide background geometry was considered. For a
free massive scalar field and an even number of spacetime
dimensions d, a contribution of the form

α1ðdÞmd−2 logðmεÞA ð2Þ

was identified, with a universal coefficient α1ðdÞ that
depends only on the dimension d. In four dimensions,
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α1ðd ¼ 4Þ ¼ 1=ð24πÞ. In [10], a curved spherical wave-
guide background was considered, leading to the identi-
fication of new curvature-dependent universal terms. For
an even d ≥ 4 and a spherical entangling surface, a
universal term was found of the form

α2ðdÞmd−4 logðmεÞA; ð3Þ

where α2ðdÞ depends on the Ricci scalar of the intrinsic
metric on the entangling surface Σ and on the coupling
constant ξ that describes the strength of the interaction of
the field with the scalar curvature of the background. This
universal term describes how the intrinsic curvature at
(d − 2)-dimensional surfaces Σ manifests itself in the
entanglement of the field.
In more general geometries, the universal coefficients αi

are expected to capture more detailed information on the
curvature around the entangling surface. Similarly to what
happens for conformal field theories [12], one may expect
the universal coefficients to depend on several scalars
constructed from the background curvature tensor and the
intrinsic and extrinsic curvatures of the entangling surface, as
discussed, for instance, in [10]. A strategy for computing
universal terms of massive theories is provided by the
perturbative approach introduced in [13,14]. This approach
was applied to a scalar field in de Sitter space in [15], and
indeed led to the discovery of curvature-dependent universal
terms with a more complex dependence on the curvature
tensors.
The analytical result for the universal term of a conformal

field theory in four dimensions obtained in [12] was verified
numerically for a massless scalar field and spherical entan-
gling surfaces in [16], where the numerical approach
originally explored for establishing the area law [2] was
improved to allow for the determination of subleading
corrections. The same universal term was derived by differ-
ent methods in [17,18]. The analogous curvature-dependent
universal terms for massive theories obtained in [15] have
not been verified numerically, however, or confirmed by
independent alternative derivations.
In this work, we determine universal terms of the

entanglement entropy of a massive scalar field for spheres
in the Einstein universe S3 ×R, both analytically, by the
application of the perturbative approach introduced in
[13,14], and numerically, through the application of the
real-time approach originally introduced in [2] and discussed
in the reviews [19,20]. The background geometry in the
vicinity of a spherical entangling surface in the Einstein
universe is a perturbed spherical waveguide, so that the
results of [10] describe the zeroth-order term in the pertur-
bations series. The lowest nonzero order terms describe new
universal terms of the form (3), but with a universal
coefficient α2ðdÞ that depends nontrivially on several scalars
constructed from the intrinsic, extrinsic and background
curvatures at the entangling surface.

Being spatially finite, the Einstein universe has a natural
infrared cutoff at the scale of its spatial radius, which is
convenient for the numerical calculations. In addition, by
considering spherical entangling surfaces of distinct radii,
the intrinsic and extrinsic curvatures can be varied at the
entangling surface, allowing the dependence of the universal
coefficients in the distinct curvature terms to be analyzed. As
the Einstein universe is static, there is no question as to the
choice of the vacuum state, which is unique. Moreover,
the discretization required for the numerical calculations can
be implemented in a time-independent manner. These proper-
ties single out the Einstein universe as a specially convenient
geometric background for the study of curvature-dependent
universal terms and, in particular, for a numerical test of the
analytical techniques employed for their determination.
In Sec. II, we describe the relevant features of the theory

of a massive neutral scalar field in the Einstein universe and
its discretization. In Sec. III, we briefly review the pertur-
bative approach for the calculation of the universal terms of
the entanglement entropy and then apply it to the case of
spheres in the Einstein universe. Next, we describe the
techniques employed for the numerical calculation of these
terms. The numerical results are presented in Sec. IV. We
summarize and discuss our results in Sec. V.

II. THE MODEL

A. Massive scalar field in the Einstein universe

The metric of the Einstein universe M ¼ R × S3 in
spherical coordinates reads

ds2 ¼ −dt2 þ R2ðdχ2 þ sin2χdΩ2Þ; ð4Þ

where dΩ2 ¼ dθ2 þ sin2θdα2 is the metric of the unit
2-sphere, the coordinates are defined on the intervals
t ∈ R, χ; θ ∈ ½0; π� and α ∈ ½0; 2π�, and R is the constant
radius of the 3-spheres describing spatial sections at fixed
time. The volume element isffiffiffiffiffiffi

−g
p ¼ R3sin2χ sin θ: ð5Þ

The geodesic distance between antipodal points on the
3-spheres of constant time is Rπ. The area of a spherical
surface of fixed χ is given by

A ¼ 4πR2sin2χ: ð6Þ

We consider a real massive scalar field ΦðxÞ on this
background with a generic coupling to the scalar curvature.
The action for the theory in the continuum is

I ¼
Z

d4x
ffiffiffiffiffiffi−gp
2

�
−∂μΦ∂μΦ −m2Φ2 − ξ

6

R2
Φ2

�

≡
Z

dt L;

SOLDATI, MENICUCCI, and YOKOMIZO PHYS. REV. D 104, 125016 (2021)

125016-2



where the last term describes the interaction of the field
with the scalar curvature 6=R2 of the metric (4). The case
of ξ ¼ 0 describes the minimally coupled theory, while
ξ ¼ 1=6 corresponds to a conformal coupling. After an
integration by parts in the angular coordinates θ, α, the
Lagrangian assumes the form:

L ¼ 1

2

Z
S3
dχ dθ dα

×

�
R3sin2χ sin θ

�
_Φ2 −

�
m2 þ 6ξ

R2

�
Φ2

�

− R sin θ½sin2χð∂χΦÞ2 −ΦΔS2Φ�
�
; ð7Þ

where

ΔS2 ¼ 1

sin θ
∂θðsin θ∂θÞ þ

1

sin2θ
∂2
α ð8Þ

is the Laplace-Beltrami operator on the unit 2-sphere. The
momentum associated with the field is the scalar density

Π ¼ δL

δ _Φ
¼ R3sin2χ sin θ _Φ; ð9Þ

and the Hamiltonian is obtained as usual through the
application of a Legendre transformation,

HS3 ¼ 1

2

Z
S3
dχ dθ dα

�
Π2

R3sin2χ sin θ

þ R sin θ½sin2χð∂χΦÞ2 −ΦΔS2Φ�

þ R3sin2χ sin θ

�
m2 þ 6ξ

R2

�
Φ2

�
: ð10Þ

The canonical fields satisfy the usual Poisson brackets,

fΦðxÞ;Πðx0Þg ¼ δðx − x0Þ;
fΦðxÞ;Φðx0Þg ¼ fΠðxÞ;Πðx0Þg ¼ 0: ð11Þ

The analogue of the momentum representation in space-
times with spherical spatial sections is obtained by expanding
the field in real spherical harmonics,

ΦðxÞ ¼
X∞
l¼0

Xl
μ¼−l

ΦlμðχÞYlμðθ; αÞ: ð12Þ

Integrating on the angular variables and using the orthogon-
ality of the spherical harmonics, we obtain the following
representation for the Lagrangian:

L ¼
X
lμ

R3

2

Z
π

0

dχ sin2χ

��
_Φ2
lμ −

�
m2 þ 6ξ

R2

�
Φ2

lμ

�

−
1

R2
ð∂χΦlμÞ2 þ

lðlþ 1Þ
R2sin2χ

Φ2
lμ

�
: ð13Þ

The system was thus decomposed into a collection of
independent fieldsΦlμðχÞ living on a one-dimensional space,
as in [2]. In contrast with [2], however, where the background
geometry is that of flat Minkowski spacetime, the one-
dimensional space associated with the radial direction is now
finite, reflecting the compactness of the spatial sections of the
Einstein universe.

B. Discretization of the model

We now discretize the fields ΦlμðχÞ. The interval χ ∈
½0; π� can be partitioned into a union of N subintervals
bounded by the equally spaced points

χj ¼
π

N
j; j ¼ 0;…; N: ð14Þ

At any fixed time, each χj defines a 2-sphere with area

Sj ¼ 4πR2sin2χj: ð15Þ

The subregions bounded by these surfaces provide a
decomposition of S3 into a union of N − 2 thick spherical
shells and two 3-balls (at the North and South Poles). The
subspace formed by the n first subregions is bounded by a
surface of area Sn. Denote by ε the geodesic radial distance
between successive boundary surfaces. The maximum dis-
tance Rπ then becomes Nε (from the North to the South
Pole, see Fig. 1), and we have

R ¼ Nε

π
: ð16Þ

In addition, the one-dimensional field Φlμ is replaced by a
set of N variables that we interpret as living at the center of
each subinterval of the decomposition,

FIG. 1. Fixing an angle θ, the discretization vertices χj span the
range 0 ≤ χ ≤ π, covering a physical distance Rπ ¼ Nε. Each
vertex is at a distance jε − Nε=2 from the equator.
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Φlμj ¼ Φlμ

�
χj −

π

2N

�
;

¼ Φlμðχj−1=2Þ; j ¼ 1;…; N; ð17Þ

and its partial derivatives can be approximated by finite
differences,

∂χΦlμ →
Φlμ;jþ1 −Φlμj

π=N
: ð18Þ

We now approximate the Lagrangian (13) by a sum of
contributions from each spatial subregion depending on the
discretized field. Since the number of independent spatial
derivatives is smaller than the number of field variables,
terms with spatial derivatives must be handled differently
from terms without derivatives in the fields. It is natural to
require the discretization to preserve the symmetry under a
spatial reflection about the equatorial surface χ ¼ π=2. This
can be achieved by discretizing the volume element differ-
ently for terms with and without spatial derivatives:

sin2χΦ2
lμ → sin2χj−1=2Φ2

lμj;

sin2χð∂χΦlμÞ2 → sin2χj

�
Φlμ;jþ1 −Φlμj

π=N

�
2

: ð19Þ

By doing so, we discretize the integral over χ into a sum of
N contributions for terms without spatial derivatives,
and a sum of N − 1 contributions for the term including
spatial derivatives. In both cases the sum of the discretized
volumes gives the total volume of the space:

π

2
¼
Z

π

0

dχ sin2χ ¼ π

N

XN
j¼1

sin2
�
π

N

�
j −

1

2

��

¼ π

N

XN−1

j¼1

sin2
�
πj
N

�
; ð20Þ

where the integral was replaced by a sum,

Z
dχ →

π

N

X
j

: ð21Þ

The discretized Lagrangian then reads

L ¼
X
lμ

R2ε

2

�XN
j¼1

sin2χj−1=2 _Φ2
lμj −

XN
i;j¼1

ΦlμiṼijΦlμj

�
;

ð22Þ

with

Ṽij ¼ δij

�
sin2χj−1=2

�
lðlþ 1Þ

R2sin2χj−1=2
þm2 þ 6ξ

R2

�

þ 1

ε2
ðsin2χj þ sin2χj−1Þ

−
1

ε2
ðδiþ1;jsin2χi þ δi;jþ1sin2χjÞ

�
: ð23Þ

The passage to the Hamiltonian formalism is straightfor-
ward. The conjugate momenta are readily obtained,

Πlμj ¼
∂L

∂ _Φlμj

¼ R2εsin2χj−1=2 _Φlμj; ð24Þ

and we find for the discretized Hamiltonian:

H ¼
X
lμ

�XN
j¼1

1

2ε

Π2
lμj

R2sin2χj−1=2

þ
XN
i;j¼1

Φlμi

�
R2ε

2
Ṽij

�
Φlμj

�
: ð25Þ

Applying a canonical transformation that makes the trans-
formed Φ and Π have the same dimensions,

Φlμj ↦
Φlμj

R sin χj−1=2
;

Πlμj ↦ R sin χj−1=2Πlμj; ð26Þ

the Hamiltonian becomes

H ¼
X
lμ

�XN
j¼1

1

2ε
Π2

lμj þ
XN
i;j¼1

ΦlμiVijΦlμj

�
; ð27Þ

≡X
lμ

Hlμ; ð28Þ

with a potential term characterized by the potential matrix

Vij ¼
δij
2ε

�
ε2m2 þ π2lðlþ 1Þ

N2sin2χi−1=2
þ sin2χi
sin2χi−1=2

þ sin2χi−1
sin2χi−1=2

þ 6π2ξ

N2

�
−

1

2ε

�
δiþ1;j

sin2χi
sin χi−1=2 sinχiþ1=2

þ δi;jþ1

sin2χj
sinχj−1=2 sinχjþ1=2

�
: ð29Þ

The discretized Hamiltonian is an explicit sum of
decoupled normal modes lμ. Each mode describes a set
of coupled harmonic oscillators on a finite one-dimensional
lattice. The potential matrix Vij, which arises from the spatial
derivative terms in the original theory in the continuum, is
responsible for coupling neighboring vertices i and j. This is
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the source of entanglement between complementary regions
of space, since Vij couples degrees of freedom inside any
given region of space to degrees of freedom outside it, which
become thus correlated.

III. ENTANGLEMENT ENTROPY

A. Universal coefficients: Perturbative calculation

In the continuum, the entanglement entropy of a quantum
field is in general divergent, with a leading divergence
proportional to the area A of the surface of the subregion,
that is, the entropy satisfies an area law S ∝ A=ε2, where ε is
an ultraviolet regulator [19]. The proportionality constant
depends on the details of the regularization. Corrections to
the leading divergence include universal contributions that
are independent of the regularization, characterized by
the couplings of the theory (see, for instance, [10,11]).
The numerical constant appearing in a universal term is
called a universal coefficient.
We are interested in computing universal contributions

Suniv to the entanglement entropy of spatial subregions in
the Einstein universe. The spatial sections of constant time
for the Einstein universe in the metric (4) are all isometric to
a 3-sphere S3 of radius R. We consider entangling surfaces
Σ that are 2-spheres S2 of area A embedded in a constant
time slice (see Fig. 2). Any such entangling surface splits
the spatial 3-sphere into the union of two complementary
subregions, each isometric to a 3-ball.
We restrict to the case of a massive field of mass m, and

consider the regime where correlations in the fluctuations
of the field in the complementary subsystems are con-
centrated in the vicinity of the entangling surface. We thus
assume that the correlation length lm ∼m−1 of the scalar
field is much smaller than the radius of the entangling
surface. The entanglement entropy must then be deter-
mined by the form of the metric near the entangling
surface, which is a perturbation of a spherical waveguide
geometry R2 × S2.
In this regime, the perturbative approach introduced in

[13,14] can be applied to the problem. This approach allows
the entropy to be computed as that of the unperturbed metric

together with corrections arising from its perturbations. The
technique was applied to spherical entangling surfaces in de
Sitter space in [15]. In this subsection, we review the relevant
results of [13–15] and apply them to the case of spheres in
the Einstein universe. The results so obtained will later be
confronted with numerical calculations for the regularization
of the unperturbed theory discussed in Sec. II.
We now proceed to the description of the perturbed

spherical waveguide geometry around the entangling sur-
face. Let us introduce a new variable r through:

χ ¼ π

2
þ r
R
: ð30Þ

The variable r ∈ ½−πR=2; πR=2� provides an arc length
parametrization along the radial direction with origin at the
equator, situated at χeq ¼ π=2. Following [15], we consider
a Wick rotated metric with a temporal coordinate τ ¼ it.
The spacetime coordinates are denoted by xμ ¼ ðτ; r; θ; αÞ,
μ ¼ 1;…; 4. Let gμν be the Riemannian metric obtained by
Wick rotating the line element (4). Expanding it around an
entangling surface at re, with r ¼ re þ Δr, we find

ds2 ¼ gμνdxμdxν

¼ dτ2 þ dr2 þ R2

�
cos2

�
re
R

�
− sin

�
2re
R

�
Δr
R

− cos

�
2re
R

��
Δr
R

�
2

þ…

�
dΩ2: ð31Þ

The metric near the entangling surface, Δr=R ≪ 1, has the
form

g ≃ ḡþ h; ð32Þ

where the background geometry ḡ describes a spherical
waveguide of radius R cosðre=RÞ,

ḡμνdxμdxν ¼ dτ2 þ dr2 þ R2cos2
�
re
R

�
dΩ2; ð33Þ

and the perturbation h is given by

hμνdxμdxν ¼ −R2

�
sin

�
2re
R

�
Δr
R

þ cos

�
2re
R

��
Δr
R

�
2
�
dΩ2; ð34Þ

up to second order in Δr=R.
As discussed in detail in [13], the perturbed metric (31)

can be expressed in terms of the extrinsic and intrinsic
curvatures of the entangling surface Σ. Following their
approach, we relabel the coordinates parametrizing the
entangling surface as yi ¼ ðθ; αÞ and the transverse
coordinates as xa ¼ ðτ;ΔrÞ, so that xμ ¼ ðx1; x2; y1; y2Þ.

FIG. 2. Circular entangling surface of area A, enclosing the
grey region, in the spherical space of radius R.
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We can choose τ ¼ 0 for the spatial section of interest, so
that both transverse coordinates vanish at Σ. The unit
normals to the entangling surface along the transverse
directions have coordinates

naμ ¼ δaμ; a ¼ 1; 2; ð35Þ

and the metric is such that gia ¼ 0 on Σ, as required in
the formalism of [13]. We denote the intrinsic metric of
the entangling surface by γ ¼ gjΣ. The line element can
then be written in the form:

ds2 ¼
�
δab −

1

3
Racbdxcxd

�
dxadxb þ ðγij þRiabjxaxb

þ2Kaijxa þ KaimKb
m
jxaxbÞdyidyj; ð36Þ

where the extrinsic curvature is defined as

Ka
ij ¼ ∇inaj ; ð37Þ

and Rμνρσ is the curvature tensor of the Einstein universe
evaluated at the surface, which has nonzero components
only in the purely spatial part:

Rμνρσ ¼
1

R2
ðgμρgνσ−gμσgνρÞ; μ;ν;ρ;σ¼2;3;4: ð38Þ

The term Racbdxcxd present in the transverse part of the
metric in Eq. (36) in fact vanishes in the Einstein universe,
but we keep it explicitly in the perturbation of the metric in
order to obtain results that are valid in a more general class
of spacetimes that include, in particular, spheres in the
Einstein universe and de Sitter spacetime. For the extrinsic
curvature, we find

K1
ij ¼ 0; K2

ij ¼ −
R
2
sin

�
2re
R

�
γ̄ij; ð39Þ

where γ̄ij is the metric of the unit two-sphere. Substituting
Eqs. (38) and (39) in Eq. (36), we recover the explicit
formula (31) for the perturbed metric.
The metric perturbation h can be read from Eq. (36),

hab ¼ −
1

3
Racbdxcxd;

hai ¼ 0;

hij ¼ Riabjxaxb þ 2Kaijxa þ KaimKb
m
jxaxb; ð40Þ

and is nonvanishing only tangentially to the surface.
It includes contributions from the curvature tensor of
the background and from the extrinsic curvature of the
entangling surface.
As the starting point for the calculation of the entropy, we

consider the unperturbed waveguide geometry. In [11], the

heat kernel method was used to compute universal mass term
contributions to S for a scalar field on a waveguide geometry
via the replica trick, for a half-space decomposition with a
flat entangling surface. A universal logarithmic term of the
formm2 logðmεÞ was identified in (3þ 1) dimensions. On a
spherical waveguide, in addition to the universal term
identified in [11], new universal contributions that are
sensitive to the curvature of the entangling surface and
background were obtained in [10]. We quote their result for
the universal terms in (3þ 1) dimensions [21]:

Sð0Þ
univ ¼

�
1

24π
m2 −

ð1 − 6ξÞ
72πR2cos2ðre=RÞ

�
logðmεÞA; ð41Þ

where we set the radius of the spherical waveguide equal
to R cosðre=RÞ. The first term, which is independent of
the curvature, agrees with the universal contribution
found in [11]. A different expression for the entropy
(41) was presented in the Appendix B of [15], however,
which follows from a different treatment of the heat
kernel, where an extra overall factor of (1 − 6ξ) appears.
In particular, in a conformally coupled theory this
universal contribution would then vanish identically.
We take Eq. (41) as our formula for the universal terms
on the unperturbed geometry, as it will provide a better fit
for the numerical results presented later in the paper.
The contribution δS of first order in the metric pertur-

bation h can be calculated using the perturbative approach
introduced in [13,14], as done on a de Sitter background in
the Appendix B of [15]. As discussed in [15], such first
order contributions have the form:

δS ¼ 1

2

Z
d2x
Z

d2y
ffiffiffi
γ

p hTμνKihμν; ð42Þ

where Tμν is the energy-momentum tensor defined as

Tμν ¼
2ffiffiffiffiffiffi−gp δI

δgμν
: ð43Þ

The integrals in Eq. (42) refer to the transverse and
longitudinal directions of the entangling surface in the
spherical waveguide background. The average value
hTμνKi must be computed in the spherical waveguide
background. Since we are working in the regime where
the correlation length of the field is small compared to the
radius of the entangling surface, hTμνKi can be approxi-
mated by that in a flat geometry, with small curvature
corrections. As this quantity is multiplied by the first order
perturbation h, we can safely neglect the curvature
corrections and use the value of hTμνKi in flat space,
computed in [22], as done for the case of de Sitter space in
[15]. From [23], we can write the relevant components of
such averages, expressed in our coordinate system, as
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hTijðrÞKi ¼ −
Adγij

ðd − 1Þ2ΓðdÞ
Z

∞

0

dμ½cð0ÞðμÞ − ðd − 1Þcð2ÞðμÞ�μ2K0ðμrÞ;

hTabðrÞKi ¼ −
Ad

ðd − 1Þ2ΓðdÞ
Z

∞

0

dμ½cð0ÞðμÞ þ ðd − 1Þðd − 2Þcð2ÞðμÞ�ðδabμ2 − ∂a∂bÞK0ðμrÞ; ð44Þ

where the spectral functions are given by

cð0ÞðμÞ ¼ 8ðdþ 1Þðd − 1Þ
Ω2

d

m4μd−7

×

�
1 −

4m2

μ2

�ðd−3Þ=2
Θðμ − 2mÞ;

cð2ÞðμÞ ¼ 1

Ω2
d

μd−3
�
1 −

4m2

μ2

�ðdþ1Þ=2
Θðμ − 2mÞ;

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1Þ2 þ ðx2Þ2

q
;

Ad ¼
Ωd

ðdþ 1Þ2d−1 ; Ωd ¼
2πd=2

Γðd=2Þ :

The function K0 is the modified Bessel function of order
zero. In our case, the dimensionality of spacetime is d ¼ 4.
Substituting Eq. (44) and the expression (40) for the

metric perturbation in the formula (42) for the entropy, and
using the identities

Z
R2

d2x xaxbK0ðμrÞ ¼
4π

μ4
δab;Z

R2

d2x xcxd∂a∂bK0ðμrÞ ¼
2π

μ2
ðδacδbd þ δadδbcÞ;

we obtain an explicit formula for the contributions of the
background and extrinsic curvatures for the variation of the
entanglement entropy:

δS ¼ 2πAd

ðd − 1Þ2ΓðdÞ
Z
S2

d2y
ffiffiffi
γ

p �
δacγijRiajc þ

1

2
δacδbdRabcd − δabγijKaimKb

m
j

�Z
∞

0

dμ
μ2

cð0ÞðμÞ

þ 2πAd

ðd − 1ÞΓðdÞ
Z
S2

d2y
ffiffiffi
γ

p �ðd − 2Þ
2

δacδbdRabcd − δabγijRiajb þ δabγijKaimKb
m
j

�Z
∞

0

dμ
μ2

cð2ÞðμÞ; ð45Þ

A similar expression was obtained in [15] for the
equatorial surface at the spatial section of minimum radius
in de Sitter space. In that case, there are no contributions
from the extrinsic curvature, which vanishes at the equator.
We further discuss the relation between the results for de
Sitter spacetime and the Einstein universe in Appendix A.
The expression (45) can be regularized with the

introduction of a hard cutoff at μ ¼ 1=ε≡ δ that elimi-
nates ultraviolet contributions from length scales smaller
than δ. The cutoff can then be sent to infinity. The leading
divergence comes from the integration of the spectral
function cð2ÞðμÞ, which gives

Z
∞

0

dμ
μ2

cð2ÞðμÞ ≃ −
logðmεÞ

Ω2
d

: ð46Þ

Substituting this leading divergence in (45), integrating
over the two-sphere and setting d ¼ 4, we obtain the
universal contribution

δSuniv ¼ −
1

720π
ðδacδbdRabcd − δabγijRiajb

þδabγijKaimKb
m
jÞ logðmεÞA: ð47Þ

We are left with the task of computing the contractions of
the curvature tensors,

δacδbdRabcd ¼ 0;

δabγijRiajb ¼
2

R2
;

δabγijKaimKb
m
j ¼

2

R2
tan2

�
re
R

�
;

and finally obtain

δSuniv ¼
1

360πR2

�
1 − tan2

�
re
R

��
logðmεÞA: ð48Þ

The first term is a contribution that depends on the back-
ground curvature tensor at the entangling surface. The
second term is the contribution from the extrinsic curvature.
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It depends explicitly on the radius re of the entangling
surface and vanishes at the equator.
The total entropy is the sum of the entropy of the spherical

waveguide, given in Eq. (41), and the contribution from the
metric perturbation. Our final result for the universal terms in
the entanglement entropy of a scalar field for spheres in the
Einstein universe is

Suniv ¼ ðα1m2 þ α2Þ logðmεÞA; ð49Þ
with universal coefficients

α1 ¼
1

24π
;

α2 ¼ −
ð1 − 6ξÞ

72πR2cos2ðre=RÞ

þ 1

360πR2

�
1 − tan2

�
re
R

��
: ð50Þ

The first universal coefficient α1 is independent of all
parameters of the model. It describes a generic subleading
logarithmic correction to the area law for the entanglement
entropy that is independent of the coupling ξ to the scalar
curvature and geometry of the entangling surface and
background. It corresponds precisely to the universal term
first identified in [11]. The second universal coefficient α2
can be expressed in terms of the scalar curvature of the
background and scalars constructed from the intrinsic and
extrinsic curvatures of the entangling surface and that
orthogonal to it, as follows.
At the entangling surface, the scalar of curvature ð4ÞR of

the perturbed background geometry is given by

ð4ÞR ¼ gμρgνσRμνρσ

¼ δacδbdRabcd þ 2δabγijRiajb þ γikγjlRijkl: ð51Þ
The tangential components of the curvature tensor are
related to the components of the intrinsic and extrinsic
curvature of the entangling surface by the Gauss-Codazzi
identity [13]:

Rijkl ¼ ð2ÞRijkl þ Ka
jkKail þ Ka

jlKaik; ð52Þ

where ð2ÞRijkl is the intrinsic curvature. An identical relation
holds for the transverse surface Σ̄ parametrized at each point
of the entangling surface by the transverse coordinates xi.
For a metric of the form (36), the extrinsic curvature of Σ̄
vanishes, however, and the Gauss-Codazzi identity reduces
to the simpler form:

Rabcd ¼ ð2ÞR̄abcd; ð53Þ

where ð2ÞR̄abcd is the intrinsic curvature of Σ̄. Equations
(51)–(53) allow us to express the formula (47) for δSuniv
exclusively in terms of scalars of curvature:

δSuniv ¼ −
1

1440π
ð−ð4ÞRþ ð2ÞRþ 3ð2ÞR̄

þ3KailKail − KaKaÞ logðmεÞA; ð54Þ

with Ka ¼ γijKa
ij, and where

ð2ÞR, ð2ÞR̄ are the Ricci scalars
of the entangling and transverse surfaces, respectively,

ð2ÞR ¼ γikγjlð2ÞRijkl; ð55Þ

ð2ÞR̄ ¼ δacδbdð2ÞR̄abcd: ð56Þ

As the Gauss-Codazzi identity relates distinct curvature
terms, Eq. (54) can be equivalently expressed in terms of
other sets of independent contractions of the curvature
tensors.
The formula for δSuniv in Eq. (54) is valid for any metric

of the form (36). In the Einstein universe,

ð4ÞR ¼ 6

R2
; ð2ÞR̄ ¼ 0;

ð2ÞR ¼ 2

R2cos2ðre=RÞ
;

KailKail ¼
1

2
KaKa ¼

2

R2
tan2

�
re
R

�
; ð57Þ

and we recover Eq. (48). The formula can also be directly
applied to spheres in de Sitter space, in which case we
recover the result of [15], as described in Appendix A.
In addition, the contribution of the zeroth-order geom-

etry to the universal terms given in Eq. (41) can be
expressed in terms of the intrinsic curvature of the spherical
entangling surface as

Sð0Þ
univ ¼

�
1

24π
m2 −

ð1 − 6ξÞð2ÞR
144π

�
logðmεÞA: ð58Þ

The coefficient 1=ð24πÞ corresponds to α1, while the second
term within the brackets is a contribution to the second
universal coefficient α2.
In the special cases of minimal and conformal coupling,

the second universal coefficient reduces to

α2 ¼

8>><
>>:

1
360πR2

�
1 − 5þsin2ðre=RÞ

cos2ðre=RÞ

�
; ðξ ¼ 0Þ;

1
360πR2

�
1 − tan2

�
re
R

��
; ðξ ¼ 1=6Þ:

ð59Þ

At the equator, re ¼ 0, the extrinsic curvature vanishes and
the formula further simplifies to
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α2 ¼
�
− 1

90πR2 ; ðξ ¼ 0Þ;
þ 1

360πR2 ; ðξ ¼ 1=6Þ; ð60Þ

which also provides a good approximation near the
equator, re=R ≪ 1.
In addition to the universal terms, the full entropy of the

field includes regularization-dependent terms, both diver-
gent, as the leading contribution to the area law, S ∝ A=ε2,
and finite, as a whole tower of terms involving products of
factors of the form ðmεÞ2p and ðε=RÞ2q, with p; q ∈ N,
multiplied by A, that show up in the integration of the
spectral functions during the calculation of δS.

B. Entanglement entropy in the regularized theory

The entanglement entropy of spheres in the Einstein
universe can also be computed numerically, exploring the
discretization of the theory of a scalar field on this back-
ground discussed in Sec. II. The discretization introduces an
ultraviolet regulator at the length scale set by the lattice
spacing ε. The entropy of the ground state is then expected to
include the universal logarithmic contributions described in
Eq. (49). An area law term that scales with ε−2 should also be
present [1,2,19], in addition to terms that remain finite in the
limit of ε → 0.
For sufficiently small ε, terms that diverge in the limit

ε → 0 will dominate. In this regime, the universal coef-
ficients α1, α2 can be determined from calculations of the
entropy for different masses. In what follows, we will verify
this numerically in order to corroborate our analytical results
and, more generally, the perturbative approach developed in
the works [13–15] and employed in our calculations. We
describe the approach adopted for the calculation of the
entropy in the discretized theory in this section, and discuss
its numerical implementation in the next section.
The system of interest is the canonical quantization of

the discretization of the scalar field on the Einstein universe
introduced in Sec. II. The basic observables of the model
are the canonical pairs fðΦlμj;ΠlμjÞg. The Hamiltonian is
given by Eqs. (28) and (29). It describes a set of coupled
oscillators labeled by a multi-index a ¼ ðl; μ; jÞ over a
one-dimensional lattice with nodes j ¼ 1;…; N, with
nearest-neighbor interactions described by the off-diagonal
components of the potential matrix (29). The Hilbert space
of the system is the tensor product

H ¼ ⊗
lμj

Hlμj;

where each Hlμj is the Hilbert space of an individual
degree of freedom, i.e., the representation space for the
canonical pair ðΦlμj;ΠlμjÞ. The system naturally decom-
poses into a set of spatially localized subsystems, each
associated with a single node j:

H ¼ ⊗
j
Hj; Hj ¼ ⊗

lμ
Hlμj:

LetN ¼ f1;…; Ng be the set of all nodes andN A ⊂ N
a generic subset of nodes. The subsystem A associated with
the set of nodes N A is described by the Hilbert space

HA ¼ ⊗
j∈N A

Hj:

It consists of the representation space for the set of
canonical pairs with j ∈ N A. The complement B of the
subsystem is defined analogously with N A replaced with
its complementN B ¼ N nN A. We thus obtain a bipartition
H ¼ HA ⊗ HB. The subsystem A describes the scalar field
restricted to the spatial region formed by the union of the
regions associated with nodes in N A, which are thick
spherical shells, for i ≠ 1; N, or a 3-ball at the South or
North Pole, for j ¼ 1 and j ¼ N.
In order to reproduce in the discrete theory the decom-

position of S3 into a union of two glued 3-balls, we
consider a subsystem A formed by the first n nodes. From
Eqs. (14) and (15), such a subsystem is bounded by an
entangling surface of area

A ¼ 4πR2 sin2
�
πn
N

�
: ð61Þ

The reduced density matrix is obtained by taking a partial
trace over the last N − n nodes of the full state ϱ. The
bipartition under consideration has thus the form:

1;…; n|fflfflffl{zfflfflffl}
subsystem A

; nþ 1;…; N|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
d:o:f: being traced out

: ð62Þ

We wish to compute the entanglement entropy S of the
subsystem A for the ground state of the Hamiltonian (28).
Since the distinct angular momentum modes ðl; μÞ are
decoupled, they constitute independent subsystems over
the one-dimensional lattice with nodes N . The entropy of
the subsystem A is then additive over the angular momen-
tum modes,

S ¼
X
lμ

Slμ:

For a given ðl; μÞ, the Hamiltonian of the associated mode
has the form

Hlμ ¼
XN
j¼1

1

2ε
Π2

lμj þ
XN
i;j¼1

ΦlμiVijΦlμj; ð63Þ

where the quadratic potential is independent of μ. As a
result, modes with the same index l and distinct index μ
contribute equally, and we have
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S ¼
X
l

ð2lþ 1ÞSl; Sl ¼ Slμ: ð64Þ

We can then focus on the calculation of Slμ.
The ground state of a Hamiltonian that is quadratic in the

canonical variables is a Gaussian state. General techniques
for computing the entropy of Gaussian states are known, and
can be directly applied to our problem. A general formula for
the entanglement entropy was first derived in [24], reformu-
lated in terms of symplectic invariants in [25] (see also the
reviews [26–28]), and expressed in terms of the complex
structure that characterizes Gaussian states in [29] (see the
review [30]). The case of discretized free field theories has
been considered in several works [19,20], and numerical
results have been reported for varied fields and lattices
[2,16,31–33]. Of particular relevance to our purposes,
an efficient algorithm for the numerical calculation of the
vacuum entropy of a discrete free field is provided by
the real-time formalism reviewed in [19,20]. This technique
was first applied to the study of entanglement of quantum
fields already in the original works where the area law for the
entropy was established [1,2]. Let us consider the application
of the real-time approach to the Hamiltonian (63).
A Gaussian state is completely characterized by the

one- and two-point functions of the configuration variables
Φa and their conjugate momenta Πb, where a ¼ ðl; μ; iÞ.
The ground state of a quadratic Hamiltonian has vanishing
one-point functions, hΦai ¼ hΠai ¼ 0. Hence, it is sufficient
to specify its two-point functions. These are gathered in the
covariance matrixC, which for vanishing one-point functions
has the form:

C ¼
"

hΦaΦbi 1
2
ðhΦaΠbi þ hΠbΦaiÞ

1
2
ðhΠaΦbi þ hΦbΠaiÞ hΠaΠb i

#
:

For a Hamiltonian without mixed terms consisting of
products of a field and a momentum operator, the two-point
functions of the ground state satisfy the relations

hΦaΠbi ¼ −hΠbΦai ¼
i
2
δab; ð65Þ

so that the off-diagonal blocks of the covariance matrix
vanish. The relevant information is then encoded in the
symmetric matrices

Xab ¼ hΦaΦbi; Pab ¼ hΠaΠbi; ð66Þ

which in our case take the following form:

Xðl;μÞ
ij ¼ hΦlμiΦlμji ¼

1

2
ðð2εVÞ−1=2Þij;

Pðl;μÞ
ij ¼ hΠlμiΠlμji ¼

1

2
ðð2εVÞ1=2Þij: ð67Þ

See Appendix B for details.
Restricting the indices in the correlators to the subset A,

we obtain the covariance matrix CA of the subsystem.
Denote its diagonal blocks by XA and PA. All information
on observations performed within the subsystem is encoded
in the restriction of the covariance matrix to it. This allows
the reduced density matrix to be reconstructed from CA.
The entanglement entropy can then be computed from it
and expressed directly in terms of the two-point functions.
The entropy of the subsystem thus calculated has a simple
expression in terms of the positive eigenvalues νi of the
matrix

ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
[19],

Slμ ¼
Xn
i¼1

�
νi þ

1

2

�
log

�
νi þ

1

2

�

−
�
νi −

1

2

�
log

�
νi −

1

2

�
: ð68Þ

The eigenvalues νi satisfy νi ≥ 1=2.
This is the formula, together with Eq. (64), that we use for

the numerical calculations of the entropy. We are thus
provided with a convenient shortcut for the calculation of
S. Instead of taking the partial trace of the full density matrix
and using the formula for the von Neumann entropy, which
involves traces in a Hilbert space of infinite dimension, it is
sufficient to take the first n × n entries of the diagonal blocks
X, P of the covariance matrix, which defines the matrices
XA, PA, and compute the eigenvalues of

ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
. Such

simple manipulations of linear algebra in finite dimensions
can be implemented numerically in a straightforward way.

C. Numerical techniques

The discrete model under consideration has three char-
acteristic length scales: the radius of the universe R, the
lattice spacing ε and the inverse mass m−1. The entangle-
ment entropy also depends on the choice of the subsystem,
which introduces a new length scale Re, the radius of the
entangling surface, defined by A ¼ 4πR2

e. We need to fix
these parameters for each evaluation of the entanglement
entropy. This must be done for an interval of masses
respecting the approximations involved in the perturbative
calculation of the entropy, and in such a manner that the
universal contributions are sufficiently large in comparison
with the finite terms so that the universal coefficients can be
accurately determined from the numerical results. We con-
sider the case of conformal coupling, ξ ¼ 1=6.
The size N of the lattice determines the time required for

an individual evaluation of the entropy. Let us first fix a
choice of N. In the numerical calculations, an initial value of
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N will be progressively refined in order to give increasingly
accurate estimates of the universal coefficients. A choice of
N establishes a relation between two characteristic scales, as
the radius of the universe and the lattice spacing are related
through R ¼ Nε=π, as described by Eq. (16). Hence, only
one of these length scales is independent, say ε, for a fixedN.
For all calculations, we choose the equatorial surface as

the entangling surface, in which case Re ¼ R. In the lattice,
this can be done by taking an even N, and letting the
subsystem A be formed by the first N=2 nodes. The
universal coefficients could be equivalently determined
for any other entangling surface, but this choice allows
us to avoid introducing an extra length scale in the problem.
We now observe that the entropy is invariant under a

certain scaling of the parameters of the model. The
existence of such a symmetry can be expected from the
fact that the entropy is adimensional. From Eq. (67), for a
transformation of the potential matrix of the form V → λV,
the components of the covariance matrix transform as
X → λ−1=2X, P → λ1=2P, and the matrix

ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
whose

eigenvalues determine the entropy remains unchanged.
Therefore, the entropy is invariant under a transformation
V → λV. Moreover, the factors of 2ε present in X and P as
described in Eq. (67) cancel in the product

ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
and can

be disconsidered for the calculation of the eigenvalues νi. In
the explicit formula (29) for the potential, apart from an
overall factor of 1=ε, the potential matrix V depends on the
length scales only through the combination εm. Therefore,
the entropy is invariant under

ε → λε; m → λ−1m: ð69Þ

We can then fix the lattice spacing arbitrarily. Results for
any ε can be obtained through the application of the scaling
transformation (69).
In short, for any given N, we have

R ¼ Nε

π
; Re ¼ R; n ¼ N

2
; ð70Þ

where ε can be fixed arbitrarily, and we consider the case of
conformal coupling, ξ ¼ 1=6. From Eqs. (61) and (70), the
area of the entangling surface is

A ¼ 4ðNεÞ2
π

:

From Eqs. (49), (60) and (70), the universal coefficients
determined analytically in the perturbative approach are
given for these parameters by

α1 ¼
1

24π
≃ 0.0132629;

α2 ¼
π

360ðNεÞ2 ≃
8.73 × 10−3

ðNεÞ2 : ð71Þ

These are the analytical results that we wish to verify
numerically. We will keep the product Nε fixed while
refining the lattice to keep the coefficient α2 constant under
the variation of the lattice size N. We choose an arbitrary
unit for lengths and express both ε and m−1 numerically in
terms of this unspecified unit.
The calculation of the entropy for a given mass follows

three steps. First, for a given angular momentummode l, the
potential matrix is diagonalized and the blocks X and P of
the covariance matrix are computed using (67). Next, we
take the restrictions XA and PA and compute the eigenvalues
of

ffiffiffiffiffiffiffiffiffiffiffiffi
XAPA

p
. The entropy of the mode is given by Eq. (68).

Finally, we sum over the modes l, introducing a cutoff lmax,
in order to obtain the total entropy. The cutoff lmax is
increased until the numerical fit of the universal coefficients,
which we will discuss next, stabilizes.
In addition to the universal terms described in Eq. (49),

the entropy includes the nonuniversal area law term that
diverges as ε−2 in the limit of ε → 0 and is proportional to
the area of the entangling surface. Finite terms proportional
to ðmεÞpA and ðε=RÞqA, p; q ∈ 2N, are also expected, as
discussed in Sec. III A. If R and ε are kept fixed, the latter
finite terms describe a mass-independent contribution
proportional to the area A, while the former finite terms
become proportional to mpA. Accordingly, we model the
dependence of the entropy on the mass, for fixed R and ε,
with the function:

SðmÞ¼
2
4α0þðα1m2þα2Þ logðεmÞþ

Xpmax

p¼2
p∈2N

βpmp

3
5A: ð72Þ

The coefficients αr, βs can be fitted for a given set of
numerical evaluations of the entropy, fðSðmiÞ; miÞg. The
dependence of the entropy on the unknown coefficients is
linear. We estimate them using a multilinear regression
based on the least squares method. The maximal power
pmax of the finite terms can be varied, allowing us to find
an optimal choice that minimizes the uncertainties in the
numerical estimates of the universal coefficients. If too few
finite terms are included in the model, the universal terms
absorb contributions of the finite part of the entropy in the
fit, which affects the estimation of the universal coeffi-
cients, but including too many finite terms can lead to
overfitting, making the linear regression more sensitive to
numerical noise or systematic errors and thereby increasing
the uncertainty in the results.
We are then left with the task of determining a suitable

interval of masses to fit the coefficients of the function
SðmÞ given in Eq. (72). In the analytical calculation of the
universal coefficients, it is assumed that the correlation
length of the field is small in comparison with the radius of
the entangling surface, lm ∼m−1 ≪ Re ¼ R. In the lattice,
this is satisfied if
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m−1 ≪ Nε: ð73Þ
In addition, the lattice must be sufficiently fine so as to
provide a reliable approximation of the theory in the
continuum. Accordingly, we require the lattice spacing to
be small in comparison with the correlation length,

ε ≪ m−1: ð74Þ

An optimal value for the mass that takes into account both
inequalities on the same footing is determined by the
condition

1

mNε
¼ mε ⇒ m−1 ¼

ffiffiffiffi
N

p
ε: ð75Þ

For sufficiently large N, one can expect to find an
adequate interval of masses near m−1 ¼ ffiffiffiffi

N
p

ε that allow
for a reliable numerical fit of the coefficients in the
entropy function (72).
To determine such a suitable window of masses, we first

computed the entropy for a large set of masses Mscan ¼
fmig in an interval including the optimal massm−1 ¼ ffiffiffiffi

N
p

ε,
and then fitted the curve (72) for subsets fmigimaxi¼imin

⊂ Mscan,
varying the position of the mass window, determined by the
initial mass mimin

, and the number imax − imin þ 1 of masses
in the windows. This allowed us to determine an interval of
parameters where the fit is stable under the variation of
the initial mass and the width of the mass window, for which
the estimates of the universal coefficients do not change
considerably.
The bulk code was written in FORTRAN 90 using the

libraries LAPACK [34] and OpenBLAS [35] as linear
algebra solvers, and the package OpenMPI as paralleliza-
tion framework. For the lattice with N ¼ 1500 sites, the
time required for the calculation of the contribution of
each angular momentum mode is of order ∼11 s=mode on
an Intel i3 8100 processor. Our main results were obtained
with a cutoff lmax ¼ 5000, so that the time required for the
calculation of the entropy SðmiÞ of a single mass mi is
approximately 15 h.

IV. NUMERICAL RESULTS

We report results obtained for lattices with N ≥ 1000
sites representing a universe of radius R ¼ 1000=π.
Preliminary results indicated that the estimation of the
coefficient α1 ¼ 1=24π can be done accurately in coarser
lattices, but not that of the numerically much smaller
coefficient α2 ¼ 1=ð360πR2Þ, which is strongly affected
by errors in the estimation of α1. We observed that the
coefficient α1 must be determined with a relative error
roughly at the order of 10−4 in order that α2 can be
determined at the percent level, which required the lattices
to have at least N ∼ 1000 sites. We considered the case of

conformal coupling and set the entangling surface at the
equator, as discussed in Sec. III C.
Consider a lattice with N ¼ 1000 sites and lattice

spacing ε ¼ 1. From Eq. (71), the universal coefficients
are then given by

α1 ≃ 0.0132629; α2 ≃ 8.73 × 10−9: ð76Þ

According to Eq. (75), the model (72) should provide a
reliable fit of the entropy function SðmÞ for masses near
m−1 ¼ ffiffiffiffiffiffiffiffiffiffi

1000
p

≃ 31.6. In order to determine an adequate
number lmax of angular modes in the numerical calculations,
we first chose a set of 48 equidistant masses M ¼ fmig in
the interval m−1 ∈ ð30; 50Þ and studied the variation of the
universal coefficients under changes of lmax. Wewill discuss
the choice of the interval of masses in more detail latter.
For a given mass, the contribution of a mode lμ to the

total entropy is given by Eq. (68), where νi ≥ 1=2. The
function

sðνiÞ ¼
�
νi þ

1

2

�
log

�
νi þ

1

2

�
−
�
νi −

1

2

�
log

�
νi −

1

2

�

that describes the contribution of each eigenvalue νi to Slμ

satisfies

lim
νi→1=2

sðνiÞ ¼ 0;

so that only for νi > 1=2 we have nonvanishing contribu-
tions. Numerically, however, the function sðνÞ is not well
behaved at ν ¼ 1=2; in addition, numerical noise can
produce eigenvalues that are numerically less than 1=2.
We first removed such contributions from the calculation of
the entropy by introducing a cutoff tol and restricting the
sum (68) to include only terms associated with eigenvalues
such that νi − 1=2 > tol. We decreased the value of the
cutoff tol until no change was observed in the computed
entropies Slμ. We verified that this can be attained with
tol ¼ 10−35. We also checked that the total entropy S
obtained by summing over the angular momentum modes
as described in Eq. (64) remained unchanged under further
decrease of tol for lmax ¼ 104.
Next we computed the entropy Sðmi;lmaxÞ for several

choices of lmax and estimated the universal coefficients α1,
α2 by fitting the curve (72) to the numerical data for each
choice of lmax. This was done for small values of pmax ∈ N.
We observed that for lmax ∼ 5000, the relative variation
Δα2=α2 in the estimated coefficient with the inclusion of
higher l modes reached the percent level. The results for
lmax ¼ 5000 and 10000 are compared in Table I. The
relative variation of the coefficient α1 is of the order ∼10−6
for pmax ¼ 2, and rapidly increases with the inclusion of
more finite terms in the fit, reaching ∼10−2 for pmax ¼ 8.
The relative variation of the coefficient α2 is at the percent
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level for pmax ¼ 2, 4, and increases for larger pmax,
reaching approximately 70% for pmax ¼ 8. The computa-
tion time is proportional to lmax. In order to be able to
considerably refine the lattice and increase the number of
masses in the fit with the available computational resour-
ces, we set lmax ¼ 5000 for the remaining computations.
As a result, our estimation of the universal coefficient α2
will be affected by systematic errors due to the cutoff in
lmax which we estimate to be at the percent level for
pmax ≤ 4, and can only provide an order of magnitude
estimate for larger values of pmax. The uncertainties given
in Table I are the statistical uncertainties in the multilinear
regression used in the estimation of the universal coeffi-
cients. In these fits, the systematic errors are of the same
order of magnitude as the statistical errors in the estimation

of the coefficients (except for α1; pmax ¼ 2, when Δα1=α
ð1Þ
1

is even an order of magnitude smaller than the statistical
error).
Comparison with the analytical values (76) shows that a fit

with a single finite term, pmax ¼ 2, is inconsistent with the
theoretical predictions for N ¼ 1000. Moreover, for
pmax ¼ 4, the estimated values of α1 and α2 are within
4σ and 2σ from the theoretical predictions, including only
statistical errors in the uncertainties. Adding a second finite
term thus improves the accuracy of the fit, but the further
inclusion of additional finite terms is not advantageous due
to the increasing uncertainty in the estimation of the
coefficients for fits with more variables, as discussed before.
We fix then pmax ¼ 4 for our best estimates of the universal
coefficients.
Another source of systematic errors is the lattice approxi-

mation of the continuum theory. These should decrease by
refining the lattice. In finer lattices, the finite terms become
less pronounced in comparison with the divergent contri-
butions, and the accuracy of the estimation is expected to
improve. With the same set of masses M, we computed the
universal coefficients in lattices with a variable number of
sites N ¼ 1000, 1250, 1500 at fixed R ¼ Nε=π ¼ 1000=π.
The results are described in Table II. We found that the
coefficient α1 does indeed gradually approach the analytical
value given in Eq. (76). The coefficient α2 reaches the
analytical value, within its uncertainty, for N ¼ 1250 and

N ¼ 1500. The estimation of the coefficients is thus stable
under refinement of the lattice and approaches the analytical
value for both universal coefficients.
From the discussion in Sec. III C, for the lattice with

N ¼ 1500 sites and R ¼ 1000, we expect the fit to be stable
in some window of masses near m−1 ≃ 25.8. In order to
verify this, we selected a set Mscan ¼ fmig of 256 masses
ranging from m−1 ¼ 2.45 to m−1 ¼ 50.57, equally spaced
in the axis m−1, and fitted the universal coefficients for
subsets fmigimax

i¼imin
⊂ Mscan, varying the position of the

mass window, determined by the initial mass mimin
, and the

number of masses W ¼ imax − imin þ 1. For each mass
window, the distribution of inverse masses m−1

i is centered
at an inverse mass m−1

med, where mmed is the median of the
mass window.
In the first panel of Fig. 3, we plot the mean squared error

χ2=W for fits with different numbers of massesW, for mass
windows centered at m−1

med in the axis m−1. The quantity
χ2=W is used to evaluate the quality of the fit. We see that it
stabilizes for larger mmed, and reaches a common order of
magnitude for all displayed W roughly around m−1

med ∼ 25.
At m−1

med ∼ 30, the qualities of all displayed fits are
comparable, except for the shorter window W ¼ 20, which
has larger fluctuations in χ2=W. At this m−1

med, the fits
involve masses such that m−1 ≳ 20.
The quantity χ2=W stabilizes at larger m−1

med for fits
involving a larger number of masses W. As the inverse
masses are equidistant, a fit with largerW involves a larger
width Δm−1 of inverse masses than a fit with smaller W.
The fits with W ¼ 111 were performed on intervals of
width Δm−1 ≃ 20. Keeping such a width Δm−1 ≃ 20 fixed,
we verified that, for distinct numbers of points W ranging

TABLE I. Variation of the estimated universal coefficients under change of the number lmax of angular
momentum modes, determined from a set of 48 masses in the interval m−1 ∈ ð30; 50Þ in a lattice with N ¼ 1000

sites and lattice spacing ε ¼ 1. The estimates αð1Þi and αð2Þi are obtained with lmax ¼ 5000 and 10000, respectively.

The variation is defined as Δαi ¼ αð2Þi − αð1Þi .

pmax αð1Þ1 Δα1=α
ð1Þ
1 αð1Þ2 Δα2=α

ð1Þ
2

2 0.0132295(3) −1.90 × 10−6 −2.0ð2Þ × 10−9 0.019
4 0.0132595(10) −7.83 × 10−5 8.2ð3Þ × 10−9 −0.046
6 0.013245(6) −3.27 × 10−4 5ð2Þ × 10−9 −0.226
8 0.01336(7) 8.12 × 10−3 2.5ð1.2Þ × 10−8 0.717

TABLE II. Lattice refinement. Universal coefficients estimated
from a set of 48 masses in the interval m−1 ∈ ð30; 50Þ for lattices
with variable number N of sites and fixed size, with pmax ¼ 4.

N α1 α2

1000 0.0132595(10) 8.2ð3Þ × 10−9

1250 0.0132615(14) 8.7ð5Þ × 10−9

1500 0.0132625(16) 8.9ð5Þ × 10−9
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from 21 to 111, the quantity χ2=W stabilizes roughly at the
same m−1

med for all W. Hence, the tendency observed in
Fig. 3 of fits with largerW to stabilize at largerm−1

med can be
attributed to the wider mass window employed in such fits.
We conclude that fits withW > 40 and masses satisfying

m−1 ≳ 20 over an interval of width Δm−1 ≲ 20 provide
estimates of the universal coefficients with a stable quality.
In the middle and right panels of Fig. 3, we show the
estimated values of the universal coefficients α1 and α2 for
mass windows withW ¼ 110 centered at masses mmed. We
see that the fits are stable for m−1

med ≳ 25 for pmax ¼ 4 and
that the values of the estimated universal coefficients agree
with the analytical values.
In order to obtain our best estimate of the universal

coefficients, we performed a fit using 110 masses such that
m−1 > 30 for the lattice with N ¼ 1500 sites, setting
pmax ¼ 4. We obtained

α1 ¼ 0.0132611ð11Þ; α2 ¼ 8.43ð36Þ × 10−9: ð77Þ
The coefficient α1 was determined with a relative error of
1.4 × 10−4, and the coefficient α2 with a relative error of
3.4 × 10−2 with respect to the analytical values (76). The
uncertainties represented in Eq. (77) are statistical errors.
These are slightly lower than those for the estimates
displayed in Table II for N ¼ 1500, due to the increased
number of masses used in the fit. The error in the estimation
of α2 is at the order of the estimated systematic error due to
the cutoff lmax in the sum over angular momentum modes.
Further increasing the number of masses in the fit might
decrease the statistical error, but in order that the fit provides
a more accurate estimation of the coefficients it would
be necessary to also decrease the systematic errors, by
increasing the number of angular momentum modes in
the calculation of the entropy and perhaps further refining
the lattice. For the purpose of numerically testing the

predictions of the perturbative approach for the calculation
of the universal coefficients, we consider that our best
estimates already provide strong evidence for the correctness
of the entropy formula (49) with universal coefficients given
by Eq. (50), obtained with the application in Sec. III of the
perturbative approach developed in [13,14]. The first uni-
versal coefficient α1 was determined with a relative error of
the order 10−4, and the second, curvature-dependent univer-
sal coefficient α2, which to the best of our knowledge has not
been obtained numerically before, was determined up to a
relative error at the percent level. The fitted entropy function
is plotted against the numerical data in Fig. 4.

FIG. 4. Comparison of the entropy curve SðmÞ=A with fitted
coefficients and the numerical data.

FIG. 3. Left panel: Dependence of the mean squared error per data point, χ2=W, on the widthW and medianmmed of the mass window.
Middle panel: Universal coefficient α1 estimated with mass windows of widthW ¼ 111 and median mass mmed. Right panel: Universal
coefficient α2 estimated with mass windows of widthW ¼ 111 and median massmmed. All results were obtained with the same number
of sites, N ¼ 1500, for a lattice with size R ¼ 1000=π.
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V. DISCUSSION

We have determined two logarithmic universal terms of
the entanglement entropy for a massive scalar field in four
spacetime dimensions, both analytically and numerically.
The universal terms are characterized by numerical coef-
ficients α1 and α2,

Suniv ¼ ½α1m2 logðεmÞ þ α2 logðεmÞ�A: ð78Þ

We considered the case of spherical entangling surfaces in
the Einstein universe R × S3. The universal coefficients
were first computed perturbatively following [13–15] and
expressed in terms of geometric properties of the back-
ground and entangling surface. They were then estimated
numerically with the application of the real-time approach
[19,20] to a discretization of the theory. We observed a close
agreement between the analytical and numerical results.
For the perturbative determination of the universal

coefficients, we considered a general class of spherically
symmetric spacetimes allowing for the variation of the
intrinsic, extrinsic and background geometry at the spheri-
cal entangling surface. The geometry around the entangling
surface is a perturbed spherical waveguide characterized by
the background curvature Rμνρσ and the extrinsic curvature
Ka

ij evaluated at the entangling surface [Eq. (36)].
Restricting to the case of de Sitter space, we recovered
the universal terms described in [15]. We focused on the
case of the Einstein universe in order to confront the general
perturbative formula for the universal coefficients with
numerical calculations.
The first universal coefficient α1 is independent of all

parameters of the model, α1 ¼ 1=ð24πÞ, describing a
universal term of the entropy characteristic of massive
scalar field theories in general geometries and for any
coupling ξ to the scalar curvature. It corresponds to the
universal term first obtained in [11]. We determined it
numerically with a relative error of the order of 10−4. Such
a high accuracy in the numerical estimation of α1 is
required in order that the second universal coefficient α2
can also be estimated from the numerical data.
The coefficient α2 includes a contribution from the

unperturbed spherical waveguide geometry that depends
on the coupling constant ξ to the background scalar
curvature and on the intrinsic curvature of Σ, described
by Eq. (58), and contributions from the metric perturbations
that include terms proportional to the scalar curvatures ð4ÞR,
ð2ÞR, ð2ÞR̄ of the background, entangling surface Σ and the
surface Σ̄ orthogonal to it, respectively, as well as terms
proportional to the contractions KailKail; KaKa of the
extrinsic curvature at Σ, as described in Eq. (54). The
numerical value of α2 at the equator of the Einstein universe
is identical to that for an entangling surface of the same
radius at the equator of de Sitter space, computed in [15].
For an entangling surface of generic radius, the universal

coefficients in the Einstein universe are given by Eqs. (54)
and (58), with the required contractions of curvature tensors
given explicitly in Eq. (57). The universal coefficient α2
was computed numerically at the equator of the Einstein
universe. Our best estimate agrees with the analytical value
up to a relative error of ∼3.5%. The close agreement
between the numerical and analytical results for both
universal coefficients provides a stringent numerical test
of the perturbative approach to the calculation of the
entanglement entropy of massive fields.
For the numerical determination of the universal coef-

ficients, the real-time approach was applied to a lattice
model describing a discretization of the scalar field along
the radial direction, in a straightforward adaptation of the
approach introduced in the original numerical verification
of the area law [2] to the case of the curved background of
the Einstein universe and a massive field. The entropy was
then computed for a sufficiently large set of masses fmig
and the universal coefficients were obtained by fitting a
model for the entropy curve including the universal terms
(78) to the numerical data SðmiÞ. Two sources of systematic
errors are introduced in this approach: a required cutoff
lmax in the set of angular momentummodes of the field and
the lattice regularization itself. These can be reduced by
increasing the cutoff lmax and decreasing the lattice spacing
ε, at the cost of increasing the CPU time required for the
calculation. We have progressively improved the numerical
calculations in this manner until the estimation of both
universal coefficients became reasonably stable. The mass
window fmig was chosen so that the approximations
involved in the perturbative calculations were valid. A
lattice with N ¼ 1500 sites, a momentum angular cutoff
lmax ∼ 5000 and at least ∼40 masses were required for the
determination of the coefficient α2 at the percent level. Our
best estimate was obtained with a set of 110 masses and the
total CPU time was approximately ∼1680 h.
The numerical approach explored here for the case of a

massive scalar field in the Einstein universe can also be
applied to the estimation of universal coefficients of the
entanglement entropy in other spherically symmetric static
geometries and to the case of massless theories. In particular,
it should be possible to determine universal terms for a
massless scalar field in the Einstein universe with a similar
procedure. In the massive case, the entropy curve could also
be further studied by extending the range of masses to
regimes where the approximations assumed in the perturba-
tive approach do not hold.
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APPENDIX A: UNIVERSAL COEFFICIENTS FOR
SPHERES IN DE SITTER SPACE

The perturbative calculation of universal terms of the
entropy for a spherical entangling surface in a perturbed
spherical waveguide was discussed in Sec. III A. We
considered the case of the Einstein universe in detail,
but a general formula for the universal terms was first
derived for any metric of the form (36). It includes a
contribution from the unperturbed spherical waveguide,
given by Eq. (41), and a contribution from the metric
perturbation, expressed entirely in terms of scalars of
curvature in Eq. (54). Here we apply this formula to the
case of de Sitter space and show how the results obtained in
[15] are reproduced from these formulas.
The metric of de Sitter space after a Wick rotation of the

temporal variable is that of a four-sphere. It can be written
in the form:

ds2 ¼ R2 sin2
�
r
R

�
dτ2 þ dr2 þ R2 cos2

�
r
R

�
dΩ2;

where R is the radius of the four-sphere. Denote by yi the
angular variables parametrizing the two-sphere with metric
dΩ2. Introducing the new variables:

x1 ¼ r cos τ; x2 ¼ r sin τ;

and expanding around the equator (r ¼ 0), we obtain the
perturbed metric,

ds2 ¼ δabdxadxb þ γijdyidyj þ
1

3R2
½ð−x2Þ2ðdx1Þ2

− ðx1Þ2ðdx2Þ2 þ x1x2dx1dx2� − ½ðx1Þ2 þ ðx2Þ2�dΩ2;

ðA1Þ

where γij is the metric of the two-sphere of radius R. The
first line in Eq. (A1) corresponds to the unperturbed
spherical waveguide, and the remaining terms describe
the metric perturbation h.

The curvature tensor is given in the full metric by

Rμνρσ ¼
1

R2
ðgμρgνσ − gμσgνρÞ:

The extrinsic curvature vanishes at the equator,

Ka
ij ¼ 0; at xa ¼ 0:

The perturbed metric (A1) is written in terms of the
curvature tensor evaluated at the equator as

ds2 ¼
�
δab −

1

3
Racbdxcxd

�
dxadxb

þ ðγij þRiabjxaxbÞdyidyj; ðA2Þ

which has the form (36) with Ka
ij ¼ 0. This allows us to

apply the formula (54) to compute the contribution δSuniv
of the metric perturbations to the universal terms of the
entanglement entropy. The contribution from the unper-
turbed spherical waveguide geometry is the same as before,
and given by Eq. (41).
In de Sitter space, the relevant scalars of curvature are

ð4ÞR ¼ 12

R2
; ð2ÞR ¼ ð2ÞR̄ ¼ 2

R2
;

and we find

δSuniv ¼
1

360πR2
;

which corresponds to Eq. (B.7) of [15]. The result is
numerically identical to that at the equator of the Einstein
universe, but the curvature contributions from the metric
perturbations to the result are distinct. At the equator of de
Sitter space, the extrinsic curvature vanishes, and the
transverse surface has a nonzero intrinsic scalar curvature
ð2ÞR̄. In the Einstein universe, there are contributions from
the extrinsic curvature, while the curvature of the transverse
surface vanishes. The contributions from the background
are also distinct. In both cases, the entangling surface is a
sphere of radius R, and the contribution from its intrinsic
curvature ð2ÞR is the same.

APPENDIX B: EXPLICIT RELATION BETWEEN
THE COVARIANCE MATRIX AND THE

HAMILTONIAN

In order to show the relation (67) between the covariance
matrix and the Hamiltonian (63), we rely on Williamson’s
theorem, which states that a symmetric, positive-definite
matrix can be diagonalized by a linear symplectic trans-
formation M.
Let K be the quadratic form defining a quadratic

Hamiltonian
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H ¼ 1

2
ZiKijZj; ðB1Þ

where Z is a vector in a 2L-dimensional phase space
whose first L coordinates are configuration variables,
followed by their conjugate momenta, Z ¼ ðΦa;ΠbÞ.
By Williamson’s theorem, there is a symplectic matrix
M and a diagonal matrix D such that

K ¼ MDMT: ðB2Þ

This decomposition is referred to as the normal form of K.
Following Appendix A of [29], the symplectic matrix

can be evaluated explicitly to be

M ¼ K1=2UWD−1=2; ðB3Þ

where

W ¼ 1ffiffiffi
2

p
�
I iI

I −iI

�
; ðB4Þ

U is a unitary matrix that diagonalizes the matrix
iK1=2J0K1=2,

iK1=2J0K1=2 ¼ UðΛ ⊕ −ΛÞU−1; ðB5Þ

where

J0 ¼
�
0 −I
I 0

�
; ðB6Þ

Λ is diagonal, andD ¼ Λ ⊕ Λ, i.e. the so-called symplectic
eigenvalues of K are the positive elements in the spectrum
of iK1=2J0K1=2.
In its normal form, the Hamiltonian is that of a collection

of free harmonic oscillators; therefore, the covariance
matrix of its ground state in the coordinates Z0 ¼ MTZ
isC ¼ I=2. Under the inverse of this change of coordinates,
the symmetric covariance matrix becomes

C ¼ 1

2
ðMMTÞ−1: ðB7Þ

It is sufficient for our purposes to consider a block
diagonal K of the form:

K ¼
�
A 0

0 cI

�
; ðB8Þ

with A symmetric and real. Then the matrix
ffiffiffiffiffiffi
cA

p
has an

orthonormal basis of real eigenstates,

ffiffiffiffiffiffi
cA

p
ui ¼ λiui: ðB9Þ

Let u be the orthogonal matrix whose k-th column is the
eigenvector uk, and put Λ ¼ diagðλ1;…; λLÞ, so that

ffiffiffiffiffiffi
cA

p
¼ uΛuT: ðB10Þ

It follows that Eq. (B5) holds with

U ¼ 1ffiffiffi
2

p
�

u u

iu −iu

�
: ðB11Þ

The symplectic matrix that brings K into its normal form
can now be computed using Eq. (B3),

M ¼
 ffiffiffiffi

A
p

u
ffiffiffiffiffiffiffiffi
Λ−1

p
0

0 −
ffiffiffi
c

p
u
ffiffiffiffiffiffiffiffi
Λ−1

p
!
; ðB12Þ

and its inverse is given by

M−1 ¼
 
−
ffiffiffiffiffiffiffiffi
Λ−1

p
uT

ffiffiffi
c

p
0

0
ffiffiffiffiffiffiffiffi
Λ−1

p
uT

ffiffiffiffi
A

p
!
; ðB13Þ

leading to

C ¼ 1

2

 ffiffiffi
c

p
A−1=2 0

0 c−1=2A1=2

!
: ðB14Þ

For the case of the Hamiltonian (63), we set A ¼ 2V and
c ¼ ε−1. The resulting covariance matrix is

C ¼
�
X 0

0 P

�
¼ 1

2

� ð2εVÞ−1=2 0

0 ð2εVÞ1=2
�
: ðB15Þ
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Rényi entropy reduces to the entanglement entropy.

[22] A. Cappelli, D. Friedan, and J. I. Latorre, C theorem and
spectral representation, Nucl. Phys. B352, 616 (1991).

[23] V. Rosenhaus and M. Smolkin, Entanglement entropy,
planar surfaces, and spectral functions, J. High Energy
Phys. 09 (2014) 119.

[24] A. S. Holevo, M. Sohma, and O. Hirota, Capacity of
quantum gaussian channels, Phys. Rev. A 59, 1820 (1999).

[25] G. Adesso and F. Illuminati, Entanglement in continuous-
variable systems: Recent advances and current perspectives,
J. Phys. A 40, 7821 (2007).

[26] S. L. Braunstein and P. van Loock, Quantum information
with continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[27] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf,
T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum
information, Rev. Mod. Phys. 84, 621 (2012).

[28] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable
quantum information: Gaussian states and beyond, Open
Syst. Inf. Dyn. 21, 1440001 (2014).

[29] E. Bianchi, L. Hackl, and N. Yokomizo, Entanglement
entropy of squeezed vacua on a lattice, Phys. Rev. D 92,
085045 (2015).

[30] L. Hackl and E. Bianchi, Bosonic and fermionic gaussian
states from Kähler structures, arXiv:2010.15518.

[31] M. Huerta, Numerical determination of the entanglement
entropy for free fields in the cylinder, Phys. Lett. B 710, 691
(2012).

[32] H. Casini and M. Huerta, Entanglement entropy of a
Maxwell field on the sphere, Phys. Rev. D 93, 105031
(2016).

[33] M. Huerta and L. A. Pedraza, Numerical determination of
the entanglement entropy for a Maxwell field in the
cylinder, arXiv:1808.01864.

[34] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
3rd ed. (Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1999).

[35] Z. Xianyi, http://xianyi.github.io/OpenBLAS 88 (2012).

SOLDATI, MENICUCCI, and YOKOMIZO PHYS. REV. D 104, 125016 (2021)

125016-18

https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/RevModPhys.74.825
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.96.181602
https://doi.org/10.1103/PhysRevLett.75.1260
https://doi.org/10.1007/s10714-010-1034-0
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1103/PhysRevD.95.024031
https://doi.org/10.1103/PhysRevD.93.045026
https://doi.org/10.1103/PhysRevD.93.045026
https://doi.org/10.1007/JHEP04(2013)017
https://doi.org/10.1007/JHEP04(2013)017
https://doi.org/10.1103/PhysRevLett.106.050404
https://doi.org/10.1103/PhysRevLett.106.050404
https://doi.org/10.1016/j.physletb.2008.05.071
https://doi.org/10.1007/JHEP12(2014)179
https://doi.org/10.1103/PhysRevLett.113.261602
https://doi.org/10.1007/JHEP08(2015)048
https://doi.org/10.1007/JHEP08(2015)048
https://doi.org/10.1016/j.physletb.2010.01.053
https://doi.org/10.1016/j.physletb.2010.09.054
https://doi.org/10.1088/1751-8113/43/44/445402
https://doi.org/10.1088/1751-8113/43/44/445402
https://doi.org/10.1088/1751-8113/42/50/504007
https://doi.org/10.1103/RevModPhys.90.035007
https://doi.org/10.1016/0550-3213(91)90102-4
https://doi.org/10.1007/JHEP09(2014)119
https://doi.org/10.1007/JHEP09(2014)119
https://doi.org/10.1103/PhysRevA.59.1820
https://doi.org/10.1088/1751-8113/40/28/S01
https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1103/PhysRevD.92.085045
https://doi.org/10.1103/PhysRevD.92.085045
https://arXiv.org/abs/2010.15518
https://doi.org/10.1016/j.physletb.2012.03.044
https://doi.org/10.1016/j.physletb.2012.03.044
https://doi.org/10.1103/PhysRevD.93.105031
https://doi.org/10.1103/PhysRevD.93.105031
https://arXiv.org/abs/1808.01864
http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS

