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We consider the thermoelectric properties of the mixed-dimensional quantum electrodynamics of the
relativistic Dirac fermion and Wilson-Fisher boson. These models are self-dual, and can form nontrivial
many-body phases depending on the values of chemical potential, background magnetic field and the
electromagnetic fine-structure constant. Using particle-vortex duality, we derive a variety of thermoelectric
relations for strongly interacting phases with classic paradigms such as the Wiedemann-Franz law and the
Mott’s relation in the dual weakly interacting regimes. Besides, at the self-dual point, for the fermionic
theory we find the ratio of thermal conductivity of electrical conductivity depends on the determinant of the
Seebeck tensor and the phenomenological parameter Hall angle θH . As for the bosonic theory, the dual
fermion description explains how its Seebeck tensor varies depending on the dynamic regime characterized
by θH.
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I. INTRODUCTION

One of the greatest puzzles in modern condensed matter
physics is how strong correlations in many-body systems
reshape the classic paradigms such as Drude’s model and
Landau’s Fermi liquid theory. In the picture of the latter, up
to renormalization of scales, quasiparticles essentially
inherit most properties from the free particles at low
energies. Phenomenological predictions have been made
using these frameworks. In particular, transport properties
including electric, thermoelectric and thermal responses of
the quasiparticles can be conveniently explored with semi-
classical kinetic equations and plenty of the results have
been confirmed experimentally in solid-state systems. A
renowned example is the Wiedemann-Franz law, which
asserts that given the temperature T, the ratio of thermal
conductivity κ to electric conductivity σ equals a universal
constant, the Lorenz number L0,

κ

σT
¼ L0 ¼

π2

3
: ð1Þ

In the past two decades, enormous works have discovered
violations of laws like (1) and identified them as signatures
of physics beyond Landau’s spell. Examples occur fre-
quently in systems having separate electric and thermal
transports contributors such as fractional quantum Hall
states, vortex metals, and the vicinity of heavy-fermion
quantum criticality [1–3]. Rather interestingly, it is also
demonstrated that similar violations could happen to an
arbitrary extent [4–6] even within the framework of Fermi

liquid theory, where the driving force behind the violations
is nontrivial inelastic scattering processes.
Having acknowledged the breakdown of relations like

Eq. (1) does not sufficiently imply a new ballpark for many-
body physics, we would like to investigate the properties of
thermoelectric transports from an alternative perspective
by exploring new thermoelectric relations that may reveal
new insights for strongly coupled-many-body systems. In
this regard, dualities between quantum field theories offer
a natural platform because of their capabilities of bridging
different phases of matters. For instance, a Wiedemann-
Franz-like relation has been derived for (2þ 1)-dimensional
conformal field theories (CFTs) with holographic duals [7].
In a similar spirit,we aim to explore thermoelectric properties
for some dualities in the context of (2þ 1)-dimensional
matters coupling to (3þ 1)-dimensional electromagnetism.
More precisely, in terms of action, we consider the mixed-
dimensional quantum electrodynamics, dubbed QED4;3, of
the form

S ¼ Smatter½fϕg; A� −
1

4e2

Z
d4 xFμνFμν; ð2Þ

where fϕg is the collection of fields living in pure (2þ 1)
dimensions. Such a collection could consist of matter fields
or emergent dynamical gauge fields responsible for flux
attachment. The simplest examples ofSmatter and also the foci
of this work are the two-component Dirac fermion [8]

L f ¼ ψ̄iD=Aψ ; ð3aÞ
and the Wilson-Fisher boson

L b ¼ jDAϕj2 − jϕj4 ð3bÞ*Independent Researcher, Chicago, Illinois, USA.
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where ðDAÞμ ¼ ∂μ − iAμ denotes the conventional covariant
derivative in the flat spacetime.When coupled to the (3þ 1)-
dimensional Maxwell term, both Eqs. (3a) and (3b) acquire
the structure of self-duality [10,11], that is to say, the full
partition functionZ½S½e�� ¼ Z½S½ẽ��with ẽ ∼ 1=e. This result
relies upon that both matter theories admit the vortex-dual
descriptions via the celebrated particle-vortex duality
[12–15]. Remarkably, at the self-dual value of coupling
constant e ¼ ẽ, one can make quantitative inferences about
the coefficients of electric, thermoelectric, and thermal
transports with the background electromagnetic field speci-
fied [10,11]. These relations will be exploited further in this
work. In addition, the structure of strong-weak duality e ↔ ẽ
opens up a route for us to explore strongly interacting phase
e ≫ 1 via theweakly interacting counterpart ẽ ≪ 1. In the IR
this approximation is much more controlled compared to
QED3 because of the marginal nature of the (3þ 1)-dimen-
sional charge. In particular, for the spinor QED4;3, it has been
argued that the beta function βðe2Þ vanishes at charge
neutrality, and e2 does not run [16–18], helping justify
perturbative treatments given a fine structure constant of
appropriate size.
Regarding the thesis of this work, for model (3a), we

shall leverage some properties of the QED4;3 in perturbative
regime and at the self-dual point to derive thermoelectric
properties in strongly interacting regimes and at the self-
dual point itself. Specifically, we shall map some non-
trivial phases to those which permit free quasiparticle
descriptions such as a Fermi liquid or an integer quantum
Hall state. By virtue of duality, we can derive a bound of
deviation from Eq. (1) for single Dirac cone at charge
neutrality with infinite strength of electromagnetic inter-
action. We can also show, in the particle-hole symmetric
phase in the zeroth Landau level, the ratio of the longi-
tudinal components of open-circuit thermal conductivity κ̄
to resistivity ρ assumes a constant value in the strongly
interacting regime e ≫ 1. As for model (3b), we will
consider its fermionized description at the self-dual point,
where the composite fermions form a Fermi surface with
purely time-reversal even dynamics, and derive some
nonperturbative thermoelectric relations in terms of the
phenomenological parameter Hall angle θH.
The rest of the paper is structured as follows. In Sec. II

we review the essential results from mixed-dimensional
particle-vortex duality that will be utilized. These include
the mappings between different phases given the values of
particle-density n and background magnetic field B,
the transformation rules of electric, thermoelectric and
thermal conductivities under duality, the effect of mixed-
dimensional Maxwell action, and the role of the coupling
constant e2. The main results of the work will be presented
in Sec. III. We will look into several phases of matter in
strongly interacting regime e2 ≫ 1 and the self-dual points
of the spinor and scalar QED4;3s. By mapping them into
weakly interacting phases or constraining them by the

structure of self-duality, quantitative relations or identities
about their thermoelectric transports are derived. Then we
will wrap up the work in IV with some comments and open
directions.

II. DUALITIES, RELATIONS BETWEEN
PHASES AND TRANSPORT COEFFICIENTS

This section shall refresh how transport coefficients are
related under particle-vortex dualities. We start with dual-
izing Eq. (3a) by the fermionic particle-vortex duality
[19–21]

L fðAÞ ↔ χ̄iD=aχ þ
1

4π
a dA ð4Þ

with the standard shorthanded notation a dA ¼ ϵμνλaμ∂νAλ.
The lower-cased aμ denotes the statistical gauge field
responsible for relativistic flux attachments. We shall
denote the corresponding field strengths da using lower
cases ðb; eÞ in the rest of the section.
The mappings between operators can be derived by

varying gauge fields coupling to the conserved currents.
For example,

Jμψ ¼ ψ̄γμψ ¼ 1

4π
ϵμνλ∂νaλ: ð5aÞ

The current Jμχ is the on-shell condition for aμ.

Jμχ ¼ χ̄γμχ ¼ −
1

4π
ϵμνλ∂νAλ: ð5bÞ

Equations (5a) and (5b) summarize the essence of particle-
vortex dualities: The charge currents of the particlesmanifest
themselves in terms of electromagnetism in the dual descrip-
tion. It is also worth clarifying that while the field ψ is
charged underAμ, the field χ is not.Rather, it is charged under
the emergent field aμ, which is dual to the densities of ψ .
The quantum phases of the theories are characterized by the
ratio of particle number density to that of themagnetic fluxes
νψ ¼ 2πnψ=B and νχ ¼ 2πnχ=b. The zeroth components
[22] of Eqs. (5a) and (5b) together yield

2νψ ¼ −
1

2νχ
: ð6aÞ

The spatial components entail the correspondences of
charge currents and dual electric fields.

Jiψ ¼ −
1

4π
ϵijej ð6bÞ

Jiχ ¼
1

4π
ϵijEj: ð6cÞ

To relate the transport coefficients on two sides of the
duality, we consider the formal definition of conductivities.
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Jψ ¼ σψEþ αψð−∇TÞ ð7aÞ

Jχ ¼ σχeþ αχð−∇TÞ; ð7bÞ

where the temperature T is assumed to be invariant under
duality. As we pointed out in the above, ψ and χ are driven
by different electric fields since they are charged under
distinct gauge fields. Using Eq. (6b) to write J in terms of e,
− 1

4π ϵe ¼ σEþ αð−∇TÞ. Next, we invert Eq. (7b) and
rewrite Jχ similarly using Eq. (6c). This sequence of
operations gives

−
1

4π
ϵσ−1χ

�
1

4π
ϵEþ αχ∇T

�
¼ σψEþ αð−∇TÞ:

Since E and ∇T vary independently, in order for the above
equation to be consistent, we conclude

σψ ¼ 1

ð4πÞ2 ϵ
−1σ−1χ ϵ ¼ 1

ð4πÞ2 ϵ
−1ρχϵ ð8Þ

αψ ¼ 1

4π
ϵσ−1χ αχ : ð9Þ

Note that Eq. (9) can be further elucidated by introducing
the Seebeck tensor defined by E ¼ S∇T in the absence
of electric current. By Eq. (7b), Sχ ¼ σ−1χ αχ , and thus
equivalently

αψ ¼ 1

4π
ϵSχ : ð10Þ

Next we consider the linear response of heat current

q ¼ TαψE − κ̄ψ∇T: ð11Þ

κ̄ is understood as the thermal conductivity in the absence
of electric field. Unlike the particle density current, the
physical heat current does not transform under duality, and
simply has two descriptions in terms of ψ and χ fields.
Consequently, we identify

TαψE − κ̄ψ∇T ¼ Tαχe − κ̄χ∇T:

Substituting the inverse of Eq. (7b) for e again, the
consistency condition implies

κ̄ψ ¼ κ̄χ − Tαχσ−1χ αχ ≡ κχ : ð12Þ

κ is the thermal conductivity in the absence of current, or
the open circuit thermal conductivity. This correspondence
is not surprising because electric currents and fields swap
the roles under particle-vortex duality and so must κ and κ̄.
Note that the above derivations could be directly applied to
bosonic particle-vortex duality, which states

L bðAÞ ↔ jDaΦj2 − jΦj4 þ 1

2π
a dA: ð13Þ

The results are almost the same except the ð4πÞs in Eqs. (8)
and (9) are replaced with ð2πÞ. Nevertheless, we wish to
focus on the fermionized description of Eq. (3b), which is
given by relativistic flux attachment

L bðAÞ ↔ iΨ̄D=aΨ −
1

8π
a da −

1

2π
a dA −

1

4π
AdA: ð14Þ

The mappings between field operators can be derived again
by varying a and A.

Jμϕ ¼ −
1

2π
⋆da −

1

2π
⋆dA ð15aÞ

JμΨ ¼ 1

4π
⋆daþ 1

2π
⋆dA: ð15bÞ

The star ⋆ denotes the standard Hodge dual. The zeroth
components of the above two equations give rise to

ðνϕ − 1Þ
�
νΨ þ 1

2

�
¼ −1: ð16Þ

An immediate consequence is when νϕ ¼ 1, the fermion Ψ
sees an average magnetic field hbi ¼ −hð⋆daÞ0i ¼ 0 and
thus forms a Fermi liquid in the mean-field approximation.
By considering the spatial components of Eqs. (15a) and
(15b) and the linear response identities parallel to Eqs. (7a)
and (7b), one can establish relations between fermionic and
bosonic transport coefficients by the same token as one
presented in the earlier part of the section.

ϵ

�
σϕ −

ϵ

2π

�
ϵ−1

�
σΨ þ ϵ

4π

�
¼ 1

ð2πÞ2 ð17aÞ

αϕ ¼ −
1

2π
ϵ

�
σΨ þ 1

4π
ϵ

�
−1
αΨ ð17bÞ

κ̄ϕ ¼ κ̄Ψ − TαΨ

�
σΨ þ 1

4π
ϵ

�
−1
αΨ: ð17cÞ

Note that Eqs. (8), (9), (12), (17a), (17b), and (17c) are
exact and valid given any values of momentum ðω;qÞ. In 2-
spatial dimensions, rotational symmetry decomposes a
matrix wijðω;qÞ ¼ wLqiqj þ wTðqiqj − δijq2Þ þ wHϵ

ij,
where the form factors wL, wT , and wH are functions of
q2 and ω. In the long-wavelength limit q → 0, the
decomposition reduces to wij ¼ wxxδ

ij þ wxyϵ
ij, and some

identities can be simplified. For instance, Eq. (8) reduces to
σψσχ ¼ 1

ð4πÞ2. In the rest of the paper, we shall assume the

long-wavelength limit and concentrate on the optical
responses.
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Wewould like to conclude this section bymentioning that
Eqs. (8), (9), and (12) are ubiquitous in models admitting
dual vortex descriptions, which range from 3-dimensional
XY model to holomorphic dualities where the bulk gravity
theory acquires electromagnetic duality [23–27]. The addi-
tion of the mixed-dimensional Maxwell term endows these
relations with more precise implications. To be explicit,
turning on e2 and theMaxwell term in both sides of Eq. (4), it
can be shown by integrating over out-of-plane degrees of
freedom that the following theory

S½e� ¼
Z

d3 xL fðAÞ −
1

4e2

Z
d4 xFμνFμν ð18Þ

is dual to the same action S½ẽ� with a different coupling
constant

ẽ ¼ 8π

e
: ð19Þ

In short, the theory (18) is self-dual and exhibits the structure
of strong-weak duality. The assertion is true when applied to
Eq. (13) with the replacement ẽ0 ¼ ð4πÞ=e. As we will
elaborate in the following section, Eqs. (6a), (16), and (19)
offer us tools to describe some nontrivial strongly interacting
phases in terms of their weakly interacting dual counterparts
controlled by the marginal value e2 and explore properties at
the self-dual point e ¼ ẽ.

III. THERMOELECTRIC PROPERTIES BY
DUALITIES

This section will be denoted to various thermoelectric
implications for the mixed-dimensional Dirac fermion and
Wilson-Fisher boson models using the relations between
transport coefficients derived in the last section. We shall
first investigate various strongly interacting phases of the
model (18) at zero density and magnetic field. Next we turn
on chemical potential and magnetic field, looking into
phases characterized by the filling factor and the electro-
magnetic coupling ðν; e2Þ. These phases are explored using
their weakly interacting duals. Then we will discuss aspects
of the Wilson-Fisher boson at the self-dual point from the
composite fermion picture (14). At the bosonic self-dual
point, characterized by ðνϕ; e2Þ → ð1; 4πÞ, the dual fer-
mionic vortices form an time-reversal even phase with
vanishing Hall components for all conductivity tensors,
which provides us an algebraically feasible route to retrieve
knowledge about the dual bosons.

A. nψ = 0, B= 0, e2 → ∞
In this configuration, both ψ and χ sit at the charge

neutrality, where typical Fermi liquid theory breaks down
because T=TF ≫ 1. The dynamics of ψ is expected to be
affected by the Aμ fields, whereas χ forms a nearly free
Dirac cone. In the absence of the magnetic field, the

coefficients of optical responses are not only isotropic but
time-reversal even, i.e., that wijðωÞ ¼ wðωÞδij. This sym-
metry consideration and Eq. (8) imply σψ ðe ¼ ∞Þ ¼
1=½ð4πÞ2σχðẽ ¼ 0Þ� ¼ 1=π2. The thermoelectric response
αψ ∝ ϵσ−1χ αχ can only be zero for the sake of self-
consistency, which, together with Eq. (12), in turn implies
κ̄ψ ðeÞ ¼ κ̄χðẽÞ and κψ ðeÞ ¼ κχðẽÞ. Particle-vortex duality
alone fixes the value of thermal conductivity at charge
neutrality. Let us look at the ratio indicating the deviation
from the Wiedemann-Franz law.

rχðẽÞ ¼
1

L0

κχðẽÞ
TσχðẽÞ

:

While it is well known that r could be as large asOð10Þ in the
vicinity of a strongly interacting quantum critical point in
graphenelike systems [28,29], it is shown that for free
Dirac fermions r also exceeds unity and is sandwiched in
between two and three [30,31]. Using κψ ðeÞ ¼ κχðẽÞ
and rψ ð∞Þ ¼ rχð0Þ σχð0Þ

σψ ð∞Þ, we could estimate a bound for

deviation of theWiedemann-Franz law for the spinorQED4;3
in the strongly interacting limit.

1.23 < 2 ×
σχð0Þ
σψð∞Þ < rψ ð∞Þ < 3 ×

σχð0Þ
σψð∞Þ < 1.86: ð20Þ

This bound nontrivially quantifies not only the amount the
relativistic QED4;3 breaks the Wiedemann-Franz law in the
limit of infinite strength of coupling but also its discrepancy
from the non-relativistic graphene systems near the inelastic-
scattering dominating Dirac points.

B. ðνψ ;e2Þ → ð0;∞Þ, B ≠ 0

In this phase, the ψ particle forms a charge-conjugation
symmetric fractional quantum Hall state in the zeroth
Landau level because of the magnetic field and strong
fluctuations of mixed-dimensional electromagnetism. This
is the relativistic counterpart of the half-filled Landau level
in the context of conventional quantum Hall effect. In the
dual description, the fermionic vortex χ forms a Fermi
liquid because of the absence of average magnetic field
jbj ∝ nψ ¼ 0. The depth of the Fermi sea at T ¼ 0 is given

by pF ¼ ffiffiffiffiffiffijBjp
owing to nχ ∝ B=ð2πÞ and pF ∝ n1=2χ . The

Fermi surface couples to a perturbative electromagnetic
field controlled by strength ẽ → 0. On one hand, in the
semi-classical limit, the ratio ðκχÞxx=½TðσχÞxx� is given by
the Wiedemann-Franz law (1). On the other hand, by
Eqs. (8) and (12), entry-wise this ratio is dual to

ðκχÞxx
TðσχÞxx

¼ ð4πÞ2 ðκ̄ψ Þxx
TðρψÞxx

: ð21Þ

Consequently, in the strongly interacting limit, the frac-
tional quantum Hall state respects a Wiedemann-Franz-like
relation [32]
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ðκ̄ψ Þxx
TðρψÞxx

¼ 1

48
: ð22Þ

We could also consider the Mott’s law for the Fermi liquid.

αχ ¼
π2

3
T
∂σχ
∂μχ : ð23Þ

By Eq. (8),

∂σχ
∂μχ ¼

1

ð4πÞ2
∂ρψ
∂μχ :

For a relativistic Fermi liquid at low temperature, the
leading order μχ is given by pF ¼ ffiffiffiffiffiffijBjp

. Together with
(9), we can deduce

ϵ
∂ρψ
∂jBj ¼

6

πjBjT σ−1ψ αψ ¼ 6

πjBjT Sψ ; ð24aÞ

or equivalently

αψ ¼ πTjBj
6

ϵ
∂

∂jBj ln ρψ : ð24bÞ

These identities express thermoelectric responses in terms
of derivatives of electric responses with respect to the
magnitude of the magnetic field in the leading order of
temperature expansion. We could also straightforwardly
infer the vanishing of diagonal entries of the Seebeck tensor
ðSψ Þxx ∝ ðαχÞxy ¼ 0 because there is no time-reversal
symmetry breaking mechanism in the χ description.
Recall that the phase of ψ field is the relativistic and

mixed-dimensional analog of the νNR ¼ 1=2 problem [19].
As a consequence, Eq. (22) is also reminiscent of the
implication that the νNR ¼ 1

2
state, or a general two-dimen-

sional quantum fluid with a vortex description, violates the
conventional Wiedemann-Franz law [2,33]. The underlying
physical reason is that the Fermi liquid is formed by
fermionic vortices and therefore it is the ratio of the
vortices’ electric conductivity to thermal conductivity that
abides by the Wiedemann-Franz law (1). Although the
observable heat current remains equivalent under different
descriptions, the charge currents and electric fields swap
under the particle-vortex duality. As such, there is a
separation of charge and heat conducting degrees of free-
dom in the ψ description, breaking the canonical paradigm.
Nevertheless, despite similarly utilizing a Fermi surface
formed by Dirac-type composite fermions, the thermoelec-
tric inference by the mixed-dimensional QED could be
rather different than ones predicted by the purely (2þ 1)-
dimensional quantum Hall models [34] because the neces-
sity of an additional 1

2
1
4π AdA term in the action. For

instance the Seebeck coefficient could be nonvanishing

because the thermoelectric contribution from this shift in
the electric response. Note that, nonetheless, αxx ¼ 0 in
both examples.

C. ðνψ ;e2Þ → ð− 1
2 ;∞Þ

In this phase, because the relativistic Landau levels are
labeled by half-integers, ψ particles fill the Landau levels
right beneath the zeroth Landau level, whereas χ particles
fill the zeroth Landau level with small strength of inter-
action, or a simple integer quantum Hall state. Again we
have a relation Eq. (22) for the off-diagonal Hall response.
In the nearly ballistic limit T ≪ ω ≪ n1=2, ðσχÞxy ¼ 1

2
1
2π.

ðκ̄ψ Þxy ¼
T
48

ð4πÞ2ðσχÞxy ¼
π

12
T: ð25aÞ

We could extend this example to general integer quan-
tum Hall states of χ labeled by νχ ¼ �ðN þ 1=2Þ. They are
dual to strongly interacting fractional quantum Hall phases
at filling fractions ∓ 1

2ð2Nþ1Þ, or the relativistic version of

the Jain sequence. At any integral value of N, (25a)
naturally generalizes to

ðκ̄ψ Þxy ¼
π

6

�
N þ 1

2

�
T: ð25bÞ

We have not understood how the large N limit should be
carried out in order to establish a smooth interpolation
between the result and a Fermi liquid phase. A reasonable
resolution would be performing the N re-summation in the
random phase approximation (RPA) before gradient expan-
sion in ðω;qÞ by the same token as the treatment
in Ref. [35].

D. ðν;e2Þ → ð12 ;8πÞ
This corresponds the self-dual point of the spinor mixed-

dimensional particle-vortex duality Eq. (18). ψ and χ
particles experience the same strength of electromagnetic
interaction, and their phases are related by the time-reversal
transformation. In terms of the tensors of linear response,

σχ ¼ T σψT −1 ¼ σTψ ð26aÞ

αχ ¼ T αψT −1 ¼ αTψ ð26bÞ

κχ ¼ T κψT −1 ¼ κTψ : ð26cÞ

Equations (8) and (26a) imply the semicircle law for the
conductivity tensor

σ2xx þ σ2xy ¼
1

ð4πÞ2 ð27Þ

We suppress the ψ label since at this point ψ and χ are
essentially time-reversal counterparts. These entries can

THERMOELECTRIC PROPERTIES AND … PHYS. REV. D 104, 125006 (2021)

125006-5



then be parametrized by the phenomenological parameter
Hall angle θH: σxx ¼ 1

4π cos θH and σxy ¼ 1
4π sin θH.

Introducing θH to Eqs. (9) and (26b), the ratio

αxy
αxx

¼ tan

�
π

4
þ θH

2

�
: ð28aÞ

Alternatively the ratio of the off-diagonal and diagonal
components of the Seebeck tensor reads

Sxy
Sxx

¼ tan

�
π

4
−
θH
2

�
: ð28bÞ

To proceed, we can use Eq. (26c) κ̄ψ − κ̄χ ¼
κ̄ψ − κ̄Tψ ¼ −TαχSχ . The new implication of the above
transport quantities is that we can explore a Wiedemann-
Franz-like relation at the self-dual point:

κ̄xy
Tσxy

¼ κyx
Tσxy

¼ 1

2 sin θH
ðS2xx þ S2xyÞ: ð29aÞ

We can look at different dynamic regimes by tuning the
parameter θH. In particular, in the quantum Hall regime
θH → π=2, αxy=αxx → ∞ and Sxy=Sxx → 0. The ratio (29a)
converges to

κ̄xy
Tσxy

¼ 8π2α2xy ¼
1

2
S2xx: ð29bÞ

The generalized Lorenz number is given by the square of
the diagonal component of the Seebeck tensor, or that of the
Hall component of the thermoelectric conductivity. We note
that unlike Eqs. (25a) and (25b), which still require some
knowledge about the weakly interacting phases on one side
of the duality, Eqs. (29a) and (29b) are exact to all orders in
the coupling constant e2 at a nonperturbative value e2 ¼ 8π
and emerges solely from self-duality of the theory.

E. ðνϕ;e2Þ → ð1;4πÞ
Finally, we look at the self-dual point of the mixed-

dimensional Wilson-Fisher theory (13). It exhibits universal
transport properties similar to Eqs. (26a), (26b), and (26c).
Physically, this configuration is populatedwith equal density
of boson and magnetic flux tubes. This is reminiscent of
the field-induced superconductor-insulator transition (SIT)
[36,37] and the ν ¼ 1 bosonic fractional quantum Hall state
[38,39]. Naively we could repeat all the arguments in the
above to deduce inferences for some bosonic phases strongly
interacting with the electromagnetic interaction. However,
the nature of the electric and thermal transport properties at
theMott-superfluid transition is not as transparent and simple
as the fermionic counterpart. As such, we attempt to describe
this phase in terms of the mixed-dimensional extension of
Eq. (14), which implies the fermion field Ψ forms a Fermi
surface and interacts with emergent gauge field aμ, which is
charged under Aμ.

In this example the bosonic electric transport abides by
the semicircle law ðσϕÞ2xx þ ðσϕÞ2xy ¼ 1

ð2πÞ2. We can para-
metrize the dynamic regime similarly with the Hall angle
θH. Using Eq. (17a), it can be shown the fermion field has
time-reversal even electric conductivities.

ðσΨÞij ¼
1

4π
tan

�
θH
2

þ π

4

�
δij: ð30Þ

Using this parametrization, thermoelectric properties can
be further elucidated from the fermionic aspect. Taking the
Seebeck coefficient at the self-dual point for example,

Sϕ ¼ σ−1ϕ αϕ ¼ −
1

2π
σ−1ϕ ϵ

�
σΨ þ 1

4π
ϵ

�
−1
αΨ: ð31Þ

In the quantum Hall regime for ϕ: θH → π=2, the Ψ field
approaches the ballistic limit and the anomalous Hall
contribution becomes negligible ðσΨ þ ϵ=ð4πÞÞ−1 ≈ σ−1Ψ .
Consequently,

θH →
π

2
∶ ðSϕÞij ≈ −

αΨ
σΨ

δij: ð32aÞ

For the self-dual boson, its Seebeck tensor also becomes
diagonal because it is dual directly to the fermionic See-
beck tensor, which has to be diagonal since there is no
breakdown of time-reversal symmetry. In the opposite limit
θH → 0, σΨ saturates to the same order of the anomalous
Hall conductivity ðσΨ þ ϵ=ð4πÞÞ−1 ≈ 2πð1 − ϵÞ.

θH → 0∶ Sϕ ¼ −
αΨ
2π

ð1þ ϵÞ ð32bÞ

We arrive at ðSϕÞxx ¼ ðSϕÞxy.
Ideally, at the mean-field level αΨ ∝ T ∂σΨ∂μ , αΨ=σΨ of the

Fermi liquid could give an estimate of temperature depend-
ence of Sϕ and κϕ when applied to Eqs. (32a) and (32b). In
fact, for this fermionized model, it can be shown that an
isotropic, time-reversal even and free fermion approxima-
tion could fulfill the self-dual condition. This algebraic fact
explains why similar conclusions can be derived near the
SIT with a similar model in the RPA [37]. This, in our
context, would unfortunately only be a very rough approxi-
mation since e2 ¼ 4π by no means corresponds to a weakly
interacting phase. In fact, owing to fluctuating aμ, the
effective coupling e2eff coupled to Ψ is given by

e2eff ¼ e2½1þ ð4π=e2Þ2� ≥ 8π: ð33Þ

The Ψ fermions would always interact furiously with the
gauge fluctuations. The bosonic self-dual point e2 ¼ 4π
already offers the most optimistic strength and in addition it
is the only value at which the time-reversal-symmetric
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assumption is validate. Therefore, we shall not attempt to
make further inferences using the duality technique.

IV. CONCLUSION

We considered the thermoelectric properties of the
relativistic Dirac and Wilson-Fisher mixed-dimensional
quantum electrodynamics. Depending on the values of
chemical potential, background magnetic field, and the fine
structure constant, these models depict various non-trivial
many-body phases on a thin film such as the Dirac liquid at
the vicinity of the Dirac point and the relativistic versions
of the half-filled Landau level problem for both fermions
and bosons. By exploiting the weakly interacting vortex
descriptions and the properties of self-duality of these
models and phases, a variety of intriguing thermoelectric
relations such as Eqs. (20), (22), (25b), and (29b) were
derived. Some of them can be considered the reinterpre-
tations of the classic Wiedemann-Franz law or the Mott’s
relation, and some other of them can help estimate how
these many-body phases deviate from the free quasiparticle
pictures.

To extend this story, there are a couple of potentially
fruitful open directions. Despite strong motivations from
the solid-state systems, it is tempting to look for analogous
relations in the context of holographic dualities, especially
for dualities embracing electromagnetic dualities or the
property of self-duality in the bulk-gravity theory such as
the AdS4=CFT3 correspondence [7,27,40]. We also look
forward to generalizing the duality-based analyses to more
bosonic systems and nonrelativistic inclined models. The
latter predict measurable behaviors of experimentally
accessible systems. The former opens up new routes to
clarify natures of strongly correlated bosonic quantum
matter lacking classical picture. For instance, the ν ¼ 1
fractional quantum Hall state can be dualized alternatively
using a bilayer-graphenelike model with dynamical proper-
ties derivable by more conventional means [41,42].
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