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We revisit evaluation of the chiral vortical effect in accelerated matter. To first order in the acceleration
the corresponding matrix element of the axial current can be reconstructed from its flat-space limit. A
crucial point is existence of an extra conservation law of fluid helicity which is not related to the symmetry
of the Lagrangian. As a result, one can reproduce, via the equivalence principle, the effect of the so-called
gravimagnetic anomaly; resolving in this way a long standing puzzle of its interpretation. Moreover, as a
consequence of the extra conservation law the microscopic axial charge and helicity of the macroscopic
motion are separately conserved. Some further consequences from the matching of the equivalence
principle with hydrodynamics concerning higher orders in gradient expansion or in the acceleration are
briefly discussed.
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I. INTRODUCTION

Chiral effects have attracted a lot of interest recently.
These effects can influence the dynamics of a variety of
systems, from the interior of a neutron star and quark-gluon
plasma toWeyl and Dirac semimetals (for a review see, e.g.,
[1,2]). Originally these effects were evaluated in the case of
heated fermionic gas in the presence of rotation and/or an
external magnetic field [3–5]. More recently, it was realized
that in the case of ideal fluid the chiral effects can be related to
the quantum chiral anomaly [6,7] and the corresponding
transport coefficients are explicitly calculable.
In absence of electromagnetic fields, the axial current jμ5

receives a vortical contribution (the chiral vortical effect, or
CVE),

jμ5 ¼ n5uμ þ σωω
μ; ð1Þ

where n5 is the density of the microscopic constituents with
axial charge, uμ is the four-velocity of an element of the
fluid, satisfying u2 ¼ −1, and ωμ ¼ 1

2
ϵμναβuν∂αuβ is the

vorticity. The vortical conductivity σω is directly related to
the coefficient C5 in front of the anomaly:

∂μj
μ
5 ¼ C5E · B → σω ¼ μ2C5 þ

cT2

6
: ð2Þ

Here μ is the chemical potential and T is the temperature of
the system. For a single Dirac fermion C5 ¼ 1

2π2
and c ¼ 1.

The T2 term in the rhs of the Eq. (2) was obtained first
within the standard thermal field theory [8], but the
discussion on its origin is still going on, see e.g., [9–18].
In particular, it is suggested to be related to the gravitational
anomaly:

∇μj
μ
5 ¼ −

1

384π2
ϵμνρσffiffiffiffiffiffi−gp Rα

βμνRβ
αρσ ð3Þ

where Rαβγδ is the Riemann tensor. This relation is hard to
check in the hydrodynamic approach. Indeed, the right-
hand side of (3) is of the fourth order in gradients and the
corresponding current would be of the third order, while the
CVE is of the first order, see (1). It was suggested, however,
to interpret the generic temperature T as the Unruh temper-
ature TU ¼ a=ð2πÞwhere a is the gravitational acceleration
(for details see [13,15,16]). This substitution eliminates two
of the gradients of the gravitational field in the hydro-
dynamic picture and allows to link the T2 part of the CVE
to the anomaly (3).
In addition to the gravitational anomaly (3), there is

another specific contribution to the divergence of the axial
current in the external gravitational field (see [19] and
references therein). Namely, it is argued that simultaneous
account for the rotation and the acceleration results in the
so-called gravimagnetic anomaly. The argumentation is
based on the well-known analogy between rotation and the
magnetic field. In more detail, one introduces the grav-
imagnetic fields Eg ¼ −ϵ∇φ, Bg ¼ 2ϵΩ, where φ is the
Newtonian potential, −∇φ ¼ ag, and ϵ is an energy of an
interacting test particle. Substituting this into (2) instead of
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the usual electromagnetic fields and summing over the
Fermi sphere one gets, see [19] and references therein:

∂μj
μ
5 ¼

μ2

π2
ag ·Ω: ð4Þ

Note that the rhs of (4) is of the second order in gradients.
Clarifying the physical meaning of (4) is one of our
aims here.
As is known, the chiral anomaly (2) reveals instabilities

in the chiral media with a nonzero axial chemical potential
μ5 ≠ 0, which is closely connected with the existence
of additional conservation laws of macroscopic helicities
[20–31]. Namely, a state with Q5 ≠ 0 decays into a state
with a helical magnetic field. Generally speaking, both of
the anomalies [(3) and (4)] can trigger similar phenomena.
In particular, on the basis of (4) one could argue that the
state with a nonvanishing microscopic chirality Q5 can be
transformed into a helical macroscopic motion, even in the
absence of the electromagnetic interactions. If true, this
would be a highly nontrivial theoretical phenomenon.
Studying the CVE in an external gravitational field is

also interesting for two other reasons. First, the phenom-
enology of heavy ion collisions indicates that the matter
produced in these experiments undergoes accelerated
expansion and that this acceleration cannot be treated as
a small gradient correction (see [32] and further references
in [2]). Another point of interest in turning on gravitation is
that it is known to mimic a temperature gradient [33],

ag → −
∇T
T

: ð5Þ

The advantage of exploiting this relation is that the
acceleration ag can be introduced within a well-understood
field-theoretic framework, while the notion of the temper-
ature belongs to thermodynamics.
In this paper, we start with a review of the conservation

laws of an ideal chiral fluid in a flat spacetime, and discuss
the nature of these laws in Sec. II. In Sec. III we turn to
hydrodynamics in the presence of a weak external gravi-
tational field. We evaluate the terms linear in the gravita-
tional acceleration following the standard procedure, see,
e.g., [34]. Namely, we start with the conservation laws in
the absence of an external gravitational field and then
evaluate their modification by gravity. Following this
procedure, we show that Eq. (4) is simply a manifestation
of the equivalence principle and actually coincides with
Eq. (3) in the absence of the RR̃ term. In the same section
we identify a relation between the expansion coefficients at
the second order in gradients. In Sec. IV we briefly discuss
the terms of higher order in acceleration. Throughout the
text we use the metric signature ð−;þ;þ;þÞ, and the
normalization of the Levi-Civita symbol as ϵ0123 ¼ ffiffiffiffiffiffi−gp

.

II. CONSERVATION LAWS FOR IDEAL FLUIDS

Let us first consider an ideal fluid in the absence of
gravity. The hydrodynamics represent a universal approach
based on the conservation laws and expansion in gradients.
It is known, however, that in the case of an ideal fluid

there exists extra conservation laws, not related to the
symmetries of the Lagrangian (see, e.g., [20,24]). The
simplest example of such a law is the conservation of
the magnetic helicity:

Hm ¼ 1

4π2

Z
d3xA · B;

dHm

dt
¼ −

1

2π2

Z
d3xE · B: ð6Þ

If the chemical potential is constant, the electric field is
screened inside an ideal conductor, and the magnetic
helicity is conserved. Indeed, for an electric current Jel ¼
σeE to be finite in the limit of the perfect magnetohydro-
dynamics σe → ∞ the electric field inside the fluid should
vanish [35].
Let us emphasize that this conservation law is purely

dynamical and is not related to a symmetry of the
Lagrangian. Rather, this physics is sensitive to boundary
conditions [36]. This is a generic difference between the
specific conservation laws of an ideal fluid and Noether
currents which are conserved locally. Potentially, existence
of the extra conservation laws is a source of an unusual
infrared sensitivity. We will come back to discuss this
point later.
Chiral magnetic and chiral vortical effects are closely

related to the extra conservation laws. Indeed, with account
for the quantum chiral anomaly the conserved axial charge
for a system of massless fermions is given by

Q5 ¼ Qnaive
5 þHm; ð7Þ

where Qnaive
5 is a naive microscopic axial charge.

In the effective field theory describing the electromag-
netic interaction of fermions in the hydrodynamic approxi-
mation [39], the effective interaction of the microscopic
degrees of freedom with a photon field is shifted due to the
chemical potential

Aμ → Aμ þ μuμ: ð8Þ

If we substitute this into (7), we get two additional
hydrodynamic contributions to the axial charge, one being
the fluid helicity Hf ¼ 1

2π2

R
d3xμ2ω0, and the other being

the fluid-magnetic helicityHmf ¼ 1
2π2

R
d3xμB0, with Bμ ¼

1
2
ϵμναβuνFαβ being the magnetic field in the comoving

frame of the element of fluid. Let us note that this
substitution does not capture the T2 part of the vortical
effect. With account for that part, the total axial charge is
given by
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Q5 ¼ Qnaive
5 þHm þHf þHmf þHtf; ð9Þ

where the magnetic, fluid, and fluid-magnetic helicities can
be associated with the currents

jμm ¼ 1

4π2
ϵμναβAν∂αAβ; jμf ¼

1

2π2
μ2ωμ; jμmf ¼

1

2π2
μBμ;

ð10Þ

while the thermal fluid helicity Htf is the charge corre-
sponding to

jμtf ¼
1

6
T2ωμ: ð11Þ

Such an analysis, based on the consideration of hydro-
dynamic charges rather than spatial currents, albeit not new,
is generally unnoted in the literature. Moreover, quantum
field theory brings in a novel perspective on the role of the
extra conservation laws.
Indeed, the substitution (8) demonstrates the connection

between the chiral vortical conductivity and the quantum
anomaly existing even in the absence of electromagnetic
fields. A crucial point is that the connection holds for the
calculation of the currents, not their divergences. The
reason is that the anomalous contributions to the currents
are defined by the infrared properties of the system, while
the divergences of anomalous currents are defined by the
physics in the ultraviolet. Roughly speaking, if we try to
reconstruct currents knowing their divergences the contri-
butions discussed appear as “integration constants.” In
other words, the condition of vanishing divergences of
the novel contributions to the currents becomes a constraint
on the equation of state of the ideal fluid.
Let us elaborate this point following [24]. The condition

σel → ∞ requires Eα
T − ∂α

μ
T ¼ 0. Introducing a kinematic

acceleration aμ ¼ uρ∂ρuμ ¼ uρωρμ, with ωρμ ¼ ∂ρuμ−∂μuρ,
and algebraically decomposing ωμν in aμ and ωμ one finds

∂μω
μ ¼ 2aμωμ: ð12Þ

Note that Eq. (12) is purely kinematic. In order to account for
the dynamics of the fluid we use the relativistic Euler
equation,

aα ¼ −
1

ϵþ p
Δα

β∂βp; ð13Þ

where ϵ is the energy density, p is the pressure, and the
projector Δαβ ¼ gαβ þ uαuβ satisfies uαΔαβ ¼ 0. Using that
alongwith thermodynamical relations dp ¼ ndμþ sdT and
ϵþ p ¼ nμþ sT (here n is the density of the chosen kind of
particles and s is the entropy density), one can rewrite (13) as

aα ¼ −Δα
β

�∂βT

T
þ nT
ϵþ p

∂β

�
μ

T

��
: ð14Þ

It is convenient at that point to change the thermodynamic
variables from μ, T to μ

T and T. Then for the various parts of
the conserved hydrodynamic current we have

2π2∂αjαf ¼ 2ωα

�
T2sμ
ϵþ p

∂α

�
μ

T

�
þ μ2nT
ϵþ p

Eα

T

�
¼ 2μEαω

α;

ð15Þ

2π2∂αjαmf ¼ ð∂αμ − μaαÞBα − 2μEαω
α;

¼ EαBα − 2μEαω
α: ð16Þ

We see that the sum of the magnetic, fluid, and mixed
helicities is conserved by itself,

∂αjαm þ ∂αjαf þ ∂αjαmf ¼ 0; ð17Þ

which means that there is no production of the microscopic
axial charge in the ideal-fluid regime and

∂αðn5uαÞ ¼ 0; ð18Þ

even though the macroscopic helicities can interchange
with each other. Let us note that this picture breaks with the
introduction of viscosity but as long as the ideal-fluid
approximation is valid, it stays true.
As for the T2 contribution, it is simply conserved by

itself:

∂αðT2ωαÞ ¼ 2nT3

ϵþ p

�
∂α

�
μ

T

�
−
Eα

T

�
ωα ¼ 0: ð19Þ

In particular, it seems that, in the ideal regime, there is no
mechanism of transition between this part of fluid vorticity
and the magnetic helicity, although vortical response in the
photonic helical current is nonzero [11].
Note that all of these additional conservation laws take

place only in the stationary case. This brings up the
question of what happens if we introduce some non-
stationarity into the system. One way to do that is to
consider the system in an external gravitational field, which
is the focus of the next section. As was discussed in the
Introduction, it seems that in this case there should be some
additional inputs to the hydrodynamic charge. Another
possible source of nonconservation is dissipative effects,
which, in turn, can translate the nonstationarity caused by
an external field into a stationary flow, which is charac-
terized by the corresponding transport coefficients. In
principal, there should be some corrections to the hydro-
dynamic charges in higher orders in the gradient expansion
as well.
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III. TURNING ON GRAVITY

Now we consider the case of a weak external gravita-
tional field and study the terms which are linear in gravity.
In particular, we focus on the gravimagnetic anomaly,
which itself is linear in the acceleration.
The central point of our argument is that we can use the

flat-space conservation laws and rewrite them via the
equivalence principle to include the leading gravitational
effects. For instance, in the absence of electromagnetic
fields we can write the fluid helicity conservation as

1

2π2
∇αμ

2ωα ¼ 1

2π2
ffiffiffiffiffiffi−gp ∂αð

ffiffiffiffiffiffi
−g

p
μ2ωαÞ ¼ 0; ð20Þ

where ∇α is the covariant derivative. However, in the weak
gravitational field approximation we can rewrite it as a
correction to its flat-background form, ∂μω

μ ¼ 0. To do so
let us consider an ideal fluid in an external weak gravita-
tional field, hμν ¼ gμν − ημν, of a simple form with the only
nonzero component being

h00 ¼ −2b; ð21Þ

where b ¼ bðt; xÞ plays the role of a gravitational potential.
If, in addition to the condition of the gravitational field to be
weak, we require the fluctuations of the velocity of the fluid
to be small as well, ui ¼ vi ≪ 1, then the four-velocity of
the fluid takes the form uμ ¼ ð1 − b; vÞ. Substituting this
into Eq. (20) and noticing that

ffiffiffiffiffiffi−gp ¼ 1þ bþOðh2Þ,
we get

∂αjαf;ð0Þ ¼ −
μ2

π2
ðΩ · ∇bÞ; ð22Þ

with Ω ¼ 1
2
∇ × v.

Turning to the relativistic case we notice that the metric
in form (21) says nothing about the state of the fluid in the
geometry described by that metric. In fact, choice (21)
actually fixes the frame we are working in without any
reference to the fluid flow. In general, one has to specify the
boundary conditions in order to proceed. For our purposes
we have to describe a fluid such that each of its elements is
accelerating. That means that the metric should have form
(21) in the local rest frame of a fluid element, and we use
the following ansatz:

hμν ¼ −2buμuν; ð23Þ

with b ¼ − 1
2
uμuνhμν.

Let us stress that the redefinition (23), while looking
harmless, is in fact a nontrivial procedure beyond the first
order in gradients. Unlike the decomposition Fμν ¼ Eμuν−
Eνuμ þ ϵμναβuαBβ, which is identical and simply serves as a
definition of Eμ and Bμ, in the general case Eq. (23)

genuinely makes hμν u-dependent and in that sense resem-
bles the chemical shift (8). Much like the latter, which in the
case of a uniform flow is simply a Uð1Þ gauge trans-
formation, this decomposition makes the gravitational field
gauge nontrivial as uμ becomes dynamic.
To preserve some notion of stationarity, or, to be more

specific, “comoving” stationarity, we also require that

uμ∂μb ¼ 0: ð24Þ

Now we can proceed to expand the hydrodynamic
variables in hμν. We will denote the order in hμν by the
subscript/superscript (i). First let us note that a change in
the geometry modifies the four-velocity of the flow, which
we can write as a series in hμν: uμ ¼ uμð0Þ þ uμð1Þ þ…. The

function uμð0Þ would then play the role of a “flat” fluid

velocity. The corrections of the first order can be easily
found from the condition gμνuμuν ¼ −1:

uμ ¼ uð0Þμ ð1þ bÞ þOðh2Þ: ð25Þ

Now we can use that and the equivalence principle to
find the divergence of the zero-order currents. Starting first
with a naive current n5uμ, one can see that in the ideal
regime in a flat space this current is conserved, and
therefore

0 ¼ 1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
n5uμ ¼

1ffiffiffiffiffiffi−gp ∂μn5u
μ
ð0Þ þOðh2Þ: ð26Þ

Thus, we see that the usual divergence of the naive current
is zero.
Proceeding further to the other equations of the ideal

hydrodynamics, we first consider the fluid helicity in the
external gravitational field,

∂αjαf;ð0Þ ¼ −
μ2

π2
ωα
ð0Þ∂αb: ð27Þ

We see that this equation actually saturates the gravimag-
netic anomaly (4), and coincides with Eq. (3). Note that we
do not refer at all to the chiral gravitational anomaly but
keep only the terms with the gravitational field coming
from the Christoffel symbols and the definition of the four-
velocity on a curved background.
One can also demonstrate that this result is actually

independent of the observer’s rotation. To see that we can
simply introduce an intrinsic rotation in the rest frame
via a new parameter in the metric as hμν ¼ −2buμuν−
Vμuν − Vνuμ, and fixing the gauge with Vμuμ ¼ 0,
uμ∂νVμ ¼ 0. Equation (27) then reads

∂αjαf;ð0Þ ¼ −
μ2

π2
ðωα

ð0Þ − ΩαÞ∂αb; ð28Þ
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whereΩα ¼ 1
2
ϵαβμνuð0Þβ ∂μVν can be thought of as an intrinsic

angular velocity of the observer’s frame. This equation
explicitly shows that the gravimagnetic anomaly, much like
the CVE itself (see [40] for further discussion), is induced
specifically by the fluid rotation and in this sense it is frame-
independent.
Coming back to the case Vμ ¼ 0, and including the

effects of an external electromagnetic field, we find

∂αjαtf;ð0Þ ¼ −
T2

3
ωα
ð0Þ∂αb ð29Þ

∂αjαf;ð0Þ þ ∂αjαmf;ð0Þ þ ∂αjαm;ð0Þ

¼ −
�

μ

2π2
Bα
ð0Þ þ

μ2

π2
ωα
ð0Þ

�
∂αb: ð30Þ

All of these equations are a consequence of the equivalence
principle and can be arrived at starting from the flat case
through the substitution

akinematic ¼ agravity; ð31Þ

where aμgravity ¼ −∂μb.
The equivalence principle also allows us to study the

thermal effects using the analogy between the temperature
gradient and the gravitational field [33] through the
Luttinger substitution,

∂μb ¼ −agμ ¼ ∂μT

T
: ð32Þ

Since the terms linear in ∂μb are fixed by the equivalence

principle, we expect that the terms linear in the ∂μT
T should

be fixed as well. This conjecture can be used to determine
the relation between the different transport coefficients. We
should note, however, that the substitution (32) should be
used cautiously as it depends on the frame we are working
in. In particular, the stationarity condition (24) implies that
the four-velocity satisfies

1

T
uμ∂μT ¼ 0; ð33Þ

which is a nontrivial condition.
To illustrate this point we turn to a nondissipative effect

reminiscent of a thermal Hall effect, and recently discussed
in [41]. Namely, we consider two second-order contribu-
tions to the electric current (a current of a conserved charge)
of the form

δjμ ¼ c1Δμ
ρ∂νω

νρ
⊥ −

c2
T2

ωμν
⊥ ∂νT; ð34Þ

where ωμν
⊥ is a part of ωμν that is orthogonal to uμ,

ωμν
⊥ ¼ 1

2
ð∂μ

⊥uν − ∂ν⊥uμÞ; ð35Þ

with ∂μ
⊥uν ¼ Δμρ∂ρuν ¼ ∂μuν þ uμaν, so that

ωμν
⊥ ¼ ωμν þ 1

2
uμaν −

1

2
aμuν ¼ −ϵμναβuαωβ: ð36Þ

In the simplest case of a conformal theory, dimensional
analysis tells us that c1 ¼ Tf1ðμTÞ and c2 ¼ T2f2ðμTÞ. Since
the second term in Eq. (34) is linear in the temperature
gradient, we expect that it could be recovered from the
covariant form of the first term in (34) in the external
gravitational field via substitution (32). However, in the
case of a conformal theory one can argue that the effective
description of the thermal gradients in terms of gravita-
tional fields should preserve the conformal symmetry, i.e.,
the metric (23) should be replaced by a conformal metric,
gμν ¼ ð1þ 2bÞημν. Note that this redefinition does not
change the four-velocity rescaling (25), as it is defined
only by the projection of the metric on the velocity itself
(g00 in the comoving rest frame), and, therefore, the
coefficients of the gravimagnetic anomaly stay the same.
However, the expected contribution in (34) changes.

Indeed, we have ωμ ¼ ωð0Þ
μ þOðb2Þ, and

δjμ ¼ c1∇νΔμ
ρω

νρ
⊥ ¼ c1Δμ

ρ
1ffiffiffiffiffiffi−gp ∂νð

ffiffiffiffiffiffi
−g

p
ωνρ
⊥ Þ

¼ ð1 − 3bÞc1Δμ
ρ∂νω

νρ
⊥;ð0Þ − c1ω

μν
⊥;ð0Þ∂μb: ð37Þ

Thus, the first term in (34) results in the second term under
the Luttinger substitution, and we find that

c2 ¼ Tc1; ð38Þ

in agreement with [41]. Notice that the Luttinger substi-
tution relates only the acceleration and the temperature
gradient but the metric components gain no new meaning.
The extra term in (37) coming with b without gradients can
be removed if we turn off the external gravitational field
after the second term of (34) is identified.

IV. MATCHING THE EQUIVALENCE PRINCIPLE
AND THERMODYNAMICS

So far, while considering the fluid in the external
gravitational field, we focus on the case when the gravity
introduces nonstationarity into the picture. This, again,
partially fixes the boundary conditions in our problem.
Another approach is to consider an accelerating fluid in the
equilibrium. To do that one must include acceleration into
parameters characterizing matter in the equilibrium. The
corresponding density operator ρ̂ relevant to this case was
worked out rather recently (see [42]):
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ρ̂ ¼ 1

Z
exp

�
−βαP̂α −

1

2
ϖαβĴ

αβ

�
; ð39Þ

where P̂α is the momentum operator, Ĵαβ are generators of
the Lorentz rotations, βα ¼ uα

T , and ϖαβ ¼ 1
2
ð∂αββ − ∂ββαÞ

is the thermal vorticity tensor. Note that, in contrast with
ωαβ, which includes only the kinematic acceleration and
vorticity of the fluid, ϖαβ also depends on the gradients of
the temperature. The Lorentz generators in (39) can be
decomposed into the boost operators K̂ and generators of
rotations Ĵ:

Ĵαβ ¼ uαK̂β − uβK̂α − ϵαβγδuγ Ĵδ: ð40Þ

Knowing the density operator ρ̂ one can evaluate one-
loop statistically averaged matrix elements, such as matrix
elements of the energy-momentum tensor Tαβ or of the
axial current Jα5 , see in particular [43,44]. The novel point is
that the boost operators are conserved but do not commute
with the Hamiltonian [42]. If one does not introduce the
vorticity, then it turns out that the matrix elements are
polynomials in the acceleration a and temperature T. The
whole calculation is in terms of the Minkowskian space,
and the acceleration a is now what we call kinematic
acceleration, akinematic.
On the other hand, one can evaluate the same matrix

elements associated with particles living on a nontrivial
manifold with a boundary—a so-called conical manifold—
at a finite temperature. The acceleration is then introduced
in geometrical terms and represents the gravitational
acceleration.
It was demonstrated that, say, energy density ρs¼1=2 for

massless spin-1=2 particles is exactly the same within the
both approaches, statistical and gravitational:

ρs¼1=2 ¼
7π2T4

60
þ T2a2

24
−

17a4

960π2
: ð41Þ

This coincidence of the results can be considered a
confirmation of the equivalence principle in a nonlinear
form. For further details see the original paper [44].

V. DISCUSSION

In these notes we have considered an application of the
equivalence principle to the ideal fluid hydrodynamics.
From the very beginning, we put an emphasis on the
conservation laws inherent to ideal fluids, since the con-
servation laws are the backbone of the hydrodynamic
approach. Considering the fluid in the ideal regime allows
us to use the formalism of unitary field theories. Since we
are interested in hydrodynamics we chose an effective field
theory which describes physics of equilibrium. The corre-
sponding effective vertices can readily be read off from the
form of the density operator.

Simple manipulations within the effective field theory
allow us to re-establish a fundamental observation: that in
ideal hydrodynamics there are extra conservation lawswhich
are highly nonlocal and not related to the symmetries of the
Lagrangian—the conservation laws of macroscopic helic-
ities. In fact, these conservation laws have been discussed for
a long time in terms of classical theory.Anunexpected turn of
logic is that now they get related to the quantum anomalies of
the underlying field theory.While the anomaly is determined
by the short-distance physics, the helical currents emerge as
an infrared completion of the theory.
We utilize the equivalence principle to consider the

accelerated motion of the fluid. The main point of this
discussion is that it can be used to obtain the effects linear in
gravitational acceleration. A particular effect that can be
recovered this way is the so-called gravimagnetic anomaly.
Formally, this result coincides with the result of Ref. [19].
The interpretation is, however, different. From our point of
view, the consequences of the equivalence principle reduce to
a classical observation akinematic ¼ agravity, where akinematic is
associated with the introduction of a noninertial coordinate
system, while agravity is the acceleration induced by an
external gravitational field. The gravimagnetic anomaly
appears not to be associated with any violation of the chiral
symmetry.
Although in our case [45] application of the equivalence

principle results in a routine answer, we encounter a kind of
fundamental problem that the introduction of the gravita-
tional acceleration brings in nonstationarity. This particular
issue becomes especially interesting if we go in another
direction following [33]. If we introduce dissipative effects,
this nonstationarity translates into a (stationary) transport
phenomenon. The nonstationarity that external field brings
in is important for this: say, in the stationary rotating fluid
there should be a temperature gradient causing the cen-
trifugal force but no transport along this gradient. This
becomes especially apparent if we go to the reference frame
rotating with a fluid, where the temperature gradient is
screened by a gravitational (inertial) force. In general the
correct statement is that the dissipative transport is caused
by the fields that are not screened in the “comoving”
coordinate maps (see, for example, [48,49]). This in turn
leads us to a conjecture that a global comoving coordinate
map exists in general only for an ideal fluid and dissipative
effects are in this sense similar to the introduction of a
genuine gravitational field. This also indicates the specific
nature of the conservation laws we areworking with. For the
ideal fluid, every fundamental conservation law should exist
separately for each fluid element, and when the gravitational
field (which itself should be invariant with respect to the
coordinate diffeomorphisms) is applied, each volume
element should behave independently. Conservation of
the macroscopic fluid helicities, however, depends on the
boundary conditions and does not fit into this picture.
For now we leave this topic for a future discussion.
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We also illustrate a broader applicability of the equiv-
alence principle in hydrodynamics, showing that some
higher order responses involving the temperature gradient
can be related to the other transports. Such relations help
to construct a consistent hydrodynamic theory at higher
orders, and may be essential for phenomenological appli-
cations. We leave the further considerations of such related
transport coefficients for future work.
Finally, in Sec. IV we review the recent developments in

the descriptions of the accelerating-fluid equilibrium. For
that one can include the kinematic acceleration of the fluid
into the density operator ρ̂ (39) and use it to calculate
statistically averaged matrix elements [42], or do the same
calculations on a curved background. The coincidence of
the results obtained using these methods can serve as an
additional confirmation of the equivalence principle. Our
final remark is that within the statistical approach linear in
acceleration terms are absent. Indeed, these terms do not
contribute to the matrix elements, see [42,44]. At first sight,

this result is in conflict with our procedure to fix the
nonzero linear terms starting from the equivalence principle.
However, there is no contradiction between the two
approaches since they are applied to two different regimes,
equilibrium and nonequilibrium. Moreover, comparison of
these two types of calculationsmakesmanifesteddependence
of the linear in acceleration terms on physics in far-infrared,
which we have emphasized in the preceding sections.

ACKNOWLEDGMENTS

The authors are thankful to O. V. Teryaev and A. V.
Sadofyev for detailed discussions. The work on this paper
has been partly supported by RFBR Grants No. 18-02-
40056 and No. 0657-2020-0015 of the Ministry of Science
and Higher Education of Russia. The work of P. M. is also
supported by the Foundation for the Advancement of
Theoretical Physics and Mathematics “BASIS” No. 20-
1-5-134-1.

[1] X.-G. Huang, Rep. Prog. Phys. 79, 076302 (2016).
[2] D. Kharzeev, J. Liao, S. Voloshin, and G. Wang, Prog. Part.

Nucl. Phys. 88, 1 (2016).
[3] A. Vilenkin, Phys. Rev. D 20, 1807 (1979).
[4] A. Vilenkin, Phys. Rev. D 22, 3080 (1980).
[5] A. Vilenkin, Phys. Rev. D 21, 2260 (1980).
[6] J. Erdmenger, M. Haack, M. Kaminski, and A. Yarom, J.

High Energy Phys. 01 (2009) 055.
[7] D. T. Son and P. Surowka, Phys. Rev. Lett. 103, 191601

(2009).
[8] A. Vilenkin, Phys. Rev. D 20, 1807 (1979).
[9] K. Landsteiner, E. Megias, and F. Pena-Benitez, Phys. Rev.

Lett. 107, 021601 (2011).
[10] S. Golkar and D. T. Son, J. High Energy Phys. 02 (2015)

169.
[11] A. Avkhadiev and A. V. Sadofyev, Phys. Rev. D 96, 045015

(2017).
[12] P. Glorioso, H. Liu, and S. Rajagopal, J. High Energy Phys.

01 (2019) 043.
[13] A. Flachi andK. Fukushima, Phys.Rev.D 98, 096011 (2018).
[14] K. Landsteiner, E. Megias, L. Melgar, and F. Pena-Benitez,

J. High Energy Phys. 09 (2011) 121.
[15] M. Stone and J. Kim, Phys. Rev. D 98, 025012 (2018).
[16] G. Yu. Prokhorov, O. V. Teryaev, and V. I. Zakharov, Phys.

Rev. D 102, 121702 (2020).
[17] X.-G. Huang, P. Mitkin, A. V. Sadofyev, and E. Speranza, J.

High Energy Phys. 10 (2020) 117.
[18] A. Alexandrov and P. Mitkin, J. High Energy Phys. 05

(2021) 070.
[19] G. Basar, D. E. Kharzeev, and I. Zahed, Phys. Rev. Lett.

111, 161601 (2013).
[20] J. D. Bekenstein, Astrophys. J. 319, 207 (1987).

[21] Y. Akamatsu and N. Yamamoto, Phys. Rev. Lett. 111,
052002 (2013).

[22] Z. V. Khaidukov, V. P. Kirilin, A. V. Sadofyev, and V. I.
Zakharov, Nucl. Phys. B934, 521 (2018).

[23] V. P. Kirilin, A. V. Sadofyev, and V. I. Zakharov, in Pro-
ceedings of the 100th Anniversary of the Birth of I. Ya.
Pomeranchuk (Pomeranchuk 100): Moscow, Russia, June
5-6, 2013 (World Scientific, Singapore, 2014), pp. 272–286.

[24] A. Avdoshkin, V. Kirilin, A. Sadofyev, and V. Zakharov,
Phys. Lett. B 755, 1 (2016).

[25] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D 92,
074018 (2015).

[26] P. V. Buividovich and M. V. Ulybyshev, Phys. Rev. D 94,
025009 (2016).

[27] N. Yamamoto, Phys. Rev. D 93, 065017 (2016).
[28] Y. Hirono, D. Kharzeev, and Y. Yin, Phys. Rev. D 92,

125031 (2015).
[29] V. P. Kirilin and A. V. Sadofyev, Phys. Rev. D 96, 016019

(2017).
[30] Y. Li and K. Tuchin, Phys. Lett. B 776, 270 (2018).
[31] K. Tuchin, Phys. Rev. C 102, 014908 (2020).
[32] B. Abelev et al. (STAR Collaboration), Phys. Rev. C 76,

024915 (2007); 95, 039906(E) (2017).
[33] J. Luttinger, Phys. Rev. 135, A1505 (1964).
[34] S. M. Carroll, arXiv:gr-qc/9712019.
[35] Note that the results for the chiral vortical effect (central for

this paper) also survive if one introduces a finite resistance.
What is crucial, however, is to stick to the approximation
η ¼ 0. The limit σe → ∞ is an extra assumption, common in
considerations of the magnetic helicity (see, for example,
[20]), but not relevant to discussions of fluid helicity and
CVE.

CHIRAL VORTICAL EFFECT IN ACCELERATED MATTER PHYS. REV. D 104, 125011 (2021)

125011-7

https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1016/j.ppnp.2016.01.001
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1103/PhysRevD.21.2260
https://doi.org/10.1088/1126-6708/2009/01/055
https://doi.org/10.1088/1126-6708/2009/01/055
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevD.20.1807
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1103/PhysRevLett.107.021601
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1103/PhysRevD.96.045015
https://doi.org/10.1103/PhysRevD.96.045015
https://doi.org/10.1007/JHEP01(2019)043
https://doi.org/10.1007/JHEP01(2019)043
https://doi.org/10.1103/PhysRevD.98.096011
https://doi.org/10.1007/JHEP09(2011)121
https://doi.org/10.1103/PhysRevD.98.025012
https://doi.org/10.1103/PhysRevD.102.121702
https://doi.org/10.1103/PhysRevD.102.121702
https://doi.org/10.1007/JHEP10(2020)117
https://doi.org/10.1007/JHEP10(2020)117
https://doi.org/10.1007/JHEP05(2021)070
https://doi.org/10.1007/JHEP05(2021)070
https://doi.org/10.1103/PhysRevLett.111.161601
https://doi.org/10.1103/PhysRevLett.111.161601
https://doi.org/10.1086/165447
https://doi.org/10.1103/PhysRevLett.111.052002
https://doi.org/10.1103/PhysRevLett.111.052002
https://doi.org/10.1016/j.nuclphysb.2018.07.009
https://doi.org/10.1016/j.physletb.2016.01.048
https://doi.org/10.1103/PhysRevD.92.074018
https://doi.org/10.1103/PhysRevD.92.074018
https://doi.org/10.1103/PhysRevD.94.025009
https://doi.org/10.1103/PhysRevD.94.025009
https://doi.org/10.1103/PhysRevD.93.065017
https://doi.org/10.1103/PhysRevD.92.125031
https://doi.org/10.1103/PhysRevD.92.125031
https://doi.org/10.1103/PhysRevD.96.016019
https://doi.org/10.1103/PhysRevD.96.016019
https://doi.org/10.1016/j.physletb.2017.11.063
https://doi.org/10.1103/PhysRevC.102.014908
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.76.024915
https://doi.org/10.1103/PhysRevC.95.039906
https://doi.org/10.1103/PhysRev.135.A1505
https://arXiv.org/abs/gr-qc/9712019


[36] Notice that chiral media support multiple boundary effects
[37,38], which could additionally complicate the boundary
conditions.

[37] K. Fukushima, S. Imaki, and Z. Qiu, Phys. Rev. D 100,
045013 (2019).

[38] M. B. Farias, A. A. Zyuzin, and T. L. Schmidt, Phys. Rev. B
101, 235446 (2020).

[39] A. Sadofyev, V. Shevchenko, and V. Zakharov, Phys. Rev. D
83, 105025 (2011).

[40] Y.-C. Liu, L.-L. Gao, K. Mameda, and X.-G. Huang, Phys.
Rev. D 99, 085014 (2019).

[41] S. Li, M. A. Stephanov, and H.-U. Yee, Phys. Rev. Lett. 127,
082302 (2021).

[42] F. Becattini, Phys. Rev. D 97, 085013 (2018).

[43] G. Prokhorov, O. Teryaev, and V. Zakharov, Phys. Rev. D
98, 071901 (2018).

[44] G. Y. Prokhorov, O. V. Teryaev, and V. I. Zakharov, J. High
Energy Phys. 03 (2020) 137.

[45] There exist examples [46,47] when the standard program of
renormalization at finite temperature comes in contradiction
with the equivalence principle.

[46] J. F. Donoghue, B. R. Holstein, and R.W. Robinett, Gen.
Relativ. Gravit. 17, 207 (1985).

[47] M. Buzzegoli and D. E. Kharzeev, Phys. Rev. D 103,
116005 (2021).

[48] S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, Phys. Rev.
D 85, 085029 (2012).

[49] P. Glorioso and D. T. Son, arXiv:1811.04879.

P. G. MITKIN and V. I. ZAKHAROV PHYS. REV. D 104, 125011 (2021)

125011-8

https://doi.org/10.1103/PhysRevD.100.045013
https://doi.org/10.1103/PhysRevD.100.045013
https://doi.org/10.1103/PhysRevB.101.235446
https://doi.org/10.1103/PhysRevB.101.235446
https://doi.org/10.1103/PhysRevD.83.105025
https://doi.org/10.1103/PhysRevD.83.105025
https://doi.org/10.1103/PhysRevD.99.085014
https://doi.org/10.1103/PhysRevD.99.085014
https://doi.org/10.1103/PhysRevLett.127.082302
https://doi.org/10.1103/PhysRevLett.127.082302
https://doi.org/10.1103/PhysRevD.97.085013
https://doi.org/10.1103/PhysRevD.98.071901
https://doi.org/10.1103/PhysRevD.98.071901
https://doi.org/10.1007/JHEP03(2020)137
https://doi.org/10.1007/JHEP03(2020)137
https://doi.org/10.1007/BF00760243
https://doi.org/10.1007/BF00760243
https://doi.org/10.1103/PhysRevD.103.116005
https://doi.org/10.1103/PhysRevD.103.116005
https://doi.org/10.1103/PhysRevD.85.085029
https://doi.org/10.1103/PhysRevD.85.085029
https://arXiv.org/abs/1811.04879

