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We formulate the worldline approach of some field theories of fracton models and their symmetries. The
distinction between the different models is based on their dispersion relations for the energy. In order to
study the subsystem symmetries, we construct the Routhian functionals associated with the particle
Lagrangians considered. We also build the pseudoclassical description of spinning fractons.
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I. INTRODUCTION

There has been recent interest in condensed matter
physics to study lattice models with some peculiar proper-
ties, like the infinite degeneracy of the ground state and the
existence of restricted motions along lines and planes. The
excitations described by these models are known as
“fractons” [1,2]. These states have zero energy but may
have high momentum showing a mixing between the UV
and the IR regions. Standard lore is that the long-distance
properties of a lattice can be described in terms of field
theories. It seems unlike this kind of lattices since, in a
usual field theory, the ground state is unique, and low
energy means suppressing the high momenta modes. In
other terms, there is no UV/IR mixing.1 However, the
continuum limit of these lattice models can be formulated
in terms of field theories.
In a series of papers [4–8] it has been shown that it is

possible to consider field theories in (dþ 1) dimensions
with these peculiar properties. The main idea is to consider
field theories that give up the invariance under the rotation
group but only consider discrete subgroups like the lattice
models. For instance, the dispersion relation in a scalar field
theory in d ¼ 2, considered in [4], is given by

E2 −
p2
xp2

y

μ2
¼ 0; ð1Þ

where μ is a constant with dimension of momentum. This
relation shows that there are infinite solutions with zero
energy. For example, states with px ¼ 0 and py ≠ 0, and
that these solutions have a restricted motion. In the previous
example, the motion is along the spatial axis y. Therefore,
this field theory reproduces the main features of the lattice
models mentioned at the beginning.
The fracton models that we will consider here are

classified as ðmE; npÞ, where mE is the exponent of the
energy in the dispersion relation, and np is the overall
power of the space momenta [9]. We will consider two
classes of models: the first class is invariant under spatial
rotations of 90° and depending quartically on the spatial
momenta. In the second class, the models are invariant
under rotations of 180° and depend quadratically on the
spatial momenta. Therefore, one goes from the first class to
the second class of models via the substitution p2

i → pi.
These models will be identified as the ðmE; npÞ0 models.
As it is well known, Feynman was the first to consider

the particle approach to quantum field theory [10,11], what
today is known as the worldline approach. Here, we give
the first steps towards constructing a worldline formulation
of the field theory of some fracton models and their
symmetries. One of the reasons to consider the construction
of a worldline approach is that it brings us to a better
understanding of the subsymmetries and interactions of
fracton models. We will build particle models whose
classical Lagrangian describe a point particle moving in
space-time to carry out this study. As we shall see, using the
dispersion relations of the field theory for the fractons will
allow us to derive a Lagrangian describing the classical
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1In noncommutative field theories, this UV/IR mixing phe-
nomena occurs, see, for instance, [3].
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space-time motion of these particles, with no attempt of a
quantization. The construction will be done in (2þ 1)
dimensions, but the extensions to other dimensions can be
done using the same technique. An exciting aspect of the
second class models is that, due to the quadratic character
of the dispersion relation in the space momenta, it is
possible to rewrite the kinetic term as a quadratic form in a
Minkowski space with a particular nonstandard signature.
The original coordinates are nothing but the light cone
coordinates of this plane. Correspondingly, the fractons can
be seen as particles moving along the light cone of this
Minkowski space. We will also study all possible point
symmetries of these models by constructing equations
analogous to the Killing equations of a particle in a curved
background. In [9] the subsystem symmetries of the fracton
models were studied via a partial Fourier transform. In our
approach, this study will be done using the Routhian
functionals (see, for instance, [12]) associated with the
particle Lagrangians, which is equivalent to taking a partial
Legendre transform.
Finally, we will also consider the pseudoclassical world-

line description of two fracton models by introducing a set
of Grassman variables. There exist Dirac-like equations
giving rise to dispersion relations quadratic in the energy
(as it was done in the construction of the pseudoclassical
description of the Dirac equation [13–15]).
The organization of the paper is as follows: in Sec. II, we

will construct the particle Lagrangians associated with the
(2,4) and (1,4) models, and we will study the related
symmetries and subsymmetries. The same will be done in
Sec. III, for the models ð2; 2Þ0 and ð1; 2Þ0. In Sec. IV, we
will construct the pseudoclassical fractons. Finally, in
Sec. V we will give some conclusions and outlook.

II. A CLASS OF LAGRANGIANS QUARTIC
IN THE MOMENTA

In this section, we will construct two types of worldline
Lagrangians with a mass-shell constraint quartic in the
space momenta in (2þ 1)-space-time dimensions. We will
consider the (2,4) and the (1,4) models with a quadratic and
linear dependence on the energy, respectively.

A. The (2,4) model

The mass-shell condition that characterizes this model is
given by

E2 −
p2
xp2

y

μ2
¼ 0; ð2Þ

which corresponds to the worldline version of the (2,4)
model appearing in [16]. The canonical Lagrangian with
the previous constraint is

L¼−E_tþpx _xþpy _yþπλ _λþ
λ

2

�
E2−

p2
xp2

y

μ2

�
−πλη; ð3Þ

where the dot derivatives are done with respect to a
parameter τ, which parametrizes the particle’s worldline.
The configuration space of the model has worldline
coordinates ðt; x; y; λÞ. The first four terms of (3) give
the symplectic structure of the model, and the last two
terms are the Dirac Hamiltonian, which contains the
canonical Hamiltonian and the primary constraint πλ
multiplied by an arbitrary function ηðτÞ. The equations
of motion of this model are

_t ¼ λE; _x ¼ λpxp2
y

μ2
; _y ¼ λp2

xpy

μ2
; ð4aÞ

_px ¼ 0; _py ¼ 0; _E ¼ 0;

_λ ¼ η; _πλ ¼
1

2

�
E2 −

p2
xp2

y

μ2

�
: ð4bÞ

Notice that λ is constrained by πλ ¼ 0, the primary
constraint, which comes from the variation of η. The
stability of the primary constraint gives the secondary
one defined in Eq. (2). By eliminating the momenta, we get

L ¼ −
_t2

2λ
þ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 _x2 _y2

λ

3

r
: ð5Þ

Varying with respect to λ on this last Lagrangian, we obtain
its expression

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_t6

μ2 _x2 _y2

s
: ð6Þ

Then, the Lagrangian in space-time variables is given by

L ¼ μ

ffiffiffiffiffiffiffiffiffi
_x2 _y2

_t2

s
: ð7Þ

Since all the relevant quantities are one dimensional, the
Lagrangian can also be expressed in terms of the absolute
values

L ¼ μ

���� _x _y_t
����: ð8Þ

This Lagrangian is invariant under worldline diffeomor-
phisms. The associated first-class constraint is the mass-
shell condition (2). The discrete global symmetries of this
Lagrangian are spatial rotations of 90°, spatial inversions,
and t inversion. In the following subsection, we will study
the continuous symmetries.
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1. Continuous symmetries of the (2,4) model

Now we study the point continuous symmetries of this
particle model. In order to do that, we will consider the
most general canonical point generator

Gðt; x; y; λ; E; px; py; πλÞ
¼ −Eξ0ðt; x; yÞ þ pxξ

xðt; x; yÞ þ pyξ
yðt; x; yÞ

þ πλγðt; x; yÞ þ Fðt; x; yÞ; ð9Þ

with ξ0; ξx; ξy, and γ space-time functions to be determined.
The presence of the function F is to take into account the
possibility that the Lagrangian is invariant up to a total
derivative [17]. The function G generates the following
space-time transformations

δxi ¼ fxi; Gg ¼ ξiðt; x; yÞ;
δt ¼ ft; Gg ¼ ξ0ðt; x; yÞ; i; j ¼ 1; 2: ð10Þ

The condition thatGmust satisfy to generate a symmetry is
to be a constant of motion, namely dG=dτ ¼ 0, implying

− Eð_t∂0ξ
0 þ _xi∂iξ0Þ þ pið_t∂0ξ

i þ _xj∂jξiÞ

þ γ

2

�
E2 −

p2
xp2

y

μ2

�
þ _t∂0F þ _xj∂jF ¼ 0; ð11Þ

where we have used the equations of motion (4). Notice
that we have not made use of the secondary constraint
E2 − p2

xp2
y=μ2 ¼ 0, whereas we have used the primary one

πλ ¼ 0, since it vanishes identically at the Lagrangian level.
Comparing the different orders in powers of the space-time
momenta, we obtain the following system of partial differ-
ential equations, analogous to the Killing equations for a
relativistic particle moving in a fixed curved space-time
background

−
γ

2
þ λð∂xξx þ ∂yξyÞ ¼ 0; −λ∂0ξ

0 þ γ

2
¼ 0; ð12aÞ

∂xξ
0 ¼ 0; ∂yξ

0 ¼ 0; ð12bÞ

∂yξx ¼ 0; ∂0ξx ¼ 0; ð12cÞ

∂xξy ¼ 0; ∂0ξy ¼ 0; ð12dÞ

∂xF ¼ 0; ∂yF ¼ 0; ∂0F ¼ 0; ð12eÞ

with ∂x ≡ ∂=∂x; ∂y ≡ ∂=∂y, and ∂0 ≡ ∂=∂t. Combining
these equations, the system reduces to

λðτÞ
�∂ξxðxÞ

∂x þ ∂ξyðyÞ
∂y

�
−
γðτ; tÞ
2

¼ 0;

γðτ; tÞ ¼ 2λðτÞ ∂ξ
0ðtÞ
∂t : ð13Þ

This system may be trivially solved, obtaining two kinds of
symmetries: space-time dilations and translations only

ξ0ðtÞ ¼ χ0tþ a0; ξxðxÞ ¼ η0xþ a1;

ξyðyÞ ¼ ðχ0 − η0Þyþ a2; γðτÞ ¼ 2λðτÞχ0; ð14Þ

where χ0, η0, and as are integration constants. The
generator (9) then reads

Gðt; x; y; λ; E; px; py; πλÞ
¼ −Eðχ0tþ a0Þ þ pxðη0xþ a1Þ
þ pyððχ0 − η0Þyþ a2Þ þ 2πλλχ0: ð15Þ

Then, the space-time variable and momenta transforma-
tions read

δx ¼ η0xþ a1; δy ¼ −η0yþ χ0yþ a2;

δt ¼ χ0tþ a0; ð16aÞ

δpx ¼ −η0px; δpy ¼ −χ0py þ η0py;

δE ¼ −χ0E; ð16bÞ

δλ ¼ 2χ0λ; δπλ ¼ 2χ0πλ: ð16cÞ

The generators associated with the two dilatations, two
space translations, and the time translation are given by

P0 ¼ −E; Px ¼ px; Py ¼ py; ð17Þ

D ¼ −tEþ ypy þ 2λπλ; D̃ ¼ xpx − ypy; ð18Þ

satisfying the nonvanishing commutation relations2

½D;P0� ¼ P0; ½D;Px� ¼ 0; ½D;Py� ¼ Py; ð19Þ

½D̃; P0� ¼ 0; ½D̃; Px� ¼ Px; ½D̃; Py� ¼ −Py: ð20Þ

Notice that there are no special conformal transformations.
A fracton configuration like E ¼ 0; px ¼ 0 has restricted
mobility since it only moves in the y spatial direction. The
configuration preserves some of the symmetries of the
Lagrangian; precisely, it maintains the two dilatations and
the spatial translation along the y spatial direction.

2Using the conventions for the Poisson brackets ft; Eg ¼ −1;
fx; pxg ¼ þ1, and fy; pyg ¼ þ1.
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On the other hand, as we have seen, the number of
continuous symmetries of the worldline Lagrangian is
finite-dimensional in contrast with the ansatz of [9].
In this reference, the authors consider the symmetries of
two (1þ 1)-dimensional subsystems obtained by doing
the Fourier transform, one in px and the other in py, of the
field theory Lagrangian. In any of these subsystems, there
is an (1þ 1)-infinite-dimensional conformal symmetry.
From the worldline approach point of view, this corre-
sponds to considering the Routhian functionals, i.e.,
a partial Legendre transformation associated with the
Lagrangian [12].

2. Routhian for the (2,4) model

Since the Lagrangian defined in Eq. (3) has two cyclic
coordinates, x and y, the Routh’s procedure can be carried
out either along the x or y spatial direction. This approach is
analogous to taking a partial Fourier transform of a field
Lagrangian as was done in [9]. Let us consider the
following partial Legendre transformation concerning the
y coordinate given by

RðxÞ ¼ L − px _x

¼ −E_tþ py _yþ πλ _λþ
λ

2

�
E2 −

p2
xp2

y

μ2

�
− πλη; ð21Þ

with the Hamilton’s equations

_py ¼ 0; _y ¼ λp2
xpy

μ2
: ð22Þ

The Routhian functional (21) in configuration space is
given by

RðxÞ ¼
1

2λ

�
−_t2 þ μ2

p2
x
_y2
�
: ð23Þ

Because px ¼ const, we can define ỹ≡ μy=px, then

RðxÞ ¼
1

2λ
ð−_t2 þ _̃y2Þ; ð24Þ

which corresponds to the Lagrangian of a massless particle
in (1þ 1)-space-time dimensions. Therefore, infinite-
dimensional symmetries correspond to the conformal group
in (1þ 1)-space-time dimensions. The same discussion
holds if we perform the partial Legendre transform for the
x coordinate. The authors of [9] argue that the full
symmetry of the (2,4) model could be obtained by
computing the closure of the infinite-dimensional con-
formal groups. In our case, the symmetries of the worldline
Lagrangian for the fractons are not the closure of the
symmetries of the two conformal groups. From our point of
view, we notice that, in both cases, one of the momenta is

kept fixed and should not be considered a canonical
variable. Therefore, the symmetry of the entire model
arises by considering only the transformations of the two
conformal groups that do not depend on the value of the
momenta that are kept fixed. These symmetries are pre-
cisely the translations and the dilations, agreeing with the
study of the Killing equations made in the previous section.

B. The (1,4) model

The (1,4) model characterizes by the dispersion relation

E ¼ p2
xp2

y

μ3
; ð25Þ

and it can be described by the Lagrangian

L¼−E_tþpx _xþpy _yþπλ _λþλ

�
E−

p2
xp2

y

μ3

�
−πλη; ð26Þ

with equations of motion given by

_t ¼ λ; _y ¼ 2λ

μ3
p2
xpy; _x ¼ 2λ

μ3
pxp2

y; ð27Þ

_px ¼ 0; _py ¼ 0; _πλ ¼ E −
p2
xp2

y

μ3
: ð28Þ

Notice that πλ ¼ 0 is a primary constraint, while the
secondary constraint is given by Eq. (25). The configura-
tion space Lagrangian is given by

L ¼ 3μ

2

ffiffiffiffiffiffiffiffiffi
_x2 _y2

2_t
3

r
: ð29Þ

This Lagrangian is invariant under worldline diffeomor-
phisms. The associated second class constraint is the mass-
shell condition (25). The discrete global symmetries of this
Lagrangian are spatial rotations of 90°, spatial inversions,
and x → −x and y → −y.

1. Continuous symmetries of the (1,4) model

As in the previous section, we are interested in an analy-
sis of the continuous space-time symmetries. To this end,
let us consider the following point generator transformation

Gðt; x; y; λ; E; px; py; πλÞ
¼ −Eξ0ðt; x; yÞ þ pxξ

xðt; x; yÞ þ pyξ
yðt; x; yÞ

þ πλγðλ; t; x; yÞ: ð30Þ

Requiring that G generates a symmetry, we get the system
for the unknown functions
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∂ξxðxÞ
∂x þ∂ξyðyÞ

∂y −
1

2

∂ξ0ðtÞ
∂t ¼0; γ¼ λðτÞ∂ξ

0ðtÞ
∂t : ð31Þ

The solution is

ξ0ðtÞ ¼ c0 þ 2ða1 þ b1Þt; ξxðxÞ ¼ b0 þ b1x;

ξyðyÞ ¼ a0 þ a1y; γ ¼ 2λða1 þ b1Þ; ð32Þ

with as, bs, and c0 as arbitrary constants. As we see, the
symmetries are the same of the (2,4) model at the
Lagrangian level, but the rescaling in the dilations are
different.

2. Routhian for the (1,4) model

In order to study the subdimensional symmetries of this
model, let us perform a partial Legendre transformation
along the y direction by considering the Routhian func-
tional

RðxÞ ¼ L − px _x

¼ −E_tþ py _yþ πλ _λþ λ

�
E −

p2
xp2

y

μ3

�
− πλη; ð33Þ

with the equations of motion

_t ¼ λ; _y ¼ λ
2p2

xpy

μ3
; px ¼ const;

_E ¼ 0; _πλ ¼ E −
p2
xp2

y

μ3
: ð34Þ

The Routhian functional in configuration space is

RðxÞ ¼
m
2

_y2

_t
; ð35Þ

which is the Lagrangian for a one-dimensional nonrelativ-
istic particle of mass m≡ μ3=2p2

x. For studying the
symmetries of this model, we consider the following
generator

Gðt; y; E; py; πλÞ ¼ −Eξ0ðt; yÞ þ pyξ
yðt; yÞ

þ γðt; yÞπλ þ Fðt; yÞ: ð36Þ

By requiring G be a generator of symmetries, we get the
following ordinary differential equations

−γ þ 2∂yξ
y ¼ 0; γ ¼ ∂0ξ

0; ð37aÞ

∂yξ
0¼ 0; ∂0ξ

yþ2p2
x

μ3
∂yF¼ 0; ∂0F¼ 0; ð37bÞ

whose solution is given by

ξ0ðtÞ ¼ b0 þ 2a1tþ a3t2;

ξyðt; yÞ ¼ a0 þ a2tþ a1yþ a3ty;

FðyÞ ¼ −m
�
a2yþ

a3
2
y2
�
; ð38Þ

with as and bs as arbitrary constants. Then the generator
reads

GðE; py; t; yÞ ¼ −Eðb0 þ 2a1tþ a3t2Þ
þ pyða0 þ a2tþ a1yþ a3tyÞ

−m

�
a2yþ

a3
2
y2
�
: ð39Þ

From here, we read the generators

H ¼ −E; P ¼ py; D ¼ pyy − 2Et; ð40Þ

G ¼ pyt −my; C ¼ −Et2 þ pyty −
m
2
y2: ð41Þ

The nonvanishing commutators are given by

½D;H� ¼ 2H; ½D;P� ¼ P;

½C;P� ¼ G; ½D;G� ¼ −G; ð42aÞ

½D;C� ¼ −2C; ½H;C� ¼ −D;

½H;G� ¼ −P; ½G;P� ¼ −m: ð42bÞ

This is the Schrödinger algebra in (1þ 1)-space-time
dimensions. When we consider the Routhian functional
associated with the coordinate y, we obtain the same
symmetries. Notice the subsystem symmetries of the
(1,4) model are different from the (2,4) model.

III. A CLASS OF LAGRANGIANS QUADRATIC
IN THE SPACE MOMENTA

In this section, we will construct two types of worldline
Lagrangians with a mass-shell constraint quadratic in the
space momenta in (2þ 1)-space-time dimensions.

A. The ð2;2Þ0 model

In this case, the model possesses the following
dispersion relation

E2 ¼ pxpy: ð43Þ

This dispersion relation gives rise to a sector with E2 < 0.
This could be a problem in the quantized version, but in the
classical description we can restrict the analysis to the
sector with E2 ≥ 0. Notice that this model lives in a space
with two times.
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Now, introducing the space momenta

q1 ¼ 1

2
ðpx þ pyÞ; q2 ¼ 1

2
ðpx − pyÞ; ð44Þ

the mass-shell constraint becomes

qμημνqν ¼ ð−q20 þ q21 − q22Þ ¼ 0; ð45Þ

with μ, ν ¼ 0, 1, 2, where qμ ¼ ðE; q1; q2Þ, and
ημν ¼ ð−1; 1;−1Þ. Therefore, the mass-shell condition
for this case can describe a massless particle in a
Minkowski space with signature ð−2; 1Þ, where −1 refers
to the time coordinate and þ1 to the space coordinate. The
initial momenta are the light cone momenta in this space.
From this point of view, a fracton is a particle moving along
the light cone of a Minkowski space. The dispersion
relation is invariant under the following transformation

δE ¼ 1

2
ϵpx; δpx ¼ 0; δpy ¼ ϵE: ð46Þ

A fracton configuration with E ¼ px ¼ 0 is also invariant.
This describes a movement along the spatial direction y.
The space-time configuration Lagrangian can be written
either in terms of the original space-time variables as

L ¼ 1

2λ
_xμgμν _xν ¼

1

2λ
ð−_t2 þ _x _yÞ; ð47Þ

where

gμν ¼

0
B@

−1 0 0

0 0 1=2

0 1=2 0

1
CA; ð48Þ

or in terms of the new space coordinates

y1 ¼
1

2
ðxþ yÞ; y2 ¼

1

2
ðx − yÞ; ð49Þ

with the Lagrangian taking now the form

L ¼ 1

2λ
_yμημν _yν ¼

1

2λ
ð−_t2 þ _y21 − _y22Þ: ð50Þ

Therefore, this last Lagrangian describes a massless
particle in (1þ 2)-space-time dimensions. It follows that
L is invariant under the conformal group Oð3; 2Þ. The
space-time symmetries, in this case, are finite dimensional.
In fact, considering the generator of the point continuous
symmetries to be

Gðxμ; λ; pμ; πλÞ ¼ pμξ
μðt; x; yÞ þ πλγðτ; t; xÞ;

μ ¼ 0; 1; 2; ð51Þ

the Killing equations read

∂μξν þ ∂νξμ ¼ ηðτÞgμν; γ ¼ λðτÞηðτÞ; ð52Þ

whose solutions give the conformal group in (2þ 1)-space-
time dimensions.

1. Routhian for the ð2;2Þ0 model

Let us consider the following Routhian functional along
the y spatial direction

RðxÞ ¼ L − px _x

¼ −E_tþ py _yþ πλ _λþ
λ

2
ðE2 − pxpyÞ − πλη: ð53Þ

The Euler-Lagrange equations are

_t ¼ λE; _y ¼ λ

2
px; _py ¼ 0;

_E ¼ 0; _πλ ¼
1

2
ðE2 − pxpyÞ: ð54Þ

The Routhian functional RðxÞ in configuration space is
given by

RðxÞ ¼ −
1

4

_t2

_y
px: ð55Þ

This expression looks rather peculiar, but it can be under-
stood by looking at the Routhian functional in coordinate
space for the (1,4) model. Except for trivial factors, the two
Routhian functionals can be obtained one from the other by
exchanging time with the space coordinate y. This is since
in the case of the Routhian functional for the (1,4) model,
describing a nonrelativistic one-dimensional particle, the
effective dispersion relation is of type (1,2), whereas in the
actual case is of type (2,1), with an exchange of the energy
with the spatial momentum.
By studying the Killing equations with the generator

Gðt; y; E; py; πλÞ ¼ −Eξ0ðt; yÞ þ pyξ
yðt; yÞ

þ πλγðt; yÞ þ Fðt; yÞ; ð56Þ

and considering only primary first class constraints, we
now find the system

γ þ ∂0ξ
0 −

1

2
∂yξy ¼ 0; ∂0ξ

y ¼ 0; γ ¼ 0; ð57aÞ

∂yξ
0 −

2

px
∂0F ¼ 0; ∂yF ¼ 0; ð57bÞ

whose solution is given by
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ξ0ðt; yÞ ¼ b0 þ a1tþ b2yþ a2ty;

ξyðyÞ ¼ a0 þ 2a1yþ a2y2;

FðtÞ ¼ px

2

�
b2tþ

a2
2
t2
�
: ð58Þ

Then, the generators yields

G ¼ −Eðb0 þ a1tþ b2yþ a2tyÞ þ pyða0 þ 2a1yþ a2y2Þ

þ px

2

�
b2tþ

a2
2
t2
�
; ð59Þ

where the as and bs are arbitrary constants. The generators
of this symmetry (defining px ≡ 2m) read

P ¼ py; D ¼ 2pyy − Et; H ¼ −E; ð60aÞ

C ¼ m
2
t2 − Etyþ pyy2; G ¼ mt − Ey: ð60bÞ

The nonvanishing commutators are given by

½D;H� ¼ H; ½D;P� ¼ 2P;

½C;P� ¼ D; ½D;G� ¼ −G; ð61aÞ

½D;C� ¼ −2C; ½C;H� ¼ G;

½G;P� ¼ H; ½G;H� ¼ m: ð61bÞ

We call this algebra the (1þ 1)-Schrödinger Carroll alge-
bra. Notice that the last two commutators correspond to the
ones appearing in Carroll algebra in two dimensions with a
central charge (see, for instance, [18]).

B. The ð1;2Þ0 model

The dispersion relation of this model is

E ¼ 1

μ
pxpy: ð62Þ

In this case, the energy is not bounded from below. This is
not a problem at the classical level, as we are considering in
this study. Various models in the literature present this
problem, and different solutions are proposed for the
specific cases.3 In terms of the q variables defined in
Eq. (44), it yields

E ¼ 1

μ
ðq21 − q22Þ; ð63Þ

which is the dispersion relation for a nonrelativistic particle
of mass μ=2 in a Minkowski space. This model can be
treated as the previous ones. Starting from

L ¼ −E_tþ pi _xi þ πλ _λþ λ

�
E −

1

μ
pxpy

�
− πλη; i;

j ¼ 1; 2; ð64Þ

and proceeding as before we find

L ¼ μ
_x _y
_t
: ð65Þ

This Lagrangian is similar to the one of the (2,4) model
of Sec. 2.1. The main difference is in the signs. In fact,ffiffiffiffiffi
_x2

p
¼ j_xj and not equal to _x. This implies different

properties in the symmetries. The Lagrangian model is
not invariant under rotations of 90°, but it is invariant under
rotations of 180°.

C. Continuous symmetries of the ð1;2Þ0 model

To study global symmetries of this model, let us consider
the generator

Gðt; x; y; E; px; py; πλÞ ¼ −Eξ0ðt; x; yÞ þ pxξ
xðt; x; yÞ

þ pyξ
yðt; x; yÞ þ πλγðt; x; yÞ

þ Fðt; x; yÞ: ð66Þ

For G to generate a symmetry, we find the system

μ
∂ξxðt; xÞ

∂t þ ∂Fðx; yÞ
∂y ¼ 0;

μ
∂ξyðt; xÞ

∂t þ ∂Fðx; yÞ
∂x ¼ 0; ð67aÞ

∂ξxðt; xÞ
∂x þ ∂ξyðt; yÞ

∂y −
∂ξ0ðtÞ
∂t ¼ 0;

γðtÞ ¼ ∂ξ0ðtÞ
∂t : ð67bÞ

The solution of this system is

ξ0ðtÞ ¼ a0 þ 2b1tþ a2t2; ð68Þ

ξxðt; xÞ ¼ b0 þ b2tþ b1xþ a2tx; ð69Þ

ξyðt; yÞ ¼ c0 þ c2tþ b1yþ a2ty; ð70Þ

Fðx; yÞ ¼ −μ
�
b2xþ c2yþ

a2
2
ðx2 þ y2Þ

�
; ð71Þ

γðtÞ ¼ 2ðb1 þ a2tÞ; ð72Þ

3The typical example is the Dirac Lagrangian that has this
problem at the classical level. Since, at the moment, we are not
interested in the quantization of this model, we will not insist
further on this point.
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with as, bs, and cs again arbitrary constants. Then, the
generator reads

Gðt;x;y;E;px;py;πλÞ
¼−Eða0þ2b1tþa2t2Þþpxðb0þb2tþb1xþa2txÞ
þpyðc0þc2tþb1yþa2tyÞ

þ2πλðb1þa2tÞ−μ

�
b2xþc2yþ

a2
2
ðx2þy2Þ

�
: ð73Þ

From here, we get the following generators

H ¼ −E; Pi ¼ pi; Gi ¼ pit − μδijxj; ð74aÞ

C ¼ −Et2 þ tpixi −
μ

2
δijxixj þ 2tπλ;

D ¼ pixi − 2Etþ 2πλ: ð74bÞ

The generators satisfy the following nonvanishing commu-
tators

½D;H� ¼ 2H; ½D;Pi� ¼ Pi;

½C;Gi� ¼ Gi; ½D;Gi� ¼ −Gi;

½D;C� ¼ −2C; ½C;H� ¼ D;

½Gi; Pj� ¼ −μδij; ½Gi;H� ¼ Pi; ð75Þ

with i, j ¼ 1, 2, which corresponds to the (1þ 2)-
Schrödinger algebra.

1. The Routhian for the ð1;2Þ0 model

The Routhian functional along the y spatial direction is
given by

RðxÞ ¼ −E_tþ py _yþ πλ _λþ λ

�
E −

1

μ
pxpy

�
− πλη: ð76Þ

The relevant equations of motion are

_t ¼ λ; _y ¼ λ
px

μ
: ð77Þ

As we see, it is not possible to solve all the velocities in
terms of the momenta. Proceeding as we did for the
Routhian functional of the (2,4) model, we define
ỹ≡ μ=px, from which

_̃y ¼ _t: ð78Þ

This model is a branch of the Routhian functional of the
(2,4) model. We got a one-dimensional massless particle
that can move along the two branches of the light cone,
whereas only one branch is allowed in this case. The
symmetries of this case are translations and dilations.

IV. PSEUDOCLASSICAL SPINNING FRACTONS

In this section, we construct two pseudoclassical spin-
ning fracton models associated with the previous (2,4) and
ð2; 2Þ0 fracton models. Considering these particular models,
we obtain Dirac-like equations giving rise to quadratic
dispersion relations in the energy.

A. The spinning (2,4) model

The canonical (C) Lagrangian of the pseudoclassical
spinning fracton is

LC ¼ −E_tþ px _xþ py _yþ
i
2
λ0 _λ0 −

i
2
λ1 _λ1

−
e
2
Φ − iχΦD; ð79Þ

where the Grassmann variables λ0 and λ1 satisfy the
nonvanishing Dirac brackets

fλ0; λ0g� ¼ −i; fλ1; λ1g� ¼ i; ð80Þ

where f·; ·g� stands for the Dirac bracket associated to the
second class constraints, and e and χ are Lagrange multi-
pliers, with χ being a Grassmann variable (see, for instance,
[13,14,19]). Here Φ denotes the mass-shell constraint

Φ ¼ E2 −
p2
xp2

y

μ2
; ð81Þ

while ΦD stands for the odd constraint defined by

ΦD ¼ −Eλ0 þ 1

μ
λ1pxpy; ð82Þ

which verifies

fΦD;ΦDg� ¼ −iΦ: ð83Þ

One can check that all of these brackets assumed for the
Grassmann variables are the Dirac brackets that are
obtained from the Lagrangian (79).
The continuous symmetries are the same as the bosonic

counterpart except that, under dilations, the odd Lagrange
multiplier should be scaled to compensate the overall
scaling factor of the odd constraint, leaving invariant the
Grassmann variables. The 90° rotation is still a symmetry in
the Grassmann variables, which must transform as follows

λ0 → λ0; λ1 → −λ1: ð84Þ

At quantum level [20] we can realize the Grassmann in
terms of the Pauli matrices

λ̂0 ¼ iffiffiffi
2

p σ3; λ̂1 ¼ iffiffiffi
2

p σ1; ð85Þ
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where σ1 and σ2 are the standard Pauli matrices. Then, the
fracton Dirac field equation for the fracton fieldΨðt; x; yÞ is

�
iσ3∂t −

1

μ
σ1∂x∂y

�
Ψðt; x; yÞ ¼ 0: ð86Þ

The field Ψðt; x; yÞ also verifies the analog of the Klein-
Gordon equation

�
∂2
t þ

1

μ2
∂2
x∂2

y

�
Ψðt; x; yÞ ¼ 0: ð87Þ

Notice that the factorization of the quartic term is not
unique, and it could also be done in terms of p2

x and p2
y

instead of pxpy. In this case, we should have made use of
three Grassmann variables instead of two, and the resulting
Dirac equation should look different, more like the one that
we have written in the following subsection for the
ð2; 2Þ0 model.

B. The spinning ð2;2Þ0 model

The spinning ð2; 2Þ0model couldbe treated similarly to the
(2,4) model. However, we will make use of the covariant
form with a three-dimensional Minkowski space, where the
dispersion relation assumes the form [see Eq. (45)]

Φ ¼ qμημνqν ¼ 0;

ημν ¼ diagð−1; 1;−1Þ; μ; ν ¼ 0; 1; 2: ð88Þ
Let us introduce a set of Grassmann variables, to say ξμ, with
Dirac brackets given by

fξμ; ξνg� ¼ −iημν: ð89Þ
Then, defining ΦD ≡ qμξμ, we get

fΦD;ΦDg� ¼ −iΦ: ð90Þ

We can easily write a Lagrangian in phase space by using the
constraints Φ and ΦD. This is given by

L ¼ qμ _yμ þ
i
2
ξμ _ξμ −

e
2
Φ − iχΦD; ð91Þ

where again e and χ are Lagrange multipliers, with χ a
Grassmann variable. It is easy to show that this Lagrangian
gives rise to the previousDirac brackets [19]. The quantization
of the Grassmann algebra leads to the Clifford algebra [20]

½γ̃μ; γ̃ν�þ ¼ ημν: ð92Þ
The tilde gamma matrices γ̃μ can be expressed in terms of the
usual γμ as follows

γ̃0 ¼ 1ffiffiffi
2

p γ0; γ̃1 ¼ 1ffiffiffi
2

p γ1; γ̃2 ¼ iffiffiffi
2

p γ2: ð93Þ

Then the corresponding wave equation is

−iγ̃μ∂μψ ¼ 0; ð94Þ
where ψ corresponds to the “fracton” wave function.

V. CONCLUSIONS AND OUTLOOK

We have started the construction of the worldline
approach to some field theories of fractons. We have
analyzed particle Lagrangians whose mass-shell constraints
give the dispersion relation of a set of models in (2þ 1)
dimensions. The extension to other models and directions
follow the same lines. By writing the analog of Killing
equations of a relativistic particle in a curved background,
we have also studied the symmetries of the respective
Lagrangians. The construction of the associated Routhian
functionals to the Lagrangians allows finding the subsys-
tem symmetries. The construction of pseudoclassical spin-
ning fractons that lead in a natural way to the Dirac fracton
equations was carried out.
A further study to consider is the analysis of three-

dimensional worldline models. Here the number of possible
models increases with the number of invariants. An
interesting case would be the model ð2; 2Þ0 in three
dimensions that, in analogy with the two-dimensional case,
can be seen as a massless theory in a space-time with
signature ð−1; 1;−1;−1Þ. We hope to return to this study in
the future.
In the future, we would like to consider the self-

interaction of fractons by using the geometrical interaction
in the ordinary relativistic particle case, see for example
[21]. The analysis will be done by using the path integral
formulation.
Another interesting development will be to study the

dynamics and symmetries of “fractonic strings.” The
canonical world sheet action for the (2,4) string with
space-time coordinates tðτ; σÞ; xiðτ; σÞ, with i ¼ 1, 2 and
energy and momentum densities Eðσ; τÞ and Piðσ; τÞ, is
given by

S ¼
Z

dτdσ

�
−E_tþ Pi _xi −

λ

2

�
E2 −

P2
xP2

y

μ2

�

− ρð−Et0 þ Pix0iÞ
�
; ð95Þ

where the dot stands for partial derivative with respect to τ
and the prime refers to differentiation with respect to σ with
0 ≤ σ ≤ π. The Lagrange multipliers λ and ρ impose the
first-class constraints of two-dimensional world sheet
diffeomorphisms. Analogously, the ð2; 2Þ0-fractonic string
has the following canonical action

S ¼
Z

dτdσ
�
−E_tþ Pi _xi −

λ

2
ðE2 − PxPyÞ

− ρð−Et0 þ Pix0iÞ
�
: ð96Þ
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The study of these fractonic string models will be done in a
subsequent work.
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