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We study the prelude to black-hole formation using a suspended shell composed of physical matter that
fulfills the dominant energy condition. Here, the collapse of the shell is brought to rest when the formation
of the horizon is imminent but has not yet occurred. As the main achievement of this work, we obtain the
Feynman propagator which connects the interior and the exterior of the shell within two local coordinate
patches. It is derived by drawing an analogy to the propagation of light across interfaces that separate
regions with different susceptibilities inside a medium. As a first application, we use this propagator to
determine the vacuum persistence amplitude in the presence of external sources. On timescales much
shorter than the Page time, we find that the amplitude builds up with time yet remains consistent with
perturbative unitarity.
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I. INTRODUCTION

In recent years, observations have been able to test our
understanding of black holes with increasing accuracy. For
example, the gravitational wave signal from a binary black-
hole merger provides us with information about their
masses and intrinsic vibrational modes [1]; similarly, the
event horizon telescope [2] probes the classical geometry
close to the event horizon. While all of these observations
have been compatible with the prediction from general
relativity, deep theoretical problems remain beyond the
classical level. Most prominently, the information paradox
arises from a semiclassical analysis of the formation and
evaporation process of a black hole. In a nutshell, it is based
on the observation that an initially pure quantum state that
collapses into a black hole evolves into a mixed state after
the black hole has evaporated [3], in contradiction to a
consistent, unitary time evolution.
In this work, we study the quantum consistency of a thin-

shell system close to black-hole formation. To this end, we
will pursue a very conservative approach where we employ
the standard semiclassical toolkit. This will avoid

complications arising from the presence of a horizon, yet
allow us to adiabatically probe the quantum stability of the
shell system while it approaches a black-hole state. In other
words, we start out with a configuration that is paradox-free
and very slowly move toward horizon formation. We then
ask if we can find any direct evidence for a buildup of
quantum corrections that would indicate the breakdown of
the semiclassical approximation. This could be hinting at a
nonperturbative description of black holes [4–7] as it has
also been suggested through explicit constructions in the
literature [8–19].
Our proposal faces two immediate challenges. First, we

have to come up with a physical model that admits an
arbitrarily slow collapse. In particular, this means that we
cannot use standard collapse models where for typical
black-hole masses the near-horizon regime as seen by a
comoving observer is passed within microscopic time-
scales. Second, we have to find a sufficiently simple
diagnostic tool, which enables us to probe the quantum
evolution of fields on the shell background over long
enough time intervals to be sensitive to accumulated growth
effects.
We overcome the first challenge by introducing a

suspended shell model. Here, the idea is to stabilize a
massive, nonrelativistic shell with surface density ρ through
its surface pressure p, which we treat as a free parameter.
Provided the shell radius R is slightly larger than the
Schwarzschild radius rg, explicitly R > 25rg=24, we find
that the shell can be brought to a complete stop while
still being composed of matter fulfilling the strong and
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dominant energy condition. In such a static model, we can
treat R as a free dial to probe different stages of black-hole
formation.
Regarding the second challenge, we will study the pro-

pagation of a quantum scalar field on the gravitational shell
background. Specifically, we will calculate for an inertial
observer the persistence amplitude of the Minkowski
vacuum inside the shell in the presence of an external
source [20]. In particular, this diagnostic tool is sensitive to
effects that build up over time and could be missed in a
standard stability perturbative analysis.1 This calculation
requires the Feynman propagator to be valid in the interior
and exterior to properly account for reflection and trans-
mission effects at the shell. For simplicity, we will use a
Riemann normal neighborhood (RNC) expansion anchored
in the exterior vicinity of the shell. Together with the
interior Minkowski spacetime, this flat patch provides a
local covering of the physical manifold. This approxima-
tion enables us to derive an analytic result for the Feynman
propagator and isolate its reflective and transmissive
contributions. This is complementary to the gray-body
calculation as it is valid for high-frequency probes (as
opposed to low-frequency ones [4]). It is also reminiscent
of Hawking’s analysis [23], except that our collapsing body
has been brought to a stop rather than being freely falling
and our (local) vacuum will be defined inside the shell
rather than asymptotically.
As a result of these investigations, we find that the

vacuum persistence amplitude is enhanced by the presence
of a near-critical shell. This effect gets stronger the longer
the geometry is probed and the closer we get to horizon
formation. Whether the amplitude would ever grow above
unity, which would signal a quantum instability and hence a
failure of the semiclassical treatment, cannot be answered
conclusively within the validity of our approximation. The
physical reason is that the exterior RNC patch has a finite
temporal extent, which is hierarchically smaller than the
lifetime of the black hole as it corresponds to the inertial
frame of a freely falling observer that reaches and crosses
the shell in a short amount of proper time. However, we will
learn how this challenge can be overcome in future work by
using an orbital rather than a radially infalling observer,
who can then probe the shell indefinitely.
This article is organized as follows: In Sec. II we provide

a warm-up by computing the propagation within two media
with different susceptibilities. Later, the two media can be

identified with the two coordinate patches inside and
outside the shell. We present a perturbative technique,
which describes one medium as an interaction term, as well
as a nonperturbative approach based on matching con-
ditions. Both techniques are shown to agree. In Sec. III, we
first introduce our suspended shell model and then use it to
compute the Feynman propagator, employing the same
techniques as before. Section IV is then devoted to a
calculation and discussion of the vacuum persistence
amplitude. We conclude in Sec. V. Throughout this article,
we use the metric signature diagð−;þ;þ;þÞ and units
where c ¼ G ¼ ℏ ¼ 1.

II. PROPAGATION ACROSS BOUNDARIES

A. Scalar field in a medium

Consider a massless and real scalar field ϕ coupled to an
external source J and placed in a spacetime-homogeneous
medium in flat space. The effect of this medium on the field
can be described in terms of a constant susceptibility ε,
which influences the propagation and therefore the equa-
tion of motion

□
εϕ ≔ ð−ε∂2

t þ ∂2
xÞϕ ¼ −J: ð1Þ

The corresponding dispersion relation for a plane wave
expfiðωε

kt − kxÞg with momentum k is ωε
k ¼

ffiffiffiffiffiffi
k2

p
=

ffiffiffi
ε

p
in

Cartesian coordinates. This effect can be fully captured by
introducing for the scalar product an auxiliary metric
ηε ¼ diagð−1=ε; 1; 1; 1Þ, for example used for the kinetic
contractions on a Minkowski background M endowed
with the metric η. In the rest frame of the medium the action
giving rise to (1) is composed of the free part Sε0 and the
interaction term SJ:

Sε0 þ SJ ¼
Z
M

dμðxÞ
�
−
1

2
ημνε ∂μϕ∂νϕþ Jϕ

�
; ð2Þ

with measure dμðxÞ ≔ d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðηÞp

. In the limit ε → 1

the usual Minkowski action is recovered.
In this work, we are mainly interested in providing an

explicit expression for the Feynman propagator, which is the
time-ordered correlator evaluated in the vacuum state jΩi,

Δε
xy ≔ ihTϕxϕyi; ð3Þ

where T denotes time ordering, h:i ≔ hΩj:jΩi andwe use the
shorthand fx ≔ fðxÞ and fxy ≔ fðx; yÞ for any function or
distribution fðxÞ, fðx; yÞ, respectively. This propagator
fulfills the fundamental equation of Green’s functions

□
εΔε

xy ¼ −δð4Þxy ; ð4Þ

with appropriate boundary conditions.

1In [6,7] a similar objective was pursued by studying secular
growth close to Schwarzschild and Rindler horizons, respec-
tively. Also, see [21] for a more recent work where coherent states
are collapsed into black holes. In contrast, our work has its focus
on the Minkowski vacuum in the interior of the shell (rather than
the asymptotic one) and our shell—as seen by a comoving
observer—is prevented from crossing the horizon. For a specific
microscopic realization of a suspended shell in the context of
string theory see [22].
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Computing the propagator in such a medium with the
correlator (3) then results in

Δε
xy ¼ θðxt − ytÞGε

xy þ θðyt − xtÞGε
yx; ð5Þ

where we introduced the Wightman distribution Gε
xy ≔

ihϕxϕyi as

Gε
xy ¼

Z
ε

k
eik⊥ðx⊥−y⊥Þ; ð6Þ

with the shorthand

Z
ε

k
≔ i

Z
d3k

ð2πÞ32ωε
kε
e−iω

ε
kðxt−ytÞeikkðxk−ykÞ: ð7Þ

It is straightforward to check that Δε fulfills Eq. (4). Here,
the spacetime coordinates are labeled for later conveni-
ence as xμ ¼ ðxt; x⊥;xkÞ and analogously for the spatial
momenta k ¼ ðk⊥;kkÞ. In the next sections we derive an
expression for the propagator which is valid in the presence
of regions with different susceptibilities.

B. Perturbative approach

1. Different dispersion relations encoded as interaction

We first present a perturbative derivation of the propa-
gator in systems with boundaries. As an instructive
example, we consider a spacetime region with domain S
and its complement SC characterized by the susceptibilities
εS and ε, respectively. We can think of such a system as a
scattering object S placed in a surrounding medium SC. The
free action of a scalar field in this system is given by

S0 ¼ −
1

2

Z
SC

dμημνε ∂μϕ∂νϕ −
1

2

Z
S

dμημνεS ∂μϕ∂νϕ: ð8Þ

As before, the kinetic terms determine the dispersion
relation of the scalar field within the scattering object
and the surrounding medium. However, solving the defin-
ing equation of the propagator in such a system can become
arbitrarily complicated depending on the geometry of the
scattering object.
This difficulty can be circumvented by adopting the

following viewpoint. We require that the field ϕ propagates
everywhere according to the first kinetic term in (8); i.e., we
identify it with the free action Sε0 introduced in (2). Since
this leads to an error when describing propagation within
the scattering object, we compensate for this by adding an
interaction term SI to the action. This then corresponds to a
formal (but fully equivalent) rewriting of (8); explicitly
S0 ¼ Sε0 þ SI , where

SI ≔
Z
S

dμLI ≔ −
1

2

Z
S

dμðημνεS ∂μϕ∂νϕ − ημνε ∂μϕ∂νϕÞ: ð9Þ

Adopting this perspective, the propagator Δε in (5) des-
cribes the “free” propagation valid for a uniform medium
with susceptibility ε. The effect of the scattering object is
then encapsulated in the interaction term with Lagrangian
LI ¼ λSð∂tϕÞ2=2 and coupling constant λS ¼ εS − ε.
Employing the interaction picture of field theory, the
nonperturbative propagator in the presence of the scattering
object, valid everywhere in space, is given by

Δxy ¼ ihTϕxϕye
i
λS
2

R
S
dμzð∂ztϕzÞ2icon; ð10Þ

where h·icon only includes connected diagrams and as usual
limTz→∞ð1þiϵÞ

R Tz
−Tz

dzt is understood. Contractions of fields
in this theory give rise to the propagator Δε and εS only
occurs through the coupling constant λS.
We note that there is a formal symmetry under the

exchange of S and SC. This implies that we could have
instead defined the free propagation with respect to the
region S and the effect of the medium in SC in terms of an
interaction term. In this way, ΔεS would have been the
propagator and ε − εS the coupling constant. While this
choice does not matter in the nonperturbative evaluation
(10), it is relevant when (10) is truncated at finite order
in λS.
This is demonstrated by the following example: If we

take the scattering object to cover the whole space, (10)
gives rise to a geometric series that can be resummed to
ΔεS . This is not surprising, since in the same way a massive
propagator can be generated from the resummation of the
mass term m2ϕ2 “interactions” [24]. However, if one
truncates at a finite order in λS, one does not obtain ΔεS ,
but a propagator which at best approximates ΔεS . On the
other hand, if one treats the spacetime region with sus-
ceptibility ε as the interacting part, the integral in (10) has
no support and thus vanishes. In this way, ΔεS trivially
emerges no matter how many orders in λS we take into
account. Therefore, for this particular system, the latter
point of view is preferable. Moreover, if the difference
between ε and εS is sufficiently small, evaluating (10)
perturbatively to some order in λS is a viable approach, but
fails of course if the difference is too large. This non-
perturbative regime necessarily sets in when jλSj⩾1 (or
even earlier, as we will see below).

2. Reflection and transmission of a boundary

Demonstrating the effects of a boundary separating two
media with different susceptibilities can be best achieved
for the simplest case of two half-spaces. The scattering
object has susceptibility εS and covers the upper half-space
> with spatial domain S ¼ fx∶x⊥⩾0g. Correspondingly,
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the lower half-space < with domain SC ¼ fx∶x⊥ < 0g has
susceptibility ε as depicted in Fig. 1.
We can expand (10) for small λS,

Δxy ¼ Δε
xy þ λS

Z
S

dμz1∂zt
1
Δε

xz1∂zt
1
Δε

z1y

þ λ2S

Z
S

dμz1dμz2∂zt
1
Δε

xz1∂zt
1
∂zt

2
Δε

z1z2∂zt
2
Δε

z1y þOðλ3SÞ:

ð11Þ

We then use standard field theory methods to further
evaluate these different tree-level terms. This lengthy but
straightforward calculation is detailed in Appendix A.
Fixing the causal arrangement with xt > yt and setting
y⊥ < 0 for simplicity, the various contributions to the
resummed propagator (or equivalently to the Wightman
distribution)Gxy ≔ Δxyjxt>yt can be grouped in three terms,

Gxy ¼ ð1 − θx⊥ÞðGε
xy þGR

xyÞ þ θx⊥G
T
xy: ð12Þ

There is a single term Gε
xy, as defined in (6), describing

direct propagation from y to x in the lower half-space <.
The two diagrams depicted in Fig. 1(a) contribute to the
reflection propagator (for x⊥ < 0)

GR
xy ¼ −

Z
ε

k
eik⊥ðx⊥þy⊥ÞRðω̄Þ; ð13Þ

with reflection coefficient

Rðω̄Þ ¼ 1

4
ω̄ −

1

8
ω̄2 þOðω̄3Þ; ð14Þ

where for convenience we introduced a rescaled expansion
parameter ω̄ ¼ λSðωε

kÞ2=k2⊥ ¼ λS½1þ tan2ðαÞ�=ε with the
angle of incidence α defined through k2

k ≕ tan2ðαÞk2⊥.
The remaining terms, as shown in Fig. 1(b), give rise to
the transmission propagator (for x⊥⩾0)

GT
xy ¼

Z
ε

k
eik⊥ðx⊥−y⊥ÞT ðω̄Þ

×

�
1þ i

2

�
ω̄−

ω̄2

4

�
k⊥x⊥ −

1

8
ω̄2k2⊥ðx⊥Þ2

�
þOðω̄3Þ;

ð15Þ

which we have factorized into x⊥-dependent and -inde-
pendent terms. The latter are collected in the transmission
coefficient

T ðω̄Þ ¼ 1 −
1

4
ω̄þ 1

8
ω̄2 þOðω̄3Þ ¼ 1 −Rðω̄Þ: ð16Þ

The x⊥-dependent terms, on the other hand, can be
resummed as an exponential, giving rise to the final
expression (for x⊥⩾0)

GT
xy ¼

Z
ε

k
eiq⊥x

⊥−ik⊥y⊥T ðω̄Þ; ð17Þ

where

q⊥ðkÞ ¼ sgnðk⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
εS
ε
− 1

�
k2
k þ

εS
ε
k2⊥

s
: ð18Þ

The replacement k⊥ → q⊥ ensures that the dispersion
relation inherited from S holds in the upper half-plane,
i.e., □

εS
x GT

xy ¼ 0 (whereas □
ε
xGR

xy ¼ 0 in the lower
half-plane).
If we want to truncate the ω̄ expansion and work with a

finite number of terms, we must guarantee the smallness of
ω̄ by requiring λS=ε ≪ 1 and tan2ðαÞ ≪ 1. Therefore, in
the perturbative regime, only scenarios with T ≈ 1 and
R ≪ 1 can be consistently described. Since we are later
interested in systems where total reflection can occur, a
closed-form expression of this series would be desirable.
Fortunately, for the case at hand a resummation is feasible
and given by

(b)

(a)

FIG. 1. The scattering object with susceptibility εS covering the
upper half-space > is shaded in gray, the lower half-space < with
susceptibility ε in white. The spatial projections of the contri-
butions to the reflection propagator GR and the transmission
propagator GT arising from (10) up to second order in λS are
represented schematically in (a) and (b), respectively.
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T ðω̄Þ ¼
X∞
n¼0

ffiffiffi
π

p
ð1þ nÞ!Γð1

2
− nÞ ω̄

n ¼ 2

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω̄

p

¼ 1 −Rðω̄Þ; ð19Þ

where Γ denotes the Gamma function. For the first three
terms in the sum, the Gamma function becomes

ffiffiffi
π

p
, −2

ffiffiffi
π

p
and 4

ffiffiffi
π

p
=3 giving the transmission coefficient as (16).2

The closed-form expression in terms of the angle of
incidence α is computed to be

RðαÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεSε − 1Þtan2ðαÞ þ εS

ε

q
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðεSε − 1Þtan2ðαÞ þ εS
ε

q
þ 1

: ð20Þ

A few remarks are in order. First, the Feynman pro-
pagators describing reflection and transmission can

be obtained as usual by time ordering, e.g., ΔRjT
xy ¼

θðxt − ytÞGRjT
xy þ θðyt − xtÞGRjT

yx . Second, identifying the
series through the first two orders could only be achieved
due to the simplicity of the boundary. For example for
systems with a geometrically more complicated boundary
one has to stick to the perturbative expansion in (11).
Third, the resummed reflection and transmission coef-
ficients fulfill the identity Rðω̄Þ þ T ðω̄Þ ¼ 1 and agree
with the spin-averaged Fresnel equations. They are also
correct if λS=ε is large. In fact, total reflection jRj2 → 1
does occur for εS=ε → ∞ (or λS=ε → ∞ equivalently),
describing a perfect mirror. Alternatively, for ε > εS total
reflection can also be achieved in the two cases εS=ε → 0
and α → �π=2. Both scenarios correspond to total
internal reflection, which in optical experiments is only
caused by the latter limit though, i.e., for a large enough
angle of incidence α. With all sources of total reflection
in this optical example revealed, we can later address
these as an analogy in the context of gravitational
collapse.
In summary, spacetime regions with different dispersion

relations can be incorporated on the level of the action by
introducing a bilinear interaction term with limited space-
time support. A propagator describing propagation across
boundaries is then derived by using the interaction picture
of quantum field theory.

3. Interlude: Double-slit experiment

This procedure is not restricted to the basic setup
presented here but can be extended to say diffraction
experiments. As an instructive example, the propagator
for the prominent double-slit experiment is obtained by
taking an infinitely thin and opaque scattering object with
domain S ¼ fx∶fðxkÞ ¼ 0 ∧ x⊥ ¼ 0g, where fðxkÞ is the

aperture, which is 1 on the intervals of the slits and 0
elsewhere. The susceptibility of εS is assumed to be large to
ensure that there is no propagation through and within the
scattering object, which is a typical assumption for dif-
fraction experiments. As before, the transmission propa-
gator is obtained with (10).
The support of the integral in (10) can be conveniently

implemented through δðz⊥Þ½1 − fðxkÞ�. Written this way,
the first term describes an opaque scattering object
without holes and thus the transmission vanishes. The
second term, however, contributes to transmission but
constrains the intermediate points z in (10) to lie within
the aperture F ¼ fz∶fðzkÞ ¼ 1 ∧ z⊥ ¼ 0g. Thus, the
dynamics are dictated by the propagation of the fields
from the lower half-space through the aperture to the
upper half-space in accordance with Fraunhofer diffraction.
The transmission propagator then becomes (for x⊥⩾0)

ΔT
xy ¼ ε

Z
F

dμz1∂zt
1
Δε

xz1∂zt
1
Δε

z1y: ð21Þ

As before, the exact treatment with resummation is possible
due to simplifying approximations. In the next section, we
follow an approach that does not rely on resummation and
can still provide a nonperturbative result.

C. Nonperturbative approach

1. Matching conditions across boundaries

For the case of a boundary separating two half-spaces
with different susceptibilities, as depicted in Fig. 1, an exact
solution of the tree-level Feynman propagator Δxy was
found by expanding and resumming the interaction expo-
nential in the correlator (10). Here, we present a different
approach which does not rely on a perturbative expansion.
To this end, we use Eqs. (16) and (13) as an ansatz with
a priori arbitrary coefficients T ðkÞ and RðkÞ, which are
then fixed by matching conditions across the boundary. To
be specific, continuity of ϕ and its normal derivative nμ∂μϕ
implies that Δxy and nμ∂μΔxy are continuous across the
boundary. Here, we introduced the boundary normal
vector n ¼ ∂x⊥.
With the source in the lower half-space <, i.e., for

y⊥ < 0, there are two contributions to ϕjx⊥<0: one cor-
responding to direct propagation between source and
detector described in terms of Δε, and one due to the
reflection off the boundary described in terms of ΔR.
Combining both, the full propagator defined exclusively in
region < becomes Δ< ≔ Δε þ ΔR. Using (6) and (13), we
find (assuming again xt > yt)

G<
xy ¼

Z
ε

k
½eik⊥ðx⊥−y⊥Þ − e−ik⊥ðx⊥þy⊥ÞRðkÞ�: ð22Þ2We have checked this result only up to second order in ω̄ but a

complementary nonlinear derivation will consolidate it further.
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Correspondingly, in region> there is only one contribution
for the resulting field configuration due to the transmission
part (17). Thus, the propagator for region > reads

G>
xy ¼

Z
ε

k
eiq⊥x

⊥−ik⊥y⊥T ðkÞ; ð23Þ

where q⊥ðkk; k⊥Þ is given in (18).
With the propagators of the two half-spaces the boundary

conditions explicitly translate to

lim
x⊥↗0

G<
xy ¼ lim

x⊥↘0
G>

xy; ð24aÞ

lim
x⊥↗0

∂x⊥G
<
xy ¼ lim

x⊥↘0
∂x⊥G

>
xy: ð24bÞ

Inserting the Green’s functions (22) and (23), we obtain

1 −RðkÞ ¼ T ðkÞ; k⊥ þ k⊥RðkÞ ¼ q⊥T ðkÞ: ð25Þ

Solving for the reflection and transmission coefficient
results in

RðkÞ ¼ q⊥ − k⊥
k⊥ þ q⊥

; T ðkÞ ¼ 2k⊥
k⊥ þ q⊥

; ð26Þ

which can be shown to agree with the perturbatively found
coefficients (19) and (20) by using the momentum relation
(18). Taking Eqs. (16) and (13) as an ansatz together with
the boundary conditions (24) therefore constitutes an
alternative for deriving exact propagators across bounda-
ries. Since the feasibility of this approach heavily depends
on the shape and motion of the boundary, the perturbative
method can always serve as a fallback for systems more
complicated than the two half-space system.

2. Conservation of charge density current

To further consolidate our formalism, we study the charge
flux across the boundary. For this purpose, we compare the
current of a complex scalar field jμ½ϕ� ¼ iðϕ�∂μϕ − ∂μϕ

�ϕÞ
on both sides of the boundary and use the continuity of
the normal derivative of j across the boundary. For the
system of two half-spaces we discussed above, this amounts
to ημνε nμjν½ϕ<�jz⊥↗0 ¼ ημνεS nμjν½ϕ>�jz⊥↘0. As an example,
we couple the scalar field to the external source
JðkÞ ∝ δð3Þðk − k̃Þ, generating a monochromatic plane
wave with spatial momentum k̃, and compute the resulting

scalar field in the respective half-space with ϕ<j>
x ¼R

dμyΔ
<j>
xy Jy. Normalizing the initial current to 1, the

reflected and transmitted part lead to the following equality:

1 ¼ jRðk̃⊥Þj2 þ
Re½q⊥ðk̃⊥Þ�

k̃⊥
jT ðk̃⊥Þj2: ð27Þ

Inserting the reflection and transmission coefficient in (26),
we see this relation is indeed fulfilled. This shows that the
propagators in (22) and (23) are compatiblewith a conserved
charge flux across the boundary. Physically, the first term on
the rhs, jRj2, corresponds to the current’s fraction that is
being reflected, and the second term, Reðq⊥ÞjT j2=k⊥, to the
transmitted part. We will refer to these observables as the
“reflectance” and “transmittance,” respectively.
Having established a perturbative and a nonperturbative

technique to calculate propagators across boundaries, we
can apply these to a gravitational system with boundaries in
the next section.

III. PROPAGATION ACROSS SHELLS

A. Gravitational setting

1. Schwarzschild geometry

Following Birkhoff’s theorem, any compact static gravi-
tational source of mass M results in a Schwarzschild
spacetime for an observer sufficiently far away [25]. The
line element of this geometry in spherical Schwarzschild
coordinates ðtS; r; ϑ;φÞ is given by

ds2 ¼ −fðrÞdt2S þ f−1ðrÞdr2 þ r2dΩ2; ð28Þ

where fðrÞ ¼ 1 − rg=r with the Schwarzschild radius rg ¼
2M and dΩ2 ¼ dϑ2 þ sin2ðϑÞdφ2. By construction the
exterior region r > rg is static relative to the corresponding
observer field uS ¼ f−1=2∂tS (suppressing the r dependence
of f). The trajectories of the Schwarzschild observer are the
integral curves γ of uS. The geodesic equation yields
̈γ ¼ rg=2r2∂r, which is the acceleration an observer must
sustain to stay at rest.
It is often convenient to anchor coordinates to a specific

family of freely falling observers. Since (28) exhibits a
coordinate singularity at r ¼ rg, we choose an observer
for which the line element remains finite at r ¼ rg. Speci-
fically, we consider a freely falling observer with eigentime
τ and velocity u that is at rest for r → ∞. Introducing its
radial positionRðτÞ and demanding gðu; uÞ ¼ −1, we derive
its velocity as uðRÞ ¼ f−1ðRÞ∂tS −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðRÞp ∂r, where

the sign in the radial component has been chosen in
accordance with an infalling observer. The dual vector
field can be written as u⋆ðRÞ ¼ −grad½tPðtS; rÞ�jr¼R
with tPðtS; rÞ ¼ tS þ

R
r
0 dr

0u⋆r ðr0Þ. Rewriting the line
element (28) by using dtS ¼ dtP − u⋆r ðrÞdr yields the
Schwarzschild geometry in Painlevé-Gullstrand coordinates
ðtP; r; ϑ;φÞ,

ds2 ¼ −fdt2P þ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
dtPdrþ dr2 þ r2dΩ2: ð29Þ

In these coordinates the Schwarzschild geometry is mani-
festly regular at r ¼ rg and the velocity of the freely falling

observer is given by uðRÞ ¼ ∂tP −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðRÞp ∂r.
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2. Shell geometry

Historically, black-hole formation was first studied for a
collapsing dust cloud, where dust refers to the lack of
interactions between the particles within the cloud except
of gravity [26]. Since most applications do not depend on
the details of the collapsing star model such as in [27,28],
a convenient alternative is to consider the system of a
collapsing shell. This system possesses a Minkowski
spacetime inside and Schwarzschild geometry outside as
depicted in Fig. 2(a). To be precise, the full line element is

ds2 ¼
�
−ðdxtÞ2 þ dr2 þ r2dΩ2 ≕ds2<; r < R;

−fðrÞdt2S þ f−1ðrÞdr2 þ r2dΩ2≕ ds2>; r > R:

ð30Þ

The time coordinate is not continuous across the shell; i.e.,
the Minkowski time coordinate xt in the interior of the shell
is different from tP and tS in (28) and (29). We derive their
relation in Appendix B by matching the exterior line
element ds2> and the interior line element ds2< across the
shell and find in accordance with [29]

dtS
ðdxtÞ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ _R2

q
fðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p ; ð31Þ

where _R ¼ dR=dτ. Here, τ is the proper time on the shell
with intrinsic geometry

ds2Shell ¼ −dτ2 þ RðτÞ2dΩ2: ð32Þ

A junction condition follows from Einstein’s field
equations across the shell as discussed in Appendix B. It
relates the discontinuity across the shell of the extrinsic
curvature tensor to the shell-localized energy-momentum
tensor, Sμν. Here, we model Sμν as a perfect fluid with
energy density ρ and surface pressure p, explicitly
Sμν ¼ diagð−ρ; p; pÞ. This leads to the following set of
equations:

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ _R2

q
4πR

; p ¼ −
R

2 _R
_ρ − ρ: ð33Þ

If we commit to a particular matter model by fixing the
equation-of-state parameter, the above equation will deter-
mine all three functions ρðτÞ, pðτÞ and the shell trajectory
RðτÞ up to initial conditions. In this work, however, we
follow a different path. We first demand a particular
trajectory RðτÞ and then check whether it can be realized
in terms of physical matter that fulfills the standard energy
conditions. The simplest example, which will also be our
main working model, corresponds to a shell at rest—or a
suspended shell—with _R ¼ 0. For R > rg this spacetime
does not possess a horizon as can be seen in the Penrose
diagram in Fig. 2(b). In this case, we have

ρ ¼ 1 −
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

4πR
; p ¼ 2Rð1 − ffiffiffiffiffiffiffiffiffiffi

fðRÞp Þ − rg
16π

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

R2
: ð34Þ

While for sufficiently large radii R all energy conditions are
fulfilled; for R ≤ 25rg=24, on the other hand, the dominant
energy condition ρ ≥ jpj is violated. Since this condition
guarantees subluminal flow within the perfect fluid, such a
shell cannot be stabilized in terms of a standardmatter model
(at least, this would require some more exotic microscopic
models giving rise to an equation-of-state parameter greater
than 1). In the limit R → rg, the pressure even diverges,
which tells us that an infinite force would be needed to hold
the shell in place. Therefore, a fixed shell is a fully consistent
geometry only for R > 25rg=24. For R ≤ 25rg=24, on the
other hand, nonstandardmatter is needed,which, at the latest,
becomes unphysical very close to horizon formation where
p → ∞. A different question concerns the stability of the
setup under general metric perturbations, which might
further tighten the constraint on R.
For completeness, we also consider the scenario of a

shell that follows the trajectory of the freely falling
Painlevé-Gullstrand observer with _R ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðRÞp

.
Inserting this velocity in (33), we find

ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞ

p
−1

4πR
; p¼ 1

8πR

�
1þ rg− 2RfþðRÞ

2R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞ

p �
; ð35Þ

(a) (b)

FIG. 2. Schematic Penrose diagram for the collapsing shell in
(a) with the Minkowski metric inside the shell depicted as the
gray area. The exterior geometry is Schwarzschild with the
horizon H at r ¼ rg and singularity at the end of the collapse.
Additionally, one constant radius R > rg is indicated by a dashed
line. In (b) the Penrose diagram for a fixed shell of said radius R is
sketched again with the Minkowski metric inside (gray area) and
Schwarzschild outside (white area) which does not possess a
horizon.
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with fþðRÞ ¼ 1þ rg=R. In contrast to our suspended shell
model, both quantities are regular and finite before and
during horizon crossing at R ¼ rg. Furthermore, the strong
and dominant energy conditions are fulfilled throughout
the entire collapse, which makes this model universally
applicable. The pressure is always negative, which com-
pared to a dust shell with p ¼ 0 leads to a quicker collapse.
This should be contrasted with the suspended shell for
which a positive pressure was needed to stabilize it. In any
event, in the following, we will determine the Feynman
propagator exclusively for the case where the shell is at rest,
i.e., _R ¼ 0.

B. Perturbative approach

Our starting point is the theory of a scalar field in the
suspended shell background (30)

S ¼ −
1

2

Z
<
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðηÞ

p
ημν∂μϕ∂νϕ

−
1

2

Z
>
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðg>Þ

p
gμν> ∂μϕ∂νϕ: ð36Þ

We will see that the effect of a curved background on the
propagation of a scalar field, like for the optical case, can
be captured in terms of a spacetime-dependent interaction
term. To that end, we define the undisturbed propagation
with respect to the Minkowski spacetime inside the resting
shell. This choice also defines the vacuum of our local
scattering experiment. The corresponding free action is that
of a massless scalar field on a Minkowski background
integrated over all of space,

S0 ¼ −
1

2

Z
dμðxÞημν∂μϕ∂νϕ; ð37Þ

with Minkowski measure dμðxÞ ¼ d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðηÞp

. To con-
struct the interaction term, we express the Schwarzschild
geometry (28) in terms of the time inside the shell xtðtSÞ
through (31) and set _R ¼ 0. This yields

ds2> ¼ −
fðrÞ
fðRÞ ðdx

tÞ2 þ f−1ðrÞdr2 þ r2dΩ2; ð38Þ

where the subscript > indicates that r ≥ R.
Like in Sec. II B, we treat the difference between the

action in the exterior and the “Minkowski action” in (37) as
an interaction term with support only in the exterior. The
full action becomes S ¼ S0 þ Sint, with

Sint ≔
1

2

Z
>
dμgμνI ∂μϕ∂νϕ; ð39Þ

where we introduced the auxiliary interaction metric, which
is only defined in the exterior and reads

gμνI ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg>Þ
detðηÞ

s
gμν> − ημν: ð40Þ

Note that, as in the optical scenario, it is not a genuine
metric, because it does not satisfy the Einstein field
equations nor does it transform like a second rank tensor.
To reiterate our previous point, this is merely a trivial
rewriting of the action of a free scalar field living on the
background of a shell at rest. For the perturbative expansion
to work, we introduce

λ ¼ rg
R

≪ 1 ð41Þ

as our smallness parameter. This approximation prevents us
from examining a shell radius that is too close to rg. This
will be relaxed later when we work nonperturbatively in λ
in Sec. III C. We further assume that the propagator will be
evaluated close to the shell within a cubic box of edge
length l0 ≪ R. This suggests introducing Cartesian coor-
dinates anchored at the shell,

ðx⊥;xkÞ ¼ ðr − R; rϑ cosðφÞ; rϑ sinðφÞÞ; ð42Þ

where ðjx⊥j; jxkjÞ < ðl0=2;l0=2Þ, and we used that
ϑ < l0=ð2RÞ ≪ 1. We can then use x̄⊥ ¼ x⊥=R as a
second smallness parameter. To be precise, we will employ
a double expansion scheme where λ ≪ x̄⊥ ≪ 1. Going in
(40) up to order λx̄⊥, we find

gIðxÞ ≃
λ

2
diag

�
−
�
1 − 2x̄⊥ þ 3λ

4
þ 2ðx̄⊥Þ2 − 3λx̄⊥

�
;

− 1 − 2x̄⊥ −
λ

4
− 2ðx̄⊥Þ2 þ λx̄⊥; 1þ 3λ

4
; 1þ 3λ

4

�
;

ð43Þ
which is valid up to corrections of order λ2. Comparing
this with the interaction metric in (9) shows that there is no
perfect one-to-one correspondence between the optical setup
and the suspended shell case. In particular, all diagonal
elements are now nonvanishing and both the tt and ⊥⊥
components picked up an explicit spatial dependence.
The Feynman propagator can be calculated as we did in

Sec. II B by expanding the closed-form expression

Δxy ¼ ihTϕxϕye
− i
2

R
S
dμzðgIÞμν∂μϕz∂νϕzþBicon; ð44Þ

where we added the boundary term

B ¼ −
1

2

Z
dμ̃zðϕnμ<∇μϕ − ϕnμ>∇μϕÞ; ð45Þ

with dμ̃z denoting the (Minkowski) shell surface element
and the outward-pointing shell normal vectors obtained
from (B5) for the suspended shell, i.e., _R ¼ 0,
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nμ>ðRÞ ¼
�
0;

ffiffiffiffiffiffiffiffi
g⊥⊥
>

q
; 0; 0

	
; ð46aÞ

nμ<ðRÞ ¼ ð0; 1; 0; 0Þ: ð46bÞ

As opposed to the optical investigation, B contributes in
general to the amplitude because the interacting term probes
the direction perpendicular to the shell denoted by ∂z⊥.
At linear order in λ (corresponding to linear order in gI),

we obtain

Δxy ¼ Δη
xy −

Z
dμzðgμνI Þz∂zμΔ

η
xz∂zνΔ

η
zy

−
1

2

Z
dμ̃z

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg⊥⊥

> Þz
fðRÞ

s
− 1

#
½Δη

xz∂z⊥Δ
η
zy þΔη

zy∂z⊥Δ
η
xz�;

ð47Þ

where Δη
xy is the Feynman propagator in Minkowski space.

There is one new subtlety involved. The intermediate
integration

R
dμz still extends to infinity which seems to

invalidate our approximation that jðz⊥; zkÞj ≪ R. This,
however, is not a problem provided jxt − ytj ≪ l0 and
jðx⊥ − y⊥;xk − ykÞj ≪ l0 as the causal structure of the
theory then implies that

R
dμyΔxyJy is not probing the

space outside the box of size l0. In other words, contri-
butions to (47) where jðz⊥; zkÞj > l0 do not contribute.3

This requires the allowed sources to be all localized inside
the box with sufficiently short temporal support.
We now follow the steps (A1) to (A14) in order to derive

an expression for the reflection propagator [using the same
decomposition as in (12)]:

GR
xy ¼ i

Z
∞

0

dz⊥
Z
k

gμνI kμkν
2ðk⊥ þ iϵ̄Þ e

−ik⊥ðx⊥þy⊥Þþ2iz⊥ðk⊥þiϵ̄Þ

−
i
2

Z
k

" ffiffiffiffiffiffiffiffi
g⊥⊥
>

p
ffiffiffiffiffiffiffiffiffiffi
fðRÞp − 1

#
e−ik⊥ðx⊥þy⊥Þ: ð48Þ

The spatial dependence of the interacting metric in (48)
needs to be specified for the z⊥ integration. In the next
section, we will straightforwardly substitute (43). Here
instead, we will use a RNC construction anchored outside
the shell, as shown in Fig. 3(a). The RNCs approximate the
spacetime locally around a reference point r ¼ r⋆ and are
introduced in detail in Appendix C. At leading order, the
corresponding metric is

ð0Þds2> ¼ −fðr⋆Þdt2S þ f−1ðr⋆Þdr2 þ r2dΩ2: ð49Þ

If we were to use a RNC, this metric simply becomes a
Minkowski spacetime as explained in Appendix C. Taking
the RNC or the Schwarzschild coordinates in (49) would
correspond to a noncontinuous coordinate slicing across the
shell. Instead, we will use (31) (for _R ¼ 0) alongside (42),
which leads to

ds2< ¼ −ðdxtÞ2 þ ðdx⊥Þ2 þ ðdxkÞ2; ð50aÞ

ð0Þds2> ¼ −
fðr⋆Þ
fðRÞ ðdx

tÞ2 þ 1

fðr⋆Þ
ðdx⊥Þ2 þ ðdxkÞ2; ð50bÞ

where now the same coordinates are used in the interior
(x⊥ < 0) and in the exterior (x⊥ > 0).
Crucially, the interior and exterior coordinate patches are

not continuous over the shell at x⊥ ¼ 0, but are a bipartite
cover of the underlying smooth manifold, with the dis-
continuity containing information about the exterior geom-
etry.4 In principle, this cover can be extended to any number
of RNC patches, provided they all overlap. The size of each
patch, i.e., the spacetime volume within which it is a good
approximation of the underlying manifold, is discussed in

(a)

(b)

FIG. 3. (a) Spherical suspended shell with a RNC patch
constructed at Ox with a Schwarzschild background in the
exterior and Minkowski spacetime in the interior with shifted
origin atOy. (b) Enlarged situation with the shell as a boundary at
R with negligible curvature analogous to the two half-space
system of the optical system in Fig. 1.

3Strictly speaking, Feynman propagation is not localized on
the light cone and hence probes spacetime arbitrarily far away.
These contributions are however strongly suppressed for the
separation of scales considered here. Alternatively, we could have
introduced a cutoff for the configuration space integration and
demonstrated that observables do not depend on it as long as the
above conditions are fulfilled.

4A simple but intuitive analogy is provided by a continuously
differentiable function approximated by a piecewise constant but
noncontinuous function. In our case, we approximate the mani-
fold locally using only two “pieces.”
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Appendix C. If a more accurate description of the external
geometry is desired, more RNC patches can be glued
together and/or higher order contributions to the RNC
expansion can be considered, increasing the size of the
individual patches.
This RNC construction amounts to replacing gIðzÞ and

g>ðzÞ in (48) by gIðr⋆Þ and g>ðr⋆Þ; i.e., the exterior metric
is evaluated at the reference point and thus loses its spatial
dependence. As a result, g⊥⊥

> jR ¼ fðr⋆Þ ≠ fðRÞ and the
boundary contribution in the second row of (48) is non-
vanishing. Moreover, the z⊥ integration becomes trivial as
it only depends on the plane waves. We obtain for the
reflection propagator (evaluated inside)

GR
xy ¼ −

Z
k
eik⊥ðx⊥þy⊥ÞRðkÞ; ð51Þ

together with the reflection coefficient

RðkÞ ¼ λx̄⋆
4

½1þ tan2ðαÞ�: ð52Þ

Recall that the smallness parameters λ ¼ rg=R ≪ 1, x̄⋆ ¼
x⋆=R ≪ 1 with x⋆ ¼ r⋆ − R and the angle of incidence is
tan2ðαÞ ¼ k2

k=k
2⊥. We see that the reflectance increases as

the shell approaches the horizon formation. Compared to
the optical example, the exterior curvature acts like a
mediumwith radially decreasing susceptibility. This optical
analogy is also supported by the observation that R
increases with the angle of incidence. Physically, this
makes sense since we are insensitive to curvature effects
on very small scales. The previous condition that x⊥=R≪1

(and jxkj=R ≪ 1) is the condition ðRk⊥Þ ≫ 1 [and
ðRkkÞ ≫ 1] in momentum space. The above expression
is thus valid for sufficiently large frequencies with ωkR >
ωkrg ≫ 1 and hence complementary to the gray-body
calculation, which makes a statement about the low-
frequency range with ωkrg ≪ 1 [4].

C. Nonperturbative approach

We have seen that the perturbative approach is not valid
close to horizon formation since there λ → 1. Therefore, we
now consider the nonperturbative matching introduced in
Sec. II C to derive the reflection and transmission propa-
gators relating both sides of the shell.
As before, we work in the system depicted in Fig. 3(b)

and use the RNC construction (50b). In contrast to the
previous section, λ is not assumed to be small. Placing a
source in the interior, we make an ansatz for the respective
propagators inside (x⊥ < 0) and outside (x⊥ > 0) the shell,

G<
xy ¼

Z
k
½eik⊥ðx⊥−y⊥Þ − e−ik⊥ðx⊥þy⊥ÞRðkÞ�; ð53aÞ

G>
xy ¼

Z
k
eiðq⊥x

⊥=
ffiffiffiffiffiffiffiffi
fðr⋆Þ

p
−k⊥y⊥ÞT ðkÞ; ð53bÞ

where xt > yt was assumed and the factor 1=
ffiffiffiffiffiffiffiffiffiffiffi
fðr⋆Þ

p
in

(53b) was introduced for later convenience. Here,G<
xy is the

flat space expression (22) with ε ¼ 1 and G>
xy generalizes

(23) to the exterior shell geometry. The momentum q⊥ is
then fixed by the requirement □xG>

xy ¼ 0, explicitly

q⊥ðkÞ ¼ sgnðk⊥Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
fðRÞ
fðr⋆Þ

− 1

�
k2
k þ

fðRÞ
fðr⋆Þ

k2⊥

s
: ð54Þ

For an arbitrarily large shell with R → ∞ while keeping
r⋆ > R, this reduces to q⊥ ¼ k⊥ since the curvature
difference between the interior and exterior geometry
vanishes in this limit. Moreover, for R → rg and r⋆ > R,
the right-hand side vanishes in the normal incidence
scenario. In the optical system, this corresponded to a total
internal reflection. Here it is the manifestation of the event
horizon.
The coefficients R and T follow from the covariant

version of the matching conditions (24) which are given by

lim
x⊥↗R

G<
xy ¼ lim

x⊥↘R
G>

xy; ð55aÞ

lim
x⊥↗R

nμ<∇x
μG<

xy ¼ lim
x⊥↘R

nμ>∇x
μG>

xy; ð55bÞ

where nμ< ¼ ð0; 1; 0; 0Þ and nμ> ¼ ð0; ffiffiffiffiffiffiffiffiffiffiffi
fðr⋆Þ

p
; 0; 0Þ are the

interior and exterior normal vectors (46). By substituting
the Green’s functions (53a) and (53b), one obtains analo-
gously to the optical case

1 −RðkÞ ¼ T ðkÞ; k⊥ þ k⊥RðkÞ ¼ q⊥T ðkÞ; ð56Þ

which can be readily solved for R and T ,

RðkÞ ¼ q⊥ − k⊥
k⊥ þ q⊥

; T ðkÞ ¼ 2k⊥
k⊥ þ q⊥

: ð57Þ

Following the procedure in Sec. II C 2, these coefficients
obey charge conservation and recover the expression as in
Eq. (27) with the momentum q⊥ defined in (54).
In Sec. III B, the perturbative analysis was performed for

a suspended shell with a radius sufficiently larger than rg
and a normal neighborhood with expansion point close to
the shell, i.e., λ ¼ rg=R ≪ 1 and x̄⋆ ¼ x⋆=R ≪ 1 with
x⋆ ¼ r⋆ − R. Expanding the reflection coefficient up to
second order in these smallness parameters yields

RðkÞ ¼ λx̄⋆
4

½1þ tan2ðαÞ�ð1 − x̄⋆ þ λÞ; ð58Þ

where we neglected terms of order λ3, λx̄3⋆ and λ2x̄2⋆. The
leading order terms indeed agree with (52) obtained in the
perturbative approach. We note that including the boundary
term in Eq. (44) was crucial for finding this agreement.
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The reflection coefficient in (58) depends sensitively on
the exact position of the expansion point x⋆ of the normal
neighborhood. If it were chosen too small, the reflectance
would be underestimated because the curvature in the
exterior region would not be probed sufficiently. On the
other hand, if x⋆ were too large, the reflection could be
overestimated. We now propose a procedure to find an
optimal choice for x⋆: We determine a more accurate yet
perturbative expression for a reflection propagator that is
not reliant on a RNC construction. To that end, we evaluate
(44) using the interaction metric (43) and match the result
with the one using the RNC expansion which in turn fixes
the expansion point x⋆. We derive the propagator at next-to-
leading order by following Appendix A. As we have to take
into account the spatial dependence of the interaction
metric, the computation changes slightly: The z⊥ integra-
tion is nontrivial (but solvable), the boundary contribution
in (48) vanishes as g⊥⊥

> jR ¼ fðRÞ and the derivative in
(A11) now also acts on the transmission coefficient. Taking
this into account, the reflection coefficient amounts to

RSðkÞ ¼ −
λ

8

�
tan2ðαÞ
Rk⊥

�
iþ 1

Rk⊥
þ iλ

�
− λþ 3iλ

2Rk⊥

�
;

ð59Þ
where analogous to (58) we neglected terms of order λ3,
λ=ðRk⊥Þ3 and λ2=ðRk⊥Þ2.
Note that the reflection propagator with the RNC

construction and the one without the RNC construction
differ only in their reflection coefficient R and RS defined
in Eqs. (58) and (59), respectively. We match them for
tanðαÞ ≪ 1, which will be of particular interest to us later.
Solving for the expansion point then yields

x̄⋆ ¼ 1

4
ð2 − λÞλþ 1

2
ðλ − 1Þλtan2ðαÞ þOðλ3; tan4ðαÞÞ:

ð60Þ
In the next section, we take the nonperturbative reflec-

tion propagator with expansion point (60) to investigate
quantum field theoretical properties of the suspended shell
system.

IV. APPLICATIONS

Using the tools developed in the previous section, we can
now study the quantum consistency of a thin-shell system.
Specifically, we ask what happens in a communication
experiment across the surface of a shell near the formation
of a black hole at rg and whether the (perturbative) prob-
abilistic interpretation of QFT is preserved in such a system.

A. Communication experiment

The approach outlined in the previous section was
nonperturbative in the interaction parameter λ and thus
has the advantage of also capturing the case where the shell

is close (and slightly beyond) horizon formation at R ≈ rg.
We can therefore use the reflection coefficient R as a
diagnostic probe for a communication experiment around
horizon formation.
We consider the case where the detector is placed outside

at r⋆ > rg and the source inside the shell. We then study the
system for different radii R. As we have seen before, any
energy or charge transfer across the shell ceases when the
transmittance Reðq⊥ÞjT j2=k⊥ → 0. As a result of the conti-
nuity condition in (27), this also implies that the reflectance
jRj2 → 1. In other words, there is no possible communi-
cation between the shell’s inside and outside. Due to (57), a
sufficient condition for this to happen is q⊥ ¼ 0. This
defines a critical value of λ, which to leading order reads

λc ¼ 1 − x̄⋆tan2ðαÞ þOðx̄2⋆Þ; ð61Þ

where x̄⋆ needs to be substituted with the generalized
version of (60) valid for α ≠ 0 (i.e., away from the normal
incidence limit). First we consider the case of normal
incidence with α ¼ 0 depicted as the solid line in Fig. 4.
Here the critical value evaluates to λc ¼ 1, which corre-
sponds to the point of horizon crossing (as it should of
course). This demonstrates that our optical approach
reflects the causal structure of the underlying spacetime:
Communication ceases at the latest at horizon crossing.
For α ≠ 0, this happens even earlier for values λ < 1 as
demonstrated in (61) and by the dashed line in Fig. 4 for the
choice α ¼ π=6. This can be understood as follows: If the

FIG. 4. Reflectance from the inside of the shell according to
Eq. (57) for the suspended shell model with radius R and RNC
expansion in the exterior region, anchored at (60). The solid line
is for a mode at normal incidence, i.e., α ¼ 0, for which the
reflectance reaches unity at R ¼ rg (or λ ¼ 1 equivalently). The
dashed line is for the case α ¼ π=6, for which total reflection
occurs at a larger radius R > rg. In the latter case, this occurs in a
range where the fixed shell system can be trusted with R >
25rg=24 indicated by the shaded area.
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propagation is not in radial direction a particle is less
efficient at evading the gravitational pull of the shell. In the
case of α ¼ π=6, the critical point λc < 24=25 and there-
fore falls within the range where the shell can be fully
stabilized in terms of physical matter.
Moreover, the transition of the reflection coefficient to

unity is continuous, as opposed to a jump at rg, which
would otherwise indicate a drastic change in the observ-
ables during the formation of a black hole, which would
contradict the equivalence principle.
Comparing the reflection coefficient (57) with that

obtained in the optical model (26), we find that for the
suspended shell the analog of total internal reflection in
optics occurs once λ < λc. This corresponds to a situation
where the momentum q⊥ in (54) turns imaginary, which in
turn leads to an exponential damping of the modes outside
the shell. In contrast to the optical scenario, this is not due
to different susceptibilities, but to the curvature in the
exterior of the shell.
As discussed in Sec. III A 2, a shell suspended too close

to rg is unphysical. The consideration for R ≤ 25rg=24 is
therefore of more formal interest. A similar study where the
collapse is maximally slowed down but horizon formation
not avoided is left for future work. What we can do instead
is to consistently investigate the regime in which the shell is
close to forming a black hole. Our simple communication
experiment then illustrates that the boundary propagator
approach is fully compatible with the conventional expect-
ation obtained by studying the causal structure of a shell
spacetime.

B. Interior vacuum persistence amplitude

As a first means of studying the quantum consistency
of a suspended shell background, we use the vacuum
persistence amplitude as a diagnostic tool. It indicates by
how much the vacuum state is destabilized in the presence
of an external source J. This calculation serves as a direct
application of the propagator found in the previous section.
We will use the local vacuum j0i associated with an inertial
observer within the shell. To make this construction explicit
we use the Minkowski line element (50a) inside the shell to
construct the local quantum field,

ϕðxÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32ωk

p ðeikμxμak þ e−ikμx
μ
a†kÞ; ð62Þ

where kμxμ ¼ −ωkxt þ k⊥x⊥ þ kkxk, with creation oper-

ator a†k and annihilation operator ak defining the local
vacuum through akj0i ¼ 0. We start with an initial
Minkowski vacuum state j0ii ¼ j0i and calculate the
probability with which it evolves into the final vacuum
state j0fi ¼ j0iwhile the external source J is turned on and
off again. The transition amplitude is [20]

h0fj0ii0J ¼ e−
i
2

R
dμxdμyJxΔxyJy ; ð63Þ

where we normalized to the amplitude in the absence of
the source h0fj0ii0, i.e., h0fj0ii0J ≔ h0fj0iiJ=h0fj0ii0.
Since we place the external source J inside the shell,
Eq. (63) encodes only nontrivial information about the
external geometry through the propagator Δ. An external
source J radiates and thus occupies the system with
particles that were not present in the initial state. As a
result, the transition probability decreases, which is a
measure of the amount of particle production, explicitly

jh0fj0ii0Jj2 ≤ 1: ð64Þ

On the other hand, jh0fj0ii0Jj2 > 1 would signal an incon-
sistency and be at odds with the probabilistic interpretation
of QFT. Therefore, the calculation of jh0fj0ii0Jj2 is an
important consistency check. In particular, a violation of
(64) would call into question the validity of the semi-
classical approximation, according to which the back-
ground is treated purely classically.
To investigate the transition amplitude (63) for the

suspended shell system, we use the nonperturbative reflec-
tion propagator (53a) with coefficient (57). Since this
propagator was found by applying different approximation
methods, we have to choose an external source that takes all
these approximations into account consistently. As dis-
cussed in detail in Appendix C, a specific choice of an
external source that meets these criteria is one that is
spatially pointlike, located at xJ, but smeared in time
through a Gaussian profile with standard deviation σt, i.e.,
Jx ∝ δð3Þðx − xJÞ exp ½−ðxtÞ2=ð2σ2t Þ�. In momentum space
this leads to

JðkÞ ¼ 1ffiffiffiffiffiffi
2π

p eikxJe−
ðωk−hωkiÞ2

2
σ2t ; ð65Þ

where we introduced the mean hωki, which needs to be
sufficiently large to ensure that infrared divergences can
be ignored. σt and hωki are both constrained by the validity
of the approximations used. Specifically, we choose
σt=rg ¼ 0.08 ≪ 1 and hωkirg ¼ 4rg=ðσtÞ ≫ 1 (which is
also compatible with the RNC expansion as argued in
Appendix C).
Taking these considerations into account, we can com-

pute the probability jh0fj0ii0Jj2 with Eq. (63) for an external
source located in the interior close to the shell. To be
precise, for our numerical example we consider a source
distance to the shell between 0 and 0.01rg. The result as a
function of the shell radius R=rg (or 1=λ equivalently) and
the distance between the shell and the source is shown
in Fig. 5. We can make several immediate observations:
First, the probability in the absence of the shell shown
as the dashed lines tends toward unity for large σt.
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This corresponds to a source which is turned on and off
adiabatically in Minkowski space, for which no particle
production is expected. Second, the deviation from the
Minkowski result becomes significant (but not singular) as
R ¼ rg is approached. We interpret this as a change in the
vacuum structure induced by the onset of black-hole
formation. Third, the relevance of the reflection contribu-
tion decreases the farther the source is placed away from
the surface. This reflects the spatial falloff of the propa-
gator, making the effect of the boundary less pronounced
when it is farther away. Fourth, the vacuum persistence
amplitude is smooth and always smaller than unity.
Therefore, in this setup, the probabilistic interpretation
of QFT is preserved and no pathologies arise. However,
what we can also observe in Fig. 5 is that the longer the
external source is turned on, i.e., the larger σt is, the larger
the vacuum persistence amplitude becomes. Importantly,
this effect is more pronounced the closer we are to black-
hole formation. This raises the question as to whether this
enhancement leads to any pathological behavior in the limit
where σt is comparable with the lifetime of the black hole
[4]. We believe that this long-term behavior can be studied
using Fermi normal coordinates (FNCs) which a priori do

not suffer from the same temporal restriction [30] as the
RNC construction.

V. DISCUSSION AND OUTLOOK

We started out studying propagation within and across
media of different susceptibility. This extensive analysis
allowed us to recover known results from geometrical
optics in the language of Green’s functions, validating our
approach. In particular, we presented two independent
computations of the Feynman propagator, one being
perturbative in the difference of susceptibilities and the
other one nonperturbative.
In a next step, we set up our suspended shell model. To

that end, we calculated the surface pressure needed to
stabilize a thin shell at radius R by using Israel’s junction
conditions and inferred a lower bound on R by demanding
that the shell matter fulfills the dominant and strong energy
condition. We then approximated the geometry in terms of
two distinct RNC patches providing a local covering of the
interior and exterior geometry sufficiently close to the shell.
We could then formally map this geometry to our pre-
viously discussed two optically active media. Again, we
used both the perturbative and nonperturbative approach to
derive an explicit expression for the reflective and trans-
missive part of the Green’s function.
As a first sanity check of our computation, we confirmed

that no on-shell signal can leave the shell interior once it
crosses its own horizon, which manifests itself through a
reflection coefficient that approaches unity. For larger radii,
where the shell can be stabilized in terms of physical
matter, signals can leave the shell as the transmission is
turned on and the reflection turned off continuously. This is
caused by the decrease in curvature outside the shell (which
we capture at leading order by our two-patch covering).
After these preliminary considerations, we calculated the

vacuum persistence amplitude inside the shell. It provides a
measure of the vacuum stability in the presence of an
external source. We found that the amplitude as compared
to the pureMinkowski case, i.e., without a shell, receives an
enhancement when the source is located close enough to
the shell. This effect becomes more pronounced if the
source is turned on for a longer time and/or when the shell
moves closer to horizon crossing. Despite this effect, the
amplitude never exceeds unity in agreement with a unitary
time evolution. However, there is an important caveat as we
could only probe the geometry on microscopic timescales
due to the limited temporal extend of the exterior
Minkowski patch. In other words, the enhancement effect
we observed has the potential to turn into a pathology on
long enough timescales. We believe that we can get around
this limitation by using a FNC construction related to an
orbital observer outside the shell. While we want to study
this generalization in our future work, the present article
lays out the technical and methodological groundwork
needed to do so.

FIG. 5. Vacuum persistence amplitude (63) for the Minkowski
vacuum for a temporally smeared-out point source (65) inside a
shell of constant radius R. The two dashed lines are the
contributions, which are insensitive to the shell and its external
geometry and serve as a reference for the Minkowski contribu-
tions. The solid lines and the gray bands take into account the
reflection from the exterior geometry. We choose the distance
between the source and the shell 0.005rg for the central solid lines
and 0 for the upper and 0.01rg for the lower boundary of the dark
shaded regions. The RNC expansion is anchored at (60) for α ¼ 0
and the source parameters are σt ¼ 0.08rg and hωki ¼ 4=σt for
the upper plot and σt ¼ 0.05rg for the lower plot. All parameters
are chosen in accordance with the validity discussion in Appen-
dix C. The shaded area in the background indicates the radii
R > 25rg=24 for which the shell can be stabilized with respect to
standard matter.
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This will enable us to study two main questions in our
future work:

(i) Does the persistence amplitude of the suspended
shell vacuum respect the unitarity bound in Eq. (64)
on arbitrary long timescales?

(ii) Is horizon formation in a retarded shell model, where
the collapse is maximally slowed down, semiclassi-
cally consistent?

Our approach admits many other sophistications and
extensions which merit further exploration. For example,
calculating the expectation value of the energy-momentum
tensor in the shell vacuum will provide a complementary
picture closer to previous analyses in the literature (see for
example [6]). Moreover, turning on self-interactions (rather
than external sources) is another way of testing the robust-
ness of our results under model alterations. Improving the
approximation of the exterior geometry is another priority.
This can happen in two straightforward ways by either
including more RNC patches or going to higher order in the
RNC expansion, which would both extend the covering of
the exterior manifold. Finally, there is the question of how
Hawking radiation manifests itself in this framework. At
this stage, we only speculate that it can be related to the
finite penetration depth we observed in the case of total
reflection when R < rg and the radial momentum turns
imaginary leading to a nonvanishing yet exponentially
damped support of the mode functions outside the shell.
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APPENDIX A: SECOND ORDER PERTURBATIVE
CALCULATION

Here, we evaluate in detail the first and second order
term in the expansion (11). We begin with the first order
contribution

Δð1Þ
xy ≔ λS

Z
S

dμz∂ztΔε
xz∂ztΔε

zy: ðA1Þ

After inserting the Feynman propagators we have

λS

Z
S

dμz

Z
d4k
ð2πÞ4

d4q
ð2πÞ4

k0q0eiqðx−zÞeikðz−yÞ

ðημνε qμqν− iϵ̄Þðημνε kμkν− iϵ̄Þ ; ðA2Þ

where we introduced the iϵ̄ prescription with ϵ̄ in order to
distinguish it from the susceptibility ε. The limit ϵ̄ → 0
outside the momentum integrals is understood. Performing
the zt and zk integration yields delta distributions, which in
turn collapse the corresponding q0 and qk integration,

λS

Z
∞

0

dz⊥
Z

d4k
ð2πÞ4

dq⊥
2π

eikkðxk−ykÞ

×
k20e

−ik0ðxt−ytÞe−iz⊥ðq⊥−k⊥Þeiq⊥x⊥−ik⊥y⊥

ð−εk20þk2
k þq2⊥ − iϵ̄Þð−εk20þk2

k þ k2⊥ − iϵ̄Þ : ðA3Þ

There are in total four poles in the complex k0 plane. We
assume xt > yt and thus only pick up two of them in the
lower half-plane,

iλS

Z
∞

0

dz⊥
Z

d3k
ð2πÞ3

dq⊥
2π

eikkðxk−ykÞeiq⊥ðx⊥−z⊥Þ

×
ωε
ke

−iωε
kðxt−ytÞ − ωε

qe−iω
ε
qðxt−ytÞ

2εðk⊥ − q⊥Þðk⊥ þ q⊥Þ
eik⊥ðz⊥−y⊥Þ; ðA4Þ

with definition ωε
q ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
k þ q2⊥

q
=

ffiffiffi
ε

p
. Next, we apply

for convenience the Sokhotski-Plemelj theorem,
P½1=ðk⊥�q⊥Þ� ¼ 1=ðk⊥�q⊥þ iϵ̄Þþ iπδðk⊥�q⊥Þ, with
the limit ϵ̄ → 0 understood. The delta distributions yield
vanishing contributions, since the two terms in the numer-
ator cancel when k⊥ ¼∓ q⊥; explicitly,

iλS

Z
∞

0

dz⊥
Z

d3k
ð2πÞ3

dq⊥
2π

eikkðxk−ykÞeiq⊥ðx⊥−z⊥Þ

×
ωε
ke

−iωε
kðxt−ytÞ − ωε

qe−iω
ε
qðxt−ytÞ

2εðk⊥ − q⊥ þ iϵ̄Þðk⊥ þ q⊥ þ iϵ̄Þ e
ik⊥ðz⊥−y⊥Þ: ðA5Þ

The term proportional to ωε
q introduces the poles k⊥ ¼

q⊥ − iϵ̄ and k⊥ ¼ −q⊥ − iϵ̄ in the lower complex k⊥ half-
plane. This term evaluates to zero since z⊥ > 0 > y⊥. The
term proportional to ωε

k, on the other hand, yields a
nonvanishing contribution closing the q⊥ integration con-
tour in the lower (for x⊥ < z⊥) or upper half-plane (for
x⊥ > z⊥),

iλS

Z
∞

0

dz⊥
Z

ε

k

ðωε
kÞ2

2ðk⊥ þ iϵ̄Þ ½θx⊥z⊥e
ik⊥ðx⊥−y⊥Þ

− θz⊥x⊥e
−ik⊥ðx⊥þy⊥Þþ2iz⊥ðk⊥þiϵ̄Þ�: ðA6Þ

Finally, the z⊥ integration results in

Δð1Þ
xy jxt>yt ¼ −

Z
ε

k

ω̄

4
½θx⊥eik⊥ðx⊥−y⊥Þð1 − 2ix⊥k⊥Þ

þ θ−x⊥e
−ik⊥ðx⊥þy⊥Þ�; ðA7Þ

which yields together with θx⊥Δε
xy the expressions in (13)

and (15) evaluated at order λS.
We are now ready to compute the second order term

in (11),

Δð2Þ
xy ≔ λ2S

Z
S

dμz1dμz2∂zt
1
Δε

xz1∂zt
1
∂zt

2
Δε

z1z2∂zt
2
Δε

z2y: ðA8Þ
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In order to simplify calculations, we express the linear

transmission propagator ΔT ð1Þ
xy ≔ Δð1Þ

xy jx⊥>0 as a four
momentum integral,

ΔT ð1Þ
xy ¼

Z
d4k
ð2πÞ4

eikðx−yÞ

ðημνε kμkν − iϵ̄ÞXðk0; k⊥; x
⊥Þ; ðA9Þ

with

Xðk0; k⊥; x⊥Þ ≔ −λsk20
1 − 2ix⊥ðk⊥ þ iϵ̄Þ

4ðk⊥ þ iϵ̄Þ2 : ðA10Þ

It is easy to check that for xt > yt this recovers the term in
(A7) proportional to θx⊥ when performing the k0 integra-
tion. There is also a second contribution, only present for
xt < yt and hence not contributing in (A4), which is now
crucial for the calculation of the second order. We can now
solve higher orders iteratively. Substituting back into (A8)
and keeping in mind that z⊥1 > 0 yields

Δð2Þ
xy ¼ λS

Z
S

dμz∂ztΔε
xz∂ztΔ

T ð1Þ
zy : ðA11Þ

The next steps can be performed like in (A3) and (A4),
providing us with a generalized version of (A5) (again
assuming xt > yt),

iλS

Z
∞

0

dz⊥
Z

d3k
ð2πÞ3

dq⊥
2π

eikkðxk−ykÞeiq⊥ðx⊥−z⊥Þ

×
ωε
ke

−iωε
kðxt−ytÞXðωε

k; k⊥; z⊥Þ − ðωε
k → ωε

qÞ
2εðk⊥ − q⊥ þ iϵ̄Þðk⊥ þ q⊥ þ iϵ̄Þ eik⊥ðz⊥−y⊥Þ:

ðA12Þ

The term proportional to ωε
q introduces three poles in the

lower half of the complex k⊥ plane. They yield a vanishing
contribution because the integration contour needs to be
closed in the upper half-plane as z⊥ > y⊥. The term
proportional to ωε

k, by contrast, has the same pole structure
as the corresponding term in (A5), resulting in a non-
vanishing contribution:

iλS

Z
∞

0

dz⊥
Z

ε

k

ðωε
kÞ2Xðωε

k; k⊥; z⊥Þ
2ðk⊥ þ iϵ̄Þ ½θx⊥z⊥eik⊥ðx⊥−y⊥Þ

− θz⊥x⊥e
−ik⊥ðx⊥þy⊥Þþ2iz⊥ðk⊥þiϵ̄Þ�: ðA13Þ

Substituting (A10) allows us to perform the z⊥ integration.
After separating terms proportional to θðx⊥Þ and θð−x⊥Þ,
we have

Δð2Þ
xy jxt>yt ¼

Z
ε

k

ω̄2

8
½θx⊥eik⊥ðx⊥−y⊥Þð1 − 2ik⊥x⊥ − ðx⊥Þ2k2⊥Þ

þ θ−x⊥e
−ik⊥ðx⊥þy⊥Þ�; ðA14Þ

which results in the second order contribution to (13) and
(15). Higher orders can then be calculated iteratively by
again separating out the transmission part from (A14) and
using it as an input for the subsequent order.

APPENDIX B: JUNCTION CONDITIONS

Here, we work out the junction conditions for a col-
lapsing shell. In Sec. II we apply Israel’s formalism in terms
of extrinsic curvature [29]. In Sec. II B we take a distri-
butional approach.

1. Extrinsic curvature

We consider a collapsing shell with trajectory RðτÞ.
The geometry outside the shell is parametrized through
Schwarzschild coordinates xμ> ¼ ðtS; r; ϑ;φÞ with line
element (28) and inside through spherical Minkowski
coordinates xμ< ¼ ðxt; r; ϑ;φÞ. Denoting the coordinates
on the shell as x̃μ̃ ¼ ðτ; ϑ;φÞ, the embedding of the shell
is given by Fμ

> ¼ ðtSðτÞ; RðτÞ; ϑ;φÞ and Fμ
< ¼ ðxtðτÞ;

RðτÞ; ϑ;φÞ. The induced metric on the shell is then given
as the pullback

g̃μ̃ ν̃ ¼
∂Fα∘
∂x̃μ̃

∂Fβ∘
∂x̃ν̃ g

∘
αβ ¼ diagð−1; R2ðτÞ; R2ðτÞsin2ðϑÞÞ;

ðB1Þ

where ∘ ∈ f>;<g distinguishes the cases where the metric
is induced from the outside or inside, respectively. The
equality of both expressions then ensures the continuity of
the line element. It corresponds to the first junction
condition and relates the time inside with the time outside:

dtS
dxt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ _R2

q
fðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _R2

p ; ðB2Þ

where _R ¼ dR=dτ.
The second junction condition states that a jump J across

the shell in the extrinsic curvature K only occurs if there is
an energy-momentum tensor T̃ μ̃

ν̃ induced on the boundary,
explicitly

JðK̃μ̃
ν̃Þ − δμ̃ν̃JðKÞ ¼ −8πT̃ μ̃

ν̃ : ðB3Þ

Unlike a dust cloud, the shell has a distributional character,
and we expect a nonvanishing jump of K across the shell.
The extrinsic curvature is

PERTURBATIVE QUANTUM CONSISTENCY NEAR BLACK-HOLE … PHYS. REV. D 104, 125007 (2021)

125007-15



Kμν ¼
1

2
Lnhμν ¼ hαμh

β
ν∇αnβ; ðB4Þ

where we introduced the tensor hμν ¼ gμν − nμnν and the
shell normal vector nμ ∝ ∂μðr − RÞ obeying gμνnμnν ¼ 1.
Evaluated at the surface of the shell the normal vector
inferred from the outside geometry becomes

n>μ ðRÞ ¼

0
B@− _R;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðRÞ þ _R2

q
fðRÞ ; 0; 0

1
CA; ðB5Þ

while the normal vector from inside n<μ follows by formally
replacing fðRÞ with 1 in the expression of n>μ . Since the
normal vector can also be expressed as n>μ ¼ ð− _R; _tS; 0; 0Þ,
it is evident that it is orthogonal to the 4-velocity of the
shell uμ> ¼ ð_tS; _R; 0; 0Þ.
As an ansatz for the shell’s energy-momentum tensor we

take a perfect fluid with energy density ρ and pressure p.
Calculating the extrinsic curvature and substituting it back
into the junction condition (B3) then uniquely determines
for every shell trajectory RðtÞ the required energy density
and pressure. Specifically, if we evaluate the ττ component
of (B3), we find the energy density (33). The pressure
equation can be derived from the spatial components, or by
computing the conservation equation ∇̃ν̃T̃ μ̃

ν̃ ¼ 0. Choosing
the latter, the corresponding pressure is expressed in terms
of the energy density as (33) in agreement with [31].

2. Distributional description

Alternatively, spacetimes with boundaries can conven-
iently be described as distributional. In order to recall the
concepts, we choose a simplified example first. Consider
a subspace of the real numbers Ω ⊂ R and name the
function of interest f ∈ C1ðΩÞ together with test functions
φ ∈ C∞0 ðΩÞ with support suppðφÞ ⊂ K ¼ ½−c; c� ⊂ Ω. We
denote the convolution as

½f0�φ ¼
Z
R
dτf0ðτÞφðτÞ ¼ −

Z
K
dτfðτÞφ0ðτÞ; ðB6Þ

where we integrated by parts in the second step and used
the support properties of φ. Let us now take out one single
point τB ∈ ð−c; cÞ with f ∈ C1ðRnfτBgÞ and introduce a
jump jB in f around this point with limλ→0ðfðτB þ λÞ−
fðτB − λÞÞ ¼ jB. In this case we start with

½f�0φ ≔ −lim
λ→0

�Z
τB−λ

−c
þ
Z

c

τBþλ

�
dτfðτÞφ0ðτÞ: ðB7Þ

Since φ is continuous across τB and vanishes at �c the
boundary terms that arise when integrating by parts yield
jBφðτBÞ. Thus, we find

½f�0φ ¼ ½f0�φþ jBφðτBÞ: ðB8Þ

In a four-dimensional spacetime manifold M, a hyper-
surface can be a three-dimensional submanifold that is
either timelike, spacelike or lightlike. Let ζ ¼ ðxαÞ ¼
ðx0; x1; x2; x3Þ denote a coordinate system in spacetime
with appropriate domain. A particular timelike or spacelike
hypersurface B can be endowed with a coordinate repre-
sentation by putting a restriction on the coordinates
fðζÞ ¼ 0, or by giving parametric equations of the form
ζ ¼ ζðσÞ where σ denotes a coordinate system in B.
Locally, the value of f changes only in the direction
perpendicular to B and thus gradðfÞ⊥B. A unit normal
n can be introduced by gðn; nÞ ¼ κ with κ ¼ þ1 for B
timelike and κ ¼ −1 for B spacelike. Demanding ∇nf > 0

we can thus write n ¼ κgradðfÞ=jgðdf; dfÞj1=2.
Let σ ¼ ðyaÞ ¼ ðy1; y2; y3Þ denote a particular coordinate

system inB. Then as usualea ≔ ∂a≕ eαa∂α. The line element
in σ is ds2jB ¼ gαβdxαdxβ ≕ habdyadyb with induced metric
h of the hypersurface. A measure on B can be introduced as
follows: In the specified coordinate neighborhood dΣ ≔
j detðhÞj1=2d3y is called a surface element. The combination
ndΣ is the directed surface element that by definition points
in the direction of increasing f.
Let R be an open submanifold of M, then a con-

gruence of geodesics CðRÞ is a family of curves such
that through each point p ∈ R there passes precisely
one curve in this family. These geodesics are para-
metrized with τ such that ∀p ∈ R ∃ !γ ∈ CðRÞ∶ ∃ τp ∈ R;
τp ≥ τB∶γðτpÞ ¼ p.
Now consider a hypersurface B that partitions a manifold

M into two regionsR> andR< with metric tensors g> and
g<, respectively. The corresponding generalized metric
tensor on ðM;BÞ is given by g ¼ χ>g> þ χ<g< with
support function χ>ðpÞ ¼ 1∶p ∈ R> and χ>ðpÞ ¼ 0 oth-
erwise. Also, we defined the complement χ< ¼ χC>. On this
partitioned manifold we define a generalized Levi-Civita
connection D and generalized tensor fields. With these we
define the generalized Riemannian curvature tensor of
ðM;BÞ through the usual formula

RðX; YÞZ ¼ D½X;Y�Z − ½DX;DY �Z; ðB9Þ

with generalized vector fields X, Y and Z on ðM;BÞ. The
crucial difference to the usual Riemann tensor is that

DXDYZ ¼ χ>ðDXDYZÞ> þ χ<ðDXDYZÞ<
þ Xðχ>ÞJBðDYZÞ; ðB10Þ

with jump function JBðDYZÞ ¼ ðDYZÞ> − ðDYZÞ< on B.
As a consequence, R ≠ ξ>R> þ χ<R<; instead, it includes
jump terms too,
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RðX; YÞZ ¼ χ>ðRðX; YÞZÞ> þ χ<ðRðX; YÞZÞ<
− ½Xðχ>ÞJBðDYZÞ − Yðχ<ÞJBðDXZÞ�: ðB11Þ

Suppose that B is pierced by a congruence of geodesics
orthogonal to it with n denoting the corresponding normal
vector field on B. Then with the Riemann tensor we can
substitute the Ricci tensor Ric and derive the jump function

JB½RicðX; YÞ� ¼ JB½gðDPkXn; YÞ�δτB ; ðB12Þ

where Pk projects to the parallel part of X to B. Therefore,
extending the Einstein equation to hold for the correspond-
ing distribution valued tensors a jump function for the Ricci
tensor and scalar can only be caused by a distributional
valued energy-momentum tensor on B.
As examples we take the suspended shell in

Schwarzschild coordinates and the collapsing shell with
velocity dR=dτ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðRÞp

in Painlevé-Gullstrand
coordinates. Computing the jump functions of the Ricci
tensor (B12) for the former with normal vector at the shell
nμSðRÞ ¼ ð0; ffiffiffiffiffiffiffiffiffiffi

fðRÞp
; 0; 0Þ results in

JB½gðD∂τnS; ∂τÞ�δτB ¼ rg
2R2

ffiffiffiffiffiffiffiffiffiffi
fðRÞp ;

JB½gðD∂ϑnS; ∂ϑÞ�δτB ¼
ffiffiffiffiffiffiffiffiffiffi
fðRÞp

− 1

R
; ðB13Þ

where the ϑϑ component in the second line equals the φφ
component. Substituting these jumps together with their
traces in the Einstein field equations results in a shell as
perfect fluid with energy density and pressure (34).
Taking the collapsing shell in Painlevé-Gullstrand coor-

dinates the normal vector becomes nμPðRÞ ¼ ð0; 1; 0; 0Þ.
Then the jump for the Ricci tensor (B12) becomes for the
collapsing shell

JB½gðD∂τnP; ∂τÞ�δτB ¼ rg
2R2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞ

p ;

JB½gðD∂ϑnP; ∂ϑÞ�δτB ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþðRÞ

p
R

: ðB14Þ

Inserting this into the Einstein field equations results in a
collapsing shell with energy density and pressure (35).

APPENDIX C: NORMAL COORDINATE
SYSTEMS

According to the principle of relativity, the gravita-
tional and inertial masses are equal. As a consequence,
an observer cannot distinguish whether they are accelerat-
ing or subjected to a homogeneous gravitational field.
Therefore, for an arbitrarily curved background, locally in a
small neighborhood where the gravitational field is suffi-
ciently homogeneous, the metric is flat in the coordinates

associated with a free-falling observer at rest. For larger
neighborhoods where the Minkowski metric is insufficient,
one can Taylor expand the inhomogeneity of the gravita-
tional field, leading to correction terms.
One coordinate manifestation of this procedure is the

RNC, which can be derived as follows. Given the coor-
dinate velocity va of the observer in a background metric g
expressed in the global coordinates xa, we find locally
the vielbein eaμ satisfying the relations eat ¼ va and
gabeaαebβ ¼ ηαβ. With this vielbein, we can now construct
the RNC metric series in the usual coordinates ξα [32]:

gαβðξÞ ¼ ηαβ þ
1

3
Rαμνβξ

μξν þOðξ3Þ; ðC1Þ

with the Riemann tensor evaluated at the origin ξα ¼ 0.
If one chooses the spacetime points for an experiment
sufficiently close to the origin, the higher order terms in ξα

are negligible and it is sufficient to use the Minkowski
patch. On the other hand, if one moves away from the
origin the error increases. In the following, we will there-
fore provide an error analysis for the systems we investigate
in Sec. IV.
As already pointed out, the truncation of the metric of a

normal coordinate system at an adiabatic order restricts the
spacetime region in which this metric can be trusted. The
size and structure of this region has been studied in detail in
[30]. We are interested in considering only the Minkowski
contribution, i.e., the first term in (C1). The minimum
Schwarzschild radius that can be described in this patch
around the expansion radius r⋆ is given by Eq. (30) in [30]
and reads

rmin ¼ r⋆
�
1 −

3ffiffiffi
2

p ffiffiffi
δ

p
þ 15

4
δ

�2
3

; ðC2Þ

where δ is the maximal error resulting from neglecting the
terms of adiabatic order 2 and 3. For the desired expansion
point in (60), the maximal radius for the expansion point is
r⋆ ¼ 5=4R for R → rg. If we require that the Minkowski
patch reaches the suspended shell of radius rmin ¼ R, we
obtain the upper bound δ ≈ 5 × 10−2 with Eq. (C2), which
constitutes an acceptable error. As explained in the main
text, the mismatch that causes this error is entirely due to
the overestimation of the metric in the half of the RNC
patch between the expansion point and the shell, and is
compensated to some extent by the other half of the patch
where the metric is underestimated.
Starting from a RNC patch, one can obtain a propagator

that respects the metric up to a desired adiabatic order by
performing an expansion for large momenta [33]. This
propagator can be conveniently calculated with (44) by
considering the interaction Lagrangian as the difference
between the kinetic term of the field in the RNC back-
ground and the kinetic term in Minkowski. The resulting
series is not trustworthy for finite adiabatic order if the
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momenta are too small or equivalently the wavelength is
too large, i.e., on the order of the curvature length scale.
This can be taken care of by introducing an infrared energy
cutoff ωIR. If we require that the error due to neglecting the
contribution of the next-to-leading order only affects the
result by a maximum of 1% near r⋆, the cutoff value must
be chosen to be ωIR ≈ 4

ffiffiffiffiffiffiffiffiffi
rg=2

p
=ðr⋆Þ3=2.

Because of this cutoff, any infrared-sensitive observable
is strongly dependent on the exact value of ωIR. In systems
with external sources J, however, we can choose J such that
the contribution of infrared physics is negligible. To be
specific, if we assume a Gaussian dependence in energy
space for the source as in (65), we must choose the standard
deviation σt and the mean hωki accordingly. Moreover, for
a given choice of σt, we must also ensure that the temporal
validity of the system under consideration is large enough:
The temporal validity of a RNC patch according to Eq. (29)
of [30] depends on the mass of the black hole. Taking δ ¼
10−2 as before, a Minkowski patch anchored at r⋆ holds for
jxtj≲ tmaxðRÞ ¼ 0.16r3=2⋆

ffiffiffiffiffiffiffiffiffiffi
fðRÞp

=½rgfðr⋆Þ�. In Sec. IV B

we use the same source (65) for different values of R. Since
tmax increases monotonically for R > rg, we choose the
most restrictive setting for which the suspended shell is
viable, i.e., R → 25rg=24. Therefore, taking r⋆ as in (60),
we obtain σt ¼ tmaxð25rg=24Þ=2 ≈ 0.08rg and hωki ¼ 4=σt
to account for the cutoff ωIR. For astrophysical black holes
with a mass range from 1 to 1011 solar masses, the
maximum temporal validity ranges from tmax ¼ 1 μs to
tmax ¼ 40 h in Systeme International units.
Once the time restriction of the external source is

fixed, only its spatial restriction remains to be deter-
mined. In Sec. IV B we choose a point source located
inside the shell at xJ. Since we have approximated the
surface of the shell to be flat, the source needs to be
placed sufficiently close to the surface. Assuming that
the error in approximating the shell surface as flat is of
the order of 10−2, this restricts the distance between the
shell and the source R − x⊥J < 0.1R in agreement with
the choice made in our vacuum persistence amplitude
analysis in Sec. IV B.
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