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We study the influence of the thermal background on the existence of the anti-Unruh effect. For the
massless scalar field, we present that the anti-Unruh effect can appear when the detector is accelerated in
the thermal field, which is shown to be absent when accelerating in the Minkowski vacuum. For the
massive scalar field, it is found that the anti-Unruh effect which exists in the case for accelerated detectors
in the vacuum can disappear when the background temperature increases. We use the many-body entangled
quantum state to study the situation of the massive scalar field. When the many-body state is accelerated, its
entanglement is decreasing with the increase of the background temperature and the phenomenon
of the sudden death for entanglement occurs. This provides a valuable indication that the anti-Unruh
effect can exist below some specific background temperature, dependent on the actual experimental
environment.
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I. INTRODUCTION

The Unruh effect [1] was discovered in 1976, which
states that an observer with uniform acceleration would feel
a thermal bath of particles in the Minkowski vacuum of a
free quantum field. Since then, the effect had been digested
and extended to many different situations (see the review
[2] and references therein). Although many proposals based
mainly on the Unruh-DeWitt (UDW) detector [3] had been
put forward [4–16] in past years, the observation of Unruh
effect has not been realized up to now, because of the pretty
low Unruh temperature which requires the acceleration to
be about 1020 m=s2 in order to realize a photon bath at 1 K.
As is well known, an elemental obstacle to test the Unruh
effect experimentally is the thermal noise from the envi-
ronment. The recent found anti-Unruh effect [17] provides
a helpful way to test the effect experimentally, since it
usually leads to the different behaviors from that by the
thermal noise. This phenomena of anti-Unruh effect fol-
lows from the observation [17] that an increase in detector
acceleration will correspond to a decrease in the temper-
ature of the detected radiation, in direct contrast to both the
Unruh effect and one’s expectations. In particular, the anti-
Unruh effect has been shown to represent a general
stationary mechanism that can exist under a stationary
state satisfying Kubo-Martin-Schwinger (KMS) condition

[18–20] and is independent on any kind of boundary
conditions [21]. Thus, like the Unruh effect, the anti-
Unruh effect constitutes another new phenomenon for
the accelerated observers.
Since the experiments are always made in the range of

finite length and time, it must distinguish the two situations
of Unruh and anti-Unruh effects carefully. An interesting
way for this is to see the change of quantum entanglement
by acceleration. According to the previous results [22–30],
the quantum entanglement would be degraded by the
Unruh effect, which is similar to the results caused by
the thermal background. However, a recent calculation
showed that the anti-Unruh effect can lead to the increase
for the quantum entanglement for the bipartite [31] and
many-body quantum states [32].
The previous studies was mostly made for the change of

quantum states and entanglement when the physical systems
were accelerated in the Minkowski vacuum. As the thermal
noise cannot be eliminated completely, it is significant to
investigate the influence of acceleration on the quantum
states or entanglement in the thermal background [33–37].
Since it is difficult to distinguish the physical results by the
Unruh effect from that by the thermal background [38–40],
we will investigate the influence of anti-Unruh effect on
many-body entanglement and study whether it could be
differentiated from thermal background in this paper.Wewill
consider the spin squeezed states [41,42] as done before in
Ref. [32] but accelerated in the thermal background instead
of the vacuum background. This is necessary because for
accelerated observers in thermal field the Green functions
which are essential in calculating the transition probability
are not time translational invariant and the accelerated
observers see the thermal background not in thermal
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equilibrium [39,40]. Thus, whether the earlier investigation
of the anti-Unruh effect for accelerated many-body quantum
systems in vacuum is still hold in the thermal background is
unclear both in mathematical and physical perspective. This
constitutes the main motivation for the present work. In this
paper, we not only investigate the influence of background
thermal field on the existence of anti-Unruh effect, but also
we will study the influence on the accelerated many-body
quantum systems. We will focus on twin-Fock (TF) states
[43] which can be seen as a kind of limit for spin squeezed
states and had been realized in a recent experimentwithmore
than 104 atoms [44].
This paper is organized as follows. In the second section

we review the two-level Unruh-DeWitt (UDW) detector
model, and investigate whether the anti-Unruh effect
appears for the environment of the vacuum or the thermal
field with the condition of the massless scalar field. Then,
the model for the atom accelerated in the thermal field is
given in the third section. This is followed in the fourth
section by the discussions on the influence of acceleration
on entanglement for TF states in the thermal background,
where the spin squeezing parameter is used to measure the
change of entanglement. Then, the phase sensitivity is
analyzed for the accelerated TF states in the thermal
background with the actual experimental conditions in
Sec. V. Finally, we give a conclusion in Sec. VI. In this
paper, we use units with c ¼ ℏ ¼ kB ¼ 1, except the part of
analyzing the phase sensitivity in Sec. V.

II. THERMAL FIELD

In this section we will investigate the influence of
thermal field on existence of anti-Unruh effect qualitatively.
Start from the model of the UDW detector. It is usually
considered as a pointlike two-level quantum system or
atom (as required in this paper) and consists of two
quantum states, i.e., the ground jgi and excited jei states,
which are separated by an energy gapΩwhile experiencing
accelerated motion in a vacuum field. But for the accel-
erated atom, the Unruh effect will influence the state of the
atom. This could be described according to the following
interaction Hamiltonian in a (1þ 1)-dimension model,
HI ¼ λχðτ=σÞμðτÞϕðxðτÞÞ, where ϕ is a minimally coupled
scalar field related to the thermal background in Minkowski
spacetime and interacts with the accelerated atom, λ is the
coupling strength, τ is the atom’s proper time along its
trajectory xðτÞ, μðτÞ is the atom’s monopole momentum,
and χðτ=σÞ is a switching function that is used to control the
interaction timescale σ. Thus, the total excitation proba-
bility for an accelerated detector initially in the ground state
and evolving in the thermal background characterized by a
temperature β−1 ¼ T can be expressed as [33,36]

Pþ ¼ C
Z

dτ
Z

dτ0χ
�
τ

σ

�
χ

�
τ0

σ

�
e−iΩðτ−τ0ÞGþ

β ðτ; τ0Þ ð1Þ

which is calculated only at the leading order with C ¼
λ2jhejμð0Þjgij2. Gþ

β ðτ; τ0Þ≡Gþ
β ðxðτÞ; xðτ0ÞÞ ¼ hϕðxðτÞÞ×

ϕðxðτ0ÞÞiβ is the thermal Green function by taking the
Gibbs ensemble average. When T ¼ 0, Gþ

β ðτ; τ0Þ ¼
Gþ

0 ðτ; τ0Þ which is the vacuum Green function for accelerat-
ing atom in the vacuum.
At first, we make a little analysis about the influence of

the time transitional invariance on the existence of anti-
Unruh effect. As known in Ref. [21,39] that Gþ

0 ðτ; τ0Þ ¼
Gþ

0 ðτ − τ0Þ which indicates that the vacuum Green function
is time transitional invariant, but the entire integrand
F0ðτ; τ0Þ ¼ χðτσÞχðτ

0
σÞe−iΩðτ−τ

0ÞGþ
0 ðxðτÞ; xðτ0ÞÞ is not invari-

ant because the switching function takes the Gauss form,
χðτσÞ ¼ exp½− τ2

2σ2
�. We can choose the proper switching

function to preserve the time transitional invariance for the
integrand F0ðτ; τ0Þ, i.e., χðτσÞ ¼ 1. From the Fig. 1, it is seen
that the anti-Unruh effect exists for the two situations,
which shows at least that the time transitional invariance of
the vacuum Green function is not conclusive element for
the existence of the anti-Unruh effect. Furthermore, it might
imply that the anti-Unruh effect could exist in the thermal
background even though the thermal Green function is not
time transitional invariance. In this paper, we will show this
point by two different aspects. The one is to present that the
anti-Unruh effect could appear in thermal background but it
does not exist in the vacuum for the massless scalar field.
Another one is to show that the anti-Unruh effect exists in
the vacuum for the massive scalar field but whether it still
exists in thermal background depends on the temperature of
the background field. The latter one will be studied in the
next section with the many-body quantum system, and the
former one will be analyzed here qualitatively.

FIG. 1. The transition probability as a function of the accel-
eration a. The model parameters employed are λ ¼ 1;
σ ¼ 0.2;Ω ¼ 0.3. The solid red line denotes the case in which
the switching function is Gaussian, and the dashed blue line
denotes the case in which the switching function is rectangular
due to the finite interaction time.
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When the accelerated atom moves along the trajectory,

tðτÞ ¼ a−1 sinhðaτÞ;
xðτÞ ¼ a−1 coshðaτÞ; ð2Þ

with the proper acceleration a, ones can calculate the Green
functions as [33,40]

Gþ
0 ðτ; 0Þ ¼ −

a2

16π2
1

sinh2ðaτ=2Þ ; ð3Þ

for the vacuum, and

Gþ
β ðτ; 0Þ ¼

a
16πβsinh2ðaτ=2Þ

�
coth

�
π

aβ
ðeaτ − 1Þ

�

− coth

�
π

aβ
ð1 − e−aτÞ

��
; ð4Þ

for the thermal field. Here we take τ0 ¼ 0 for simplicity.
Note that the breakdown of the time transitional invariance
in Eq. (4) cannot be seen clearly. It does not matter for the
analysis of the anti-Unruh effect, as pointed out above.
Moreover, the thermal Green function (4) is calculated
using massless scalar field, and will reduce to the vacuum
result (3) as the background temperature approaches to zero
or β → ∞.
According to Ref. [21], the anti-Unruh effect exists under

the weak condition, ∂Pþ∂a < 0, base on such concept for anti-
Unruh effect: the transition probability of an accelerated
detector can actually decreasewith acceleration. As analyzed
above, the switching function is not crucial for the existence
of the anti-Unruh effect. Thus, we ignore the switching
function here for the further analysis. This means that
Pþ ∼ C

R
dτe−iΩτGþðτ; 0Þ ∼ CG̃ðΩÞ where G̃ðΩÞ is the

Fourier transform ofGþðτ; 0Þ. Therefore, theweak condition
for the anti-Unruh effect becomes ∂G̃ðΩÞ

∂a < 0.

For the acceleration in the vacuum, we have

G̃0ðΩÞ ¼
aþ πΩ coth ðπΩ=aÞ

2π5=2
: ð5Þ

It is not hard to show that ∂G̃0ðΩÞ∂a > 0 for any a or Ω. This is
just the result in Ref. [21] that the anti-Unruh effect is
absent for accelerated detectors in the Minkowski vacuum
of a massless scalar field.
For the acceleration in the thermal field, we can calculate

the transition probability as in the case for the acceleration
in the vacuum. However, there is no analytical expression
for the Fourier transform of Gþ

β ðτ; 0Þ in Eq. (4). Therefore,
the numerical result is given in Fig. 2, in which it is seen
that anti-Unruh effect appears for the small acceleration.
This shows that the introduction of thermal field would
change the influence of acceleration on the quantum
transition process. In the next section, we will discuss that
the influence of thermal field on the change of quantum
states or entanglement led by acceleration with the many-
body physical systems.

III. ACCELERATION IN THERMAL FIELD

We still consider the UDWmodel for the single atom and
the interaction unitary operation U ¼ I − i

R
dτHIðτÞ þ

Oðλ2Þ is expanded to the first order. As the atoms are
accelerated in thermal background, the evolution of the
accelerated atom can bewritten with the density operators as

ρf ¼ U†ρiU; ð6Þ

where the initial density operator consists of the product form
of the density operator for the atom and the density operator
for the thermal field, ρth ¼

P
n pnjnihnj with pn ¼

ð1 − e−βωÞe−nβω. Thus, within the first-order approximation
and in the interaction picture, the evolution of the atom could
be described by

Trth½U†ðρa1⊗ρthÞU�¼
X
n

pnðjgihgjþnjuþj2jeihejÞ;

Trth½U†ðρa2⊗ρthÞU�¼
X
n

pnjgihej;

Trth½U†ðρa3⊗ρthÞU�¼
X
n

pnjeihgj;

Trth½U†ðρa4⊗ρthÞU�¼
X
n

pnððnþ1Þju−j2jgihgjþjeihejÞ;

ð7Þ
where λ ¼ 1 is taken, Trth represents the calculation of
tracing out the field degrees of freedom, and the normali-
zation factors are not written but are considered in the
following calculations for the plots. The initial density
operators for the atom are taken as ρa1 ¼ jgihgj, ρa2 ¼
jgihej, ρa3 ¼ jeihgj, ρa4 ¼ jeihej. These expressions in
Eq. (7) provide the elementary forms of the evolution for

FIG. 2. The derivative of the transition probability with respect
to the acceleration as a function of the acceleration a. The inverse
of the background temperature is taken as β ¼ 30, and the other
parameters are the same as in Fig. 1.
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the general state of the atoms. Since an atom is only
considered to have two levels of energy, the change of the
field should be limited within these basis of fjn − 1i;
jni; jnþ 1ig, dependent on the absorption or emission
of the photon from the field by the atom. u� ¼P

k

R∞
−∞ χðτ=σÞ exp½�iΩτ þ iωktðτÞ − ikxðτÞ�dτ are related

to the motion of the atom. With the trajectory of the atom
in Eq. (2), the transition probability can be calculated
according to

Pþ ¼ hn − 1jhejU†ðρa1 ⊗ ρthÞUjeijn − 1i
¼

X
n

npnjuþj2: ð8Þ

Comparing it with Eq. (1), it is not difficult to confirm
their consistency by taking the field ϕðxðτÞÞ ¼
P

k
e−ikxðτÞffiffiffiffiffiffi

2ωk

p ðake−iωktðτÞ þ a†ke
iωktðτÞÞwhere k denotes themode

of the (1þ 1)-dimension scalar field with (bosonic) annihi-
lation (creation) operator ak(a

†
k), akjni ¼

ffiffiffi
n

p jn − 1i and
a†kjni ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnþ 1i. Note that Pþ represents the tran-
sition probability from the ground state to the excitation state.
Similarly, the transition probability P− from the excitation
state to the ground state can be calculated as P− ¼ hnþ
1jhgjU†ðρa4 ⊗ ρthÞUjgijnþ 1i ¼ P

n ðnþ 1Þpnju−j2.
It was pointed out that the change of the quantum state,

i.e., the transition probability, is dependent on the concrete
parameters like the interaction time scale σ and the energy
gap Ω [17]. The probability would decrease as the accel-
eration or the Unruh temperature increases under some

conditions, which makes the atom “feel” cooler instead of
warm up expected by the Unruh effect. Although the
physically essential reasons remain to be explored for
the difference between the anti-Unruh and Unruh effects,
some important elements, like the interaction time, the
detector’s energy gap, the mass of the quantum field, etc,
could be selected out to distinguish them operationally. See
Fig. 3 for the presentation of this effect in the thermal
background. Here the massive field with e.g., ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
is considered as in Ref. [21] so that the anti-

Unruh effect will not be constrained by the finite interaction
time and its validity can be extended to situations where the
detector is switched on adiabatically over an infinite long
time. Without loss of generality, m ¼ 1 is used for the
numerical calculations. From Fig. 3, it is seen that the
existence of the thermal background does not seem to affect
the trend of the change for the two cases of Unruh and anti-
Unruh effects, although the interaction between the atom
and the thermal field is more complicated than that between
the atom and the vacuum. Actually, the anti-Unruh effect
will disappear with the increase of the background temper-
ature due to the disappearance of entanglement, which
can be seen below with the discussions for many-body
entanglement.

IV. MANY-BODY ENTANGLEMENT

We choose the TF states as the many-body entangled
quantum states and discuss the influence of acceleration on
them in this section. TF states are one kind of Dicke states
[45]. For a collection of N identical (pseudo-) spin-1=2
particles, Dicke states can be expressed in Fock space as
j N
2
þmi↑j N2 −mi↓ with (N

2
þm) particles in spin-up and

(N
2
−m) particles in spin-down modes for m ¼ − N

2
;

− N
2
þ 1;…; N

2
. In particular, m ¼ 0 represents just the

TF state where the number of the particles is the same
for each one of the two spin states. On the other hand,
Dicke states can be described by the common eigenstate
jj; mi of the collective spin operators J2 and Jz, with
respective eigenvalues jðjþ 1Þ and m. For the system
consisted of N two-level atoms we will consider, the state
jj ¼ N

2
; mi indicates that (jþm) atoms are at the excited

state jei, (j −m) atoms are at the ground state jgi. Jz ¼
1
2
ðne − ngÞ represents the difference of the number of atoms

between excited (ne) and ground (ng) states, and J2 ¼
N
2
ðN
2
þ 1Þ is related to the total number of atoms. For the TF

state, m ¼ 0 and hJzi ¼ 0.
The acceleration of TF states were investigated based on

such consideration that the single accelerated atom was
calculated according to the UDWmodel and all atoms were
accelerated with the sameway without any other interaction
among atoms except their initial entanglement. Meanwhile,
the distance between the atoms is much less than the
relevant wavelengths of the field, which assures that all

FIG. 3. The transition probability as a function of the accel-
eration a when the atom is accelerated in the thermal field. The
solid red line denotes the case that the transition probability
decreases with acceleration at Ω ¼ 0.3 (referenced to the right
vertical axis), whereas the dashed blue line with respect to the left
vertical axis is for increasing transition probability with accel-
eration at Ω ¼ 5. The inverse of the background temperature is
taken as β ¼ 1, and the other parameters are the same as in Fig. 1.
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atoms see the same field. When all atoms in the TF state are
accelerated, the state of every atom is changed. Because the
excitation probability is not equal to the deexcitation
probability due to the acceleration, the resulted atom’s
number at the excited state is not equal to that at the ground
state. Thus, the final state would deviate from the TF state.
In order to quantify the entanglement of the state, we
choose the spin squeezing parameter

ξ2E ¼ ðN − 1ÞðΔJzÞ2 þ hJ2zi
hJ2i − N=2

: ð9Þ

It derives from the relation between spin squeezing and
entanglement as shown in [46,47], in which the inequality
ðN − 1ÞðΔJn⃗Þ2 þ hJ2n⃗i ≥ hJ2i − N=2 holds for any sepa-
rable states, and the violation of this inequality indicates
entanglement. Here the mean-spin direction n⃗ was taken
along the z direction. If ξ2E < 1, the state is spin squeezed
and entangled. In particular, the smaller the value of ξ2E, the
more the entanglement will be.
At first, we show the change of state for two accelerated

atoms. It is noticed that the bipartite quantum state for the
maximal entangled atoms, jψ ii ¼ 1ffiffi

2
p ðjgiAjeiB þ jeiAjgiBÞ,

can be regarded as the simplest TF state, i.e., jψ ii ¼ j1; 0i
using the description in the above section. Here the sub-
scripts A and B in the state jψ ii represents the locations
related to the atoms A and B. The initial density operator is
assumed to take the form

ρi ¼ jψ iihψ ij ⊗ ρth: ð10Þ

For the case we consider, each atom is independently
accelerating in the thermal field and has the same coupling
with the field in its respective (spatial) place by the same
process presented in Eq. (7). When the two atoms are
accelerated simultaneously in the thermal field, the state
becomes

ρf¼Trth½U†
AU

†
BρiUBUA�

¼
X
nA;nB

pnApnB

D

�
1

2
juþj2ðnAþnBÞjeeiheej

þ1

2
ð1þnAðnBþ1Þjuþj2ju−j2ÞðjgeiþjegiÞðhgejþhegjÞ

þ1

2
ju−j2ðnAþnBþ2Þjggihggj

�
ð11Þ

where jgei≡ jgiAjeiB for simplicity, and D¼ 1þ 1
2
juþj2

ðnAþnBÞþ 1
2
ju−j2ðnAþnBþ2ÞþnAðnBþ1Þjuþj2ju−j2 is

the normalization factor. Furthermore, we write the final
state according to the representation for Dicke states,

ρf ¼
X
nA;nB

pnApnB

D

�
1

2
juþj2ðnA þ nBÞj1; 1ih1; 1j

þ ð1þ nAðnB þ 1Þjuþj2ju−j2Þj1; 0ih1; 0j

þ 1

2
ju−j2ðnA þ nB þ 2Þj1;−1ih1;−1j

�
. ð12Þ

Then, the difference of the number of atoms between
excited and ground states is obtained as

hJzi ¼ TrðρfJzÞ
¼

X
nA;nB

pnApnB

2D
½juþj2ðnA þ nBÞ

− ju−j2ðnA þ nB þ 2Þ�; ð13Þ

where Tr represents the trace of a matrix. The result means
that the atom’s number at the excited state is not equal to
that at the ground state, different from the requirement of
TF state, unless the probability of transition from the
ground state to the excited state equates the probability
for the inverse transition.
We extend the discussion for two atoms to the case of N

atoms with the initial TF state jj; 0i. When all atoms are
accelerated simultaneously under thermal background, the
TF state becomes

ρTF ¼
XN=2

m¼−N=2

A2
mjj; mihj;mj; ð14Þ

up to the normalization factor which is included in our

numerical calculation. A2
m¼½PN=2−jmj

k¼0 Ck
N=2C

kþjmj
N=2 ðPþP−Þk

ðθðmÞðPþÞmþθð−mÞðP−ÞjmjÞ� in which the function
θðxÞ ¼ 1 when x > 0 and θðxÞ ¼ 0 otherwise, and Cr

n ¼
n!

r!ðn−rÞ! denotes the combinatorial factor of choosing r out of

n. The parameter A2
0 represents the probability of remaining

the original form of the TF state, which includes those cases
that if l ð0 ≤ l ≤ N

2
Þ atoms are changed from the ground

states to the excited states, there must be other l atoms
which are changed from the excited states to the ground
states simultaneously. The reason that the second term
appears is due to the inequality of the transition proba-
bilities Pþ and P−. The parameter A2

m can be worked out by
choosing the terms that in every term either there are m
more excited states than ground states (that is the case for
m > 0) or there are m more ground states than excited
states (that is the case for m < 0). The crossed terms like
jj; mihj; m0j have been reduced when tracing out the field
degrees of freedom.
After acceleration, the TF state becomes ρTF described in

Eq. (14). With this, we can calculate hJzi ¼ TrðρTFJzÞ ¼PN=2
m¼−N=2 mA2

m, and hJ2zi ¼ TrðρTFJ2zÞ ¼
PN=2

m¼−N=2m
2A2

m.

Thus, according to ðΔJzÞ2 ¼ hJ2zi − hJzi2, ones can
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calculate ξ2E by substituting these results intoEq. (9), which is
presented in Fig. 4 for different background temperatures. It
is seen that the spin squeezing parameters for three different
background temperatures are decreasing or entanglement is
increasing when the acceleration is increased, which are the
indication for the anti-Unruh effect. It is noted that the
entanglement at a ¼ 0 for the accelerated state (14) is less
than that for the initial maximal entangled state due to the
presence of switching function.
Moreover, we calculate the change of ξ2E with regard to

the background temperatures, which is presented in Fig. 5.
It shows that the entanglement is decreasing when the
background temperature increases for a fixed acceleration.

When the background temperature increases to some specific
value, entanglement would decrease to zero, which is similar
to the sudden death of entanglement due to the increase of
the temperature [29]. So, the observation of the anti-Unruh
effect requires a lower background temperature, since a high
background temperature would change the influence of
acceleration on quantummany-body systems. Even a higher
temperaturewould eliminate the evidence for the influence of
acceleration as entanglement becomes zero.

V. PHASE SENSITIVITY

In this section, we continue to discuss the influence of
background temperature on entanglement with the actual
experimental conditions. For this purpose, we have to study
the influence of acceleration on the phase sensitivity and
compare it with the present experiment, since the change of
spin squeezing or entanglement influences the phase
sensitivity of the measurement.
Consider the Ramsey interferometer [48,49] with the

initial input state ρi, and the output state ρo ¼ U†ρiU where
U ¼ exp ð−iθJyÞ is the unitary operator for the evolution
and θ is the phase shift. The phase sensitivity Δθ can be
calculated as

ðΔθÞ2P ¼ 2ðΔJ2zÞiðΔJ2xÞi þ Vxz

4ðhJ2xii − hJ2ziiÞ2
; ð15Þ

where the subscript i denotes that the average is taken under
the input state and Vxz ¼ hðJxJz þ JzJxÞ2ii þ hJ2zJ2x þ
J2xJ2zii − 2hJ2ziihJ2xii. This is obtained from the error propa-

gation formula, ðΔθÞ2 ¼ ðΔJ2zÞ2o
jdhJ2zio=dθj2, by using the relation

U†JzU ¼ Jz cos θ − Jx sin θ to link the input state with the
output state and by choosing the optimal phase shift through

tan2 θp ¼ ðΔJ2zÞi
ðΔJ2xÞi. For the accelerated state in Eq. (14), a direct

but tedious calculation within the approximation,m ≪ j and
A2
m ≪ A2

0 gives

ðΔθÞ2PA ≃
1

2jðjþ 1Þ þ
2hJ2zi

jðjþ 1Þ þ
PN=2

m¼−N=2

ffiffiffi
2

p
ΔJ2z

2jðjþ 1Þ ; ð16Þ

which is obtained from Eq. (15) with hJ2zi ¼PN=2
m¼−N=2 m

2A2
m, ΔJ2z ¼ PN=2

m¼−N=2 m
4A2

m − ðPN=2
m¼−N=2

m2A2
mÞ2, hJ2xi ¼ 1

2
½jðj þ 1Þ − PN=2

m¼−N=2 m
2A2

m�, ΔJ2x≃
1
8

PN=2
m¼−N=2A

2
mjðjþ1Þ½jðjþ1Þ−2−8m2�, Vxz ≃

PN=2
m¼−N=2

A2
mm½ð2mþ1Þ2α2mþð2m−1Þ2β2m�. The calculation for Vxz

keeps to the second order of m since m is small, and
α2m¼ 1

4
½ðj−mÞðjþmþ1Þ�, β2m ¼ 1

4
½ðjþmÞðj −mþ 1Þ�.

With the formula (16), we numerically calculate the
condition for appearance of the anti-Unruh effect. Only if
the background temperature is less than 10−9 K, the anti-
Unruh effect can be found. This is advantageous since the

FIG. 4. The spin-squeezing parameter as a function of the
acceleration awhen the atoms are accelerated in the thermal field.
The different lines refer to different background temperatures: the
dashed green line for T ¼ 3, the solid red line for T ¼ 4, and the
dotted blue line for T ¼ 5. We make the total atom number
N ¼ 100, and the other parameters are the same as in Fig. 1.

FIG. 5. The spin-squeezing parameter as a function of the
background temperature when the atoms are accelerated in
the thermal field. The dashed blue line is drawn at a ¼ 2.5,
and the solid red line at a ¼ 7.5 We make the total atom number
N ¼ 100, and the other parameters are the same as in Fig. 1.

YONGJIE PAN and BAOCHENG ZHANG PHYS. REV. D 104, 125014 (2021)

125014-6



temperature of 10−9 K is just required to form Bose-
Einstein condensates in the recent experiment that gen-
erates the TF state [44]. At the same time, it is also noted
that when the acceleration reaches 1011 m=s2, the phase
sensitivity is at the level of ðΔθÞ2PA ∼ 10−8, which requires a
more precise experimental conditions than our earlier
estimation [32] by the acceleration in the vacuum, due
to the influence of the thermal field. Although it is not easy
to obtain so large acceleration for Bose-Einstein conden-
sates, the phenomena led by the background temperature is
significant for any other related observations, since the anti-
Unruh effect gives the different behaviors from that given
by the thermal background effect, in which the latter cannot
lead to the increase of entanglement. This is attractive for
the future experiment with higher sensitivity. Figure 6
presents the possible condition of background temperature
to realize the case of anti-Unruh effect with the accelerating
TF state. When the background temperature is higher than
10−9 K, the anti-Unruh effect would disappear and the
Bose-Einstein condensates would be broken. Similarly,
the acceleration can not be larger than 1011 m=s2 which

corresponds to the Unruh temperature of 10−9 K. Of
course, it is expected that the observable window for the
Unruh or anti-Unruh effect can occur at smaller acceler-
ation for the future experimental technologies.

VI. CONCLUSION

In this paper, we investigate the influence of the back-
ground temperature on the existence of anti-Unruh effect.
At first, we show that for a massless scalar field the anti-
Unruh effect can appear for accelerated detectors in the
thermal background, which is proved at the earlier time that
the anti-Unruh effect is absent for accelerated detectors in
the Minkowski vacuum of a massless scalar field. It is noted
that the breakdown of time transitional invariance of
thermal Green function is not crucial for the appearance
of anti-Unruh effect. We have also calculated the change of
entanglement for many-body quantum states accelerating
in thermal field. It is found that the anti-Unruh effect still
exists, but it will change when the background temperature
increases while all other parameters are not changed. In
particular, when the background temperature increases to a
specific value, entanglement would decrease to zero, which
wipes off any possibility to observe the influence of
acceleration on entanglement irrespective of the case for
the Unruh effect or the anti-Unruh effect. Finally, we have
used the experimental parameters to estimate the possibility
for the existence of the anti-Unruh effect. It is interesting to
find that the case for anti-Unruh effect can appear for such
accelerated states only if the background temperature is less
than 10−9 K, which is favorable for the possible future
experiment since this effect is distinctive and different from
that coupled to a thermal environment directly by inertial
detectors.
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