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The violation of the Bell inequality for Dirac fermions is investigated in the cosmological de Sitter
spacetime, in the presence of background electromagnetic fields of constant strengths. The orthonormal
Dirac mode functions are obtained and the relevant in-out squeezed state expansion in terms of the
Bogoliubov coefficients are found. We focus on two scenarios here: strong electric field and heavy mass
limits (with respect to the Hubble constant). Using the squeezed state expansion, we then demonstrate the
Bell violations for the vacuum and some maximally entangled initial states. Even though a background
magnetic field alone cannot create particles, in the presence of background electric field and or spacetime
curvature, it can affect the particle creation rate. Thus, our chief aim here is to investigate the role of the
background magnetic field strength in the Bell violation. Qualitative differences in this regard for different
maximally entangled initial states are shown. Further extension of these results to the so-called α vacua are
also discussed.
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I. INTRODUCTION

One of the most outstanding features of quantum
mechanics is certainly the entanglement, associated with
the nonlocal properties of the quantum mechanical meas-
urement procedure [1–9]. After experimental confirmation,
this has been placed on firm physical grounds [10,11]. We
refer our readers to, e.g., [12–17] and references therein for
extensive reviews and pedagogical discussions on quantum
entanglement and its various measures.
A very important and useful measure of quantum

entanglement is the violation of the Bell inequality [2,3]
(see also [16] for an excellent pedagogical discussion),
which has been confirmed experimentally [10,11]. Such
violation clearly rules out the so-called classical hidden
variable theories and establishes the probabilistic and (for
entangled states) the nonlocal characteristics associated
with the quantum measurement procedure, e.g., [6,8,9]
(also references therein). The Bell inequality was origi-
nally designed for bipartite pure states, which was later
extended to multipartite systems, altogether known as the

Bell-Mermin-Klyshko inequalities (or the Clauser-Horne-
Shimony-Holt inequality) [3,12–14].
There are a couple of distinct relativistic sectors where

entanglement properties of quantum fields emerge very
naturally, due to the creation of entangled particle pairs.
The first is the maximally extended nonextremal black hole
spacetimes, or the Rindler spacetime, where the entangle-
ment of quantum fields between two causally disconnected
spacetime wedges have been investigated, e.g., [18–22].
The second is the cosmological backgrounds where the
vacuum in the asymptotic future (the out vacuum) is related
to that of the asymptotic past (the in vacuum) via squeezed
state expansion, due to pair creation. We refer our reader
to, e.g., [23–32] and references therein for discussions on
various measures of bosonic and fermionic fields in different
coordinatization of the de Sitter spacetime. Even in the flat
spacetime particle pair creation is possible in the presence
of a “sufficiently” strong background electric field, viz. the
Schwinger pair creation, e.g., [33]. Various aspects of
entanglement properties between created particle-antipar-
ticle pairs in the Schwinger mechanism, including the effect
of a background magnetic field, can be seen in [34–40]. We
also refer our readers to, e.g., [41,42] for interesting aspects
of entanglement in the flat space quantum field theory and to
[43,44] for holographic aspects of entanglement.
The study of entanglement in the context of the early

inflationary era can give us insight about the state of a
quantum field in the early Universe. Such investigations
should not be regarded as mere academic interests, as
attempts have been made to predict their possible obser-
vational signatures as well. Specifically, entanglement
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generated in the early Universe can affect the cosmological
correlation functions or the cosmic microwave background
(CMB). For example, the fermionic entanglement may lead
to the breaking of scale invariance of the inflationary power
spectra [45]. It was argued in [46] by studying the violation
of the Bell inequality by the photons coming from certain
high redshift quasars that they are entangled, indicating the
existence of entangled quantum states in the early Universe.
We also refer our readers to [47] and references therein for
discussion on signature of Bell violation in the CMB and its
observational constraints pertaining the Bell operators and
some course graining parameter.
In the cosmological spacetimes, particle pair creation

occurs due to the background spacetime curvature, e.g.,
[33]. However if background electromagnetic fields are
also present there, the particle creation can further be
affected. A particularly interesting scenario is the early
inflationary spacetime endowed with primordial electro-
magnetic fields. Computations on the Schwinger effect for
both bosonic and fermionic fields in the de Sitter spacetime
and its possible connection to the observed magnetic field
in the intergalactic spaces (i.e., the so-called Galactic
dynamo problem [48]) can be seen in, e.g., [49–54].
In this paper, we wish to compute the Bell violation for

fermions in the cosmological de Sitter spacetime, in the
presence of constant background electromagnetic fields.
Previous studies on cosmological Bell violation can be
seen in, e.g., [24,25,30]. Note that a magnetic field alone
cannot create vacuum instability [33] and can be intui-
tively understood as follows. Let us imagine a particle-
antiparticle pair is created due to the application of a
magnetic field. They must move in opposite directions
to get separated. However, the magnetic Lorentz force
ev⃗ × B⃗ acts in the same direction for both particle and
antiparticle. Thus by applying a magnetic field alone, no
matter how strong it is, we cannot create pairs. However,
one may expect that in the presence of background
spacetime curvature and/or electric field, it can affect
the pair creation rate. The entanglement will also certainly
vary if the pair creation rate is altered.
In a flat spacetime, pair creation only due to a back-

ground electric field is expected to cease upon the appli-
cation of a magnetic field of sufficiently high strength, due
to the aforementioned oppositely directed Lorentz force
created by them. Accordingly, the degradation of correla-
tion or information between entangled states due to particle
creation would also cease, as has been shown recently in
[40]. Let us now consider, in addition, the spacetime
curvature that would also create particle pairs. Will the
magnetic field be able to stop the particle creation due to the
gravitational field? The intuitive answer is no, as follows. In
a pure gravitational background, a created particle pair will
follow geodesics and become observables in a spacetime
like the de Sitter spacetime due to the geodesic deviation
[55]. Such deviations happen even for initially parallel

trajectories. Thus as the particle-antiparticle pair created in
the presence of geometric curvature propagates, they are
expected to get separated irrespective of the presence of
Lorentz force imparted by the background magnetic field,
even though that force is acting in the same direction for
both of them. This also indicates that, in the absence of an
electric field, the magnetic field perhaps cannot affect the
particle creation due to the gravitational field at all. We
shall check these intuitive guesses explicitly in the next
section. Our goal here is to study the effect of the back-
ground magnetic field strength on the Bell violation.
Apart from this, a physical motivation behind this

study comes from the possible connection between the
primordial electromagnetic fields and the aforemen-
tioned Galactic dynamo problem, e.g., [50]. We wish to
consider fermions instead of a complex scalar, as the
former are more realistic. Let us speculate about some
possible observational consequences of the model we
study. For example, one can compute the power spectra by
tracing out the fermionic degrees of freedom (interacting
with the inflaton or gravitational excitations) and check
the breaking of scale invariance as in [45]. Likewise, if we
also consider the quantum part of the electromagnetic
sector, it should carry information about the entangled
fermionic states once we trace out the fermionic degrees of
freedom, originating from the photon-fermion interaction.
Thus one can expect that the photons coming from the
distant past undergoing the Bell test, as in [46], will carry
information about such entangled fermionic states. Since
these states are defined in the presence of the primordial
background electromagnetic fields, the Bell test might
also carry information about those background fields.
This can possibly be used to constrain the corresponding
field strengths and test the proposition of [50]. With this
motivation, and as a problem to begin with, we shall
simply compute below the fermionic Bell violation in the
cosmological de Sitter spacetime in the presence of
background electromagnetic fields, as a viable measure
of quantum entanglement.
The rest of the paper is organized as follows. In Sec. II

and the Appendix, we compute the orthonormal in and out
Dirac modes in the cosmological de Sitter spacetime in the
presence of constant background electric and magnetic
fields. The Bogoliubov coefficients and the squeezed state
relationship between the in and out vacua are also found.
Using this, we compute the vacuum entanglement entropy
in Sec. III. The Bell inequality violations for the vacuum
and also two maximally entangled initial states are com-
puted in Sec. IV. All these results are further extended in
Sec. V to the so-called one parameter fermionic α vacua.
Finally we conclude in Sec. VI. We shall assume either the
field is heavily massive or the electric field strength is very
high (with respect to the Hubble constant).
We shall work with the mostly positive signature of

the metric in (3þ 1) dimensions and will set c ¼ 1 ¼ ℏ
throughout.
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II. THE IN AND OUT DIRAC MODES

For our purpose, we first need to solve the Dirac equation
in the cosmological de Sitter spacetime in the presence
of constant background electromagnetic fields. The fol-
lowing will be an extension of the solutions found earlier in
the same spacetime but in the absence of any magnetic
field [51,53].
The Dirac equation in a general curved spacetime reads,

ðiγμDμ −mÞψðxÞ ¼ 0; ð1Þ

where the gauge cum spin covariant derivative reads,

Dμ ≡ ∂μ þ ieAμ þ Γμ:

The spin connection is given by

Γμ ¼ −
1

8
eμað∂μebν − Γλ

μνebλÞ½γa; γb�; ð2Þ

where the latin indices represent the local inertial frame and
eμa are the tetrads.
The de Sitter spacetime metric in (3þ 1) dimensions

reads

ds2 ¼ 1

H2η2
ð−dη2 þ dx2 þ dy2 þ dz2Þ; ð3Þ

where H is the Hubble constant and the conformal time η
varies from −∞ < η < 0−. Choosing now eaμ ¼ aðηÞδaμ, we
have from (2),

Γμ ¼
1

2
γμγ0a0ðηÞaðηÞδiμ; i ¼ 1; 2; 3; ð4Þ

where the prime denotes differentiation once with respect
to η.
Defining a new variable in terms of the scale factor

aðηÞ ¼ −1=Hη as

ξ ¼ a
3
2ψ ; ð5Þ

and using (4), the Dirac equation (1) becomes,

ðieμaγa∂μ − eAμe
μ
aγa −mÞξðη; x⃗Þ ¼ 0: ð6Þ

Substituting next

ξðη; x⃗Þ ¼ ðieμaγa∂μ − eAμe
μ
aγa þmÞζðη; x⃗Þ ð7Þ

into (6), we obtain the squared Dirac equation

�
ð∂μ þ ieAμÞ2 −m2a2

þ i

�
ma0ae00γ

0 −
e
2
a2eμaγaeνaγbFμν

��
ζðη; x⃗Þ ¼ 0: ð8Þ

We choose the gauge to obtain constant electric and
magnetic fields in the z direction as

Aμ ¼ Byδxμ −
E
H
ða − 1Þδzμ; ð9Þ

where E and B are constants. Making now the ansatz

ζðη; x⃗Þ ¼ e−iezE=Heik⃗y · x⃗ζsðη; yÞωs;

in (8), where k⃗y ¼ ðkx; 0; kzÞ, we have

�
ð∂2

y − ðkx þ eByÞ2Þ − ∂2
0 − k2z þ 2HLakz −H2L2a2 −m2a2 þ iHa2

�
Mγ0 þ Lγ0γ3 þ eB

Ha2
γ1γ2

��
ζsðη; yÞωs ¼ 0; ð10Þ

where

M ¼ m
H

and L ¼ eE
H2

are dimensionless mass and electric field strengths. Note also in (10) that the matrices ðMγ0 þ Lγ0γ3Þ and γ1γ2 commute
and hence we may treat ωs to be their simultaneous eigenvectors. Thus (10) becomes

�
ð∂2

y − ðkx þ eByÞ2Þ þ ð−∂2
0 − ω2

k þ iλsσðηÞ þ ieβsBÞ
�
ζsðη; yÞ ¼ 0; ð11Þ

where λs ¼ �1, βs ¼ �i and we have abbreviated

ω2
k ¼ k2z − 2HLakz þH2a2ðL2 þM2Þ; σðηÞ ¼ a2H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þM2

p
: ð12Þ

The explicit expressions for the four orthonormal eigenvectors ωs are given in the Appendix. Substituting now for the
variable separation, ζsðη; yÞ ¼ ςsðηÞhsðyÞ into (11), we obtain the decoupled equations
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ð∂2
η þ ω2

k − iλsσðηÞ þ SsÞςsðηÞ ¼ 0 and ð∂2
y − ðkx þ eByÞ2 þ Ss þ iβseBÞhsðyÞ ¼ 0; ð13Þ

where Ss is the separation constant. Clearly, we can have four sets of such pair of equations corresponding to the different
choices of λs ¼ �1 and βs ¼ �i. For example, for λs ¼ 1, βs ¼ −i and λs ¼ 1, βs ¼ i, we, respectively, have

�
∂2
η þ ω2

k − iσðηÞ þ S1

�
ς1ðηÞ ¼ 0 and

�
∂2
y − ðkx þ eByÞ2 þ S1 þ eB

�
h1ðyÞ ¼ 0;

�
∂2
η þ ω2

k − iσðηÞ þ S2

�
ς2ðηÞ ¼ 0 and

�
∂2
y − ðkx þ eByÞ2 þ S2 − eB

�
h2ðyÞ ¼ 0: ð14Þ

Let us first focus on the spatial equations. In terms of the variable

ȳ ¼
� ffiffiffiffiffiffi

eB
p

yþ kxffiffiffiffiffiffi
eB

p
�
;

it is easy to see that the spatial differential equations of (14) reduce to the Hermite differential equation, with the separation
constants,

S1 ¼ 2neB and S2 ¼ 2ðnþ 1ÞeB;

where n ¼ 0; 1; 2…. denote the Landau levels. Thus we have the normalized solutions

h1ðyÞ ¼ h2ðyÞ ¼
� ffiffiffiffiffiffi

eB
p

2nþ1
ffiffiffi
π

p ðnþ 1Þ!
�1=2

e−ȳ
2=2HnðȳÞ ¼ hnðȳÞðsayÞ;

where HnðȳÞ are the Hermite polynomials of order n.
For the two temporal equations in (14), we introduce the variables

z1 ¼ −
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S1

p
aH

and z2 ¼ −
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S2

p
aH

;

so that they, respectively, become

�
∂2
z1 −

1

4
þ κ1

z1
þ ð1=4 − μ2Þ

z21

�
ς1ðz1Þ ¼ 0 and

�
∂2
z2 −

1

4
þ κ2

z2
þ ð1=4 − μ2Þ

z22

�
ς2ðz2Þ ¼ 0; ð15Þ

where we have abbreviated

κ1 ¼ −
ikzLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S1

p ; κ2 ¼ −
ikzLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S2

p ; μ ¼
�
1

2
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p �
: ð16Þ

Note that κ1;2 depend upon the sign of kz. From now on, we shall only focus on the situation ðM2 þ L2Þ ≫ 1, for which

μ ≈ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p
≈ ijμj

in (16). This corresponds to either very strong electric field or highly massive field, or both. Then the general solutions for
(15) are given by

ς1ðz1Þ ¼ C1Wκ1;ijμjðz1Þ þD1Mκ1;ijμjðz1Þ and ς2ðz2Þ ¼ C2Wκ2;ijμjðz2Þ þD2Mκ2;ijμjðz2Þ; ð17Þ

where W and M are the Whittaker functions [56] and C1, C2, D1, and D2 are constants.
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Let us now find out the positive frequency “in” modes,
i.e., the mode functions whose temporal part behaves as
positive frequency plane waves as η → −∞. In this limit,
we have [56]

Wκ1;ijμjðz1Þ ∼ e−2iη
ffiffiffiffiffiffiffiffiffi
k2zþS1

p
ηκ1 :

Thus, for such modes, we must set D1 ¼ 0 ¼ D2 in (17).
Putting things together, we write the two positive frequency
in mode functions as

ζins;nðη; x⃗Þ ¼ e−iHLzeik⃗y · x⃗Wκs;ijμjðzsÞhnðȳÞωs ðs¼ 1;2Þ:
ð18Þ

Likewise, since as η → 0− [56]

Mκ;ijμjðz1Þ ∼ ηijμjþ1=2;

the positive frequency out modes can be defined with
respect to the cosmological time t (t ¼ − lnHη=H), and we
choose them to be

ζouts;nðη; x⃗Þ ¼ e−iHLzeik⃗=y · x⃗Mκs;ijμjðzsÞhnðȳÞωs ðs ¼ 1; 2Þ:
ð19Þ

However, recall that the ζ’s appearing in Eqs. (18) and
(19) are not the original Dirac modes, as of Eqs. (5) and (8).
We thus have the complete set of positive and negative
frequency in and out modes,

Uin
s;n ¼

1

Nsa3=2
D̂ζins;n; V in

s;n ¼ CðUin
s;nÞ�;

Uout
s;n ¼ 1

Msa3=2
D̂ζouts;n; Vout

s;n ¼ CðUout
s;nÞ�; ðs ¼ 1; 2Þ;

ð20Þ

where C ¼ iγ2 is the charge conjugation matrix. Hence
the V modes appearing above are the negative frequency
modes. The normalization constants appearing above are
given by

N1 ¼ eπjκ1jsgnðkzÞ=2; N2 ¼ eπjκ2jsgnðkzÞ=2; M1 ¼ M2 ¼
ffiffiffiffiffiffiffiffi
2jμj

p
eπjμj=2; ð21Þ

where the sign dependence of the normalization constants originates from the sign dependence (of kz) of the parameters κs,
(16). The explicit form of the mode functions in (20) and the evaluation of the normalization constants are discussed in the
Appendix.
It is easy to check that these mode functions satisfy the orthonormality relations,

ðUin
s;nðx; k⃗=yÞ; Uin

s0;n0 ðx; k⃗0=yÞÞ ¼ ðV in
s;nðx; k⃗=yÞ; V in

s;n0 ðx; k⃗0=yÞÞ ¼ δ2ðk⃗=y − k⃗0=yÞδnn0δss0 ;

ðUout
s;nðx; k⃗=yÞ; Uout

s0;n0 ðx; k⃗0=yÞÞ ¼ ðVout
s;nðx; k⃗=yÞ; Vout

s0;n0 ðx; k⃗0=yÞÞ ¼ δ2ðk⃗=y − k⃗0=yÞδnn0δs;s0 ; ð22Þ

with all the other inner products vanishing.
In terms of these orthonormal modes, we now make the field quantization

ψðη; x⃗Þ ¼
X

n;s¼1;2

Z d2k⃗=y
2πa3=2

�
ainðk⃗=y; s; nÞUin

s;nðx; k⃗=yÞ þ b†inðk⃗=y; s; nÞV in
s;nðx; k⃗=yÞ

�

¼
X

n;s¼1;2

Z d2k⃗=y
2πa3=2

X
n;s¼1;2

�
aoutðk⃗=y; s; nÞUout

s;nðx; k⃗=yÞ þ b†outðk⃗=y; s; nÞVout
s;nðx; k⃗=yÞ

�
; ð23Þ

where the creation and annihilation operators are assumed to satisfy the usual canonical anticommutation relations.
Using now the relations between the Whittaker functions [56],

Wκ;ijμjðzÞ ¼
Γð−2ijμjÞ

Γð1=2 − ijμj − κÞMκ;ijμjðzÞ þ
Γð2ijμjÞ

Γð1=2þ ijμj − κÞMκ;−ijμjðzÞ;

Mκ;ijμjðzÞ ¼ −ieπjμjM−κ;ijμjð−zÞ ð24Þ

into Eqs. (18)–(20), we find

Uin
s;nðx; k⃗=yÞ ¼

Ms

Ns

Γð−2ijμjÞ
Γð1=2 − ijμj − κsÞ

Uout
s;nðx; k⃗=yÞ þ ie−jμjπ

Ms

Ns

Γð2ijμjÞ
Γð1=2þ ijμj − κsÞ

Vout
s;nðx; k⃗=yÞ ðs ¼ 1; 2Þ: ð25Þ
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Substituting this into (23), we obtain the Bogoliubov
relations

aoutðk⃗=y; s; nÞ ¼ αsainðk⃗=y; s; nÞ − β�sb
†
inð−k⃗=y; s; nÞ;

boutðk⃗=y; s; nÞ ¼ αsbinðk⃗=y; s; nÞ þ β�sa
†
inð−k⃗=y; s; nÞ: ð26Þ

The canonical anticommutation relations ensure

jαsj2 þ jβsj2 ¼ 1 ðs ¼ 1; 2Þ:

Recalling we are working with jμj ≫ 1, we have

βs ≈ ie−jμjπ
����Ms

Ns

���� Γð2ijμjÞ
Γðijμj − κsÞ

ðs ¼ 1; 2Þ: ð27Þ

We find from the above after using some identities of the
gamma function [56], the spectra of pair creation

jβsj2� ¼ e−πðjμj�jκsjÞ sinh πðjμj � jκsjÞ
sinh 2πjμj ðs ¼ 1; 2Þ; ð28Þ

where the � sign correspond, respectively, to kz > 0 and
kz < 0, and originates from the fact that κs depends upon
the sign of kz, (16). The above expression is formally
similar to the case where only a background electric field is
present [51]. The contribution to the particle creation from
the magnetic field comes solely from the coefficients κs and
there is no contribution of it (i.e., κs ¼ 0) if either the
electric field is vanishing or the magnetic field strength is
infinitely large. Note also that, if we set E ¼ 0 in (28), we
reproduce the well-known fermionic blackbody spectra of
created particles with temperature TH ¼ H=2π, e.g., [30],

jβsj2� ¼ 1

e2πjμj þ 1
ðs ¼ 1; 2Þ; ð29Þ

where jμj ¼ M ¼ m=H. The above discussions show that,
in the absence of an electric field, the magnetic field cannot
alter the particle creation rate, as we intuitively anticipated
toward the middle of Sec. I. Finally, we also note from (28)
that since jμj ¼ ðM2 þ L2Þ1=2, for E ≠ 0, and even if
B → ∞, the particle creation due to the electric field does
not completely vanish, unlike that of the flat spacetime
[40]. Once again, this should correspond to the fact that the
mutual separation of the pairs created by the electric field as
they propagate is also happening here due to the expanding
gravitational field of the de Sitter spacetime, upon which
the magnetic field has no effect.
Since the parameters M and L denote the dimensionless

rest mass and the strength of the electric field [cf. discussion
below (10)], let us consider in the following two qualita-
tively distinct cases, keeping in mind ðM2 þ L2Þ ≫ 1.
Case 1: M2 ≫ 1 and M2 ≫ L2, hence in this

case particle creation is happening chiefly due to the

background spacetime curvature. We have from (28) in
this limit,

jβsj2� ≈ e−2πMð1 − e−2πMe∓2πjκsj þOðe−4πMÞÞ: ð30Þ

Thus jβsj2þ > jβsj2−. Since the electromagnetic field is
weak here, they would have little effect on the particle
creation. Note, in particular, from the expression of κs
that, if we keep the electric field strength and kz fixed,
jβsj2þ decreases whereas jβsj2− increases with the magnetic
field strength, and for extremely high B value, the particle
creation rate coincides to that of only due to the spacetime
curvature.
Case 2: L2 ≫ 1 and L2 ≫ M2, hence in this case particle

creation is happening chiefly due to the background electric
field. We have from (28),

jβsj2� ≈ e−2πLð1 − e−2πLe∓2πjκsj þOðe−4πLÞÞ: ð31Þ

Thus in this case also jβsj2þ > jβsj2−, and jβsj2þ decreases
whereas jβsj2− increases with the magnetic field strength,
while the other parameters are held fixed. We wish to focus
only on jβsj2− in the following. In our computation, we shall
often encounter the complex βs value. Hence, instead of
using Eqs. (30) or (31), we shall work with (27), by taking
numerical values of the parameters appropriate for the
particular case.
Subject to the field quantization in (23), the in and the

out vacua are defined as

ainðk⃗=y; s; nÞj0iin ¼ 0 ¼ binðk⃗=y; s; nÞj0iin and

aoutðk⃗=y; s; nÞj0iout ¼ 0 ¼ boutðk⃗=y; s; nÞj0iout:

Thus the Bogoliubov relations (26) imply a (normalized)
squeezed state expansion between the in and out states for a
given momentum,

j0kiin ¼
�
α1j0ð1Þk 0

ð1Þ
−k iout þ β1j1ð1Þk 1

ð1Þ
−k iout

�

⊗
�
α2j0ð2Þk 0

ð2Þ
−k iout þ β2j1ð2Þk 1

ð2Þ
−k iout

�
: ð32Þ

As we have discussed above, since we shall be working
only with the “−” sign of (28), βs and αs appearing
above are understood as β1− and β2− and α1− and α2−,
respectively.
The excited in states can be written in terms of the out

states by applying the in-creation operators on the left-hand
side of (32) and then using the Bogoliubov relations (26) on
its right-hand side.
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Finally, we note that the s ¼ 1, 2 sectors are factorized in
(32), leading to

j0kiin ¼ j0ð1Þk iin ⊗ j0ð2Þk iin:

Thus, for simplicity, we can work only with a single sector,

say j0ð1Þk iin, of the in vacuum.
Being equipped with these, we are now ready to go to the

computation of the Bell violation. However, before we do
that, we wish to compute the entanglement entropy
associated with the vacuum state.

III. ENTANGLEMENT ENTROPY
OF THE VACUUM

If a system is made of two subsystems, say A and B,
the entanglement entropy of A is defined as the von
Neumann entropy of ρA, SðρAÞ ¼ −TrAðρA ln ρAÞ, where
ρA is the reduced density operator ρA ¼ TrBρAB. The
entanglement entropy of B is defined in a likewise manner.
If ρAB corresponds to a pure state, one has SðρAÞ ¼ SðρBÞ,
and it is vanishing when ρAB is also separable, ρAB ¼
ρA ⊗ ρB. The von Neumann entropies satisfy a subaddi-
tivity SðρABÞ ≤ SðρAÞ þ SðρBÞ, where SðρABÞ is the von
Neumann entropy corresponding to ρAB, and the equality
holds if and only if ρAB is separable, e.g., [16].
We wish to compute the entanglement entropy for the

state j0ð1Þk iin, defined at the end of the preceding section.
The density matrix corresponding to this state is pure,

ρ0 ¼ j0ð1Þk iininh0ð1Þk j. Using (32), we write down ρ0 in terms
of the out states, which contain both k and −k degrees of
freedom. The reduced density matrix corresponding to
the k sector (say, particle) is given by ρk ¼ Tr−kρ0 ¼
jα1j2j0ð1Þk ioutouth0ð1Þk j þ jβ1j2j1ð1Þk ioutouth1ð1Þk j, and hence the
entanglement entropy is give by

Sk ¼ −Trkρk ln ρk ¼ −
�
lnð1 − jβ1j2Þ þ jβ1j2 ln

jβ1j2
1 − jβ1j2

�
:

ð33Þ

We also have Sk ¼ S−k, as we are dealing with a pure state.
Since we are chiefly interested here in the effect of the

magnetic field strength, let us extract a dimensionless
parameter from (16),

Q ¼ 2enB
k2z

:

The Q dependence of Sk is depicted in Fig. 1 for the two
cases [“large” (L2 ≫ M2) and “small” (L2 ≪ M2) electric
fields], discussed in the preceding section. For a given
mode (i.e., n; kz fixed) thus, the increase in Q corresponds
to the increase in the B value. As can be seen in the figure,
the entanglement entropy decreases monotonically with the
increase in the magnetic field strength. This corresponds to
the fact that the vacuum entanglement entropy originates
from the pair creation, which decreases with increasing B
for both the cases we have considered.

IV. THE VIOLATION OF THE BELL
INEQUALITIES

A. The Bell inequalities

The construction of the Bell or the Bell-Mermin-
Klyshko operators for fermions are similar to that of
the scalar field, e.g., [16,25] and references therein. Let
us consider two pairs of noncommuting observables
defined, respectively, over the Hilbert spaces HA and
HB: ðO1; O0

1Þ ∈ HA and ðO2; O0
2Þ ∈ HB. We assume that

these are spin-1=2 operators along specific directions, such
as O ¼ niσi, O0 ¼ n0iσi, where σi’s are the Pauli matrices
and ni, n0i are unit vectors on the three-dimensional

0.005 0.010 0.015 0.020 0.025 0.030
Q
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0.14
Sk

0.2 0.4 0.6 0.8 1.0
Q

5.×10–9

1.×10–8

1.5×10–8

Sk

FIG. 1. We have plotted entanglement entropy (33) corresponding to the vacuum state with respect to the parameter Q ¼ 2neB=k2z.
The left plot corresponds to the case L2 ≫ M2, where we have taken L ¼ 100 and different curves correspond to different M values
(blueM ¼ 10, yellowM ¼ 12, and greenM ¼ 16). The right plot corresponds toM2 ≫ L2, where we have takenM ¼ 5, and different
curves correspond to different L values (blue L ¼ 1, yellow L ¼ 1.5, and green L ¼ 2). For a given mode, the entanglement entropy
decreases monotonically with increasing B for both the cases due to the decrease in the particle creation. See main text for detail.
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Euclidean space. The eigenvalues of each of these operators
are �1. The Bell operator B ∈ HA ⊗ HB is defined as
(suppressing the tensor product sign)

B ¼ O1ðO2 þO0
2Þ þO0

1ðO2 −O0
2Þ: ð34Þ

In theories with classical local hidden variables, we have
the so-called Bell’s inequality, hB2i ≤ 4 and jhBij ≤ 2.
However, this inequality is violated in quantum mechanics
as follows. We have from (34),

B2 ¼ I − ½O1; O0
1�½O2; O0

2�; ð35Þ

where I is the identity operator. Using the commutation
relations for the Pauli matrices, one gets jhBij ≤ 2

ffiffiffi
2

p
,

thereby obtaining a violation of Bell’s inequality, where the
equality is regarded as the maximum violation.
The above construction can be extended to multipartite

systems with pure density matrices as well, corresponding
to squeezed states formed by mixing different modes. We
refer our readers to [25] and references therein for details.
We wish to investigate below Bell’s inequality violation

for the vacuum, as well as some maximally entangled initial
states.

B. Bell violation for the vacuum state

Wewish to find out the expectation value of B, (34), with

respect to the vacuum state j0ð1Þk iin, given at the end of
Sec. II. In order to do this, one usually introduces
pseudospin operators measuring the parity in the Hilbert
space along different axes, e.g., [25] and references therein.
These operators for fermionic systems with eigenvalues�1
are defined as

n̂:S ¼ Sz cos θ þ sin θðeiϕS− þ e−iϕSþÞ; ð36Þ

where n̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cosϕÞ is a unit vector in
the Euclidean three-plane. The action of the operators Sz
and S� are defined on the out states,

Szj0i ¼ −j0i; Szj1i ¼ j1i; Sþj0i ¼ j1i;
Sþj1i ¼ 0; S−j0i ¼ 0; S−j1i ¼ j0i: ð37Þ

Without any loss of generality, we take the operators to be
confined to the x-z plane, so that we may set ϕ ¼ 0 in (36).
We may then take in (34),Oi ¼ n̂i ·S andO0

i ¼ n̂0
i ·S with

i ¼ 1, 2. Here n̂i and n̂0
i are two pairs of unit vectors in the

Euclidean three-plane, characterized by their angles with
the z axis, θi and θ0i (with i ¼ 1, 2), respectively.
Using the above constructions and the squeezed state

expansion [(32)] and also the operations (37) defined on the
out states, the desired expectation value is given by

inh0ð1Þk jBj0ð1Þk iin ¼ ½Eðθ1; θ2Þ þ Eðθ1; θ02Þ þ Eðθ01; θ2Þ
− Eðθ01; θ02Þ�; ð38Þ

where Oi and O0
i are assumed to operate, respectively, on

the k and −k sectors of the out states in (32), and

Eðθ1; θ2Þ ¼ cos θ1 cos θ2 þ 2jα1β1j sin θ1 sin θ2:

Choosing now θ1 ¼ 0; θ01 ¼ π=2, and θ2 ¼ −θ02, we have
from (38),

inh0ð1Þk jBj0ð1Þk iin ¼ 2ðcos θ2 þ 2jα1β1j sin θ2Þ: ð39Þ

The above expression maximizes at θ2 ¼ tan−1ð2jα1β1jÞ,
so that the above expectation value becomes

hBimax ¼ 2ð1þ 4jα1β1j2Þ1=2:

Thus hBimax ≥ 2, and hence there is Bell violation for
jβ1j > 0. We have plotted hBimax in Fig. 2 with respect to
the parameterQ ¼ 2enB=k2z as earlier. We have considered
only the case of strong electric field L2 ≫ M2, for the other
case does not show any significant violation nor numerical
variation. As for the vacuum entanglement entropy, Fig. 1,
the Bell violation decreases monotonically with the increas-
ing magnetic field (for a given mode) and reaches the value
2. Once again, this happens due to the suppression of the
particle creation by the magnetic field.
Note that the vacuum state is pure. Instead of vacuum,

if we consider a pure but maximally entangled state, make
its squeezed state expansion, and then trace out some
parts of it in order to construct a bipartite subsystem, the
resulting density matrix turns out to be mixed. The above

0.005 0.010 0.015 0.020 0.025 0.030
Q

2.05

2.10

2.15

FIG. 2. We have plotted Bell’s violation hBimax [(39)], corre-
sponding to the vacuum state, with respect to the parameter
Q ¼ 2enB=k2z . We have plotted only the case L2 ≫ M2, for the
other case (M2 ≫ L2) does not show any significant violation or
numerical variation. We have taken L ¼ 100 and different curves
correspond to different M values (blue M ¼ 10, yellow M ¼ 12,
and green M ¼ 16).
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construction is valid for pure ensembles only and one
requires a different formalism to deal with mixed ensem-
bles, e.g., [6,21]. We wish to study two such cases below, in
order to demonstrate their qualitative differences with the
vacuum case.

C. Bell violation for maximally entangled
initial states

We wish to consider maximally entangled initial states
(corresponding to two fermionic fields) in the following.
For computational simplicity, we assume that both fields
have the same rest mass, and we consider modes in which
their momenta along the z direction and the Landau levels
are the same.
The density matrix corresponding to the initial state can

be expanded into the out states via (32) and then any
2 degrees of freedom is traced out in order to construct a
bipartite system. The resulting reduced density matrix turns
out to be mixed. For such a system, the Bell violation
measure is defined as [6,21]

hBmaxi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ λ2

p
; ð40Þ

where λ1 and λ2 are the two largest eigenvalues of the 3 × 3

matrix U ¼ ðTρÞTTρ, with T ≡ Tr½ρσi ⊗ σj�, where ρ is
the aforementioned mixed density matrix. T is called the
correlation matrix for the generalized Bloch decomposition
of ρ. Since the reduced density matrix represents a bipartite
system, the violation of the Bell inequality as earlier will
correspond to hBmaxi > 2 in (40).
We begin by considering the initial state,

jψi ¼ j0p0−p0k0−kiin þ j1p0−p0k1−kiinffiffiffi
2

p : ð41Þ

In the four entries of a ket above, the first pair of states
corresponds to one fermionic field, whereas the last pair
corresponds to another. The� sign in front of the momenta
stands, respectively, for the particle and antiparticle degrees
of freedom.
Recall that we are assuming the created particles have the

same rest mass, and we are working with modes for which
the Landau levels and the kz values for both the fields are
coincident. Using then Eqs. (26) and (32), we reexpress
(41) in the out basis as

jψi ¼ ðα1j0p0−piout þ β1j1p1−pioutÞðα1j0k0−kiout þ β1j1k1−kioutÞ þ j0p1−pioutj1k0−kioutffiffiffi
2

p : ð42Þ

We shall focus below only on the correlations between the particle-particle and the particle-antiparticle sectors
corresponding to the density matrix of the above state. Accordingly, tracing out first the antiparticle-antiparticle degrees of
freedom of the density matrix ρð0Þ ¼ jψihψ j, we construct the reduced density matrix for the particle-particle sector,

ρ0k;p ¼ Tr−k;−pðρð0ÞÞ ¼
1

2

0
BBB@

jα1j4 0 0 0

0 jα1β1j2 ðα1β1Þ� 0

0 α1β1 jα1β1j2 0

0 0 0 jβ1j4

1
CCCA: ð43Þ

Likewise, we can obtain the reduced density matrix for the particle-antiparticle sector,

ρ0p;−k ¼ Tr−p;kðρð0ÞÞ ¼
1

2

0
BBB@

jα1j4 0 0 ðα�1Þ2
0 jα1β1j2 0 0

0 0 jα1β1j2 0

α21 0 0 jβ1j4 þ 1

1
CCCA: ð44Þ

The correlation matrices corresponding to Eqs. (43) and (44) are, respectively, given by

Tðρ0k;pÞ ¼

0
B@

Reðα1β1Þ 0 0

0 −Reðα1β1Þ 0

0 0 1
2
ðjα1j4 − 2jα1j2jβ1j2 − 1þ jβ1j4Þ

1
CA ð45Þ

and
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Tðρ0p;−kÞ ¼

0
B@

Reðα21Þ 0 0

0 Reðα21Þ 0

0 0 1
2
ðjα1j4 − 2jα1j2jβ1j2 þ 1þ jβ1j4Þ

1
CA: ð46Þ

UsingEqs. (45) and (46),we compute thematricesUðρ0k;pÞ¼
ðTðρ0k;pÞÞTTðρ0k;pÞ and Uðρ0p;−kÞ ¼ ðTðρ0p;−kÞTTðρ0p;−kÞ.
Equation (40) yields then after a little algebra

hB0
kpimax ¼ 2

ffiffiffi
2

p
Reðα1β1Þ ð47Þ

and

hB0
p−kimax ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReðα21ÞÞ2 þ ð1 − 2jα1β1j2Þ2

q
: ð48Þ

We have plotted hB0
p−kimax in Fig. 3 with respect to the

parameter Q ¼ 2neB=k2z as earlier, depicting the Bell
violation (hB0

p−kimax > 2) for both strong and weak electric
fields. hB0

kpimax, on the other hand, does not show any such
violation.
We next consider another maximally entangled state

given by

jχi ¼ j1p0−p0k0−kiin þ j0p0−p1k0−kiinffiffiffi
2

p : ð49Þ

Following similar steps as described above, by partially
tracing out the original density matrix ρð1Þ ¼ jχihχj, we
have the mixed bipartite density matrices, respectively, for
the particle-particle and the particle-antiparticle sectors,

ρ1k;p ¼ Tr−k;−pðρð1ÞÞ and ρ1p;−k ¼ Tr−p;kðρð1ÞÞ; ð50Þ

which, respectively, yield the Bell violations

hB1
kpimax ¼ 2

ffiffiffi
2

p
jα1j2 and hB1

p−kimax ¼ 2
ffiffiffi
2

p
Reðβ1α�1Þ:

ð51Þ

We have plotted hB1
kpimax in Fig. 4 with respect to the

parameter Q for strong electric field L2 ≫ M2. For
M2 ≫ L2, we also have violation, however, it does not
show any significant numerical variation. On the other
hand, we find no violation for the particle-antiparticle
sector hB1

p−kimax.
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FIG. 3. Bell violation for the particle-antiparticle sector ρ0p;−k, (44), corresponding to the initial state in (41). We have plotted (48) with
respect to the parameter Q ¼ 2neB=k2z. The left plot corresponds to L2 ≫ M2 (L ¼ 100 and M ¼ 10), whereas the right one
corresponds to M2 ≫ L2 (M ¼ 5 and L ¼ 1). hB0

p−kimax > 2 corresponds to the Bell violation.
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FIG. 4. Bell violation for ρ1k;p, (50), corresponding to the initial
state in (49). We have plotted hB1

kpi, (51), with respect to the
parameter Q ¼ 2neB=k2z, for L2 ≫ M2 (L ¼ 100 and M ¼ 10).
The other case, M2 ≫ L2, does show Bell violation but there is
no significant numerical variation. Note that in contrast to Fig. 3
the behavior is monotonic here and qualitatively it rather
resembles the vacuum case, as in Fig. 2.
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Before we conclude, we wish to further extend the above
results for the so-called fermionic α vacua.

V. THE CASE OF THE FERMIONIC α VACUA

The fermionic α vacua, like the scalar field [57,58],
correspond to a Bogoliubov transformation characterized
by a parameter α in the in mode field quantization.
Although such vacua may not be very useful to do
perturbation theory, e.g., [59,60], it still attracts attention
chiefly from the perspective of the so-called trans-
Planckian censorship conjecture, e.g., [61].
In order to construct such vacua, from (23), we define a

new set of annihilation and creation operators [62],

cαðk⃗=y; s; nÞ ¼ cos αainðk⃗=y; s; nÞ − sin αb†inðk⃗=y; s; nÞ;
dαðk⃗=y; s; nÞ ¼ cos αbinðk⃗=y; s; nÞ þ sin αa†inðk⃗=y; s; nÞ; ð52Þ

where the parameter α is real and 0 ≤ α ≤ π=2. The above
relations indicate that we need to define a new, one
parameter family of vacuum state j0iα, so that

cαj0iα ¼ 0 ¼ dαj0iα:

An α-vacuum state is related to the original in-vacuum state
via a squeezed state expansion. Note that (52) does not
mix the sectors s ¼ 1 and s ¼ 2. Thus, as in the previous
analysis, we work only with the s ¼ 1 sector and write for
the normalized α-vacuum state,

j0kið1Þα ¼ cos αj0ð1Þk 0
ð1Þ
−k iin þ sin αj1ð1Þk 1

ð1Þ
−k iin: ð53Þ

Using now (32) into the above equation, we reexpress j0ið1Þα

in terms of the out states

j0kið1Þα ¼ α0j0ð1Þk 0
ð1Þ
−k iout þ β0j1ð1Þk 1

ð1Þ
−k iout; ð54Þ

where

α0 ¼ α1 cos αþ β1 sin αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðα1β�1 þ β1α

�
1Þ cos α sin α

p ;

β0 ¼ α1 sin αþ β1 cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðα1β�1 þ β1α

�
1Þ cos α sin α

p ð55Þ

are the effective Bogoliubov coefficients. Note the formal
similarity between Eqs. (54) and (32). Setting α ¼ 0 in the
first reproduces the second.
The above-mentioned formal similarity thus ensures that

the expressions for either the vacuum entanglement entropy
or the Bell violation for the α states can be obtained from
our earlier results [Eqs. (33), (39), (47), (48), and (51)], by
simply making the replacements

α1 → α01; and β1 → β01:

Some aspects of entanglement for scalar α vacua can be
seen in, e.g., [63–66] (also references therein). See also [28]
for discussion on the natural emergence of α-like vacua for
fermions in the hyperbolic de Sitter spacetime.
For the fermionic case, the vacuum entanglement

entropy, (33), modifies to the α vacua as

Sαk ¼ −
�
lnð1 − jβ01j2Þ þ jβ01j2 ln

jβ01j2
1 − jβ01j2

�
; ð56Þ

which is plotted in Fig. 5 with respect to the parameters
Q ¼ 2enB=k2z and α. We see that Sαk first increases with
increase in the parameter α and has its maximum at
α ¼ π=4, after which it decreases and becomes vanishing
as α → π=2. Likewise, the Bell violation for the vacuum
state, (39), can be extended to the α vacua and is plotted in
Fig. 6. Like the vacuum entanglement entropy, the vacuum
Bell violation also reaches maximum at α ¼ π=4 and
becomes vanishing as α → π=2.
The vanishing of both vacuum entanglement entropy and

Bell violation as α → π=2 can be understood as follows. In
this limit, only the excited state part of (53) survives.

FIG. 5. Entanglement entropy for the fermionic α vacua, (53). We have plotted (56) vs the parameters Q ¼ 2enB=k2z and α. The left
one corresponds to L2 ≫ M2 (L ¼ 100 andM ¼ 10), whereas the right one corresponds toM2 ≫ L2 (M ¼ 5 and L ¼ 1). See main text
for discussions.
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FIG. 7. Bell violation for the particle-antiparticle sector corresponding to the initial α state in (57). As we have discussed in the main
text, we have basically plotted (48) after replacing α1, β1, respectively, by α01 and β01 [(55)]. The left plot corresponds to L2 ≫ M2

(L ¼ 100 and M ¼ 10), whereas the right one corresponds to M2 ≫ L2 (M ¼ 5 and L ¼ 1). hBiα;max > 2 corresponds to the Bell
violation. The particle-particle sector corresponding to this initial state does not show any Bell violation, like the α ¼ 0 case discussed in
Sec. IV C.

FIG. 8. Bell violation for the particle-particle sector corresponding to the initial state in (58). The left plot corresponds to L2 ≫ M2

(L ¼ 100 andM ¼ 10), whereas the right one corresponds toM2 ≫ L2 (M ¼ 5 and L ¼ 1). As earlier, hBiα;max > 2 corresponds to the
Bell violation. The particle-antiparticle sector corresponding to this initial state does not show any violation, like the α ¼ 0 case
discussed in Sec. IV C.

FIG. 6. Bell violation for the fermionic α vacua. As we have discussed in the main text, we have plotted (39) after replacing α1 and β1,
respectively, by α01 and β01 given by (55). The left one corresponds to L2 ≫ M2 (L ¼ 100 and M ¼ 10), whereas the right one
corresponds to M2 ≫ L2 (M ¼ 5 and L ¼ 1). hBiα;max > 2 corresponds to the Bell violation.
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Equation (32) then implies that the corresponding out-basis
expansion of this state is not only pure, but also separable.
Thus, in this limit, no entanglement survives.
Let us now come to the case of the maximally entangled

states. The states of Eqs. (41) and (49), respectively,
modify as

jψiα ¼
j0p0−p0k0−kiinα þ j1p0−p0k1−kiinαffiffiffi

2
p ð57Þ

and

jχiα ¼
j1p0−p0k0−kiinα þ j0p0−p1k0−kiinαffiffiffi

2
p : ð58Þ

Using (53), and the method described in Sec. IV C, we
can easily extend the results of the Bell violation we found
earlier. As we mentioned earlier, this generalization effec-
tively corresponds to just replacing α1, β1, respectively, by
α01 and β01 [(55)] in appropriate places [e.g., in (47)]. We
have plotted these Bell violations in Figs. 7 and 8.

VI. SUMMARY AND OUTLOOK

In this work, we have discussed the fermionic Bell
violation in the cosmological de Sitter spacetime, in the
presence of primordial electromagnetic fields of constant
strengths. We have found relevant in and out orthonormal
Dirac mode functions, the Bogoliubov coefficients and the
resultant squeezed state relationship between the in and out
states, in Sec. II. Using these key results, we have computed
the vacuum entanglement entropy and the Bell violation
(for both vacuum and two maximally entangled initial
states), respectively, in Secs. III and IV. These results are
extended further to the so-called fermionic α vacua in
Sec. V. We have focused on two qualitatively distinct cases
here—the “strong” electric filed and the “heavy” mass
limits (with respect to the Hubble constant), cf. Eqs. (30)
and (31).
As we have discussed in Sec. I, a background magnetic

field alone cannot create vacuum instability, but in the
presence of spacetime curvature and electric field, it can
affect such instability or the rate of the particle pair
creation. This is manifest from (28), which receives, as
we have discussed, no contribution from the magnetic field
if the electric field strength is vanishing. Whereas if the
magnetic field strength is very large compared to that of the
electric field, the particle creation rate also becomes
independent of the electromagnetic fields. Our chief aim
in this paper was to investigate the role of the magnetic field
strength on the Bell violation. We have seen that, subject to
the choices of the initial states, the behavior of the Bell
violation can be qualitatively different, e.g., Figs. 2 and 3.
For the case of the α vacua, on the other hand, we have also
taken into account the variation of the parameter α,
e.g., Fig. 5.

The above analysis can be attempted to be extended in a
few interesting scenarios. For example, instead of having
only constant electromagnetic fields, can we also have
fluctuating ones, like electromagnetic radiation? Can one
also include the effect of gravitational radiation? Finally, it
seems also interesting to perform similar analysis in the
Rindler spacetime, for its relevance to the near horizon
geometry of nonextremal black holes. Discussion of the
Schwinger pair creation for a complex scalar field coupled
to a constant background electric field in the Rindler
spacetime can be seen in [67]. Finally, as we have discussed
in Sec. I, it will be important to compute the breaking of
scale invariance of the cosmological power spectra in the
presence of primordial electromagnetic fields and also to
compute the Bell violation by the photons (interacting with
the entangled fermions) coming from very distant sources,
with the hope to constrain the strengths of those back-
ground fields. A gauge invariant formulation of an effective
action for the second problem seems to be a nontrivial task.
We hope to come back to this issue in future works.
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APPENDIX: EXPLICIT FORM OF THE MODE
FUNCTIONS AND NORMALIZATIONS

The four orthonormal simultaneous eigenvectors ωs of
the operators ðMγ0 þ Lγ0γ3Þ and γ1γ2 appearing in (10) are
given by,

ω1 ¼
1

P1

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffi
M2þL2

p
−L

M

0

1

0

1
CCCCCA
; ω2 ¼

1

P2

0
BBB@

0ffiffiffiffiffiffiffiffiffiffiffi
M2þL2

p
þL

M

0

1

1
CCCA;

ω3 ¼
1

P1

0
BBB@

0ffiffiffiffiffiffiffiffiffiffiffi
M2þL2

p
−L

M

0

−1

1
CCCA; ω4 ¼

1

P2

0
BBBBB@

ffiffiffiffiffiffiffiffiffiffiffi
M2þL2

p
þL

M

0

−1
0

1
CCCCCA
; ðA1Þ

where P1 and P2 are normalization constants. ω3 and ω4

are, respectively, related to ω1 and ω2 via the charge
conjugation, ω3;4 ¼ Cω�

1;2, where C ¼ iγ2. The explicit
representation of the gamma matrices we are using is
given by
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γ0 ¼
�
0 I

I 0

�
; γi ¼

�
0 σi

−σi 0

�
ði ¼ 1; 2; 3Þ: ðA2Þ

We also note here the explicit forms of the positive frequency in and out modes appearing in (20), as follows:

Uin
1;n ¼

γ0

N1a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx þ eByÞγ0γ1Þg

× e−iHLzeik⃗y · x⃗Wκ1;ijμjðz1ÞhnðȳÞω1; ðA3Þ

Uin
2;n ¼

γ0

N2a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx þ eByÞγ0γ1Þg

× e−iHLzeik⃗y · x⃗Wκ2;ijμjðz2ÞhnðȳÞω2; ðA4Þ

Uout
1;n ¼

γ0

M1a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx þ eByÞγ0γ1Þg

× e−iHLzeik⃗y · x⃗Mκ1;ijμjðz1ÞhnðȳÞω1; ðA5Þ

Uout
2;n ¼

γ0

M2a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx þ eByÞγ0γ1Þg

× e−iHLzeik⃗y · x⃗Mκ2;ijμjðz2ÞhnðȳÞω2: ðA6Þ

Whereas the negative frequency modes (found via the charge conjugation of the above positive frequency modes,
V ≡ iγ2U�) are given by

V in
1;n ¼

γ0

N1a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx − eByÞγ0γ1Þg

× eiHLze−ik⃗y · x⃗W−κ1;−ijμjð−z1Þhnðy−Þω3; ðA7Þ

V in
2;n ¼

γ0

N2a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx − eByÞγ0γ1Þg

× eiHLze−ik⃗y · x⃗W−κ2;−ijμjð−z2Þhnðy−Þω4; ðA8Þ

Vout
1;n ¼

γ0

M1a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx − eByÞγ0γ1Þg

× eiHLze−ik⃗y · x⃗M−κ1;−ijμjð−z1Þhnðy−Þω3; ðA9Þ

Vout
2;n ¼

γ0

M2a3=2
fði∂η − kzγ0γ3 þ aHðMγ0 þ Lγ0γ3ÞÞ þ ðiγ0γ2∂y − ðkx − eByÞγ0γ1Þg

× eiHLze−ik⃗y · x⃗M−κ2;−ijμjð−z2Þhnðy−Þω4: ðA10Þ

The normalization constantsN1,N2,M1, andM2 are given by (21). We shall explicitly evaluateN1 below. The rest can be
derived in a similar manner. Using Eqs. (A1) and (A3), we find after some algebra
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Z
d3xa3U† in

1 Uin0
1 ¼ 1

N2
1

Z
d3xe−iðk⃗y−k⃗

0
yÞ · x⃗

×

��
−i∂ηWκ1;ijμjðz1Þ� −

�
kzLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ L2
p − aH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p �
W�

κ1;ijμjðz1Þ
�
hnðȳÞω†

1

þ kzMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p X†
1W

�
κ1;ijμjðz1ÞhnðȳÞ − ð∂yhnðȳÞ þ ðkx þ eByÞhnðȳÞÞW�

κ1;ijμjðz1Þω
†
3

�

×

��
−i∂ηWκ1;ijμjðz1Þ −

�
kzLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ L2
p − aH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p �
Wκ1;ijμjðz1Þ

�
hnðȳÞω1

þ kzMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p X1Wκ1;ijμjðz1ÞhnðȳÞ − ð∂yhnðȳÞ þ ðkx þ eByÞhnðȳÞÞWκ1;ijμjðz1Þω3

�
: ðA11Þ

The x and z integrals trivially give δðkx − k0xÞδðkz − k0zÞ≡ δ2ðk⃗y − k⃗0yÞ. Using the orthonormality of ω1 and ω3, and the
definition of the variable ȳ appearing below (14), the y integral is extracted to be

Z
dȳ½∂yhnðȳÞ∂yhn0 ðȳÞ þ ȳhnðȳÞ∂yhn0 ðȳÞ þ ȳhn0 ðȳÞ∂yhnðȳÞ þ ȳ2hn0 ðȳÞhnðȳÞ�:

Using some properties of the Hermite polynomials [56], the first term equals

Z
dȳ∂yhnðȳÞ∂yhn0 ðȳÞ ¼ 3eB

�
nþ 1

6

�
δnn0 :

Second and third integrals vanish,

Z
dȳ ȳ hnðȳÞ∂yhn0 ðȳÞ ¼ 0 ¼

Z
dȳ ȳ hn0 ðȳÞ∂yhnðȳÞ;

whereas the fourth integral equals

Z
dȳ∂yhnðȳÞ∂yhn0 ðȳÞy2þ ¼ eB

�
nþ 1

2

�
δnn0 :

Collecting all the pieces, the ȳ integral becomes

4eB

�
nþ 1

4

�
δnn0 : ðA12Þ

Since normalization is time independent, we may choose the arguments of the Whittaker functions in (A11) as per our
convenience. Accordingly, we choose η → −∞, for which Wκ1;ijμj ≈ e−z1=2zκ11 . We have

Wκ1;ijμjðz1ÞðWκ1;ijμjðz1ÞÞ� ¼ eπjκ1jsgnðkzÞ; ∂ηWκ1;ijμjðz1Þ∂ηðWκ1;ijμjðz1ÞÞ� ¼ eπjκ1jsgnðkzÞðk2z þ S1Þ;

∂ηðWκ1;ijμjðz1ÞÞ�Wκ1;ijμjðz1Þ − ∂ηWκ1;ijμjðz1ÞðWκ1;ijμjðz1ÞÞ� ¼ 2ieπjκ1jsgnðkzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S1

q
: ðA13Þ

Putting everything together in (A11), we find the normali-
zation integral becomes δ2ðk⃗y − k⃗0yÞδnn0 , with the choice

N1 ¼ eπjκ1jsgnðkzÞ=2: ðA14Þ

The normalization for the other in modes can be found in
a similar manner.

For the normalization of the out modes, we choose
the integration hypersurface to be in the asymptotic future
η → 0− for our convenience and use in this limit

Mκ1;ijμj ≈
�
2iη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ S1

q 	1=2þijμj
:

The rest of the calculations remain the same.
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