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We apply the new quantization scheme outlined in M. Becker and M. Reuter, Phys. Rev. D 102, 125001
(2020), to explore the influence which quantum vacuum fluctuations of the spacetime metric exert on the
universes of quantum Einstein gravity, which is regarded an effective theory here. The scheme promotes the
principle of background independence to the level of the regularized precursors of a quantum field theory
(“approximants”) and severely constrains admissible regularization schemes. Without any tuning of
parameters, we find that the zero point oscillations of linear gravitons on maximally symmetric spacetimes
do not create the commonly expected cosmological constant problem of a cutoff-size curvature. On the
contrary, metric fluctuations are found to reduce positive curvatures to arbitrarily tiny and ultimately
vanishing values when the cutoff is lifted. This suggests that flat space could be the distinguished ground
state of pure quantum gravity. Our results contradict traditional beliefs founded upon background-
dependent calculations whose validity must be called into question therefore.
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I. INTRODUCTION

Uniting the laws of gravity with the principles of
quantum mechanics is commonly believed to present a
major challenge that is beset with formidable difficulties
and obstacles. Among the culprits that contributed perhaps
most to this belief are certain notorious divergences; they
are taken responsible for disasters such as the perturbative
nonrenormalizability of quantum general relativity, or the
exceedingly wrong theoretical expectations concerning the
observed cosmological constant, to mention just two.
On a more positive note, divergences do not always

deserve their bad reputation. Sometimes it happens that, if
one carefully listens to the physics message they tell us, all
of a sudden we see that actually the divergences are not the
cause of the problem, but rather the key to its solution.
The way in which asymptotic safety overcomes the
renormalizability problem can serve as an example of such
a metamorphosis [1–3].
This paper is devoted to a similar phenomenon con-

nected to the cosmological constant problem [4]. More
precisely, we are interested in the way quantum vacuum
fluctuations (“zero point oscillations”) influence the

geometry of spacetime. Considering quantized metric
gravity (without matter here), the main role will be played
by the purportedly fatal quartic divergences which are at the
heart of the grossly false estimates for the expected induced
cosmological constant.
As it will turn out, if we take them seriously as the sign of

a strong, physically real quantum effect, then they can
indeed be converted from a problem to a solution. Making
essential use of the lessons implied by background inde-
pendence [3,5,6] we shall demonstrate that those diver-
gences, rather than giving rise to a spacetime curvature that
is too large by many orders of magnitude, actually do their
best to flatten spacetime. The mechanism we are going to
describe here might help then to explain why the universe
we live in is so much larger than its “natural” scale, the
Planck length.

A. Approximant systems

The present investigation extends work initiated in the
context of classical gravity [7] towards the realm of
quantum gravity. In the companion paper [7], henceforth
denoted by [I], we outlined a novel scheme for the
quantization of quantum matter fields coupled to classical
gravity. We proposed that quantum field theories should be
regularized by sequences of quasiphysical systems. Those
systems, called “approximants,” are required to possess a
well-defined number of degrees of freedom, f say, which
represent a finite subset of the excitations that can be
carried by the field. Typically, they are chosen as f of its
harmonic normal modes.
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While the quantization of such finite approximants,
denoted by “AppðfÞ,” is straightforward, in principle, we
insisted that all of them are coupled to gravity; in particular
the f quantum degrees of freedom must be able to dynami-
cally backreact on the metric of the classical spacetime they
live in. Each one of the systems AppðfÞ determines its
preferred background geometry self-consistently as the
solution of a certain tadpole condition, typically a kind of
semiclassical Einstein equation.
The total configuration of an approximant AppðfÞ is

described by both a quantum mechanical state Ψf of the
quantized matter degrees of freedom, and a classical metric
which is self-consistent with respect to this particular
quantum state. Symbolically, we write

AppðfÞ ∼Ψf ⊗ metricðΨfÞ: ð1:1Þ

The construction of a continuum limit would then amount
to designing an infinite sequence of such systems
fAppðfÞg which possesses a meaningful and physically
interesting limit:

AppðfÞ⟶f→∞
ΨSC

QFT ⊗ ḡSCμν ðΨQFTÞ: ð1:2Þ

The important point here is that the limit (1.2) produces not
only a state ΨSC

QFT of the now fully quantized matter field
theory, but in addition also a dynamically determined
background metric ḡSCμν which is self-consistent precisely
when the matter system is in the state ΨSC

QFT of the (QFT).

B. Requirements on an improved
quantization scheme

The coupling to gravity and their individual dynamical
backreaction on the spacetime metric is a defining property
of the approximant systems. This property may be regarded
as an extension of the general principle of background
independence [5] to the regularized precursor of the
quantum field theory. In fact, in [I] we advocated the
following three general requirements concerning the quan-
tization scheme:

ðR1Þ Background independence
ðR2Þ Gravity-coupled approximants
ðR3Þ N-type cutoffs.

The motivation for the last requirement, ðR3Þ, is to strictly
disentangle the concepts of, respectively, regularization,
i.e., the construction of sequences of approximants, and of
scale setting. The defining property of N-type cutoffs is that
they must not employ the metric in defining or selecting the
approximants’ degrees of freedom. As a consequence, the
numerical value associated with a specific N-cutoff is a
dimensionless number, and therefore it avoids defining any
particular length or mass scale.
In [I] we discussed in detail why the combination of

ðR2Þ and ðR3Þ allows us to take limits of fAppðfÞg

sequences that could not be considered within the standard
schemes. Intuitively speaking, the idea behind the quasi-
physical systems AppðfÞ is the expectation that the closer
the approximants come to being quantum mechanical
systems that can actually be realized in nature, the more
likely it is that they approach a meaningful limit
limf→∞ AppðfÞ. In this sense, ðR2Þ expresses that a system
can be “physical” only if it lives in harmony with gravity,
i.e., if it inhabits a spacetime geometry which is determined
dynamically by the energy and momentum of the inhab-
itants. Additionally, ðR3Þ allows us to employ the concept
of a spacetime metric only within the individual systems
AppðfÞ, f fixed, but not for the very definition of the
approximants. In the standard regularization schemes with
dimensionful cutoffs those two roles of the metric often get
intermingled, something we consider unacceptable when
the metric is dynamical itself.

C. N-type cutoffs

Using an N-cutoff, the regularization of a generic func-
tional integral

Z ¼
Z
F
DðχÞe−S½χ� ð1:3Þ

over all fields χ in a given (Hilbert) space of functions F
proceeds as follows. In F , we pick a basis B ¼
fwαjα ∈ Ig, i.e., F ¼ spanB so that every field has an
expansion χðxÞ ¼ P

α∈I cαwαðxÞ in terms of basis func-
tions wα labeled by (a list of) indices from a certain index
set I. Regarding the measure, we interpret the ill-defined
formal product DðχÞ“ ¼ ”

Q
x∈M dχðxÞ over all points of

the (fixed, differentiable) spacetime manifold M, asQ
α∈I dcα, and then we install the “N-cutoff” in the

resulting combination of infinitely many ordinary integrals.
To do so, we introduce a one-parameter family of subsets

BN ⊂ B labeled by a dimensionless number N ∈ N.1 The
subsets are required to satisfy

B0¼∅; B∞¼B and N2>N1⇒BN2
⊃BN1

: ð1:4Þ

Crucially, the specification of admissible sequences of
sub-bases,

B0 ⊂ B1 ⊂ B2 ⊂ � � � ⊂ BN ⊂ � � � ⊂ B; ð1:5Þ

must not involve any data other than the index set I. Every
BN must be described as

BN ¼ fwαjα ∈ INg ð1:6Þ

1With minor modifications, the case N ∈ ½0;∞Þ is possible as
well, see [I].
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with IN ⊂ I a suitable subset of index values. Letting
FN ¼ spanBN yields a sequence of finite dimensional
function spacesFN ⊂ F , and a corresponding sequence of
regularized integrals,

ZN ¼
Z
FN

DðχÞe−S½χ�: ð1:7Þ

They extend over progressively larger subspacesFN when
the cutoff parameter N ¼ 0; 1; 2;…;∞ is increased.
We consider (1.7) as the defining partition function

(generating functional) of the approximant system
AppðNÞ≡ AppðfðNÞÞ. Its degrees of freedoms are con-
stituted by a selection of f≡ fðNÞmodes of the field χ. The
number f is given by the dimensionality of FN and
increases monotonically with N ¼ 0; 1; 2;…;∞.
The deeper reason behind the requirement of an N-type

cutoff is to ensure that the individual approximants really
come close to viable physical systems in their own right, at
least to the extent that they possess a clear-cut number of
degrees of freedom. In many standard schemes, in particu-
lar those using a dimensionful cutoff scale, this would not
be the case. Typically such schemes employ a metric in
defining the regularized functional integral, and as we
explained in [I] already, it is usually impossible then to
interpret this integral as the partition function of some
quantum mechanical system. The reason of this failure is
that when gravity is dynamical, changes of the metric can
reshuffle matter degrees of freedom back and forth between
regularizations with different values of the cutoff scale.
Therefore, if we try to approximate an infinite dimensional
quantum system (a QFT) by a sequence of smaller physical
systems, we must avoid standard regularization schemes of
this sort.
Considerable care is required when the basis elementswα

are taken to be eigenfunctions of some kinetic operator K
which depends on the background metric:

K ½ḡ�wα½ḡ�ðxÞ ¼ λα½ḡ�wα½ḡ�ðxÞ; α ∈ I: ð1:8Þ

Even in this case, where the eigenvalues λα½ḡ� and the
eigenfunctions wα½ḡ� are manifestly ḡ-dependent, it is still
possible to define a bona fide N-cutoff in terms of

BN ½ḡ� ¼ fwα½ḡ�jα ∈ INg ð1:9Þ

andFN ½ḡ� ¼ spanBN ½ḡ�. Here, the key point is that, while
the basis functions as such are metric dependent, the index
set enumerating them, IN , is not. We refer to [I] for a
detailed discussion of this important class of N-cutoffs
which is somewhat subtle to deal with.

D. Application: Vacuum fluctuations and the
cosmological constant

In [I] we applied the new quantization scheme based
upon the three requirements ðR1Þ, ðR2Þ and ðR3Þ to a
concrete physical question, namely the effect of quantum
vacuum fluctuations on the curvature of spacetime.
Considering a free scalar matter field on a classical
Euclidean spacetime ðSd; ḡμνÞ, we constructed infinite
sequences of appropriate quantum mechanical systems,
fAppðfÞjf ¼ fðNÞ; N ¼ 0; 1; 2;…;∞g, and for each
approximant separately we determined its respective
self-consistent metric ðḡSCf Þμν from the total state AppðfÞ∼
ΨSC

f ⊗ ðḡSCf Þμν. The latter is dictated by a coupled system
of equations consisting of a ḡμν-dependent Schrödinger
equation for Ψf, and a generalized Einstein equation with a
quantum stress tensor Tμν½Ψf� for the metric.
Investigating the continuum limit (1.2) of sequences for

which limf→∞ΨSC
f ¼ ΨSC

QFT is the no-particle state revealed
a true surprise then: Contrary to general belief, adding
further field modes to the approximant does not increase,
but rather decreases the curvature of spacetime, and in the
continuum limit limf→∞ AppðfÞ the approximants’ space-
times converge to flat space actually.
These results are strikingly different from those of the

well-known standard calculations which, following Pauli
[8], sum up zero-point energies and try to take the QFT
limit before the gravitational backreaction on the matter
system is taken into account.2 The latter procedure gives
rise to an (infinitely) large induced cosmological constant
Λind ¼ ∞, and a correspondingly large (divergent) curva-
ture of spacetime. Indeed, our main conclusion in [I] was
that the crucial steps of taking the continuum limit f → ∞,
and including gravity’s backreaction on matter do not
commute.
Thus it appears that the notorious “cosmological constant

problem,” at least to the extent it relates to zero point
oscillations, is an unphysical artifact originating from a
wrong way of taking the continuum limit. According to the
new scheme based upon ðR1; 2; 3Þ, the QFT limit f → ∞ is
taken after the inclusion of the backreaction. It describes a
well-defined vacuum state of the matter system that inhabits
a nonsingular spacetime. The latter turns out completely flat
without any tuning of parameters or further ado.
In Fig. 1, this situation is summarized schematically. For

further details we must refer to [I].

E. Quantum fluctuations of the metric

While already in [I] gravity was treated dynamical, but at
the classical level only, the purpose of the present paper is

2Reviews of the cosmological constant problem and of earlier
attempts at its solution include Refs. [4,8–12]. Concerning more
recent foundational work on conceptual aspects of the problem,
unrelated to our approach however, we refer the reader to [13–16].
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to generalize the analysis by a quantum mechanical treat-
ment also of the gravitational field itself. More precisely,
we are going to quantize the quadratic metric fluctuations
implied by the Einstein-Hilbert action, and we investigate
how their vacuum oscillations affect the self-consistent
spacetimes of the corresponding approximants.
Technically, we shall perform a linear background split

of the metric, gμν ¼ ḡμν þ hμν, whereby ḡμν is a dynami-
cally adjustable background metric, as in [I], while the
fluctuation field hμν plays a role similar to that of a matter
field. We describe the approximants AppðfÞ by suitable
regularized action functionals of the form Γ½hμν; χ; ḡμν�with
χ ≡ ðχaÞ an arbitrary collection of additional (matter)
fields. Backgrounds ḡμν ≡ ḡSCμν are self-consistent if they
allow the effective field equations implied by Γ to admit the
solution hμν ¼ 0. Finding those special background geom-
etries requires solving the tadpole condition,

δ

δhμν
Γ½h; χ; ḡ�

����
h¼0;ḡ¼ḡSC

¼ 0; ð1:10Þ

together with the matter field equations δΓ=δχa ¼ 0.
In this paper we are going to focus on the case where no

genuine matter fields are present, so that the set ðχaÞ
comprises only the Faddeev-Popov ghosts that arise by
gauge fixing the general coordinate invariance. We shall
analyze whether the spacetimes predicted by pure quantum

Einstein gravity are plagued by a cosmological constant
problem due to the zero point oscillations of the geometry.

F. This paper

The remaining sections of this paper are organized as
follows. In Sec. II we prepare the stage by introducing the
classical graviton and ghost system that we are going to
consider, and we set up the saddle point approximation of
the functional integral over all metrics.
In Sec. III we start the construction of the approximants,

and focus in particular on the (integrated trace oft the)
effective stress tensor by means of which they backreact on
gravity; a number of additional technical developments are
necessary here to make the approximants autonomous
physical systems.
The construction of the approximants is completed in

Sec. IV, where we specialize the setting for spherical
(Euclidean) spacetimes and give a detailed description of
the truncated bases that underlie the degrees of freedom
governed by AppðNÞ.
Finally, in Sec. V our main results are derived and

interpreted; there we install the self-consistent gravitational
backreaction in all approximants, and analyze the resulting
series fAppðNÞg, being particularly interested in the field
theory limit N → ∞. Section VI contains a brief summary
of our results.
Various details on the tensor harmonics of Sd, and on

certain spectral sum representations are relegated to three
Appendices.

FIG. 1. The diagram illustrates that the inclusion of the gravitational backreaction (vertical arrows) does not commute with the limit
f → ∞ (horizontal arrows). The upper left box represents a regularized matter theory on a spacetime that carries an arbitrary metric
unrelated to the matter systems. The traditional quantization procedure follows the path “first right, then down.” Thereby, the continuum
limit f → ∞ is performed on a fixed, rigid spacetime with metric ḡRSμν . This leads to an infinite cosmological constant, and when the
backreaction is included, to a singular spacetime with infinite curvature. The new quantization scheme, the path “first down, then right,”
instead results in a well-defined quantum state ΨSC

∞ on a nonsingular spacetime. It arises automatically equipped with a flat metric
ðḡSC∞ Þμν (taken from [I]).
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In the sequel we shall frequently refer to the companion
paper [I] in which further details can be found.

II. VACUUM FLUCTUATIONS
OF THE GEOMETRY

In this preparatory section we assume that we are given
some generic, d-dimensional Riemannian manifold
ðM; ḡμνÞ and we set up the classical and quantum theory
of metric fluctuations hμν relative to the classical back-
ground metric ḡμν. Performing a linear split between
background and fluctuation field, we represent the total
metric as gμν ¼ ḡμν þ hμν. We think of hμν as a kind of
matter field, while ḡμν plays exactly the same role as in [I],
reviewed in the Introduction.

A. Classical gravitons and ghosts

As for its classical dynamics, we assume that gμν, and
hence hμν, are governed by the Einstein-Hilbert action

SEH½g� ¼ 2κ2
Z

ddx
ffiffiffi
g

p ð−Rþ 2ΛbÞ ð2:1Þ

with

κ2 ≡ 1

32πG
ð2:2Þ

and an arbitrary bare cosmological constant, Λb.

1. Gauge fixing

In order to deal with the diffeomorphism invariance of
SEH we promote it to a (BRST) gauge-fixed “quantum
action” in the standard way [17]. Introducing diffeomor-
phism ghosts Cμ and antighosts C̄μ, respectively, it reads

S½h; C̄; C; ḡ� ¼ SEH½ḡþ h� þ Sgf ½h; ḡ�
þ Sgh½h; C̄; C; ḡ�; ð2:3Þ

where Sgf and Sgh denote the gauge fixing and ghost terms,
respectively. We adopt the formalism without a Nakanishi-
Lautrup auxiliary field and employ a gauge fixing action
which is quadratic in hμν,

Sgf ½h; ḡ� ¼ κ2
Z

ddx
ffiffiffī
g

p
ḡμνðF αβ

μ ½ḡ�hαβÞðF γδ
ν ½ḡ�hγδÞ; ð2:4Þ

and involves the differential operator

F αβ
μ ½ḡ�≡ δβμḡαγD̄γ −

1

2
ḡαβD̄μ: ð2:5Þ

The concomitant ghost action has the structure

Sgh½h;C̄;C; ḡ�¼−
ffiffiffi
2

p Z
ddx

ffiffiffī
g

p
C̄μM ½ḡþh;ḡ�μνCν; ð2:6Þ

where the corresponding Faddeev-Popov operator reads
explicitly

M ½g; ḡ�μν ¼ ḡμρḡσλD̄λðgρνDσ þ gσνDρÞ
− ḡρσ ḡμλD̄λgσνDρ: ð2:7Þ

Here, Dμ and D̄μ denote the covariant derivatives built
from gμν and ḡμν, respectively. It can be verified that the
total quantum action (2.3) enjoys an on-shell BRST
invariance [18].

2. Matterlike fields

In this paper we often regard the dynamical fields
ðhμν; C̄μ; CμÞ as a special sort of “matter” which inhabits
the classical spacetime ðM; ḡμνÞ. Separating off the purely
gravitational part, the corresponding “matter action” is
given by

SM½h; C̄; C; ḡ�≡ S½h; C̄; C; ḡ� − SEH½ḡ�
¼ SEH½ḡþ h� − SEH½ḡ� þ Sgf ½h; ḡ�
þ Sgh½h; C̄; C; ḡ�: ð2:8Þ

Here, we encounter an action functional of the bimetric
type at the classical level already. It depends on two
independent metrics, ḡμν and ḡμν þ hμν ≡ gμν, respectively.

3. Classical tadpole condition

For later comparison it is instructive to write down the
self-consistency condition (1.10) for the classical case,
i.e., when Γ is given by the bare action S from Eq. (2.3).
We have to solve

δ

δhμν
S½h; C̄; C; ḡ�

����
h¼0;ḡ¼ḡSC

¼ 0 ð2:9Þ

along with two further equations in which Cμ and C̄μ are
varied. The simple C̄ð� � �ÞC-structure of the ghost action
entails that the latter equations are solved by Cμ ¼ 0 ¼ C̄μ.
Combining this solution with the first equation, (2.9), the
latter becomes

0 ¼ δ

δhμν
ðSEH½ḡþ h� þ Sgf ½h; ḡ�Þ

����
h¼0;ḡ¼ḡSC

¼ δ

δhμν
SEH½ḡþ h�

����
h¼0;ḡ¼ḡSC

: ð2:10Þ

In the second line, we exploited that Sgf is bilinear in hμν
and supplies no contribution to the functional derivative
at h ¼ 0 therefore. If we now reinstate the variable
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gμν ¼ ḡμν þ hμν, the condition (2.10) turns into the
expected form, namely

δ

δgμν
SEH½g�

����
g¼gSC

¼ 0: ð2:11Þ

To summarize, classically the quasimatter fields
ðh; C̄; CÞ governed by the full fledged BRST invariant
action live in a self-consistent background geometry if the
ghost fields vanish, and the metric ḡμν is a stationary point
of SEH, i.e., of the classical action functional before its
promotion to a BRST invariant action.

4. Quadratic actions: Free gravitons and ghosts

Let us expand the “matter” action SM given in Eq. (2.8)
around the point ðh ¼ 0; C̄ ¼ 0 ¼ CÞ up to terms of second
order in the dynamical fields ðh; C̄; CÞ. The result has the
structure

SM½h; C̄; C; ḡ� ¼ SFG½h; ḡ� þ SFgh½C̄; C; ḡ�
þ ðlinearÞ þOð3Þ: ð2:12Þ

Here, “Oð3Þ” stands for terms of cubic and higher orders,
while the “linear” terms vanish precisely when the back-
ground is a self-consistent one. Furthermore, SFG and SFgh
denote the “free graviton” and “free ghost” actions, which
are bilinear in the respective dynamical fields:

SFG½h; ḡ�≡ 1

2

Z
ddx

ffiffiffī
g

p
hμνK ½ḡ�μνρσhρσ; ð2:13Þ

SFgh½C̄; C; ḡ�≡ Sgh½0; C̄; C; ḡ�

¼ −
ffiffiffi
2

p Z
ddx

ffiffiffī
g

p
C̄μM ½ḡ; ḡ�μνCν: ð2:14Þ

The graviton’s nonminimal kinetic operator K ≡K 0 þ
K 1 comprises the two contributions K 0 and K 1 which
stem from the terms in the action ∝ ffiffiffi

g
p

R and ∝ ffiffiffi
g

p
,

respectively. They read, for a generic background metric,

K 0½ḡ�ρσμν ¼
1

16πG
½−D̄2Kρσ

μν þ Vρσ
μν�

K 1½ḡ�ρσμν ¼
1

16πG
½−2ΛbKρσ

μν� ð2:15Þ

with

Kρσ
μν ≡ 1

4
½δμρδνσ þ δμσδνρ − ḡμνḡρσ�: ð2:16Þ

The potential-type curvature terms, built from ḡμν, are
given by

Vρσ
μν ≡ R̄Kρσ

μν þ 1

2
½ḡμνR̄ρσ þ ḡρσR̄μν�

−
1

4
½δμρR̄ν

σ þ δμσR̄ν
ρ þ δνρR̄μ

σ þ δνσR̄μ
ρ�

−
1

2
½R̄ν

ρ
μ
σ þ R̄ν

σ
μ
ρ�: ð2:17Þ

Here and in the following indices are always raised and
lowered with the background metric ḡμν. We emphasize in
particular that the fundamental dynamical variable is the
tensor field hμν with two lower indices. Thus equations
such as (2.13) should be interpreted as a shorthand for

SFG½h; ḡ� ¼
1

2

Z
ddx

ffiffiffī
g

p
hαβḡαμḡβνK ½ḡ�μνρσhρσ ð2:18Þ

with hαβḡαμḡβμ abbreviated by hμν.

B. Background independent quantum theory

Turning to the quantum theory now, we would like to
compute arbitrary correlation functions hφ̂ðx1Þ � � � φ̂ðxnÞiḡ
where φ̂≡ ðĥμν; ˆ̄Cμ; Ĉ

μÞ denotes the operatorial counter-
part of ðhμν; C̄μ; CμÞ≡ φ. The nontrivial challenge is to
compute those n-point functions as a functional of the
background metric ḡμν, or phrased in a different way, to
quantize the fluctuations on all possible geometries in
one go.
In this subsection we briefly review the corresponding

formal, i.e., unregularized path integrals representing the
relevant generating functionals. Later on we outline how to
regularize them by means of an N-cutoff.
Since the actual meaning is clear from the context, we

use the notation φ̂≡ ðĥμν; ˆ̄Cμ; Ĉ
μÞ both for operators and

integration variables. Thus, after coupling the dynamical

fields φ̂≡ ðĥμν; ˆ̄Cμ; Ĉ
μÞ to sources ðtμν; σμ; σ̄μÞ, we can

write down the following (formal) functional integral for
the generating functional of their connected correlators:

expðW½t; σ; σ̄; ḡ�Þ

¼
Z

Dðĥ; ḡÞDðĈ; ḡÞDð ˆ̄C; ḡÞ expð−S½ĥ; ˆ̄C; Ĉ; ḡ�

þ
Z

ddx
ffiffiffī
g

p ftμνĥμν þ σ̄μĈ
μ þ σμ ˆ̄CμgÞ: ð2:19Þ

This functional integral involves the BRST invariant
action (2.3). It can be seen as the result of formally
applying the Faddeev-Popov trick to

R
Dĝe−SEH½ĝ�, thereby

using a gauge fixing condition of the background field
type [19]. Furthermore, in Eq. (2.10) we interpret

Dðĥ; ḡÞDðĈ; ḡÞDð ˆ̄C; ḡÞ as the BRST-invariant measure
found by Fujikawa [20]:
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Dðĥ; ḡÞDðĈ; ḡÞDð ˆ̄C; ḡÞ

¼
Y
x

ḡðxÞðd−4Þðdþ1Þ
8

−d
2

�Y
μ≥ν

dĥμνðxÞ
��Y

α

dĈαðxÞd ˆ̄CαðxÞ
�
:

ð2:20Þ

Note its dependence on the background metric via the
characteristic power of the determinant ḡðxÞ≡ detðḡαβðxÞÞ.
The formal construction of the effective action for the

“matter” fields on the ðM; ḡÞ background is completed by
performing a Legendre-Fenchel transformation with
respect to the sources, at fixed ḡμν. This leads us to the

generating functional for the 1PI Green’s functions of ĥμν
and the ghosts:

Γ½hμν; C̄μ; Cμ; ḡμν�≡ Γ½gμν; ḡμν; C̄μ; Cμ�: ð2:21Þ

Here, the field expectation values are denoted by

hμν ≡ hĥμνiḡ; C̄μ ≡ h ˆ̄Cμiḡ and Cμ ≡ hĈμiḡ; ð2:22Þ

and in the case of the total metric ĝμν ¼ ḡμν þ ĥμν we
write gμν ≡ hĝμνi ¼ ḡμν þ hμν.
The desired n-point functions can be obtained by

repeated differentiation of Eq. (2.21),

hφ̂ðx1Þ � � � φ̂ðxnÞiḡ ∝
�

δ

δφ

�
n
Γ½φ; ḡ�: ð2:23Þ

As we stressed already, we are particularly interested in
their ḡ-dependence. The one-point function of the metric
fluctuation, hĥμνðxÞiḡ, is of special significance in this
respect. Its vanishing is the defining property of a self-
consistent background geometry in the quantum mechani-
cal case. Since hĝμνiḡ ¼ ḡμν þ hĥμνiḡ it implies that the
expectation value of the metric operator equals exactly
the prescribed background metric if the latter is a self-
consistent one:

hĝμνiḡ ¼ ḡμν ⇔ hĥμνiḡ ¼ 0 if ḡ ¼ ḡSC: ð2:24Þ

This requirement is known as a tadpole condition. In terms
of Γ, it consists of the equation

δ

δhμνðxÞ
Γ½h; C̄; C; ḡ�

����
h¼0;ḡ¼ḡSC

¼ 0; ð2:25Þ

and, also imposing hĈμiḡ ¼ 0 ¼ h ˆ̄Cμiḡ, two similar equa-
tions that involve ghost derivatives. The tadpole condition
(2.25) is the quantum mechanical analog of the classical
equation (2.9) discussed above. Replacing the bare action S
by the functional Γ, the condition of self-consistency

carries over from the classical to the quantum world in a
simple and natural way.

III. ONE-LOOP ACTION AND
FUNCTIONAL MEASURE

The loopwise expansion of integrals like (2.19) is well
known. In this section we recall the saddle point approxi-
mation of the path integral about the point of vanishing
fluctuation fields, and then highlight the importance of the
functional measure in this connection. We elaborate on a
number of technical points which, while unimportant in
typical calculations on flat spacetime, become nontrivial in
a background independent setting. In particular it is
essential then to carefully keep track of all occurrences
of ḡμν in the functional integral.

A. Tadpole condition at one loop

At one-loop order, and for vanishing ghost arguments,
the effective action has the structure

Γ½h;0;0; ḡ� ¼ SEH½ḡþh�þΓ1L½ḡþh�þOð2 loopsÞ ð3:1Þ

with

Γ1L½ḡ� ¼ ΓFG½ḡ� þ ΓFgh½ḡ� ð3:2Þ

whereby the free graviton (FG) and free ghost (Fgh)
effective actions ΓFG and ΓFgh, respectively, are given by
two Gaussian integrals which we write down in a moment.
Before doing so, let us return for a moment to the

effective field equation, the tadpole condition that governs
the backreaction of the quantum vacuum fluctuations on
their habitat, the classical spacetime ðM; ḡÞ, and that
decides about whether or not a certain background geom-
etry is
self-consistent.
The effective field equations to be considered consist of

Eq. (2.25) coupled to the corresponding equations for the
ghosts. Solving the latter by choosing C̄μ ¼ 0 ¼ Cμ, it
remains to solve

δ

δhμνðxÞ
Γ½h; 0; 0; ḡ�

����
h¼0;ḡ¼ḡSC

¼ 0: ð3:3Þ

Henceforth we shall employ the one-loop approximation
(3.1) for the effective action. As a result, Eq. (3.3) assumes
the form of a classical-looking Einstein equation,

R̄μν −
1

2
ḡμνR̄þ Λbḡμν ¼ ð8πGÞTμν½ḡ� ð3:4Þ

whereby the stress tensor
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Tμν½ḡ�ðxÞ≡ −
2ffiffiffī
g

p δ

δḡμνðxÞ
Γ1L½ḡ� ð3:5Þ

originates from the one-loop terms Γ1L ¼ ΓFG þ ΓFgh.

B. Functional measure and Gaussian integrals

The saddle point approximation provides us with the
following Gaussian functional integrals over gravitons and
ghosts whose only interaction is with the background
gravitational field3:

e−ΓFG½ḡ� ¼
Z

Dðĥ••; ḡ••Þe−SFG½ĥ••;ḡ••�

¼
Z

D1½ḡðd−4Þ=ð4dÞĥ••�e−SFG½ĥ••;ḡ••�; ð3:6Þ

e−ΓFgh½ḡ� ¼
Z

DðĈ•;ḡ••ÞDð ˆ̄C•;ḡ••Þe−SFgh½ ˆ̄C•;Ĉ
•;ḡ••�

¼
Z

D1½ḡðdþ2Þ=ð4dÞĈ•�D1½ḡðd−2Þ=ð4dÞ ˆ̄C•�e−SFgh½ ˆ̄C•;Ĉ
•;ḡ••�:

ð3:7Þ

Here, we factorized the measure (2.20) and expressed it in
terms of the naive measure D1. By definition, the latter
does not involve any factors of the determinant ḡðxÞ ¼
detðḡ••ðxÞÞ:

D1½h••� ¼
Y
x

Y
μ≥ν

dhμνðxÞ

D1½C•� ¼
Y
x

Y
μ

dCμðxÞ

D1½C̄•� ¼
Y
x

Y
μ

dC̄μðxÞ: ð3:8Þ

Here and in the following we omit the carets over the
integration variables.
In order to make the above measures and integrals well

defined we restrict them to a finite number of spacetime
points and attach integration variables like hμνðxÞ only to
the sites of some lattice or triangulation. The precise details
of this intermediate regularization do not matter as it
anyhow will be replaced by the N-cutoff at a later stage.
The actions appearing under the above integrals, SFG and

SFgh, are given by the bilinear functionals (2.13) and (2.14),
respectively, which involve the operators K ½ḡ� and
M ½ḡ; ḡ�.
Let us stress at this point that the approximation which

leads to (3.6) neglects interactions among gravitons
obviously. The nonrenormalizability of quantum general

relativity is not an issue here, and a status as an effective
theory is sufficient.
In the rest of this subsection we are now going to

evaluate the integrals explicitly. Because of the nonstandard
measures they are not (yet) strictly Gaussian. A certain
amount of additional care is required here, not only because
of the field-dependent measures, but also in view of our
special needs for what concerns the definition of approx-
imants respecting ðR1; 2; 3Þ; this will be the topic of the
next subsection then.

1. The spectral problem

Background independence forces us to evaluate the
generating functional and hence ΓFG½ḡ�, say, for arbitrary
background metrics ḡμν. Therefore, the evaluation of (3.6)
starts out from the assumption that the spectral problem of
the operator K ½ḡ� has been solved for arbitrary ḡμν,

K ½ḡ�μναβunmðxÞαβ ¼ Fn½ḡ�unmðxÞαβ; ð3:9Þ

so that we know the metric-dependent eigenfunctions and
eigenvalues. As in [I] we assume a compact spacetime,
hence a discrete spectrum, and for every ḡ we enumerate
the eigenvalues in increasing order: F0 ≤ F1 ≤ F2 ≤
F3 ≤ � � �. The eigenfunctions unm form a complete set of
symmetric tensor fields on M, satisfying the orthogonality
and completeness relations:

Z
ddx

ffiffiffī
g

p
ḡμαðxÞḡνβðxÞu�nmðxÞαβun̄m̄ðxÞμν¼δnn̄δmm̄; ð3:10Þ

X
n;m

ḡαρḡβσunmðxÞρσu�nmðyÞμν ¼
δðx − yÞffiffiffiffiffiffiffiffiffi

ḡðxÞp δαðμδ
β
νÞ: ð3:11Þ

The symmetrization in (3.11) is defined to include a factor
of 1=2.

2. Densitized fields

As a first step towards actually computing the functional
integrals we introduce the densitized fluctuation fields:

fμν ≡ ḡðd−4Þ=ð4dÞhμν;

Bμ ≡ ḡðdþ2Þ=ð4dÞCμ;

B̄μ ≡ ḡðd−2Þ=ð4dÞC̄μ: ð3:12Þ

Employing the new variable fμν, the graviton integral

e−ΓFG½ḡ� ¼
Z

D1½f••�e−SFG½hðfÞ;ḡ� ð3:13Þ

involves a simple measure now, but the price to be paid is
the following modification of the quadratic action (2.18):

3In cases where the positioning of indices is critical we indicate
the intended index structure of the respective geometric quantities
by dots.
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SFG½hðfÞ; ḡ� ¼
1

2

Z
ddxfαβqαμqβνK̃ ½ḡ�μνρσfρσ: ð3:14Þ

Concerning the transformed action (3.14), the following
remarks are in order:

(i) The new version of SFG involves a differential
operator K̃ which is related to the original one by
a similarity transformation:

K̃½ḡ�μνρσ ¼ ḡðxÞðd−4Þ=ð4dÞK ½ḡ�μνρσ ḡðxÞ−ðd−4Þ=ð4dÞ:
ð3:15Þ

(ii) In Eq. (3.14), the volume element ddx is not
accompanied by a factor of

ffiffiffī
g

p
. Furthermore, as

for the tensor ḡαμḡβν that occurs under the integral of
(2.18), the (inverse) background metric is replaced
by a new (inverse) metric, namely

qμν ¼ ḡðxÞþ1=dḡμν ⇔ qμν ¼ ḡðxÞ−1=dḡμν: ð3:16Þ

Note, however, that there is no corresponding
replacement ḡμν → qμν in the case of the metric
dependence which enters viaK ½ḡ�μνρσ. Hence, up to
the similarity transformation (3.15), the operators
K and K̃ have the same dependence on ḡμν.
We also recall that in order to properly keep track

of all ḡ-dependences it is crucial to always read K
(and likewise K̃) as a (2,2) tensor with the index
structure K ≡K ••

•• which allows us to interpret it
as a map of (0,2) tensors onto (0,2) tensors.

(iii) The definition (3.16) entails that detðq••Þ ¼ 1, i.e.,
qμν is a unimodular variant of the background
metric.

3. Densitized eigenmodes

In order to evaluate (3.13), let us assume we have solved
the eigenvalue problem (3.9) of the original kinetic operator
K and know its eigenfunctions unm. Then we can define
new mode functions

vnmðxÞμν ≡ ḡðxÞðd−4Þ=ð4dÞunmðxÞμν ð3:17Þ

and thus obtain a complete system of K̃-eigenfunctions
with identical eigenvalues:

K̃½ḡ�μναβvnmðxÞαβ ¼ Fn½ḡ�vnmðxÞαβ: ð3:18Þ

The new mode functions satisfy orthogonality and com-
pleteness relations of the form

Z
ddxqμαðxÞqνβðxÞv�nmðxÞαβvn̄ m̄ðxÞμν ¼ δnn̄δmm̄; ð3:19Þ

X
n;m

qαρðxÞqβσðxÞvnmðxÞρσv�nmðyÞμν¼δðx−yÞδαðμδβνÞ: ð3:20Þ

It is to be observed that, contrary to the simpler case where
K ¼ −□ḡ acts on scalars [I], the orthogonality and
completeness relations of the densitized eigenfunctions
still display an explicit dependence on the background
metric, however not on the conformal factor thereof. The
above relations contain no determinantal factors, and all
indices are raised and lowered with the unimodular metric
qμν rather than ḡμν. But, of course, the spectral problem of
K̃½ḡ••�, Eq. (3.18), does “know” about the full background
metric ḡμν, and in particular Fn ≡Fn½ḡ••� depends non-
trivially also on its conformal factor, i.e., on

ffiffiffī
g

p
.

In terms of the new basis, every field configuration
contributing to the functional integral (3.13) admits an
expansion

fμνðxÞ ¼
X
n;m

bnmvnmðxÞμν; ð3:21Þ

and, by (3.14), the associated action reads in terms of the
expansion coefficients:

SFG ¼ 1

2

X
n

Fn

X
m

b2nm: ð3:22Þ

Furthermore, up to inessential constants which we omit, the
measure turns into

D1½f� ¼
Y
n;m

dbnm; ð3:23Þ

so that it has become trivial now to evaluate the integral
(3.13), yielding e−ΓFG ¼ Q

n;m F−1=2
n .

4. Spectral representation of Γ1L

Thus we have shown that the one-loop graviton action
equals

ΓFG½ḡ••� ¼
1

2

X
n;m

ln ðFn½ḡ••�Þ ð3:24Þ

wherein the Fns are defined by Eq. (3.9) as the spectral
values of the operator K ½ḡ�••••. Denoting those of the
Faddeev-Popov operator M ½ḡ; ḡ�•• by Fgh

n , the Grassmann
integral over the ghosts yields analogously

ΓFgh½ḡ••� ¼ −
X
n;m

ln ðFgh
n ½ḡ••�Þ: ð3:25Þ
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The perfectly clear-cut results (3.24) and (3.25) involve
only objects with a well-defined interpretation, namely
numbers Fn½ḡ� and Fgh

n that are determined by (3.9) and
the analogous equation of the ghosts, but further potential
occurrences of ḡμν are manifestly ruled out by our
derivation.
Moreover, this representation of the “one-loop determi-

nants” makes the respective contributions of the individual
eigenmodes manifest, and is therefore a suitable starting
point for the construction of approximants.
So altogether the one-loop functional reads

Γ1L½ḡ� ¼
1

2

X
n;m

ln ðFn½ḡ�Þ −
X
n;m

ln ðFgh
n ½ḡ�Þ: ð3:26Þ

As we stressed in [I] already, one should resist the
temptation to recast equations like (3.26) in the common,
but vague style of formal operator traces,

Γ1L½ḡ� ¼
1

2
Tr ln ðK ½ḡ�••••Þ − Tr ln ðM ½ḡ; ḡ�••Þ; ð3:27Þ

since this obscures information we are going to need
later on.
We close this subsection with an important remark

concerning Fujikawa’s BRST invariant measure which
we invoked for the functional integration over all metrics
[20]. While the final result for the one-loop effective action,
Eq. (3.26), looks only all too familiar, it must be empha-
sized that this result does arise, not despite, but rather only
thanks to the nontrivial ḡ-dependence of the measure. The
metric dependence of the measure and of the action
conspire in precisely such a way that Γ1L ends up depend-
ing on ḡμν via the eigenvalues Fn½ḡ� and Fgh

n ½ḡ� only.

C. The approximants AppðNÞ
In the preceding subsection we prepared the stage for a

precise description of the approximants that we are going to
consider. Invoking a N-cutoff now, the systems AppðNÞ≡
AppðfðNÞÞ are constituted by a certain selection, yet to be
specified, of fðNÞ modes of the graviton and ghost fields.
For each value of N ¼ 0; 1; 2;…, and for tensor (T) and
vector (V) modes separately, this selection is described by
index sets

ITN ⊂ IT and IVN ⊂ IV ð3:28Þ

which give rise to truncated bases

BT;V
N ¼ funm½ḡ�jðn;mÞ ∈ IT;VN g ð3:29Þ

that satisfy the conditions (1.4). As we insisted already, the
step from IT;V to IT;VN must not involve any metric, while the

ḡ-dependence of the basis elements is admissible even for
an N-cutoff.
The finite quantum system AppðNÞ is defined by the

generating functionals (3.6), (3.7)4 whereby the functional
integrals are restricted to the subspaces FT;V

N ≡ spanBT;V
N .

A first consequence of this definition is that the one-loop
effective action which describes the gravitational interac-
tion of the system AppðNÞ, henceforth denoted by
ΓN
1L ≡ Γ1L, is given by the following perfectly finite sum:

ΓN
1L½ḡ� ¼

1

2

X
ðn;mÞ∈ITN

lnðFn½ḡ�Þ−
X

ðn;mÞ∈IVN
lnðFgh

n ½ḡ�Þ: ð3:30Þ

Clearly, the properties of the sequences fAppðNÞjN ¼
0; 1;…;∞g crucially hinge on the selection encoded in the
subsets IT;VN . Despite the constraints (1.4) there exists still a
great variety of possibilities.
For the purposes of the present paper the following

natural choice will be adopted:

IT;VN ¼ fðn;mÞ ∈ IT;Vjn ≤ Ng: ð3:31Þ

Thus the system AppðNÞ includes all field modes having
eigenvalues which do not exceedFN or Fgh

N , respectively.
Equation (3.31) is still a fairly conservative choice of

BT;V
N . With its ordering prescription “small eigenvalues

first, larger ones come later,” it is still similar to a standard
ultraviolet (UV) cutoff. We emphasize, however, that this
kind of reference to the magnitude of the eigenvalues is by
no means a logical prerequisite of an N-cutoff.
In background independent quantum gravity, physical

“infrared-ness” or “ultraviolet-ness” are emergent, dynami-
cally determined properties which, at best, manifest them-
selves in the effective action. If the quantum effects are
sufficiently strong it is not obvious therefore if they are
linked to any special sort of bare field configurations under
the functional integral. In the future it should also be
promising therefore to investigate sequences fAppðNÞg
that are based upon more exotic orderings of the classical
modes.
In fact, recent studies along a different line of reasoning

[21,22] seem to support this point of view. They suggest in
particular relaxing the standard paradigma “UV (IR) ⇔
large (small) eigenvalues” in a certain way. This is indeed
something that could be done easily within our framework.

D. A generalized variational identity

For later application, let us find out how the approx-
imants’ effective action responds to a change of some
arbitrary, nondynamical parameter which may be present in
the classical Lagrangian of the graviton-ghost system.

4It can also be defined by obvious generalizations thereof, for
instance with the inclusion of sources.
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Clearly, the prime example of such an external “parameter”
is the background metric, as the response of Γ1L½ḡ� to a
variation ḡμν → ḡμν þ δgμν defines the associated stress
tensor:

δΓ1L½ḡ�≡ −
1

2

Z
ddx

ffiffiffī
g

p
Tμν½ḡ�ðxÞδḡμνðxÞ: ð3:32Þ

Let us be slightly more general now and assume that “δ”
deforms the kinetic operators K and/or M in a certain
way, and let us ask about the resulting change δΓ1L. In our
case this question is afflicted by potential subtleties which,
in conventional perturbation theory, would usually be
brushed over by arguing that Γ1L is of the trace-log form
(3.27), and so the matrix identity

δTr½lnðK Þ� ¼ Tr½K −1δK � ð3:33Þ

can be applied to it. This then would reduce the problem to
the calculation of traces. However, in the present setting
where the regularization of “Tr” plays a crucial role, this
reasoning is too simplistic, leaving unanswered a number
of worrisome questions. [Given a certain cutoff scheme,
which general properties of a trace will survive the
regularization? Are they sufficient to establish a variational
formula like (3.33)? Are there differences between P- and
N-cutoffs [I]?]
Our goal is to derive a representation of the variation

which displays the contribution of each eigenmode of K
separately. Finite subsets of those modes constitute the
degrees of freedom of the various approximants. As we
endow those systems with a quasiphysical status, we must
know the individual contribution of each mode to the total
stress-energy tensor.
Therefore, rather than the trace-log expression, we vary

the finite spectral sums in (3.30) term by term:

δΓN
1L½ḡ� ¼

1

2

X
ðn;mÞ∈ITN

Fn½ḡ�−1δFn½ḡ�

−
X

ðn;mÞ∈IVN
Fgh

n ½ḡ�−1δFgh
n ½ḡ�: ð3:34Þ

If the infinitesimal variation δ changes the kinetic operator
K to K þ δK , how do its eigenvalues Fn change then?
The answer is given by the Hellmann-Feynman theorem5:

δFn½ḡ� ¼ hunmjδK ½ḡ�junmi: ð3:35Þ

Here, the bra-ket notation refers to the L2-Hilbert space
structure of the field spaces, the corresponding inner
product being, for symmetric (0,2)-tensors say,

hu1ju2i ¼
Z

ddx
ffiffiffī
g

p
ḡμαḡνβu�1ðxÞμνu2ðxÞαβ: ð3:36Þ

(See Appendix A for further details.) Treating the ghost part
in the same way we obtain the sought-for generalized
variational identity in the following form:

δΓN
1L½ḡ� ¼

1

2

X
ðn;mÞ∈ITN

hunmjK −1δK junmi

−
X

ðn;mÞ∈IVN
hunmjM−1δM junmi: ð3:37Þ

In the limit N → ∞, when IT;VN → IT;V,BT;V
N → BT;V so

that the unms form complete bases, the result (3.37)
obviously reproduces the standard formula δΓN

1L ¼
1
2
Tr½K −1δK � − Tr½M−1δM �, if the traces exist.

However, the Eq. (3.37) makes perfect sense also for
any finite number of N < ∞ field modes; in this case it
yields the correct answer for the variation of the effective
action that governs AppðNÞ.

E. The integrated trace of the effective stress tensor

As an application of the variational formula for (3.37)
that we shall need later on, let us consider the example
where δ is realized by the differential operator:

T ≡ −2
Z

ddxḡμνðxÞ
δ

δḡμνðxÞ
: ð3:38Þ

(1) To see its purpose, consider an arbitrary actionlike
functional of the metric, F½ḡ�, and associate the
Euclidean stress tensor

Tμν
F ½ḡ�≡ −

2ffiffiffī
g

p δF½ḡ�
δḡμν

ð3:39Þ

to it. Then, denoting the integral of its trace ḡμνT
μν
F

over the entire manifold by

ΘF½ḡ�≡
Z

ddx
ffiffiffī
g

p
ḡμνT

μν
F ½ḡ�ðxÞ; ð3:40Þ

we see that T is nothing but the map that sends F
directly to the integrated trace of its stress tensor:

ΘF½ḡ� ¼ T F½ḡ�: ð3:41Þ

(2) A convenient way of concretely computing T F
consists in performing an infinitesimal, position-
independent rescaling of the metric:

T F½ḡ� ¼ d
dα

F½e−2αḡμν�
����
α¼0

: ð3:42Þ
5For simplicity we assume thatFn is not degenerate or, if it is,

that the perturbation δK does not mix different m-states. This
will indeed be the case in our later application of the result.
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This relation is easily established by Taylor expand-
ing its rhs.

(3) Letting δ ¼ T , the variational formula (3.37) yields
for the application of T to ΓN

1L:

ΘN ½ḡ�≡T ΓN
1L½ḡ�

¼ 1

2

X
ðn;mÞ∈ITN

hunmjK ½ḡ�−1TK ½ḡ�junmi

−
X

ðn;mÞ∈IVN
hunmjM ½ḡ; ḡ�−1TM ½ḡ; ḡ�junmi:

ð3:43Þ

Furthermore, explicit inspection of the kinetic oper-
ators (2.15) and (2.7), respectively, reveals the
scaling relations

K 0½e−2αḡ••�•••• ¼ eþ2αK 0½ḡ••�••••
K 1½e−2αḡ••�•••• ¼ K 1½ḡ••�••••

M ½e−2αḡ••; e−2αḡ••�•• ¼ eþ2αM ½ḡ••; ḡ••�••: ð3:44Þ

By virtue of Eq. (3.42) they imply

TK 0½ḡ••�•••• ¼ 2K 0½ḡ••�••••
K K 1½ḡ••�•••• ¼ 0

TM ½ḡ••; ḡ••�•• ¼ 2M ½ḡ••; ḡ••�••: ð3:45Þ

In establishing the scaling behavior (3.44) only the
familiar identities for the Weyl transformation of the
various geometric quantities are needed. It is crucial
though to meticulously observe the correct position-
ing of any uncontracted index.
Thus, the variation of the full graviton kinetic

operator K ¼ K 0 þK 1 is given by, in simplified
notation again,

TK ½ḡ� ¼ 2K 0½ḡ� ¼ 2K ½ḡ� − 2K 1½ḡ�: ð3:46Þ

Note that K 1 ¼ 0 if Λb ¼ 0, in which case
TK ½ḡ� ¼ 2K ½ḡ�.

(4) If we now return to Eq. (3.43), and exploit that the
unms are normalized, hunmiunm ¼ 1, we are led to a
remarkably simple-looking and instructive result
for the integrated stress tensor trace of AppðNÞ.
Namely,

ΘN ½ḡ� ¼T ΓN
1L½ḡ�

¼ fGðNÞ− fghðNÞ
−

X
ðn;mÞ∈ITN

hunmjK ½ḡ�−1K 1½ḡ�junmi: ð3:47Þ

Here, fGðNÞ and fghðNÞ denote the approximant’s
total number of graviton and ghost degrees of
freedom, respectively:

fGðNÞ≡ X
ðn;mÞ∈ITN

1; fghðNÞ≡ 2
X

ðn;mÞ∈IVN
1: ð3:48Þ

We observe that T Γ1L½ḡ� can acquire a nontrivial
dependence on ḡμν only if Λb ≠ 0. Then, in (3.47),
the term involvingK 1 ∝ Λb has a chance to make a
nonzero contribution.
For a vanishing cosmological constant, on the

other hand, ΘN ¼ T Γ1L is a perfectly metric-
independent quantity. It has the remarkable property
of counting the difference between the number of
graviton and ghost degrees of freedom,

ΘN¼T Γ1L½ḡ�¼fGðNÞ−fghðNÞ ðΛb¼0Þ: ð3:49Þ

In the following sections this quantity will be seen to
play a central role in the backreaction of the
fluctuations on the spacetime ðM; ḡÞ.

IV. APPROXIMANT SYSTEMS WITH
SPHERICAL UNIVERSES

As long as we keep the background metric fully generic,
the evaluation of the energy and momentum carried by the
quantum fluctuations is an extremely difficult problem that
cannot be solved in closed form. For this reason we resort
from now on to the same simplification we invoked in [I]
already. Namely, we restrict the allowed background
geometries ðM; ḡÞ to round d-spheres with an arbitrary
radius, SdðLÞ.
The restriction allows us to perform all necessary

calculations explicitly and exactly, and no (asymptotic)
heat kernel or similar expansions are required. At the same
time it leaves us with a nontrivial backreaction problem
which still encapsulated the essential physics.
In the case M ¼ SdðLÞ all metrics of interest have the

form

ḡμνðxÞ ¼ L2γμνðxÞ; ð4:1Þ

where γμν denotes the dimensionless standard metric on the
unit d-sphere. As a consequence, all functionals of ḡμν turn
into ordinary functions of the radius L now. For any
functional F½ḡ� we write its restriction to spheres as
FðLÞ≡ F½L2γ�. Incidentally, the operator T acts on these
functions according to

T FðLÞ ¼ −L
d
dL

FðLÞ ð4:2Þ

which is easily inferred from Eq. (3.42).
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A. The projected tadpole condition

The eligible backgrounds being restricted to SdðLÞ, the
maximum symmetry of the spheres implies that the
information contents of the Einstein equation (3.4) is
preserved when we contract it with ḡμν, and then integrate
it over the entire manifold. The result reads

−
1

2
ðd − 2ÞRðLÞ þ dΛb ¼ 8πG

ΘNðLÞ
Vol½SdðLÞ� ð4:3Þ

with, respectively, the scalar curvature and volume of
SdðLÞ,

RðLÞ ¼ dðd − 1Þ
L2

;

Vol½SdðLÞ� ¼ ð4πÞd=2 Γðd=2Þ
ΓðdÞ Ld: ð4:4Þ

Importantly, the integrated trace

ΘNðLÞ≡ΘN ½L2γ� ¼
Z
SdðLÞ

ddx
ffiffiffī
g

p
ḡμνTμν½ḡ�ðxÞ

����
ḡ¼L2γ

ð4:5Þ

completely specifies the energy momentum tensor in the
case at hand.
Equation (4.3) is the key relation that determines the

sought-for radii L≡ LSC of self-consistent spherical back-
ground spacetimes. Making the crucial L-dependences
manifest it assumes the form

σd

�
dΛbLd−

1

2
dðd−1Þðd−2ÞLd−2

�
¼ 8πGΘNðLÞ ð4:6Þ

with constants σd ≡ ð4πÞd=2Γðd=2Þ=ΓðdÞ. In d ¼ 4 dimen-
sions, for example,

4ΛbL4 − 12L2 ¼ 3G
π

ΘNðLÞ: ð4:7Þ

The nontrivial contents of the condition (4.6) reside
entirely in the function ΘNðLÞ, which relates to the one-
loop action by ΘNðLÞ≡ ΘN ½L2γ� for ΘN ½ḡ� ¼ T ΓN

1L½ḡ�.
The identity (4.2) shows that indeed

ΘNðLÞ ¼ −L
d
dL

ΓN
1LðLÞ; ð4:8Þ

where

ΓN
1LðLÞ≡ ΓN

1L½L2γ� ð4:9Þ

denotes the restriction of the one-loop functional discussed
in the previous section.

B. An effective potential for the Hubble radius

The restriction ΓðLÞ≡ Γ½L2γμν� of the total effective
action functional (3.1) has the interpretation of an effective
potential for the radius L, the Euclidean counterpart of the
Hubble length. Moreover, since Sd is maximally symmet-
ric, the “principle of symmetric criticality” [23] implies that
the metric variation of the action functional and its
restriction to SdðLÞ can be interchanged. Indeed, since

ΓðLÞ≡ðSEH½ḡ�þΓ1L½ḡ�Þjḡ¼L2γ

¼ σd
16πG

f−dðd−1ÞLd−2þ2ΛbLdgþΓN
1LðLÞ ð4:10Þ

the tadpole condition (4.6) is obviously equivalent to the
stationarity of this potential, i.e., to

d
dL

ΓðLÞ
����
L¼LSC

¼ 0; ð4:11Þ

at self-consistent values of the radius, L ¼ LSC.

C. AppðNÞ bases of tensor spherical harmonics

When the background geometries are d-spheres, the
operators K ½ḡ� and M ½ḡ; ḡ� as given in (2.15) and (2.7),
respectively, boil down to the Laplacian on SdðLÞ, denoted
by □ḡ, plus a constant coefficient times the unit matrix. As
a consequence, K ½ḡ� and M ½ḡ; ḡ� are diagonalized by the
eigenfunctions of □ḡ, with eigenvalues Fn and Fgh

n given
by those of □ḡ, up to a constant shift.
The vector and (symmetric rank-2) tensor harmonics on

Sd are well studied [24]. In the tensor case, for instance, the
eigenvalue equation

−□ḡðuJnmÞμν ¼ E J
nðuJnmÞμν ð4:12Þ

admits four series of solutions, commonly denominated by
the labels J ∈ fTT;TLT;LLT; trg. We refer to Appendix A
for a brief summary of their properties and a table listing the
eigenvalues E J

n and their multiplicities DJ
n.

(1) For d-spheres the Hilbert space of square-integrable
tensor fields has a basis that decomposes according
to

BT
N ¼ B

ðTTÞ
N ∪ B

ðTLTÞ
N ∪ B

ðLLTÞ
N ∪ B

ðtrÞ
N ð4:13Þ

whereby

B
ðJÞ
N ≡fuJnm ∈BðJÞjn≤N;m¼ 1;…;DJ

ng: ð4:14Þ

For the ghosts, BV
N in Eq. (3.29) becomes the

following subset of vector harmonics:

BV
N ¼ B

ðTÞ
N ∪ B

ðLÞ
N : ð4:15Þ
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Here,BðJÞ
N is again given by (4.14), but this time for

transverse ðJ ¼ TÞ and longitudinal ðJ ¼ LÞ vector
fields.
Note that all graviton and ghost bases are cut off

at the same highest n-quantum number, n ¼ N,
whereas the lowest possible value of n depends
on the type J. (See Table I.)

(2) The system AppðNÞ possesses a total of fGðNÞ and
fghðNÞ graviton and ghost degrees of freedom, those
numbers being the cardinality of BT

N and BV
N ,

respectively. In terms of the various multiplicities
we have

fGðNÞ ¼
XN
n¼2

ðDTT
n þDLTT

n þDLLT
n Þ

þ
XN
n¼1

Dtr
n ; ð4:16Þ

fghðNÞ ¼ 2
XN
n¼1

ðDT
n þDL

nÞ: ð4:17Þ

The Table in the Appendix shows that the multi-
plicities DJ

n for different types J obey the relations

DLTT
n ¼DT

n; DLLT
n ¼Dtr

n ¼DS
n ðn≥ 2Þ: ð4:18Þ

It is instructive therefore to express (4.16) and (4.17)
in terms of the three-independent multiplicities DTT

n ,
DT

n , and DS
n:

fGðNÞ ¼ DS
1 þ

XN
n¼2

ðDTT
n þDT

n þ 2DS
nÞ; ð4:19Þ

fghðNÞ ¼ 2ðDT
1 þDS

1Þ þ
XN
n¼2

ð2DT
n þ 2DS

nÞ: ð4:20Þ

(3) It can be observed that in calculating the difference
between the numbers of graviton and ghost modes,
significant cancellations occur between the terms in
(4.19) and (4.20) on all n-levels with 2 ≤ n ≤ N.
The contributions ∝ DS

n disappear completely, for
example, and we are left with

fGðNÞ − fghðNÞ

¼
XN
n¼2

ðDTT
n −DT

nÞ −DS
1 − 2DT

1 : ð4:21Þ

On a detailed mode-by-mode basis, this counting
formula reflects how the ghosts remove the unphys-
ical excitations from the hμν field.
The cancellation mechanism is particularly

transparent when N is much larger than unity.
Equations (A9) and (A10) from Appendix A yield
for N ≫ 1, in leading order,

XN
n¼2

DTT
n ¼ 1

2
ðdþ 1Þðd − 2ÞfscalðNÞ þOðNd−1Þ;

ð4:22Þ

XN
n¼2

DT
n ¼ ðd − 1ÞfscalðNÞ þOðNd−1Þ: ð4:23Þ

Here we employ the (leading order term of the)
analogous scalar sum as a convenient reference [I]:

TABLE I. Spectrum of −□ on SdðLÞ.
Eigenfunction Eigenvalue Muliplicity n

Scalars:
unm E S

n ¼ nðnþd−1Þ
L2 DS

n ¼ ð2nþd−1Þðnþd−2Þ!
n!ðd−1Þ! ¼ 2ðnþd−2

d−1 Þ þ ðnþd−2
d−2 Þ 0; 1;…

Vectors:
ðuTnmÞμ E T

n ¼ nðnþd−1Þ−1
L2 DT

n ¼ nðnþd−1Þð2nþd−1Þðnþd−3Þ!
ðd−2Þ!ðnþ1Þ! ¼ n½ðnþd−1

d−2 Þ þ ðnþd−2
n Þ�þðnþd−3

n−1 Þ 1; 2;…

ðuLnmÞμ E L
n ¼ nðnþd−1Þ−ðd−1Þ

L2
DT

n ¼ DS
n 1; 2;…

Tensors:
ðuTTnmÞμν E TT

n ¼ nðnþd−1Þ−2
L2 DTT

n ¼ ðdþ1Þðd−2ÞðnþdÞðn−1Þð2nþd−1Þðnþd−3Þ!
2ðd−1Þ!ðnþ1Þ!

¼ ðdþ 1Þðn − 1Þðnþd−3
d−3 Þþðdþ 1Þðd − 2Þ

×ðnþd−3
d−1 Þþ ðdþ1Þðn−1Þ

2
ðnþd−2

d−3 Þ

2,3,� � �

ðuLTTnm Þμν E LTT
n ¼ nðnþd−1Þ−ðdþ2Þ

L2
DLTT

n ¼ DT
n 2; 3;…

ðuLLTn Þμν E LLT
n ¼ nðnþd−1Þ−2d

L2
DLLT

n ¼ DS
n 2; 3;…

ðutrnÞμν E tr
n ¼ E S

n Dtr
n ¼ DS

n 0; 1;…
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fscalðNÞ≡XN
n

DS
n ¼ 2

d!
Nd þOðNd−1Þ: ð4:24Þ

Note that the prefactors of fscal in (4.22) and (4.23)
are precisely the numbers of independent field
components comprised by a transverse-traceless
tensor and a transverse vector field, respectively.
As a result, the difference fG − fgrav is seen to count
exactly the number of independent polarization
states of a physical graviton in d dimensions:

fGðNÞ−fghðNÞ¼
�
1

2
ðdþ1Þðd−2Þ−ðd−1Þ

�
fscalðNÞ

þOðNd−1Þ

¼1

2
dðd−3ÞfscalðNÞþOðNd−1Þ:

ð4:25Þ

This is indeed the correct result: a physical graviton
represents dðd − 3Þ=2 degrees of freedom per space-
time point,6 or stated differently, dðd − 3Þ=2 more
than a real scalar would have.

D. Spectral sums

Next we evaluate the integrated trace of the stress tensor
given in Eq. (3.47) for the special case of SdðLÞ back-
grounds. Since the operator K is diagonolized by the
eigenfunctions of the tensor Laplacian on SdðLÞ then, and
its potential-type terms are proportional to the unit operator,
the eigenvalues of K for the various series of tensor
modes, uJnm, J ∈ fTT;LTT;LLT; trg, are readily found.
Restricting the calculation from now on to d ¼ 4

dimensions, we obtain from (3.47):

ΘNðLÞ≡ ΘN ½L2γμν�
¼ fGðNÞ − fghðNÞ þ ΔΘNðL;ΛbÞ: ð4:26Þ

This representation of the trace involves two different kinds
of contributions: the (now exact) number of graviton and
ghost degrees of freedom,

fGðNÞ ¼ 1

12
½10N4 þ 80N3 þ 158N2 − 8N − 180�;

fghðNÞ ¼ 1

12
½8N4 þ 64N3 þ 160N2 þ 128N�; ð4:27Þ

and a more complicated, Λb-dependent spectral sum:

ΔΘNðL;ΛbÞ ¼ 2Λb

XN
n¼2

�
DTT

n

E TT
n þ 8L−2 − 2Λb

þ DLTT
n

E LTT
n þ 8L−2 − 2Λb

þ DLLT
n

E LLT
n þ 8L−2 − 2Λb

	

þ 2Λb

XN
n¼1

Dtr
n

E tr
n − 2Λb

: ð4:28Þ

Several remarks are in order to this point.
(1) The exact number counts in (4.27) for d ¼ 4 confirm

the expected asymptotics (4.25),

fGðNÞ − fghðNÞ ¼ ½10 − 8�N
4

12
þOðN3Þ: ð4:29Þ

The “10” is due to the ten independent entries of hμν,
and the “−8” stems from the ghosts. This leaves us
with two physical polarization states for the grav-
iton, as it should be.
Recalling from [I] the exact d ¼ 4 result for a real

scalar field,

fscalðNÞ ¼ 1

12
½N4 þ 8N3 þ 23N2 þ 28N�; ð4:30Þ

it is also interesting to note that the magic compen-
sation “10 − 8 ¼ 2” does not only take place in the
leading N4 term but also in the first subleading one
which is proportional to N3. In fact, the difference

½fGðNÞ − fghðNÞ� − 2fscalðNÞ ¼ OðN2Þ ð4:31Þ

is of only second order in N rather than third.
At orders Nk, k ¼ 2, 1, 0, there are nonzero

deviations from the “10 − 8 ¼ 2” count. We take
them as a first hint indicating that the idealization of
“quasiphysical” approximants with finitely many
degrees of freedom deteriorates for too small values
of N. While the N4 and probably also the N3 terms
are perfectly meaningful, lower orders should be
considered with a grain of salt.

(2) Note that the ΔΘN-contribution to ΘNðLÞ is entirely
due to the hμν-fluctuations; the sum (4.28) makes
their various J-sectors explicit. The ghost contribu-
tion to the integrated trace consists of nothing more
than the negative constant −fGðNÞ that appears in
(4.26). We had encountered this piece in Sec. III
already, even without being forced there to assume
any specific (i.e., simple) form of the background
metric ḡμν.

6One way to see this is to note that the symmetric matrix hμν
has dðdþ 1Þ=2-independent entries, but that only dðdþ 1Þ=2 −
d − d ¼ dðd − 3Þ=2 of the functions parametrizing hμν are free to
independently time-evolve physical information. Thereby, the
first “−d” is due to the coordinate conditions, while the second
one is a consequence of Bianchi’s identities which enforce
unavoidable relations among the hμν’s.
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The contribution ΔΘN with its complicated mode
sum originates from the “deformation” of the grav-
iton’s kinetic operator K ¼ K 0 þK 1 by the term
K 1 ∝ Λb. The latter introduces a second length
scale into the problem that can compete with L now,
namely the (Hubble) length Lb associated with the
bare cosmological constant. In the case Λb > 0,

Lb ≡
ffiffiffiffiffiffi
3

Λb

s
: ð4:32Þ

Neither K 0½ḡ� nor the Faddeev-Popov operator
M ½ḡ; ḡ� depend on this second scale.
If Λb ¼ 0, the integrated stress tensor for AppðNÞ

simplifies substantially. Since the correction term
ΔΘN vanishes identically in this case, the total
result,

ΘNðLÞ¼ fGðNÞ−fghðNÞ¼ const ðΛb¼0Þ; ð4:33Þ

is found to be independent of the radius L. Besides
its sheer simplicity, also the counting properties of
ΘN are noteworthy.

(3) Since L and Λb are the only dimensionful quantities
in the game, ΔΘNðL;ΛbÞ is actually a function of
one dimensionless variable only. Henceforth assum-
ing that Λb > 0, we set

ΔΘNðL;ΛbÞ≡ ϑNðzÞ; ð4:34Þ

where the argument of ϑN,

z≡ 2ΛbL2 ≡ 6

�
L
Lb

�
2

; ð4:35Þ

measures the radius in units of the bare Hubble
length.
Equation (4.28) assumes the following form now:

ϑNðzÞ ¼ z
XN
n¼2

�
DTT

n

nðnþ 3Þ þ 6− z
þ DT

n

nðnþ 3Þ þ 2− z

þ 2DS
n

nðnþ 3Þ− z

�
þ 5z
4− z

: ð4:36Þ

Here we took advantage of the relations (4.18) and
inserted the eigenvalues of the tensor Laplacian.
They can be found in Table I, which also provides us
with the multiplicities DJ

n for general d. Making
essential use of their explicit forms in d ¼ 4,

DTT
n ¼ 5

6
ðn − 1Þðnþ 4Þð2nþ 3Þ

DT
n ¼ 1

2
nðnþ 3Þð2nþ 3Þ

DS
n ¼ 1

6
ðnþ 1Þðnþ 2Þð2nþ 3Þ; ð4:37Þ

we can simplify Eq. (4.36) quite considerably by
means of a partial fraction decomposition. It yields

ϑNðzÞ ¼
5

3
zðN − 1ÞðN þ 5Þ þ 5z

4 − z

þ 5

6
zðz − 10Þ

XN
n¼2

2nþ 3

nðnþ 3Þ þ 6 − z

þ 1

2
zðz − 2Þ

XN
n¼2

2nþ 3

nðnþ 3Þ þ 2 − z

þ 1

3
zðzþ 2Þ

XN
n¼2

2nþ 3

nðnþ 3Þ − z
: ð4:38Þ

Obviously, ϑNðzÞ possesses three series of poles
at the points z≡ zpoleN;n where the denominators under
the sums vanish:

zpoleN;n ¼ nðnþ 3Þ þ Δz;

Δz ∈ f0; 2; 6g; n ¼ 2;…; N: ð4:39Þ

In Sec. V we shall come back to these poles in more
detail.

(4) It is instructive to reorganize Eq. (4.38) in the
following style:

ϑNðzÞ ¼ ϑquad
N ðzÞ þ ϑlog

N ðzÞ þ ϑconv
N ðzÞ: ð4:40Þ

The three contributions to ϑNðzÞ differ in their
leading behavior for N ≫ 1. If we let N → ∞, at
fixed z, the first two pieces, ϑquad

N ∝ N2 and
ϑlog
N ∝ lnðNÞ, diverge quadratically and logarithmi-

cally, respectively, while ϑconv
N converges to a finite

limit. The explicit expressions for ϑquad
N , ϑlog

N , and
ϑconv
N , respectively, can be found in Appendix B.
We emphasize in particular that ϑN contains

no quartic terms ∝N4. As a consequence,
ΔΘNðL;ΛbÞ≡ ϑNðzÞ is suppressed by a factor of
1=N2 relative to the constant term in ΘN , i.e., to
fG − fgh ∝ N4, when N → ∞ at fixed z.

(5) Finally, the finite sums defining ϑNðzÞ can be
evaluated explicitly in terms of digamma functions.
We display the somewhat unwieldy result in
Appendix C.
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V. SEQUENCES OF SELF-CONSISTENT
APPROXIMANTS

In this section we are going to assemble the above results
in order to complete the construction of the approximant
systems. The final step consists in implementing the
gravitational backreaction of the quantized fluctuation
degrees of freedom on the universe they live in.
In four dimensions, the Hubble radii L≡ LSC

N of self-
consistent background universes for AppðNÞ must be
found from the tadpole equation:

4ΛbL4 − 12L2 −
3G
π

ΘNðLÞ ¼ 0: ð5:1Þ

Thereby the integrated trace of the stress tensor,

ΘNðLÞ ¼ fðNÞ þ ΔΘNðL;ΛbÞ; ð5:2Þ
comprises a term which is leading when N ≫ 1 and
independent of L,

fðNÞ≡ fGðNÞ − fghðNÞ ¼ 1

6
N4 þOðN3Þ; ð5:3Þ

as well as a second term which, while L dependent, is
subdominantwith respect toN. In fact, forN → ∞ at fixedL,
ΔΘN ∝ N2 and so ΔΘN is suppressed by two powers of N.
Therefore, and also because of the complexity of the

function ΔΘN , we proceed in two steps now. At first, we
derive the leading order solution to (5.1) by retaining
only the dominant term, i.e., the one quartic in N,
ΘN ≈ fðNÞ ≈ 1

6
N4, and then we show in a second step that

the essential features of the result obtained remain unaltered
when we include the ΔΘN-correction.

A. The leading-N approximation

(1) So, to begin with, let us neglect ΔΘN and solve
Eq. (5.1) with a constant ΘN ≡ fðNÞ. For Λb > 0,
we find that the consistency condition does indeed
possess regular solutions, namely exactly one self-
consistent radius for each value of N. Expressed in
terms of the bare Hubble length Lb and the Planck
length lPl ≡G1=2, the radii are given by

ðLSC
N Þ2 ¼ 1

2
L2
b

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

π

�
lPl

Lb

�
2

fðNÞ
s �

: ð5:4Þ

The corresponding family of self-consistent back-
grounds amounts to a complete sequence of
approximants AppðNÞ, well behaved for all
N ¼ 0; 1; 2;…;∞. Already its very existence is
nontrivial.7

(2) Concerning the interpretation of this sequence, recall
that every approximant AppðNÞ is a quantum system
in its own right. It consists of fGðNÞ quantized
modes of the metric and fghðNÞ ghost modes, which
together are effectively equivalent to f ¼ fG − fgh
modes of a physical graviton. Those modes inhabit a
background spacetime which they have selected
themselves, S4ðLSC

N Þ. Among all spheres, this is
the one the modes like the most to “live in.”
Symbolically, for every given N the state of the

total system reads

AppðNÞ ∼ ðfðNÞ physical graviton modesÞ
⊗ S4ðLSC

N Þ: ð5:5Þ

Now let us move upstairs in the tower of systems and
states, letting in turn N ¼ 0, N ¼ 1, N ¼ 2;…. At
the lowest level,Appð0Þ is the classical system; in its
universe the scale is set by the bare value of the
Hubble radius, LSC

0 ¼ Lb ¼
ffiffiffiffiffiffiffiffiffiffiffi
3=Λb

p
.

Then, increasing N ¼ 1; 2; 3;…, Eq. (5.4) shows
that the radius LSC

N grows monotonically. Each time
we add degrees of freedom to the approximant its
Hubble length becomes larger.
In fact, if N ≫ 1 so that fðNÞ ≈ 1

6
N4 is a

good approximation, Eq. (5.4) yields a linear
N-dependence of LSC

N ,

LSC
N ¼

�
1

24π

�
1=4

N
ffiffiffiffiffiffiffiffiffiffiffi
lplLb

q �
1þO

�
1
1

N

�	
: ð5:6Þ

(3) Most importantly, the behavior LSC
N ∝ N implies that

the sequence we found possesses a well-defined
limit for N → ∞, and that the self-consistent back-
grounds S4ðLSC

N Þ approach flat space in this limit:

lim
N→∞

AppðNÞ ∼ ðfully quantized physical gravitonÞ
⊗ ðself-consistent spacetimeR4Þ:

ð5:7Þ

Thus our main result is that the energy and
momentum of the vacuum fluctuations executed
by the quantized metric, contrary to longstanding
prejudices based upon background-dependent cal-
culations, do not cause an infinite spacetime curva-
ture. Quite the reverse is true: adding graviton
degrees of freedom, i.e., lifting the cutoff, tends to
flatten the universe.

(4) At this point let us add also some remarks on the
more technical aspects of this result.

(4a) We find that it is neither the Planck nor the classical
Hubble length that sets the scale of the LSC

N s and the
7See [I] for examples with incomplete sequences or even no

solutions at all.
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spacing between them. Rather, it is the geometric
mean of those scales,

ffiffiffiffiffiffiffiffiffiffi
lbLb

p
.

(4b) Note also that upon rewriting (5.6) as

LSC
N ¼ N

�
G

8πΛb

�
1=4

�
1þO

�
1

N

�	
; ð5:8Þ

the result is seen to be manifestly nonperturbative,
displaying a nonanalytic G1=4-dependence on
Newton’s constant.

(4c) The approximant system AppðNÞ with its fðNÞ
degrees of freedom is governed by the effective
action

ΓNðLÞ ¼ π

3G
½−6L2 þ ΛbL4� þ ΓN

1LðLÞ ð5:9Þ

whose one-loop contribution can be recovered from
the stress tensor by integrating (4.8):

ΓN
1LðLÞ ¼ −

Z
L
dL0ΘNðL0Þ

L0 þ const: ð5:10Þ

In the Θ ¼ f approximation, this potential is strik-
ingly simple:

ΓN
1LðLÞ ¼ −fðNÞ lnðLÞ þ const: ð5:11Þ

One easily checks that (5.9) with (5.11) assumes a
minimum at L ¼ LSC

N .
What is remarkable about Eq. (5.11) is the purely

logarithmicL-dependence of ΓN
1L. It is the result of an

exact evaluation of the one-loop determinant at order
N4. Specifically, Γ1L contains none of the perhaps
expected terms proportional to L4 and L2 which, on
spheres, correspond to

R ffiffiffi
g

p
and

R ffiffiffi
g

p
R, respec-

tively. When present, they would renormalize the
values of G and Λb in the total effective action (5.9).
As was discussed in [I] already, such terms are the

typical outcome of calculations which employ a
dimensionful (P-type) cutoff and express their an-
swers by a (usually only asymptotic) series expan-
sion. The chief example of a regularization scheme in
this class is the heat-kernel based calculation of one-
loop determinants with a proper time cutoff [I].

(5) In future work, it will be interesting to compare our
results to those from other background independent
approaches such as Monte Carlo simulations of
Regge calculus or causal dynamical triangulation
(CDT)-based statistical models, for example [25,26].
We remark however that any comparison of this kind
is possible at the level of observable final results
only. The basic mathematical mechanism which we
propose here is specifically related to the “paradoxi-
cal implementation” of background independence

which actually does use backgrounds but fixes them
dynamically. By contrast, the statistical approaches
do not introduce a background at all, and so there is
probably no direct technical analog of the self-
adjustment process in the form above.

B. Inclusion of the ΔΘN correction

Finally we include the correction termsΔΘN , subleading
with respect to N, into our determination of self-consistent
radii. We are going to show that even in the presence of
ΔΘN the sequence fAppðNÞjN ¼ 0; 1; 2;…g from the
previous subsection, with only inessential modifications,
continues to be a solution to the tadpole conditions. Hence,
again, the conclusion will be that spacetime approaches flat
space in the continuum limit N → ∞.8

Taking advantage of the convenient variable (4.35),
z ¼ 6ðL=LbÞ2, we write the full tadpole equation in the
dimensionless form QNðzÞ ¼ 0, where the function QN
reads

QNðzÞ≡ z2 − 6z −
3

π
GΛb½fðNÞ þ ϑNðzÞ�; ð5:12Þ

and ϑNðzÞ is represented by the finite sums (4.38) or, in
evaluated form, by (C2). Apart from N, Eq. (5.12) involves
only a single free parameter, namely the dimensionless
productGΛb. Under the natural assumptionΛb ¼ Oðm2

PlÞ it
is of order unity. While we shall continue to assume that Λb
is positive, our conclusions will not depend on the
numerical value of GΛb.
With ϑN neglected we had found only a single solution at

each N, namely (5.4), or what is equivalent,

zSCN jϑN→0 ¼ 3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GΛb

3π
fðNÞ

r �

¼
�
GΛb

2π

�
1=2

N2 þOðNÞ: ð5:13Þ

The new feature due to ϑN is that QNðzÞ possesses more
than one zero now, actually a considerable number of them
which increases proportional to N2.
In Fig. 2 we display the graph of QNðzÞ and its

analog with ϑN omitted, Q̄NðzÞ≡ z2 − 6z − 3
πGΛbfðNÞ.

Obviously, the overall behavior of QN is dictated by the
polynomial Q̄N , and QN differs from Q̄N only close to the
poles zpoleN;n located at (4.39). There, ϑN escapes to infinity
and returns with the opposite sign, while Q̄N is smooth.
Since ϑN is of order N2 only, this feature becomes
increasingly pronounced for N → ∞. In this limit,
ϑNðzÞ=fðNÞ → 0 at all regular points z ≠ zpoleN;n . Hence,

8Interestingly, from a quite different perspective, recent work
on asymptotically safe gravity [27] found evidence which seems
to point in a similar direction.
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the graph ofQN basically agrees with that of Q̄N , except for
a “forest” of infinitely thin spikes.
At finiteN, as ϑN changes its sign at the poles, continuity

implies that ϑN must possess a zero zzeroN;j ∈ ½zpoleN;j ; z
pole
N;jþ1� in

between any pair of consecutive poles.
In principle, any of those zeros is a possible candidate for

the self-consistent radius of AppðNÞ. In constructing a
sequence fAppðNÞjN ¼ 0;…;∞g, we have the freedom to
select, for all N independently, one particular zero from the
respective set of candidates: zSCN ∈ fzzeroN;j g.
The rest of the argument proceeds along the following

lines now:
(1) Different sequences of choices for zSCN imply

different sequences of approximant systems. They
may have inequivalent properties and some of
them might, in principle, converge to physically
different continuum limits. This situation is not
unfamiliar: different regularization schemes may
probe different (universality classes of) continuum
limits.

(2) Near the poles the one-loop corrections are becom-
ing huge, and this casts doubt on the reliability of the
loop expansion with ϑN included. Fortunately,
the zeros are about in the middle between the

neighboring poles, and so they avoid the pathologi-
cal regimes as much as possible.

(3) For specific AppðNÞ sequences it is possible to
diminish the influence of ϑNðzÞ even further by
picking the zeros for the self-consistent radii
appropriately.
In fact, let us focus henceforth on the special

sequence fAppðNÞgwhich is defined by the follow-
ing rule: For all N, select that particular zero from
the set fzzeroN;j g which is closest to the one implied by
the ΘN ¼ f approximation, i.e., to zSCN of (5.13).
Then, denoting its label by j ¼ jðNÞ, the effect of
ϑðzÞ is not more than a tiny shift by an amount
zzeroN;jðNÞ − zSCN jϑ¼0 → 0 which decreases rapidly
for N → ∞ due to the proliferation of eligible
zeros.

(4) For N → ∞, the entire forest of spikes and
zeros, and with it the special zero zzeroN;jðNÞ, moves
towards larger values of z. The latter zero is
very close to zSCN jϑ¼0 ∝ N2 which runs to infinity
rapidly. This, then, implies that the self-consistent
spacetime related to the limit limN→∞AppðNÞ has
infinite Hubble radius and is nothing but flat
space.

FIG. 2. Graphs of the functions QNðzÞ and Q̄NðzÞ for N ¼ 10 and GΛb ¼ 1.

BACKGROUND INDEPENDENT …. II. METRIC FLUCTUATIONS PHYS. REV. D 104, 125008 (2021)

125008-19



Thus we completed the demonstration that even if one
takes the subleading ϑN contributions at face value and
includes them into the tadpole equation, there exists a
“universality class” of N → ∞ limits for which ϑN is fully
irrelevant.9

VI. SUMMARY AND CONCLUSION

In this paper we employed a new quantization scheme in
order to explore the dynamical effect which quantum
vacuum fluctuations exert on the spacetimes described
by metric quantum gravity. At all stages of the calculations,
the scheme takes appropriate account of the pivotal role that
is played by background independence whenever gravity is
dynamical. Most importantly, the new approach extends the
requirement of background independence to the level of the
regularized precursors (approximants) of the quantum field
theory in question and to the design of admissible cutoff
schemes.
The general features of this approach have been outlined

in [I] already where it has also been tested for the case of
classical gravity coupled to a free quantized matter field.
The present investigation instead is devoted to the zero-
point oscillations of the spacetime metric itself. To quantize
it, we employed a one-loop approximation of quantum
general relativity, considered an effective theory. Since
matter fields can be added straightforwardly, we focused on
pure quantum gravity here.
Our main result is that the actual effect which quantized

metric fluctuations have on the curvature of spacetime is
exactly opposite to what is suggested by the well-known
calculations which, following Pauli [8], encounter the
cosmological constant problem of a cutoff-size curvature:
Each additional graviton mode that gets quantized, rather
than curving spacetime more strongly, in reality reduces the
(positive, scalar) curvature, and thus drives the universe
further towards flat space.
The explanation of this striking difference parallels the

analysis in [I], where we had obtained an analogous result
for a scalar matter field. Namely, the typical standard
treatments which sum zero-point energies of harmonic
oscillators end up with effective cosmological constants
many orders of magnitude beyond anything acceptable, are
flawed by crucially relying on the unphysical assumption
of an externally provided, rigid spacetime that would not
respond to the energy and momentum of its inhabitants. As
we explained in connection with Fig. 1 above, this
assumption amounts to performing the continuum limit
and including the gravitational backreaction in the wrong
order. It violates background independence at the approx-
imant level.

So, within its technical limitations,10 the present results
seem to suggest that pure quantum Einstein gravity should
have a distinguished ground state, namely flat space.
When seen in a broader context, they make it quite obvious
how dangerous it is to base investigations into the interplay
of gravitational and quantum effects on the chimera of a
rigid spacetime, even in cases where this violates back-
ground independence only at the intermediate stages of the
calculation.
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APPENDIX A: TENSOR HARMONICS ON Sd

In this Appendix we summarize the main properties of
the tensor harmonics of spin 0,1,2 on SdðLÞ. They satisfy
the eigenvalue equation,

−□ḡunm ¼ E nunm; m ¼ 1; 2;…; Dn ðA1Þ

with the eigenvalues E n and multiplicities Dn listed in
Table I.
While there exists only one series of scalar harmonics,

uSnm, in the vector case we must distinguish transverse
harmonics ðuTnmÞμ and longitudinal ones, ðuLnmÞμ. The
former satisfy D̄μðuTnmÞμ ¼ 0, and the latter are gradients
of scalar harmonics, ðuLnmÞμ ¼ D̄μuSnm.
As for symmetric rank-2 tensor harmonics, there are

four series; three of them, namely ðuJnmÞμν with J ∈
fTT;LTT;LLTg are comprised of traceless tensors:
ḡμνðuJnmÞμν ¼ 0. The first series, the “transverse traceless”
tensors ðuTTnmÞμν, satisfy D̄μðuTTnmÞμν ¼ 0, while the LTT and
LLT-type tensors are derivatives of simpler harmonics:

uLTTμν ¼ D̄μuTν þ D̄νuTμ ; ðA2Þ

uLLTμν ¼ D̄μuLν þ D̄νuLμ −
2

d
ḡμνD̄αuLα

¼ 2D̄μD̄νuS −
2

d
ḡμν□ḡuS: ðA3Þ

Finally, the tensors of the fourth series have a nonzero trace,
being of the form ðutrnmÞμν ¼ ḡμνuSmn.

9Generally speaking, there could also be others. But since they
would owe their existence to a nominally small correction to the
leading-N behavior the validity of the approximation might not
extend to them.

10While the explicit calculations employed the Einstein-Hilbert
action, the role of background independence described in this
paper is likely to be relevant to a much broader class of gravity
theories, in particular all those admitting an effective field theory
description by general relativity at low energies. Then, at the very
least, the corresponding IR fluctuation modes should exert the
described effect on the cosmological constant.
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These systems of scalar, vector and (symmetric, rank-2)
tensor harmonics are complete, i.e., they constitute bases
of the corresponding L2 Hilbert spaces. Hence a metric
fluctuation hμν, for example, can be expanded according to

hμνðxÞ ¼
X∞
n¼2

�XDTT
n

m¼1

αTTnmuTTnmðxÞμν þ
XDLTT

n

m¼1

αLTTnm uLTTnm ðxÞμν

þ
XDLLT

n

m¼1

αLLTnm uLLTnm ðxÞμν
	
þ
X∞
n¼0

XDtr
n

m¼1

αtrnmutrnmðxÞμν:

ðA4Þ

For further details we must refer to [24].
It is instructive to consider the n → ∞ asymptotics of the

three independent multiplicity functions DS
n, DT

n , DTT
n . In

terms of the result for scalars,

DS
n ¼

2

ðd − 1Þ! n
d−1

�
1þO

�
1

n

�	
; ðA5Þ

the other asymptotic degeneracies read

DT
n ¼ ðd − 1ÞDS

n

�
1þO

�
1

n

�	
; ðA6Þ

DTT
n ¼ 1

2
ðdþ 1Þðd − 2ÞDS

n

�
1þO

�
1

n

�	
: ðA7Þ

The prefactors of DS
n in (A6) and (A7) equal precisely

the numbers of independent field components which trans-
verse vectors and transverse-traceless tensors possess
in d dimensions, namely (d − 1) and ðdþ 1Þðd − 2Þ=2,
respectively.
Furthermore, let us count the modes having quantum

numbers n ≤ N for a given N ≫ 1. The above formulas
imply the following leading order behavior of the respec-
tive total number of modes:

XN
n

DS
n ¼

2

d!
Nd þOðNd−1Þ; ðA8Þ

XN
n

DT
n ¼ ðd − 1Þ

XN
n

DS
n þOðNd−1Þ; ðA9Þ

XN
n

DTT
n ¼ 1

2
ðdþ 1Þðd − 2Þ

XN
n

DS
n þOðNd−1Þ: ðA10Þ

These relations are needed and discussed further in the
main text.

APPENDIX B: DECOMPOSITION
OF ϑN ACCORDING TO THE
LARGE-N ASYMPTOTICS

In this Appendix we list the three terms of different
large-N asymptotics that appear on the rhs of Eq. (4.40).
They are given by the following finite spectral sums:

ϑquad
N ðzÞ ¼ 5

3
z
XN
n¼2

ð2nþ 3Þ ¼ 5

3
zðN − 1ÞðN þ 5Þ; ðB1Þ

ϑlog
N ðzÞ ¼ 5

3
zðz − 10Þ

XN
n¼2

n
nðnþ 3Þ þ 6 − z

þ zðz − 2Þ
XN
n¼2

n
nðnþ 3Þ þ 2 − z

þ 2

3
zðzþ 2Þ

XN
n¼2

n
nðnþ 3Þ − z

; ðB2Þ

ϑconv
N ðzÞ ¼ 5z

4 − z
þ 5

2
zðz − 10Þ

XN
n¼2

1

nðnþ 3Þ þ 6 − z

þ 3

2
zðz − 2Þ

XN
n¼2

1

nðnþ 3Þ þ 2 − z

þ zðzþ 2Þ
XN
n¼2

1

nðnþ 3Þ − z
: ðB3Þ

The third contribution, ϑconv
N ðzÞ, approaches a well-

defined limit when N → ∞. It can be expressed in terms
of elementary functions:

lim
N→∞

ϑconv
N ðzÞ ¼ π

2
z

�
5
ðz − 10Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z − 15

p tan

�
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z − 15

p �

þ 3
ðz − 2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþ 1

p tan

�
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþ 1

p �

þ 2
ðzþ 2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþ 9

p tan

�
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4zþ 9

p ��

þ 5zþ 36

4 − z
þ 24

6 − z
þ 15z − 14: ðB4Þ

The trigonometric functions in (B4) give rise to infinite
sequences of poles and zeros. They are simple examples of
analogous sequences displayed by the general Ψi functions
discussed in Appendix C below.
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APPENDIX C: REPRESENTATION OF ϑN IN
TERMS OF DIGAMMA FUNCTIONS

For every finite number N it is possible to evaluate
the spectral sums of Eq. (4.38) that represent ϑNðzÞ
in terms of Euler’s psi-, or digamma-function. By
making repeated use of the difference equation it
satisfies [28],

ψðxþ N þ 1Þ − ψðxÞ ¼
XN
k¼0

1

xþ k
; ðC1Þ

we obtain the following final answer:

ϑNðzÞ¼
5

3
zðN−1ÞðNþ5Þþ 5z

4−z
þ5

6
zðz−10ÞΨ1ðN;zÞ

þ1

2
zðz−2ÞΨ2ðN;zÞþ1

3
zðzþ2ÞΨ3ðN;zÞ: ðC2Þ

The functions Ψi in (C2) are given by a linear combination
of digamma functions:

ΨiðN;zÞ≡ψ

�
Nþ5

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ1

4
qi

r �
þψ

�
Nþ5

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ1

4
qi

r �

−ψ

�
7

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ1

4
qi

r �
−ψ

�
7

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ1

4
qi

r �
: ðC3Þ

Herein the constants qi are q1 ¼ −15, q2 ¼ 1, and q3 ¼ 9,
respectively.
The arguments of the digamma functions in (C3) are

all real individually if z ≥ 15, i.e., L=Lb ≥
ffiffiffiffiffiffiffiffi
5=8

p
. The

complete Ψi functions are real for all z, however, as
ψðxþ N þ 1Þ − ψðxÞ ∈ R for all x ∈ C.
Along the real axis, the digamma function is known to

have poles of first order at the negative integers. In (C2)
with (C3) they conspire so as to reproduce those of ϑNðzÞ
which are visible in (4.38) and given in (4.39).
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