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Decay rates in quantum field theory (QFT) are typically calculated assuming the particles are represented
by momentum eigenstates (i.e., plane waves). However, strictly speaking, localized free particles should be
represented by wave packets. This yields width corrections to the decay rate and to the clock behavior
under Lorentz boosts. We calculate the decay rate of a particle of mass M modeled as a Gaussian wave

packet of width a and centered at zero momentum.We find the decay rate to be Γ0½1 − 3a2

4M2 þOð a4M4Þ�, where
Γ0 is the decay rate of the particle at rest treated as a plane wave. The leading correction is then of order a2

M2.
We then perform a Lorentz boost of velocity v on the above Gaussian and find that its decay rate does not

decrease exactly by the Lorentz factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. There is a correction of order a2v2

M2 . Therefore, the decaying
wave packet does not act exactly like a typical clock under Lorentz boosts, and we refer to it is a “WP
clock” (wave packet clock). AWP clock does not move with a single velocity relative to an observer but has
a spread in velocities (more specifically, a spread in momenta). Nonetheless, it is best viewed as a single
clock as the wave packet represents a one-particle state in QFT. WP clocks do not violate Lorentz symmetry
and are not based on new physics; they are a consequence of the combined requirements of special
relativity, quantum mechanics, and localized free particles.

DOI: 10.1103/PhysRevD.104.125015

I. INTRODUCTION

Localized particles in quantum field theory (QFT) are
represented by wave packets [1,2], and localized particles
are what take part in decay and scattering processes.1 In
fact, replacing wave packets by momentum eigenstates
(i.e., plane waves) leads to a well-known issue at a
theoretical level; momentum eigenstates cannot be properly
normalized in an infinite volume. This is usually handled
using the “finite-volume trick” [2] where one uses finite
(but large) spatial volume Ω and interactions over a finite
(but large) time interval T. One can then calculate the decay
rate using momentum eigenstates because the divergences
that naturally occur due to the squaring of delta functions
are now regularized by Ω and T. In the end, this
regularization dependence cancels and does not appear
in quantities of interest. It is these calculations involving

momentum eigenstates that are usually compared to decay
experiments. This works in practice because the wave
packets that appear in experiments have an energy width
which is small compared to the particle decay width [2].
The detectors typically do not have the resolution to
measure its effect. As pointed out in [1], “Real detectors
have finite resolution...the measurement of the final-state
momentum is not of such high quality that it can resolve
the small variation of this momentum that results from the
momentum spread of the initial wave packet”. As stated in
[2], “the wave packet is classical in the sense that the
resolution of initial position and momentum measurements
are much too large to push the limits of the uncertainty
relations”. Therefore, S-matrix calculations carried out in
the plane wave limit have been usually adequate in practice
for comparison with experiments. Nonetheless, we mention
at the end of this Introduction that the effects of wave
packets may have already appeared in neutrino oscillation
experiments. So the gap between the experiment and wave
packet analysis may already be showing signs of narrow-
ing, at least for a certain type of experiment.
In this work, we obtain analytical results for the leading

order correction to decay rates due to the width of a
Gaussian wave packet. There are at least three reasons to
undertake such a calculation. The first reason is better
theoretical understanding; it is beneficial to extract a
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leading order analytical result from an otherwise intractable
integral that has only a numerical solution. The second
reason is that the resolution of detectors and the design of
experiments keep improving so that the effects of wave
packets on decay rates may become detectable in next
generation particle decay experiments. The third reason
might be the most important. We show that wave packets
behave like a slightly different kind of clock under Lorentz
boosts, and we refer to it as a “WP clock” (wave packet
clock). This is interesting in and of itself and may spawn
new concepts which we discuss in the conclusion.
We first determine the leading order width correction to

the decay rate of a particle at rest due to the width a of a
Gaussian wave packet centered at zero momentum.
The correction is of order a2

M2, i.e., of order of the square
of the ratio of the Compton wavelength to the inverse width
of the Gaussian. We then perform a Lorentz boost of
velocity v on the original Gaussian wave packet and find
that the decay rate does not decrease exactly by the usual
Lorentz factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. There is a small correction of order

a2v2

M2 . This implies that the wave packet does not act like a
typical clock under Lorentz boosts, and we refer to it as a
WP clock. The distinctive feature of a WP clock is that it
does not move with a single velocity relative to an observer
but has a spread in velocities (more specifically, a spread in
momenta). It should nonetheless be viewed as a single
clock as the wave packet represents a one-particle state in
QFT. It should be emphasized that there is no breakdown of
Lorentz symmetry here. The WP clock does not stem from
new physics but is an important consequence of combining
the requirements of special relativity, quantum mechanics,
and localized free particles.
We show that a Gaussian wave packet does not transform

into a Gaussian under a Lorentz boost. We therefore
calculate separately the decay rate of a Gaussian wave
packet centered at velocity v [i.e., momentum centered at
Mγv, where γ ¼ ð1 − v2Þ−1=2] and compare it to the decay
rate of a Gaussian centered at zero momentum. Again, we
find that the two decay rates are not related exactly by the
Lorentz factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
except when the ratio of their

respective widths have a particular value.
In this work, we do not consider corrections due to

processes taking place over a finite time interval (instead of
an infinite time interval). This has been well studied in
other work [3–6]. More recently, in [7], a systematic study
was undertaken to derive Fermi’s golden rule in QFTwithin
a Gaussian wave packet formalism [8–12]. They succeeded
in separating bulk from boundary time contributions while
maintaining the unitarity of the S matrix in contrast to
earlier work [13]. They showed that the bulk contribution
leads to Fermi’s golden rule, while the boundary part can
contribute deviations from it. This provided a solid frame-
work in which to view the results of the aforementioned
work [3–6].

In [14], a wave packet analysis of quantum correlations
in neutrino oscillations [15–17] was undertaken to extend
previous work [18] that had been carried out using a plane
wave analysis. The claim is that this wave packet analysis
leads to a better agreement with the experimental results,
most notably the MINOS experiments [19,20] (the correc-
tions due to the wave packet are more negligible for the
Daya Bay experiments [21,22]). In [23], neutrino wave
packet effects for medium-baseline reactor neutrino oscil-
lation (MBRO) experiments were also studied. Although it
needs to be confirmed, effects of wave packets may already
be showing up in experiments, in particular, those involving
neutrino oscillations.
Our paper is organized as follows. We first determine

the decay rate of a Gaussian wave packet centered at zero
momentum and determine the correction to the plane
wave result due to the width a of the Gaussian. We then
determine how a wave packet transforms under a Lorentz
boost and calculate the decay rate of the Lorentz-boosted
wave packet. This is where the WP clock is introduced. The
Lorentz-boosted wave packet is not a Gaussian, and we
therefore calculate separately the decay rate of a Gaussian
wave packet centered at velocity v (i.e., momentum Mγv).
The conclusion discusses an important and interesting
problem that emerges from this work. The integrals we
encounter in this paper do not have an exact analytical
solution but can be evaluated via a power series expansion
up to arbitrary accuracy. The details are relegated to the
Appendix.

II. DECAY RATE OF A WAVE PACKET

The state jϕi of a wave packet in quantum field theory
can be expressed as a linear superposition of one-particle
states [1],

jϕi ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ek

p ϕðkÞjki; ð1Þ

where jki is a one-particle state of momentum k, Ek the
relativistic energy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, and ϕðkÞ the Fourier trans-

form of the spatial wave function. We use the Lorentz
invariant normalization [1,2] hpjqi ¼ 2Epð2πÞ3δ3ðp − qÞ.
We then obtain the conventional normalization hϕjϕi ¼ 1
(where the sum of all probabilities is unity) if

Z
d3k
ð2πÞ3 jϕðkÞj

2 ¼ 1: ð2Þ

The differential decay rate of an unstable particle of mass
M treated as a plane wave (subscript “0”) with four-
momenta k (where k0 ¼ Ek) decaying into a set of final
particles with four-momenta pf is given by [1]
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dΓ0 ¼
1

2Ek

�Y
f

d3pf

ð2πÞ3
1

2Ef

�
jMðk → fpfgÞj2

× ð2πÞ4δ4
�
k −

X
pf

�

¼ 1

2Ek
dξ; ð3Þ

where

dξ ¼
�Y

f

d3pf

ð2πÞ3
1

2Ef

�
jMðk → fpfgÞj2

× ð2πÞ4δ4
�
k −

X
pf

�
ð4Þ

is Lorentz invariant and hence independent of k (e.g., if you
evaluate it say at k ¼ 0 then the result is valid for all k).
The dependence of the decay rate on k appears only in the
prefactor 1

2Ek
. This factor is not Lorentz invariant and is the

part responsible for time dilation, i.e., that the lifetime for a
particle increases with its speed. If we consider the unstable
particle as a wave packet, we only need to integrate over
this factor. The differential decay rate for the wave packet is
then given by

dΓpacket ¼
�Z

d3k
ð2πÞ3 jϕðkÞj

2
1

2Ek

�
dξ: ð5Þ

A. Decay rate of Gaussian wave packet centered at zero
momentum: Width correction

For a particle of mass M at rest (k ¼ 0), we obtain from
(3) that

dξ ¼ 2MdΓ0ðk¼0Þ ; ð6Þ

where dΓ0ðk¼0Þ is the plane wave result for the differential
decay rate of a particle at rest. We now represent a “particle
at rest” by a Gaussian wave packet centered at k ¼ 0 with
width a and normalized according to (2). This is given by

ϕðkÞ ¼
�
2

a

�
3=2

π3=4e−k
2=ð2a2Þ: ð7Þ

Substituting this into (5) and using (6), we obtain that

dΓpacketðk¼0Þ ¼
�Z

∞

0

2

a3
ffiffiffi
π

p k2e−k
2=a2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
p djkj

�
2MdΓ0ðk¼0Þ

¼ 1

a
Uð1=2; 0;M2=a2ÞMdΓ0ðk¼0Þ ; ð8Þ

where Uða; b; zÞ is known as the confluent hypergeometric
function of the second kind [24]. We are interested in
obtaining the correction to the plane wave (a ¼ 0) result.
We therefore perform a series expansion of U=a about
a ¼ 0, and this yields

1

a
Uð1=2; 0;M2=a2Þ ¼ 1

M

�
1 −

3a2

4M2
þO

�
a4

M4

��
: ð9Þ

Substituting the above into (8), we obtain our first result,

Γpacketðk¼0Þ ¼ Γ0ðk¼0Þ

�
1 −

3a2

4M2
þO

�
a4

M4

��
; ð10Þ

where Γ0ðk¼0Þ is the plane wave result for the decay rate of a
particle at rest, and Γpacketðk¼0Þ is the decay rate of a Gaussian
wave packet centered at zero momentum [note that we
dropped the differential symbol because the relation (10)
holds for the total decay rates]. We see that the first
correction due to the wave packet is of order a2

M2 and
vanishes in the plane wave limit where a tends to zero.2

Higher-order corrections such as a4

M4, etc., are expected to be
much smaller and are not included here. The negative sign
in (10) makes physical sense because we expect the lifetime
to increase due to the time dilation produced by nonzero
momenta in the wave packet (since there is a spread of
momenta about zero).

B. The Lorentz boost of a wave packet

We now determine how ϕðkÞ transforms under a Lorentz
boost. The state of a wave packet jϕi is given by (1).
After a Lorentz transformation, we label all quantities by a
prime, i.e.,

jϕ0i ¼
Z

d3k0

ð2πÞ3
1ffiffiffiffiffiffiffiffi
2E0

k

p ϕ0ðk0Þjk0i: ð11Þ

Quantum states transform under a Lorentz transformation
Λ via a unitary operator UðΛÞ [1]. For example, jk0i is
given by UðΛÞjki. Therefore,

jϕ0i ¼ UðΛÞjϕi ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ek

p ϕðkÞðUðΛÞjkiÞ

¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ek

p ϕðkÞjk0i: ð12Þ

Comparing (12) with (11), we find that

2We work in units where ℏ ¼ c ¼ 1. Reinstating these two
constants, the correction is of order ℏ2a2

M2c2 ¼ λ2ca2, where λc ¼ ℏ
Mc is

the Compton wavelength of the particle.
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d3kffiffiffiffiffiffi
Ek

p ϕðkÞ ¼ d3k0ffiffiffiffiffiffi
E0
k

p ϕ0ðk0Þ: ð13Þ

In other words, the (continuous) coefficients in the
expansion of a wave packet are Lorentz invariant.
Under a Lorentz boost in the 3-direction, we have
k03 ¼ γðk3 þ vEÞ and E0 ¼ γEð1þ vk3=EÞ so that d3k0ffiffiffiffi

E0
k

p ¼
d3kffiffiffiffi
Ek

p ½γð1þ vk3=EÞ�1=2. Substituting this into (13), we

obtain

ϕ0ðk0Þ ¼ ϕðkÞ½γð1þ vk3=EÞ�−1=2: ð14Þ

The above describes how ϕðkÞ transforms under a Lorentz
boost. The wave packet remains normalized, as it should,
after the Lorentz transformation, i.e.,

Z
d3k0

ð2πÞ3 jϕ
0ðk0Þj2¼

Z
d3k
ð2πÞ3 ½γð1þvk3=EÞ�

jϕðkÞj2
½γð1þvk3=EÞ�

¼
Z

d3k
ð2πÞ3 jϕðkÞj

2¼1: ð15Þ

We now determine jϕ0ðk0Þj2 in the primed coordinates
when ϕðkÞ is given by the Gaussian (7). The Lorentz
boost in the 3-direction yields the following relations:
k3 ¼ γðk03 − vE0Þ and γð1þ vk3=EÞ ¼ ½γð1 − vk03=E

0Þ�−1.
We then obtain

jϕ0ðk0Þj2 ¼ 8π3=2

a3
½γð1 − vk03=E

0Þ�e−ðk21þk2
2
þ½γðk0

3
−vE0Þ�2Þ=a2 :

ð16Þ

This is clearly not a Gaussian. We therefore see that a
Gaussian does not transform into another Gaussian under a
Lorentz boost, although the exponential peaks at k1 ¼ 0,
k2 ¼ 0, k03 ¼ Mγv, (16) do not represent a Gaussian wave
packet centered at momentum Mγv. We study such a
Gaussian in Section II C. We now turn to determining the
decay rate of the Lorentz-boosted wave packet.

1. Decay rate of a Lorentz-boosted wave packet
and the WP clock

The differential decay rate of a wave packet that is
Lorentz boosted (assumed to be in the 3- direction) is given
by (5) with primes added to represent the Lorentz-boosted
quantities,

dΓpacketboosted ¼
�Z

d3k0

ð2πÞ3 jϕ
0ðk0Þj2 1

2E0
k

�
dξ; ð17Þ

where dξ is given by the Lorentz invariant quantity (4).
Before boosting, we start with the Gaussian wave packet
centered at zero momentum given by (7)

jϕðkÞj2 ¼ 8π3=2

a3
e−ðk2þk2

3
Þ=a2 ; ð18Þ

where k2 ¼ k21 þ k22 so that d3k ¼ 2πkdkdk3. From the
calculation carried out in (15),we can see thatd3k0jϕ0ðk0Þj2 ¼
d3kjϕðkÞj2. Moreover, E0

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k023 þM2

p
, where

k03 ¼ γðk3 þ vEÞ with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k23 þM2

p
. The decay rate

of the Lorentz-boosted wave packet is then given by

dΓpacketboosted ¼
�

2

a3
ffiffiffi
π

p
Z

∞

0

Z
∞

−∞
dkdk3

ke−ðk2þk2
3
Þ=a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ½γðk3 þ vEÞ�2 þM2

p
�
dξ: ð19Þ

The integrations converge but do not yield an analytical result in terms of any well-known function. However, since the
exponential peaks at k ¼ k3 ¼ 0, we can perform a series expansion about k ¼ 0 and k3 ¼ 0 of the function that multiplies
the exponential and then integrate. This leads to an analytical result as a series in powers of the small parameter a2=M2 up to
arbitrary accuracy. The result is (see Appendix)

Γpacketboosted ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p 1

2M

�
1 −

3a2

4M2

�
1 −

2v2

3

�
þO

�
a4

M4

��
dξ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γ0ðk¼0Þ

�
1 −

3a2

4M2

�
1 −

2v2

3

�
þO

�
a4

M4

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1 − 3a2

4M2 ð1 − 2v2
3
Þ þOð a4M4Þ

1 − 3a2

4M2 þOð a4M4Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1þ a2v2

2M2
þO

�
a4

M4

��
; ð20Þ
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where we used (6) for dξ and used (10) to express Γ0ðk¼0Þ in
terms of Γpacketðk¼0Þ . In the last equality, we performed a

binomial expansion and kept terms up to order a2=M2.
The important point to take away from the above result

is that the decay rate of a wave packet after a Lorentz boost
is not related to the original decay rate of the wave packet
by exactly the Lorentz factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. There is a small

correction3 equal to a2v2

2M2. The correction increases as the
boost velocity increases (reaching a maximum in the
limit v → 1).
We therefore see that the decay of a localized particle in

QFT does not act exactly like a typical clock under Lorentz
boosts, and we refer to it as a WP clock. In contrast to a
typical clock, a WP clock does not move with a single
velocity but has a spread in velocities (or more specifically,
a spread in momenta). It is best to view the WP clock as a
single clock since the wave packet represents a one-particle
state in QFT. It should be emphasized that there is no
breakdown of Lorentz symmetry here. The effect is due to
the fact that localized particles in QFT must be represented
by wave packets and not plane waves in accordance with
Heisenberg’s uncertainty principle.

C. Decay rate of Gaussian wave packet centered at
velocity v

As we saw, the Lorentz boost by a velocity v of a
Gaussian wave packet centered at zero velocity does not
yield a Gaussian wave packet centered at velocity v. It is
therefore of interest to determine the decay rate of a
Gaussian wave packet centered at velocity v and compare
it to the decay rate of a Gaussian at “rest”. The third
component k3 of the momentum will be centered at Mγv,
where γ is the usual Lorentz factor ð1 − v2Þ−1=2. The other
two components, k1 and k2, will both be centered at zero.
The width is denoted by b and the Gaussian normalized
again according to (2). This yields

ϕðkÞ ¼
�
2

b

�
3=2

π3=4e−½p2þðk3−MγvÞ2�=ð2b2Þ; ð21Þ

where p ¼ ðk1; k2Þ and p2 ¼ k21 þ k22. Substituting
the above into (5) and using d3k ¼ dk1dk2dk3 ¼
2πjpjdjpjdk3, we obtain

dΓpacketðjkj¼MγvÞ ¼ dξ
Z

∞

0

Z
∞

−∞

1

b3
ffiffiffi
π

p jpj

×
e−½p2þðk3−MγvÞ2�=b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þ k23 þM2
p djpjdk3: ð22Þ

The above integral converges but does not yield an
analytical result in terms of any well-known function.
However, as in the previous section, we can obtain an
analytical result as a power series expansion in the small
parameter b2=M2 up to arbitrary accuracy. The exponential
in this case peaks at jpj ¼ 0 and k3 ¼ Mγv. We can
therefore perform a series expansion about jpj ¼ 0 and
k3 ¼ Mγv of the function that multiplies the exponential
and then integrate. The result is (see Appendix for details)

dΓpacketðjkj¼MγvÞ ¼ dξ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
1

2M
−

3b2

8M3
ð1 − v2Þ2

þO
�
b4

M4

��
: ð23Þ

Substituting dξ from (6) into (23), we obtain

Γpacketðjkj¼MγvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γ0ðk¼0Þ

�
1 −

3b2

4M2
ð1 − v2Þ2

þO
�
b4

M4

��
; ð24Þ

where we dropped the differential symbol as before (since
the relation applies to the total decay rate). Substituting
Γ0ðk¼0Þ from (10) into (24), we obtain

Γpacketðjkj¼MγvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1 − 3b2

4M2 ð1 − v2Þ2 þOð b4M4Þ
1 − 3a2

4M2 þOð a4M4Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1þ 3

4M2
ða2 − b2ð1 − v2Þ2Þ þO

�
b4

M4
;
a4

M4
;
a2b2

M4

��
: ð25Þ

We therefore see that Γpacketðjkj¼MγvÞ is not exactly equal toffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ . In other words, the two decay rates are

not related exactly by the Lorentz factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. For two

plane waves (the a → 0 and b → 0 limit), the relation is
exact as expected. For the case where the two widths are
equal (a ¼ b), the correction to the Lorentz factor is
nonzero and equal to 3a2v2

4M2 ð2 − v2Þ. The correction
3Note that compared to the decay rate of a boosted plane wave

the correction is equal to − 3a2

4M2 ð1 − 2v2
3
Þ.
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increases with v and reaches a maximum in the limit
v → 1.
In particular, note that if the width b of the second

(moving) Gaussian is equal to aγ2 where a is the width of
the Gaussian at “rest”, then the leading order correction
vanishes, and the two decay rates are related by the Lorentz
factor (up to higher order corrections). So the decay rate of
a Gaussian centered at velocity v and one centered at zero
velocity are not, in general, related exactly by the Lorentz
factor except when the ratio of their widths b=a is equal
to γ2.

III. CONSTRAINTS ON WAVE PACKET:
Z0 BOSON DECAY

To determine the constraints on a Gaussian wave packet
due to a realistic decay, we consider the decay of the Z0

boson. This has been measured experimentally to great
accuracy [25], and these measurements can be compared to
the best high precision theoretical calculations that have
been performed recently at the two-loop level [26,27].
We begin by recalling formula (10) for how the width a

of a wave packet affects the decay rate,

Γpacketðk¼0Þ ¼ Γ0ðk¼0Þ

�
1 −

3a2

4M2

�
: ð26Þ

The Z0 boson has many channels that it can decay into
including leptonic, neutrino, and hadronic channels. Note
that the factor 1 − 3a2

4M2
z
is the same regardless of the channel

that the Z0 boson decays into. So an important point is that
the wavepacket has no affect on the Z0 branching ratios. It
only affects the absolute value of the decay width of any
particular channel.
The full decay width of the Z0 boson has been measured

to be Γz ¼ 2.4952� 0.0023 GeV [25]. High-precision
theoretical calculations at two-loop accuracy have recently
been obtained and yield a full decay width of 2.4947 GeV
[26,27] with a maximal deviation (numerical error) of
1.2 × 10−5 GeV. The theoretical result differs from the
measured one by 0.02% and is within the experimental
error. However, projected future eþe− collider experiments
(e.g., ILC, FCC-ee, and CEPC) [28–31] would lead to at
least two orders of magnitude higher precision than the
previous measurements at Large Electron-Positron collider
of electroweak pseudo-observables (EWPOs) like the
decay width of the Z0 boson. It is therefore highly probable
and expected that the discrepancy between the two-loop
results and future collider measurements will no longer
remain within experimental error. The two-loop result has
been estimated to contain an error of 4 × 10−4 GeV due to
three-loop corrections [26,27]. The future colliders will be
able to measure widths to that level of precision. A wave
packet effect could then be observed at future colliders if it
contributes roughly at the same order (or somewhat less)

than the three-loop corrections to the decay width. The ratio
of the estimated three-loop correction to the presently
measured decay width is 0.0004=2.4952 ¼ 1.60 × 10−4.
We therefore obtain the approximate constraint

3a2

4M2
z
⪅ 1.60 × 10−4 which yields a ⪅ 1.33 GeV; ð27Þ

where Mz ¼ 91.187 GeV was used for the mass of the Z0

boson. In our construction of the Gaussian wave packet,
a2 ¼ 2σ2, where σ is the standard deviation. We therefore
obtain that σ ⪅ 0.94 GeV. This is reasonable as it is less
than the decay width itself.
Numerically, exact three-loop contributions to the decay

width have not been carried out yet but are in the planning
[26,27] and should be completed before the future colliders
are running. If the discrepancy between theory at three-loop
contributions and experiments at future colliders does not
lie within experimental error and is clearly larger than
estimates of four-loop corrections, this could potentially
signal a wave packet effect.

IV. CONCLUSION

In this paper, we found an analytical result for the leading
order width correction to the decay rate of a Gaussian wave
packet centered at zero momentum. The effect was of order
a2

M2, where a is the width, andM is the mass of the decaying
particle. We discussed that this wave packet effect has the
possibility in showing up in the highly precise measure-
ments of EWPOs of planned future eþe− colliders [28–31].
We then showed that the decay rate of this Gaussian wave
packet under a Lorentz boost by velocity v does not
decrease exactly by the Lorentz factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. There is

a correction of order a
2v2

M2 . This is important because it means
that a decaying wave packet does not behave like a typical
clock under Lorentz boosts, and we refer it to it as a WP
clock. AWP clock can be defined as a clock that does not
move with a single velocity relative to an observer but has a
spread in velocities (or a spread in momenta). Since the
wave packet is a one-particle state in QFT, it is best to view
the WP clock as a single clock. As already mentioned, the
WP clock does not imply a breakdown of Lorentz sym-
metry; it does not stem from new physics but is an
important consequence of the combined requirements of
special relativity, quantum mechanics, and localized free
particles.
We found that a Gaussian wave packet which is Lorentz

boosted does not transform into another Gaussian. This is
why we calculate separately the decay rate of a Gaussian
centered at momentum Mγv (with width b). We find that it
is not exactly equal to the decay rate of a Gaussian centered
at zero momentum (with width a) multiplied by the Lorentz
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
. There is again a correction that depends on
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their respective widths and the velocity v. For the case
where their respective widths are equal (a ¼ b), the leading
order correction to the Lorentz factor is equal to
3a2v2

4M2 ð2 − v2Þ. However, the leading order correction van-
ishes if the ratio of their widths b=a is equal to γ2.
There is one thing, in particular, that would be important

to investigate in future work. In special relativity, there is a
symmetry between two inertial frames. If two frames A and
B move with constant velocity relative to each other, then
from A’s perspective, B’s clock runs slower by the usual
time dilation factor, and from B’s perspective, A’s clock
runs slower by the same time dilation factor. Consider now
a Gaussian wave packet that is centered at zero momentum
relative to an inertial frame A. Let its decay rate in A’s
frame be ΓA. If we now Lorentz boost the wave packet with
velocity v, the decay rate of the Lorentz-boosted wave
packet will be ΓA multiplied by the usual Lorentz factor offfiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
but with a correction due to the width and speed v.

In other words, from A’s perspective, the clock now runs
slower but with a small correction to the usual time dilation;
this correction is what defines a WP clock. Now, frame A,
by definition, is an inertial frame with a typical clock. By
symmetry, its clock relative to a frame B attached to the free
particle wave packet should also run slower by the exact
same amount as the WP clock. Since A’s clock is a typical
clock, this implies that the correction that appears in a WP
clock must now originate from the nature of frame B. In
other words, if we want to preserve the symmetry inherent

to special relativity, frame B attached to the free particle
wave packet must be a slightly different kind of inertial
frame (just like a WP clock is a slightly different kind of
clock). One argument in favor of regarding frame B as an
inertial frame is that it is a frame attached to a free particle.
However, in contrast to a free particle in classical mechan-
ics, a free localized particle in QFT does not have a precise
velocity/momentum. So if frame B can be regarded as an
inertial frame, it makes sense that it would be a slightly
different kind of inertial frame. The goal would then be to
see if one can define such an inertial frame so that it is
consistent with special relativity and leads to the desired
effects. This is a worthy goal to pursue with the potential of
broadening our scope.
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APPENDIX: INTEGRATION VIA SERIES
EXPANSIONS

1. Integrals appearing in the decay rate of a boosted
wave packet

In Sec II B 1, we encountered the decay rate of a boosted
wave packet given by the double integral (19),

dΓpacketboosted ¼
�

2

a3
ffiffiffi
π

p
Z

∞

0

Z
∞

−∞
dkdk3

ke−ðk2þk2
3
Þ=a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ½γðk3 þ vEÞ�2 þM2

p
�
dξ

¼
�

1

2a3
ffiffiffi
π

p
Z

∞

0

Z
∞

−∞
dudk3

e−ðuþk2
3
Þ=a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ ½ð1 − v2Þ−1=2ðk3 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k23 þM2

p Þ�2 þM2

q
�
dξ; ðA1Þ

where we made the substitution u ¼ k2, replaced E by its expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k23 þM2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k23 þM2

p
, and replaced γ by

ð1 − v2Þ−1=2. The integrals converge but do not yield an analytical result in terms of any well-known function. However, by
expanding the function that multiplies the exponential about u ¼ k3 ¼ 0 (where the exponential peaks) as a power series
before integrating, we can obtain an analytical result for the integral as a power series in the small parameter a2=M2 up to
arbitrary accuracy. The function is (including the normalization prefactor)

fðu; k3Þ ¼
1

2a3
ffiffiffi
π

p ½uþ ½ð1 − v2Þ−1=2ðk3 þ v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ k23 þM2

q
Þ�2 þM2�−1=2: ðA2Þ

Ourgoal is to obtain the leading correction to the planewave result for the decay rate. Thismeanswewant the integral (with the
normalization prefactor) to be accurate up to a2=M2 (but do not require it to be accurate up to a4=M4 or higher). This requires
that we expand the function f above only up to second order in k3 and first order in u. This yields the function f2 given by

f2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
ffiffiffi
π

p
a3

1

2M

�
1 −

u
2M2

þ −
k3
M3

ðM2 − uÞvþ k23
4M4

ð2M2 − 3uÞð−1þ 2v2Þ
�
: ðA3Þ

Multiplying f2 by the exponential and then performing the integration yields
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Z
∞

0

Z
∞

−∞
dudk3f2e−ðuþk2

3
Þ=a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p 1

2M

�
1 −

3a2

4M2
ð1 − 2v2=3Þ þO

�
a4

M4

��
: ðA4Þ

The differential decay rate of a boosted wave packet given by (A1) is obtained by multiplying the above result by the factor
dξ ¼ 2MdΓ0ðk¼0Þ given by (6), where dΓ0ðk¼0Þ is the differential decay rate of a particle at rest treated as a plane wave. This
yields

Γpacketboosted ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γ0ðk¼0Þ

�
1 −

3a2

4M2
ð1 − 2v2=3Þ þO

�
a4

M4

��
; ðA5Þ

where we have dropped the differential sign since the relation applies also to the total decay rate. We would like to express
the decay rate of the boosted wave packet in terms of the decay rate of the original wave packet “at rest” (centered at zero
momentum). Using (10), we can express the decay rate of a plane wave at rest to the decay rate of a wave packet “at rest”,
i.e.,

Γ0ðk¼0Þ ¼
Γpacketðk¼0Þ

1 − 3a2

4M2 þOð a4M4Þ
: ðA6Þ

Substituting the above into (A5), we obtain

Γpacketboosted ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1 − 3a2

4M2 ð1 − 2v2=3Þ þOð a4M4Þ
1 − 3a2

4M2 þOð a4M4Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1þ a2v2

2M2
þO

�
a4

M4

��
; ðA7Þ

where in the last line we performed a binomial expansion and kept terms only up to the small parameter a2=M2. We
therefore see that the Lorentz boost of a wave packet does not change its decay rate exactly by the Lorentz factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

There is a correction of order a2v2=M2.

2. Integrals appearing in the decay rate of a Gaussian wave packet centered at velocity v

In Sec. II C, we encountered the decay rate of a Gaussian wave packet centered at velocity v given by the double
integral (22)

dΓpacketðjkj¼MγvÞ ¼ dξ
Z

∞

0

Z
∞

−∞

1

b3
ffiffiffi
π

p jpj e
−½p2þðk3−MγvÞ2�=b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ k23 þM2

p djpjdk3

¼ dξ
Z

∞

0

Z
∞

−∞

1

2b3
ffiffiffi
π

p e−½uþp2
3
�=b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ ðp3 þMγvÞ2 þM2
p dudp3; ðA8Þ

where we made the substitution u ¼ jpj2 and p3 ¼ k3 −Mγv. The integrals converge but do not yield an analytical result in
terms of any well-known function. Our procedure will be the same as the one used for the previous integral in the subsection
above. The exponential peaks at u ¼ p3 ¼ 0. We therefore expand the function that multiplies the exponential as a power
series about u ¼ 0 and p3 ¼ 0. We can then obtain an analytical result for the integral as a power series in the small
parameter b2=M2 up to arbitrary accuracy. The function in this case is

f ¼ 1

2b3
ffiffiffi
π

p ½uþ ðp3 þMγvÞ2 þM2�−1=2: ðA9Þ

We are interested in obtaining only the leading correction to the decay rate proportional to b2=M2. This requires us to
expand f only up to second order in p3 and first order in u. We label this f3, and it is given by
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f3 ¼
1

8b3M5
ffiffiffi
π

p ð4M4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
− 4M3p3vð1 − v2Þ þ 6Mp3uvð1 − v2Þ2

þ 3p2
3uð1 − v2Þ5=2ð1 − 5v2Þ − 2M2ð1 − v2Þ3=2ðuþ p2

3ð1 − 3v2ÞÞÞ: ðA10Þ

The decay rate (A8) is then given by

Γpacketðjkj¼MγvÞ ¼ dξ
Z

∞

0

Z
∞

−∞
dudp3f3e−ðuþp2

3
Þ=b2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p dξ
2M

�
1 −

3b2

4M2

�
1 − v2Þ2 þO

�
b4

M4

��
; ðA11Þ

where we dropped the differential sign for the decay rate as the result holds for the total decay rate. Using (6) and (10), we
now replace dξ by

dξ ¼ 2MΓ0ðk¼0Þ ¼ 2M
Γpacketðk¼0Þ

1 − 3a2

4M2 þOð a4M4Þ
: ðA12Þ

Substituting the above into the decay rate (A11), we obtain our final result

Γpacketðjkj¼MγvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1 − 3b2

4M2 ð1 − v2Þ2 þOð b4M4Þ
1 − 3a2

4M2 þOð a4M4Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
Γpacketðk¼0Þ

�
1þ 3

4M2
ða2 − b2ð1 − v2Þ2Þ þO

�
b4

M4
;
a4

M4

��
: ðA13Þ
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