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We revisit the entanglement harvesting protocol when two detectors are in causal contact. We study the
role of field-mediated communication in generating entanglement between the two detectors interacting
with a quantum field. We provide a quantitative estimator of the relative contribution of communication
versus genuine entanglement harvesting. For massless scalar fields in flat spacetime, we show that when
two detectors can communicate via the field, the detectors do not really harvest entanglement from the field,
and instead they get entangled only via the field-mediated communication channel. In other words, in these
scenarios the entanglement harvesting protocol is truly “harvesting entanglement” from the field only when
the detectors are not able to communicate. In contrast, for massive scalar fields both communication and
genuine harvesting contribute equally to the bipartite entanglement when the detectors are causally
connected. These results emphasize the importance of taking into account the causal relationships between
two parties involved in this relativistic quantum information protocol before we can declare that it is truly
entanglement harvesting.
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I. INTRODUCTION

It is by now well-known that quantum fields can display
quantum correlations between any two disjoint spacetime
regions [1–3]. These correlations can be extracted by two
localized quantum probes [e.g., Unruh-DeWitt (UDW)
detectors [4,5], atoms coupled to the electromagnetic field
[6,7], etc.]—even when they are spacelike separated—via a
protocol that has become known as entanglement harvest-
ing (see, e.g., [7–10]). In the context of relativistic quantum
information, entanglement harvesting has been used to
probe physical phenomena including the underlying space-
time geometry [11–15], topology [16], presence of hori-
zons or boundary conditions [17–21], indefinite causal
order [22], or center of mass delocalization [23].
When two detectors are spacelike separated, it is clear that

the entanglement they acquire has to necessarily come from
the harvesting of correlations that exist in the field, since the
two detectors cannot communicate. However, it is not
uncommon in the studyof entanglement harvestingprotocols
to consider the regimes where the detectors are causally
connected (see, among many others, Refs. [7,10,23–26],
etc.). However, the question whether these detectors are
harvesting correlations between timelike or lightlike sepa-
rated regions of the field is not obviously clear, since causally

connected detectors can potentially get entangled through
two mechanisms: (1) genuinely harvesting correlations from
the field, or (2) communicating with each other via the field
without harvesting any preexisting field correlations.
Ideally, we would like to be able to separate the

contribution to the entanglement acquired between two
detectors into two components: the entanglement that is
genuinely harvested, and the entanglement that is generated
through the communication of the two detectors via the
field. Unfortunately, so far there was no quantitatively clear
way to distinguish both contributions. To address this, in
this paper we are going to propose a quantitative estimator
of the contribution that communication has to the entan-
glement acquired by detectors in causal contact.
We will do so by noting that the correlations acquired

between the detectors can be separated in two (subadditive)
contributions: the contribution coming from the real part of
the Wightman function of the field (the expectation of the
anticommutator) and the one coming from its imaginary
part (the expectation of the commutator). We will argue that
the relative contribution of the commutator part to the total
acquired entanglement will give a faithful estimator of how
much the entanglement is coming from communication and
how much from genuine harvesting.
We will give mainly two reasons for this: on the one

hand, it has been shown that the leading order contribution
to communication between the detectors is exclusively
given by the field commutator, and this contribution enters
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the final state of the detectors at the same leading order as
the harvesting contribution [27–29]. Second, and more
importantly, the commutator contribution is state-indepen-
dent: any entanglement that comes from the commutator
contribution cannot be ascribed to the field state (hence
unrelated to the entanglement structure of the field theory)
and will be the same even if there are no correlations
in the field state. Consequently, genuine vacuum entangle-
ment harvesting must necessarily come from the (state-
dependent) anticommutator contribution. In the cases where
the commutator contribution constitutes near 100% of the
entanglement, one can safely claim that the entanglement
acquired through the protocol is not harvested. Again, this is
because in that case the entanglement of the detectors would
be the same even ifwe replace the state of the field by another
one with no correlations whatsoever, since the commutator
expectation is state independent. This is particularly impor-
tant in light of recent results where one can suspect
that a significant amount of the detectors’ entanglement
may be due to field-mediated communication (see, e.g.,
Refs. [20,21,30]). Field-mediated communication is also
expected to contribute to the bipartite entanglement when
one implements indefinite causal ordering between two
detectors’ switching times [22], or when the detectors have
spatial smearings thatmake the detectors causally connected
(e.g., some regimes of [10,23]).
In this paper we will proceed as follows: First, we build a

quantitative measure that distinguishes harvesting from
communication-mediated entanglement. Then, we will
show how the behavior of the field commutator that
governs communication between the two detectors depends
on spacetime dimensions and the mass of the field. In doing
so, we will take into account the decay laws of the real and
imaginary parts of the Wightman function and how they are
affected by the spacetime dimension and the strong
Huygens principle [31,32]. We will see that as a general
rule for flat spacetime, when there is causal contact
between the detectors there is little or no entanglement
harvesting; rather, the entanglement acquired by the detec-
tors will be mostly due to their communication through the
field. This is expected to be true also at least for con-
formally coupled massless fields in (conformally flat)
curved spacetimes. We will briefly discuss what can be
expected in spacetimes which are not conformally flat such
as Schwarzschild geometry [33] or spacetimes which admit
no conformally flat slicing such as Kerr geometry [34,35].
Finally, we will also study how the field mass affects these
results, and show that the results are the same whether the
detectors are compactly supported on spacetime or whether
they have Gaussian tails in their switching functions.
This paper is organized as follows. In Sec. II we outline

the UDW model and the entanglement harvesting protocol.
In Sec. III we review the Wightman function, its splitting
into anticommutator and commutator, and the strong
Huygens’ principle. In Sec. IV we calculate explicitly

the density matrix elements for two detectors that interact
with a scalar field, and build the communication-mediated
entanglement estimator. In Sec. V we present our main
results for massless scalar fields in (1þ 1), (2þ 1), and
(3þ 1) dimensions. In Sec. VI we discuss how the results
change in higher spacetime dimensions and when the field
is massive, ending the section with a comparison between
the cases of compact switching vs noncompact switching.
Throughout this paper we will use natural units c ¼ ℏ ¼ 1,
“mostly plus” the metric signature, and x ¼ ðt; xÞ is used as
a shorthand for spacetime points.

II. ENTANGLEMENT HARVESTING PROTOCOL

Two detectors interacting with a quantum field can get
entanglement through two mechanisms: they can exchange
signals, or they can swap the entanglement already present in
the state of the quantum field [1,2], allowing them to get
entangled evenwhen they are spacelike separated [8–10]. Let
us summarize the simplest entanglement harvesting protocol.
Let us consider a quantized scalar field of mass m in

(nþ 1)-dimensional Minkowski spacetime. In terms of
plane-wave modes, we can write the field as

ϕ̂ðt; xÞ ¼
Z

dnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2πÞnωk

p ðâke−iωktþik·x þ H:c:Þ; ð1Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
is the relativistic dispersion rela-

tion and the annihilation and creation operators obey the
canonical commutation relations ½âk; â†k0 � ¼ δnðk − k0Þ.
Here, the canonical quantization of the field is carried
out with respect to inertial observers with coordinates
x ¼ ðt; xÞ, where t is the standard Killing time.
Consider two observers Alice and Bob, each carrying a

pointlike Unruh-DeWitt detector consisting of a two-level
system interacting locally with the quantum field. The total
interaction Hamiltonian is given by

Ĥt
IðtÞ ¼

dτA
dt

ĤτA
A ðτAðtÞÞ þ

dτB
dt

ĤτB
B ðτBðtÞÞ; ð2Þ

Ĥ
τj
j ¼ λjχjðτjÞμ̂jðτjÞ ⊗ ϕ̂ðtðτjÞ; xðτjÞÞ: ð3Þ

The superscript on Ĥt means that the Hamiltonian gen-
erates time translations with respect to the Killing time t
and τj is the proper time of detector j ¼ A; B. The switching
function χjðτjÞ prescribes the duration of interactions, and
for simplicity we assume that χj is real. Each detector’s
monopole moment μ̂j is given by

μ̂jðτjÞ ¼ jejihgjjeiΩjτj þ jgjihejje−iΩjτj ; ð4Þ

where fjgji; jejig are ground and excited states of detector
j. For simplicity we will consider identical detectors so that
λj ¼ λ and Ωj ¼ Ω.
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In this work wewill consider detector trajectories that are
at rest relative to the quantization frame ðt; xÞ: we can
replace xjðτjÞ ¼ ðtðτjÞ; xjðτjÞÞ in Eqs. (15) and (16) with
ðtj; xjÞ where xj are constants for j ¼ A, B. Since the
detectors are taken to be pointlike, without loss of general-
ity we set the trajectories to be

xAðtÞ ¼ ðt; 0; 0; 0Þ; xBðtÞ ¼ ðt; L; 0; 0Þ; ð5Þ

where L ¼ jxB − xAj is the proper distance between the
detectors.
The detector-field interaction for a given initial state ρ̂0 is

implemented by unitary time evolution ρ̂ ¼ Ûρ̂0Û
†, where

the time evolution operator U is given by the time-ordered
exponential

Û ¼ T e−i
R

dtĤt
IðtÞ: ð6Þ

In general we can evaluate this perturbatively via Dyson
series expansion

Û ¼ 1þ Ûð1Þ þ Ûð2Þ þOðλ3Þ; ð7Þ

Ûð1Þ ¼ −i
Z

∞

−∞
dtĤt

IðtÞ; ð8Þ

Ûð2Þ ¼ −
Z

∞

−∞
dt
Z

t

−∞
dt0Ĥt

IðtÞĤt
Iðt0Þ: ð9Þ

Thus the final state of the full system can be described by
perturbative Dyson expansion about the initial state:

ρ̂ ¼ ρ̂0 þ ρ̂ð1Þ þ ρ̂ð2Þ þOðλ3Þ; ð10Þ

ρ̂ðjÞ ¼
X
kþl¼j

ÛðkÞρ̂0ÛðlÞ†; ð11Þ

where ρ̂ðjÞ is of order λj. The final state of the two detectors
is obtained by tracing out the field; thus we also have a
perturbative expansion

ρ̂AB ¼ Trϕρ̂ ¼ ρ̂AB;0 þ ρ̂ð1ÞAB þ ρ̂ð2ÞAB þOðλ3Þ; ð12Þ

where ρ̂ðjÞAB ¼ Trϕρ̂ðjÞ and ρ̂AB;0 ¼ Trϕρ̂0.
If the initial state of the field is the vacuum state j0i

defined by âkj0i ¼ 0 for all k, then ρ̂ð1ÞAB ¼ 0 due to the
vanishing of the one-point function h0jϕ̂ðxÞj0i. Thus the
leading order correction to the joint bipartite density matrix
ρ̂AB;0 is of order λ2.
For the purpose of analyzing entanglement harvesting

protocol, we will also make the assumption that both
detectors are initially uncorrelated and are in their own
respective ground states with respect to their free
Hamiltonian, and thus we write

ρ̂0 ¼ jgAihgAj ⊗ jgBihgBj ⊗ j0ih0j: ð13Þ

For simplicity we consider both detectors to be static
relative to the quantization frame so that the coordinates
of their trajectories are given by ðtðτjÞ; xðτjÞÞ ¼ ðτj; xjÞ for
some fixed xj. Under these assumptions, we can show
that to leading order and in the ordered basis fjgAgBi;
jgAeBi; jeAgBi; jeAeBig we get

ρ̂AB ¼

0
BBB@

1 − LAA − LBB 0 0 M�

0 LBB LAB 0

0 LBA LAA 0

M 0 0 0

1
CCCAþOðλ4Þ;

ð14Þ

where the matrix elements are given by

Lij ¼ λ2
Z

dtdt0χiðtÞχjðt0Þe−iΩðt−t0ÞWðt; xi; t0; xjÞ; ð15Þ

M ¼ −λ2
Z

dtdt0eiΩðtþt0ÞχAðtÞχBðt0Þ

× ½Θðt − t0ÞWðt; xA; t0; xBÞ
þ Θðt0 − tÞWðt0; xB; t; xAÞ�; ð16Þ

where WðxiðτiÞ; xjðτ0jÞÞ is the pullback of the Wightman
function along the detectors’ trajectories and ΘðzÞ is the
Heaviside function.
In order to measure the amount of entanglement between

the two qubits, we use entanglement measures such as
negativity or concurrence [36–38]. For a system of two
qubits, the negativityN for the density matrix ρ̂ is a faithful
entanglement monotone defined by [36]

N ½ρ̂� ≔ jjρ̂Γjj1 − 1

2
; ð17Þ

where ρ̂Γ is the partial transpose of ρ̂ and jj · jj1 is the trace
norm. For the final density matrix ρ̂AB in Eq. (14),
negativity takes the form

N ½ρ̂AB� ¼ maxf0;−Eg þOðλ4Þ; ð18Þ

where

E ¼ 1

2

�
LAA þ LBB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA − LBBÞ2 þ 4jMj2

q �
: ð19Þ

Since the detectors are identical and Minkowski space has
translational symmetries, we have that LAA ¼ LBB, and
hence the negativity reduces to

N ½ρ̂AB� ≔ max f0; jMj − Ljjg þOðλ4Þ: ð20Þ

WHEN ENTANGLEMENT HARVESTING IS NOT REALLY … PHYS. REV. D 104, 125005 (2021)

125005-3



III. WIGHTMAN FUNCTION AND STRONG
HUYGENS’ PRINCIPLE

For our purposes, we need to analyze the (vacuum) two-
point Wightman function Wðx; x0Þ ¼ h0jϕ̂ðxÞϕ̂ðx0Þj0i. For
(nþ 1)-dimensional Minkowski spacetime, this reads

Wðx; x0Þ ¼
Z

dnk
2ð2πÞnωk

e−iωkðt−t0Þþik·ðx−x0Þ; ð21Þ

where it is understood that the Wightman function is a (bi)
distribution.
The Wightman function has two clearly distinct con-

tributions, its imaginary and real parts:

Wðx; x0Þ ≔ 1

2
ðCþðx; x0Þ þ C−ðx; x0ÞÞ; ð22Þ

where

Cþðx; x0Þ ¼ h0jfϕ̂ðxÞ; ϕ̂ðx0Þgj0i; ð23Þ

C−ðx; x0Þ ¼ h0j½ϕ̂ðxÞ; ϕ̂ðx0Þ�j0i: ð24Þ

This splitting is motivated by two important facts on which
the main crux of this work is based:
(i) The expectation value of the field commutator

½ϕ̂ðxÞ; ϕ̂ðx0Þ� is state-independent: that is, if ρ̂ϕ; ρ̂0ϕ
are two distinct field states and C−; C0− their corre-
sponding commutator expectation values, then

C−ðx; x0Þ ¼ Trðρ̂ϕ½ϕ̂ðxÞ; ϕ̂ðx0Þ�Þ
¼ Trðρ̂0ϕ½ϕ̂ðxÞ; ϕ̂ðx0Þ�Þ
¼ C0−ðx; x0Þ: ð25Þ

In particular, it means that C−ðx; x0Þ for a vacuum state
will be the same as the one computed using a field state
which has no correlations whatsoever.

(ii) The expectation value of the anticommutator
fϕ̂ðxÞ; ϕ̂ðx0Þg is state-dependent: that is, if ρ̂ϕ; ρ̂0ϕ
are two distinct field states and Cþ; C0þ their corre-
sponding anticommutator expectation values, then in
general

Cþðx; x0Þ ¼ Trðρ̂ϕfϕ̂ðxÞ; ϕ̂ðx0ÞgÞ
≠ Trðρ̂0ϕfϕ̂ðxÞ; ϕ̂ðx0ÞgÞ
¼ C0þðx; x0Þ: ð26Þ

In particular, it means that the difference in the two-
point correlations between two field states is com-
pletely contained in the expectation value of the
anticommutator.

We also note that field commutator (24) is
Green’s function for the Klein-Gordon equation in
(nþ 1)-dimensional Minkowski spacetime.
The decomposition into commutator and anticommuta-

tor is very helpful to disentangle entanglement harvesting
(no pun intended) from the entanglement that is not
harvested, but rather generated through field-mediated
communication of the two detectors. Since the field
commutator is state-independent, the bipartite entangle-
ment of the detectors cannot be associated with preexisting
(vacuum) correlations of the field. It is also known that
communication between the detectors is, at leading order,
given by the field commutator [27–29,39,40].
In order to better understand the role of communication

in generating entanglement between two detectors, we need
some results about classical Green’s functions for wave
propagation. The strong Huygens’ principle states that
Green’s functions (hence the general solutions) of a second-
order linear partial differential equation of normal hyper-
bolic type has support only along the null direction (the
boundary of the domain of dependence, e.g., the light cone)
[31]. For a massless Klein-Gordon field in flat spacetimes,
a classic result shows that this wave equation satisfies the
strong Huygens’ principle for odd n ≥ 3 [32]. When the
principle is violated, Green’s function also has support in
the interior of the light cone. The principle is known not to
hold for massless fields in generic curved spacetimes and
for fields with nonzero mass [41,42].
The preceding discussion shows that the support of the

field commutator C−ðx; x0Þ is paramount in determining the
role of communication between two detectors when they
are causally connected since it mediates the leading order
communication. In contrast, the anticommutator Cþðx; x0Þ
has support for spacelike-separated events, and it is
certainly the only contribution to the Wightman function
(and therefore the correlations that two detectors can
acquire) when two detectors perform spacelike entangle-
ment harvesting.
In the next section we will build an estimator of how

much of the entanglement acquired between two detectors
is due to communication (which is to say, through the field
commutator) and how much is coming through the anti-
commutator, which plays no role in communication at
leading order [27,29,39]. The contribution from the anti-
commutator will therefore be associated with genuine
harvesting of entanglement.
To carry out this studywewill generalize the entanglement

harvesting protocol in [10] to arbitrary (nþ 1)-dimensional
spacetimes and also for scalar fields with m > 0.

IV. COMMUNICATION AND ENTANGLEMENT
HARVESTING IN ARBITRARY DIMENSIONS

Our first task is to obtain explicit expressions for the
matrix elements LAA (LBB) and M for arbitrary field mass
m and any number of spacetime dimensions.
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Let us take the switching function j to be Gaussian,

χjðtÞ ¼ e−
ðt−tjÞ2
T2 ; j ¼ A; B; ð27Þ

where T prescribes the effective duration of the interaction
and tj denotes the switching peak of detector j. With this
choice, the matrix elements of ρ̂AB will greatly simplify. In
this work, we define the strong support of the detectors to
be the interval

Sj ¼ ½−3.5T þ tj; 3.5T þ tj�; j ¼ A; B; ð28Þ

which contains 99.9999% of the total area of the Gaussian.1

This allows us to think of the switching as effectively
compactly supported within an interval of 7T centered at tj.
Detector B can then be considered spacelike separated from
detector A when SB does not intersect any light rays
emanating from SA, as we show schematically in Fig. 1.
The matrix element Ljj, which corresponds to the

vacuum excitation probability of detector j, is given by

Ljj ¼ λ2
Z

dnk
2ð2πÞnωk

jχ̃jðΩþ ωkÞj2; ð29Þ

where χ̃ is the Fourier transform of the switching function.
For a massless scalar field with ωk ¼ jkj and Gaussian
switching (27), this can be solved exactly:

Ljj ¼
π

2−n
2 T3−n

2
nþ3
2 Γðn

2
Þ

�
Γ
�
n − 1

2

�
1F1

�
2 − n
2

;
1

2
;−

T2Ω2

2

�

−
ffiffiffi
2

p
TΩΓ

�
n
2

�
1F1

�
3 − n
2

;
3

2
;−

T2Ω2

2

��
; ð30Þ

where 1F1ða; b; zÞ is Kummer’s confluent hypergeometric
function and ΓðzÞ is the gamma function [43,44]. This
expression is valid for n > 1 since there is a well-known
infrared (IR) divergence in (1þ 1) dimensions2 [10,45].
For massive scalar fields where ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk2j þm2

p
with

m > 0, there is no closed form expression for (29).
For matrix elementM which depends on the trajectories

of both detectors, we decompose it into two parts,

M ¼ Mþ þM−; ð31Þ

where M� depends on the (anti)commutator C�ðx; x0Þ in
Eqs. (23) and (24). Using the shorthand k≡ jkj, they are
given by (see Appendix A)

Mþ ¼ −λ2e2iΩtA
Z

∞

0

dkkn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ðK1ðkÞ þK2ðkÞÞ; ð32Þ

M− ¼ −λ2e2iΩtA
Z

∞

0

dkkn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ðK3ðkÞ þK4ðkÞÞ; ð33Þ

where each Kj (j ¼ 1, 2, 3, 4) reads

K1ðkÞ ¼ 2−n−1π1−
n
2T2

0F̃1

�
n
2
;−

k2L2

4

�

× e−
1
2
T2ðk2þΩ2ÞþitABðΩ−kÞ; ð34Þ

K2ðkÞ ¼ 2−n−1π1−
n
2T2

0F̃1

�
n
2
;−

k2L2

4

�

× e−
1
2
T2ðk2þΩ2ÞþitABðkþΩÞ; ð35Þ

FIG. 1. Spacetime diagram for Alice and Bob’s detectors.
The gray rectangles are the (strong) support of their detectors’
switching functions, denoted SA; SB. Alice and Bob are separated
by proper distance L. The time delay tAB ¼ tB − tA marks the
difference between their switching peaks. The red-shaded regions
are null-separated from SA.

1As we will see in Sec. V, the choice of�3.5T about the center
of Gaussian is based on numerical evidence involving the field
commutator. It also suggests that the interval for the strong
support Sj should not be taken to be smaller than (28). In any
case, we will study truly compactly supported switching func-
tions in more detail in Sec. VI.

2If we were to continue using this expression for the ð1þ 1ÞD
case, then one should use n ¼ 1þ ϵ for some 0 < ϵ ≪ 1, which
amounts to dimensional regularization of the IR divergence. One
can also use mass regularization (small nonzero mass) or a hard
IR cutoff as in [10].
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K3ðkÞ ¼ −i2−nπ1−n
2 T2eitABΩ−

t2
AB

2T2
−T2Ω2

2 F
�
kT2 þ itABffiffiffi

2
p

T

�

× 0F̃1

�
n
2
;−

k2L2

4

�
; ð36Þ

K4ðkÞ ¼ −i2−nπ1−n
2 T2eitABΩ−

t2
AB

2T2
−T2Ω2

2 F
�
kT2 − itABffiffiffi

2
p

T

�

× 0F̃1

�
n
2
;−

k2L2

4

�
; ð37Þ

where F ðzÞ ¼ e−z
2 R z

0 dye
z2 is Dawson’s integral and

pF̃qðb; zÞ is the regularized generalized hypergeometric
function or Bessel-Clifford function3 [43,44,46]. Here we
use the shorthand tAB ≔ tB − tA for the time delay. As there
is no closed form expressions for M for arbitrary m and
tAB, we will evaluate M numerically.
The splitting in Eq. (31) motivates us to define harvested

negativity N þ½ρ̂AB� and communication-assisted negativity
N −½ρ̂AB� as

N �½ρ̂AB� ≔ max f0; jM�j − Ljjg þOðλ4Þ: ð38Þ

The idea is that if the two detectors are spacelike separated,
then M− ¼ 0 and hence N ¼ N þ (N − ¼ 0). When the
detectors are not in spacelike separation, they still can in
principle harvest entanglement. Indeed, the vacuum in any
two regions of spacetime contain quantum correlations
[1–3]. Comparing the contributions of the commutator and
anticommutator to negativity will hence allow us to see
how much of the entanglement between the detectors is due
to bipartite communication and how much is actually
harvested from the scalar field vacuum.
To compare both contributions, we define a communi-

cation-mediated entanglement estimator I ½ρ̂AB� given by

I ½ρ̂AB� ≔
	N −½ρ̂AB�

N ½ρ̂AB� N ½ρ̂AB� > 0

0 N ½ρ̂AB� ¼ 0
: ð39Þ

The estimator’s role can be summarized as follows:
(i) If I ½ρ̂AB� ≈ 1, then essentially all of the entanglement is

dominated by the communication between two detec-
tors through the field and not from swapping entan-
glement with the scalar field vacuum.

(ii) If 0 < I ½ρ̂AB� < 1, then some of the entanglement is
communication-assisted, and vacuum entanglement

also has nonzero contribution to the detector-detector
entanglement.

(iii) If I ½ρ̂AB� ¼ 0, then either there is no entanglement
(N ½ρ̂AB� ¼ 0) or all entanglement comes from harvest-
ing ðN −½ρ̂AB� ¼ 0Þ since the anticommutator does
not participate at all in leading order communication
[27–29]. These two cases can be distinguished by
checking whether jMj > Ljj.

We will show in the next section that the estimator can
attain values close to unity when the detectors are in causal
contact.
In what follows, we are going to focus on varying only

the time delay between the switching peaks tAB. In
particular, the variation of tAB will allow us to change
the causal relationships between detectors A and B. All
quantities will be measured in units of the Gaussian
switching width T. For concreteness, we will set the proper
distance between Alice and Bob’s detectors to be some
fixed quantity ΩT ¼ 7 and L ¼ 7T. In making these
choices, one important thing is that L be sufficiently large
so that the strong support (28) still gives enough space
between detectors for spacelike separation to be well-
defined.
Moreover, the calculations done in this work can be

straightforwardly extended to the case when the detectors
have finite size: the inclusion of spatial smearing is outlined
in Appendix B. We focus on pointlike detectors so that the
causal relationships between the two detectors are clearer as
it is completely controlled by the switching function.
Finally, we reemphasize that even though we are work-

ing with Gaussian switching in this section and the next
one, and hence the detectors are really never truly spacelike
separated, we will show in Sec. VI that the results carry to
the case of strictly compactly supported switching. In other
words, the negligible Gaussian tails outside of the detec-
tors’ switching strong support have no relevance to entan-
glement harvesting in general, and in particular to our
results.

V. RESULTS

In this section we show the result for (3þ 1), (2þ 1),
and (1þ 1) dimensions when the scalar field is massless
and the switching is Gaussian. We will consider higher
dimensions, massive fields, and compactly supported
switching functions in Sec. VI.

A. (3 + 1) dimensions

In Fig. 2, we plot the communication-assisted entangle-
ment estimator I ½ρ̂AB�, the negativity, and the matrix
elements M;Ljj for (3þ 1) dimensions. The vertical
straight lines are the light cones of detector A emanating
from the event ðtA; 0Þ, and we vary the time delay tAB. In
Fig. 2(b) we show the total negativity N of the two
detectors after interaction as well as the decomposition

3The nonregularized, generalized hypergeometric function is
related to the regularized one by ΓðbÞpF̃qðb; zÞ ¼ pFqða; zÞ [46].
Note that another commonly used expression for 0F̃1 involves the
Bessel function of the first kind, often called the Bessel-Clifford
functionCn. They are related byCnð−z2=4Þ≡ 0F̃1ðnþ1;−z2=4Þ¼
ð2=zÞnJnðzÞ [44].
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into harvested and communication-assisted negativity N �.
In Fig. 2(c) we show inmore detail the behavior of thematrix
elements of ρ̂AB. For all figures, the red-shaded area marks
Alice’s light cone with respect to the strong support SA

(cf. Fig. 1). The blue-shaded area marks the region where the
behavior of jM�j starts to change dramatically,whichoccurs
within Alice’s light cone. The central white area about the
origin is where Alice and Bob are effectively spacelike
separated, as one can verify by checking the commutator-
dependent quantities N − and jM−j in Figs. 2(b) and 2(c).
From Fig. 2(a), we see that in (3þ 1) dimensions, the

communication-assisted entanglement estimator I ½ρ̂AB� ≈ 1
near the light cone at tAB ¼ �7T (since L ¼ 7T). This
means that essentially all of the bipartite entanglement is
communication-based and not harvested from the scalar
field vacuum. Figures 2(b) and 2(c) show how the anti-
commutator (state-dependent) part takes a sudden, drastic
dip (near the edges of the blue-shaded region) as full light
contact is approached, eventually vanishing at the light
cone; in contrast, the commutator part starts to dominate at
precisely the regions where the anticommutator contribu-
tion starts diminishing.
From the field-theoretic perspective, this result may

perhaps be somewhat surprising because it says that com-
munication does not simply enhance bipartite entanglement
betweenAlice andBob by “adding”more correlations on top
of vacuum entanglement harvesting. Even though a
Bogoliubov decomposition analysis shows that timelike
separated regions do contain correlations [3], our results
suggest thatwhen thedetectors can communicate through the
field, the two detectors will forgo entanglement harvesting
from the vacuum and preferentially gain entanglement
through their exchange of information through the field.
Indeed, we emphasize that since the commutator contribu-
tion is state-independent, any entanglement obtained by
the detectors from the commutator cannot be attributed to
preexisting correlations of the vacuum state of the field.

The fact that the peaks in I ½ρ̂AB� are localized around the
light cone is a consequence of the strong Huygen’s
principle in (3þ 1) dimensions: the (expectation value
of) commutator ½ϕðxÞ;ϕðx0Þ� for a massless field only has
support along the null direction. The explicit expression
reads (see, e.g., Appendix C for a derivation)

C−
3 ðx; x0Þ ¼

i
4πjΔxj ½δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ�; ð40Þ

where δðzÞ is a one-dimensional Dirac delta distribution
and we used the notation C−

n to denote the commutator in
arbitrary (nþ 1)-dimensional Minkowski spacetime.
Next, we note that when the detectors are timelike

separated, it is in principle possible to have timelike
entanglement harvesting as the field commutator com-
pletely vanishes outside the light cone, while the anti-
commutator still has support in the light cone interior (see,
e.g., [24] for a related result). However, it is generically
much more difficult to extract entanglement from the
vacuum for timelike separation than for spacelike separa-
tion (for fixed proper separation L). This follows naturally
from the fact that the Wightman function for massless fields
in (3þ 1) dimensions has a power law decay σðxA; xBÞ−1,
where σðx; yÞ is the Synge world function, which in flat
space reduces to half the spacetime interval:

σðx; yÞ ¼ 1

2
ðjx0 − y0j2 − jx − yj2Þ: ð41Þ

Since the commutator is supported only at the light cone, it
follows that this power law falloff is contained in the
anticommutator. Therefore, the anticommutator contribu-
tion jMþj diminishes the deeper Bob is in Alice’s light
cone interior, eventually falling below the noise term Ljj

rendering harvesting impossible.

(a) (b) (c)

FIG. 2. Bipartite entanglement as a function of time delay tAB between Alice and Bob’s switching in (3þ 1) dimensions.
The parameters are ΩT ¼ 7 and L ¼ 7T. The vertical straight lines are the light cones of detector A emanating from the event ðtA; 0Þ.
The red-shaded region marks the strong support of Alice’s switching function, and the blue-shaded area marks the region where the
behavior of jM�j starts to change dramatically. (a) The communication-assisted entanglement estimator. Note that I ½ρ̂AB� ≈ 1 near the
light cone, and hence most of the bipartite entanglement is purely communication-based. (b) N ;N � as a function of tAB. Crucially,
the anticommutator part jMþj vanishes near the light cone while the commutator part jM−j dominates. (c) jMj; jM�j;Ljj as a function
of tAB. The region where jMj > Ljj (solid blue curve is above dashed horizontal red curve) is where the negativity N is nonzero.
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Let us comment on one minor observation concerning
the slight asymmetry of the estimator I ½ρ̂AB� in Fig. 2. The
peaks of I ½ρ̂AB� is not exactly at ΔtAB ¼ 7T (the light cone
emanating from the peak of Alice’s Gaussian switching)
but comes very close to it. This has to do with the inherent
asymmetry of the anticommutator contribution jMþj [see
Fig. 2(c)] that affects the denominator of the ratio of
N −=N in Eq. (39). One can check numerically that for the
parameters we chose in Fig. 2, the value of jMþj vanishes
at approximately ΔtAB ≈�7.07T. In contrast, the commu-
tator contribution jM−j is, indeed, symmetric about the
light cone. Note that the symmetry of jM−j only occurs at
(3þ 1) dimensions and has no direct connection with null
separation: we will see in Sec. VI that in higher dimensions
the asymmetry manifests also for jM−j regardless of the
strong Huygens’ principle. In any case the finite nature of
the switching function blurs the picture, and what really
matters is that in the neighborhood of ΔtAB ¼ 7T (blue
region of Fig. 2), the bipartite entanglement is dominated
by field-mediated communication.
In summary, our result in (3þ 1) dimensions highlights

the importance of the detectors being spacelike separated in
order for vacuum entanglement harvesting to be possible.
When they are null separated, the entanglement comes
mainly from bipartite communication and not from entan-
glement harvesting. When they are timelike separated,
entanglement harvesting is in principle possible but much
more difficult than spacelike harvesting due to the power
law decay of the anticommutator.

B. (2 + 1) dimensions

Let us now see what happens in (2þ 1) dimensions
where the strong Huygens’ principle is known to not hold,
as we show in Fig. 3. Note that since λ has units of
½length�n−32 in natural units, we define the dimensionless
coupling constant λ̃ ¼ λT

3−n
2 since T is fixed in this work.

We see in Fig. 3(a) that as Bob enters deeper into the
interior of Alice’s light cone, the communication-assisted
entanglement estimatorI ½ρ̂AB� → 1. The suddenvanishingof
I ½ρ̂AB� for jtABj≳ 10T is just because there is no more
entanglement past this point:M� → 0 as jtABj → ∞ (while
Ljj remains constant), which follows from the falloff proper-
ties of the Wightman function for n ≥ 2. Inspection of
Figs. 3(b) and 3(c) shows that within Alice’s light cone
interior, we have that jMj ≈ jM−j, and thus any entangle-
ment generated in the timelike region is all communication-
based: there is virtually no entanglement harvesting for
timelike separated detectors. On the other hand, unlike the
(3þ 1)-dimensional case, the negativity at null separation is
shared equally by communication and harvesting at the light
cone. Furthermore, the violation of the strong Huygens’
principle manifests itself by having the field commutator
slowly increasing its dominance as Bob approaches Alice’s
light cone, eventually taking over all of jMj ≈ jM−j. At the
same time the role of the anticommutator quickly vanishes as
Bob approaches the light cone and vanishes in the interior.
To emphasize the lesson learned in this section, unlike

the (3þ 1)-dimensional case, in (2þ 1) dimensions there
is no such thing as timelike entanglement harvesting at
leading order in perturbation theory, as all entanglement
obtained from the timelike region are all due to the field
commutator.

C. (1 + 1) dimensions

For completeness, we include the (1þ 1)-dimensional
case that we show in Fig. 4. Note that due to the well-known
infrared (IR) divergence for massless fields in the (1þ 1)-
dimensionalMinkowski background,we do introduce a hard
IR cutoffΛT ¼ 0.02 for the integrals over momentum as it is
common in entanglement harvesting (e.g., [10]) and in other
applications of quantum field theory (e.g., [45]).
We see in Fig. 4(a) that the communication-based

entanglement estimator continues to increase as Bob enters

(a) (b) (c)

FIG. 3. Bipartite entanglement as a function of time delay tAB between Alice and Bob’s switching in (2þ 1) dimensions. The
parameters are ΩT ¼ 7 and L ¼ 7T. The vertical straight lines are the light cones of detector A emanating from the event ðtA; 0Þ. The
shaded region marks the strong support of Alice’s switching function, and the blue-shaded area marks the region where the behavior of
jM�j starts to change dramatically. (a) The communication-assisted entanglement estimator. Note that I ½ρ̂AB� ≈ 1 near the light cone;
hence all of the bipartite entanglement is purely communication-based. (b) N ;N � as a function of tAB. Crucially, the anticommutator
part jMþj vanishes near the light cone while the commutator part jM−j dominates. (c) jMj; jM�j;Ljj as a function of tAB. The region
where jMj > Ljj (solid blue curve is above dashed horizontal red curve) is where the negativity N is nonzero.

ERICKSON TJOA and EDUARDO MARTÍN-MARTÍNEZ PHYS. REV. D 104, 125005 (2021)

125005-8



deep into the interior of Alice’s light cone and eventually
I ½ρ̂AB� → 1. This is because in (1þ 1) dimensions the field
commutator is constant inside the light cone, and thus the
communication contribution N − approaches a constant
value [see Fig. 4(b)], while the harvesting contributionN þ
continues to decay as Bob goes deeper into the timelike
interior of Alice’s light cone. The constant nature of N − is
therefore a direct consequence of the constant commutator
C−
1 ðx; x0Þ in (1þ 1) dimensions (see Appendix C),

C−
1 ðx; x0Þ ¼ −

i
2
sgnðΔtÞΘðjΔtj − jΔxjÞ: ð42Þ

Hence, similar to the (2þ 1)-dimensional case, there is no
such as thing as timelike entanglement harvesting: the
entanglement obtained by two timelike separated detectors
mostly originates from field-mediated communication.
One subtlety concerning the (1þ 1)-dimensional mass-

less scalar field is that IR cutoff plays a very significant role in
influencing the results. More specifically, the commutator is
independent of the IR cutoff but the anticommutator is not. It
is well-known that the Wightman function in (1þ 1)
dimensions with a hard IR cutoff can be written
as [45]

Wðx; x0Þ ¼ −
1

4π
log ð−Λ2½ðΔt − iϵÞ2 − Δx2�Þ; ð43Þ

so the IR divergence contributes an additive constant that
diverges in the limit Λ → 0. Using (22), it follows that
C−ðx; x0Þ is IR safe because the additive constant drops out,
but Cþðx; x0Þ has twice the additive constant. Consequently,
the choice of IR cutoff will affectMþ and Ljj but notM−.
As a comparison, Fig. 4 is plotted for ΛT ¼ 0.02 while

in [10], the calculation was done forΛT ¼ 0.001. However,
how much of the bipartite entanglement comes from
harvesting depends on the IR cutoff chosen. Since both

jMþj and Ljj increase with decreasing the IR cutoff Λ
while jM−j stays unchanged, spacelike entanglement har-
vesting improves as the cutoffΛ decreases.We have checked
that for ΛT ≲ 0.02, we have Ljj > jM−j; thus below this
threshold the two detectors cannot get entangled even when
Bob is in the interior ofAlice’s light cone despite the decay of
the anticommutator contribution jMþj. This is the reason
whywe chose slightly larger IR cutoffΛT ¼ 0.02, so that we
can still see the impact of field-mediated communication on
the bipartite entanglement.
Beyond the dependence on the IR cutoff—which is a

known pathology of the usual UDW model in free-space
1þ 1 dimensions—the results obtained in Fig. 4 parallel
the one in (2þ 1) dimensions as they both have commu-
tators that have nonzero support for timelike separated
regions. Hence our main claim remains unchanged: as the
detectors become causally connected, the field-mediated
communication dominates the entanglement between the
two detectors while the harvesting contribution diminishes.

D. General comments on entanglement harvesting
outside the UDW model in flat spacetime

In this subsection, we are going to summarize some
generic implications of our results based on massless scalar
fields in (1þ 1), (2þ 1), and (3þ 1) dimensions in
Minkowski spacetime and then make some comments on
more complicated spacetime backgrounds and different
couplings.
The fact that in (3þ 1) dimensions the null-separated case

is completely dominated by communication implies that one
should be careful when deeming the entanglement obtained
by the two detectors to harvesting when they are null-
connected. This includes, for instance, (1þ 1)-dimensional
models involving derivative coupling variants of the Unruh-
DeWitt model [20,21] where the commutator of the field’s
proper time derivatives has support only along the null

(a) (b) (c)

FIG. 4. Bipartite entanglement as a function of time delay tAB between Alice and Bob’s switching in (1þ 1) dimensions. The
parameters are ΩT ¼ 7 and L ¼ 7T. The infrared cutoff is chosen to be Λ ¼ 0.02T−1. The vertical straight lines are the light cones of
detector A emanating from the event ðtA; 0Þ. The red-shaded region marks the strong support of Alice’s switching function, and the blue-
shaded area marks the region where the behavior of jM�j starts to change dramatically. (a) The communication-assisted entanglement
estimator. (b) N ;N � as a function of tAB. Crucially, the anticommutator part jMþj vanishes in the interior of the light cone while the
commutator part jM−j increases, approaching a constant value. (c) jMj; jM�j;Ljj as a function of tAB.
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direction; setups involving massless fields conformally
coupled to gravity in conformally flat backgrounds; or setups
when one uses compactly supported switching but Alice and
Bob’s spatial smearings can be null-connected (e.g., some of
the regimes in [17,23]). Outside of conformal symmetry, one
still needs to be careful as curvature can have nontrivial
effects on the ability of null and timelike connected detectors
to harvest entanglement. For example, in a black hole
spacetime (such as Schwarzschild) it is possible to find
scenarios where null communication through secondary
geodesics allows for genuine entanglement harvesting
[33]. In Kerr geometry, one cannot even find conformally
flat slicing (unlike Schwarzschild geometry in Painlevé-
Gullstrand coordinates [34,35]), and thus the role of vacuum
entanglement vs communication is likely to be even more
complicated.
The fact that timelike entanglement harvesting does not

occur at all in (2þ 1) dimensions also implies that one should
in general be very careful in ascribing the entanglement
obtained by the two detectors to vacuum entanglement
harvesting when the strong Huygens’ principle does not
hold. This includes, for instance, setups where the back-
ground geometry is curved and not maximally symmetric,
such as cosmological spacetimes with minimal coupling;
black hole spacetimes, including the lower-dimensional
cases such as (rotating) Bañados-Teitelboim-Zanelli (BTZ)
black holes [17,30]; and lower dimensional maximally
symmetric spacetimes such as (2þ 1)-dimensional anti–de
Sitter geometry (AdS3) [13]. Another relevant example
involves a particular setup in (2þ 1) dimensions involving
indefinite causal ordering (ICO). This was also recently
investigated in [22], or superposition of trajectories [47]. In
light of our results, while there is not much doubt that there
are quantum advantages due to ICO, when there is causal
connection between the detectors one may wonder how
much of this can be ascribed to enhancement of communi-
cation (which is possible; see, e.g., [48]) or true enhancement
of the vacuum harvesting protocol.

VI. FURTHER RESULTS: MASSIVE FIELDS,
HIGHER DIMENSIONS, AND COMPACT

SWITCHINGS

In this section we briefly discuss the effect of the mass of
the scalar field, the number of spacetime dimensions, and
the effect of using truly compact switchings (instead of
Gaussian ones) in light of the results obtained in the
previous section.

A. Strong Huygens’ principle in higher dimensions

As we briefly mentioned in Sec. III, when the strong
Huygens’ principle is satisfied, the field commutator
C−ðx; x0Þ has support only along the null directions. For
a Klein-Gordon field in (nþ 1)-dimensional Minkowski
spacetimes, this occurs only when n ≥ 3 is odd and there
are massless fields. It turns out that due to the structure of
the commutator in higher dimensions, the role of commu-
nication manifests somewhat differently even if the prin-
ciple is satisfied. A representative example is shown in
Fig. 5 for n ¼ 5.
Figure 5(a) shows that as in the (3þ 1)-dimensional

case, the communication-assisted entanglement estimator
dominates at the neighborhood of the light cone. However,
notice that there are two peaks around the light cone
emanating from the center of Alice’s strong support, which
suggests that while communication dominates in the
neighborhood of Alice’s light cone (red-shaded region),
the anticommutator dominates around the region of maxi-
mum light-contact ΔtAB ¼ L. This is because both jM�j
exhibit an extra peak, which leads to an additional peak in
N � in Figs. 5(b) and 5(c). Note that since the anticom-
mutator has three peaks around the light cone ΔtAB ¼ L,
and the commutator only two peaks, for n ¼ 5 the
commutator actually is not the dominant contribution at
ΔtAB ¼ L, unlike for n ¼ 3. In fact, one can check that for
odd n ¼ 2jþ 1 with j ≥ 1, we have jþ 1 peaks for the
anticommutator around Alice’s light cone and j peaks for

(a) (b) (c)

FIG. 5. Detector entanglement as a function of time delay tAB between their switching peaks in (5þ 1) dimensions. The parameters are
ΩT ¼ 7 and L ¼ 7T. The vertical straight lines are the light cones of detector A emanating from the event ðtA; 0Þ. The red-shaded region
denotes Alice’s light cone arising from the strong support SA. Note the increasing number of peaks in all the plots compared to the
(3þ 1) dimensions.
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the commutator; thus the importance of the commutator at
the light cone depends on whether j is even or odd. Note
that we also see a similar asymmetry of I ½ρ̂AB� around the
region of maximum light contact emanating from Alice’s
Gaussian peak at ΔtAB ¼ 7T as was the case in (3þ 1)
dimensions.
The increasing number of peaks for both commutator

and anticommutator contributions can, in fact, be directly
traced back to the behavior of the imaginary and real parts
of the Wightman function. For a massless field, the
Wightman function for arbitrary n reads (see, e.g.,
[15,49], or by taking the smallm → 0þ limit of the massive
scalar case in Appendix D)

Wðx; x0Þ ¼ ð−iÞn−1Γðn−1
2
Þ

4π
nþ1
2 ½ðΔt − iϵÞ2 − jΔxj2�n−12 ; ð44Þ

where ϵ is a UV regulator and the (distributional) limit
ϵ → 0 is taken after integration: for small ϵ > 0, the real
and imaginary parts of (44) correspond to the “nascent”
family whose limit ϵ → 0 is the Wightman function. The
real and imaginary parts in that distributional limit yield,
respectively, the (vacuum expectation of) the anticommu-
tator and the commutator.
The simple case of the commutator can actually be

computed easily from a mode expansion (see Appendix C).
For arbitrary odd n ≥ 3 the (state independent) expectation
of the commutator takes the form

C−
n ðx; x0Þ ¼ i

Xn−32
j¼0

aj
jΔxjn−2−j ½δ

ðjÞðΔtþ jΔxjÞ

þ ð−1Þjþ1δðjÞðΔt − jΔxjÞ�; ð45Þ

where aj are real, Δt ¼ t − t0, Δx ¼ x − x0, and δðjÞðzÞ is
the jth distributional derivative of the Dirac delta function.
The distributional derivatives of Dirac deltas have support
strictly along the null direction, but they differ from the
Dirac delta in that the “nascent” family defining δðjÞðzÞ has

jþ 1 peaks.4 Since the commutator is dominated by the
highest derivative of the Dirac delta [the ðn − 3Þ=2-th
derivative] for sufficiently large detector separations (which
is the case in this work), the number of peaks in jM−j is
1þ ðn − 3Þ=2. Thus for n ¼ 5, the highest derivative is
j ¼ 1, which gives two peaks for the commutator con-
tribution, in agreement with Fig. 5(c). It is straightforward
to check that for n ¼ 7, we will have three peaks in I ½ρ̂AB�
which follow from the number of peaks in jM−j, and this
pattern continues to higher dimensions.
Similarly, there are also an increasing number of peaks in

jM�j for even n. As shown in Fig. 6, we plot the case for
n ¼ 4, and we see that we also have more peaks in jM�j
(hence N � and I ½ρ̂AB�) as compared to the n ¼ 2 case in
Fig. 3. However, the pattern differs slightly from the odd n
case. More generally, for even n ¼ 2l with l ≥ 1 there will
be l peaks for both the anticommutator and the commu-
tator around Alice’s light cone. Since the number of peaks
around both components are equal, it is always the case for
even n that both components contribute equally to the
bipartite entanglement around the light cone. Despite this
we want to reemphasize that for timelike contact entangle-
ment is still dominated by communication in all even
spatial dimensions, rather than true harvesting.

B. Massive scalar field

In this subsection we will obtain analogous results for
massive scalar fields.
Weplot themassive field results inFig. 7. There are several

important distinctive features as compared to the massless
case. The first observation is that for a massive field the
commutator has support inside the light cone regardless of
the dimension of spacetime, even within the deep interior of
Alice’s light cone (ΔtAB ≫ 7T). The second observation is
that the oscillatory nature of both the commutator and the

(a) (b) (c)

FIG. 6. Detector entanglement as a function of time delay tAB between their switching peaks in (4þ 1) dimensions. The parameters are
ΩT ¼ 7 and L ¼ 7T. The vertical straight lines are the light cones of detector A emanating from the event ðtA; 0Þ. The red-shaded region
denotes Alice’s light cone arising from the strong support SA. Note the increasing number of peaks in all the plots compared to the
(2þ 1) dimensions.

4One can readily see this by using Gaussian functions as a
family of nascent delta functions, and their derivatives define a
family of derivatives of delta functions.
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anticommutator contributions to the correlation term jM�j
become more pronounced as the mass of the field increases.
The third observation is that the oscillations are not “in
phase”: the dominant contributions to entanglement alternate
between the anticommutator contribution and the commu-
tator contribution, so that on average they both contribute
equally for timelike separated detectors that are switched on
long enough.
The oscillatory nature of both contributions can also be

directly traced back to the behavior of the imaginary and
real parts of the Wightman function, which is given for
arbitrary m and n by (see Appendix D for derivation)

Wðx; x0Þ ¼ m
n−1
2

ð2πÞnþ1
2

1

½−ðΔt − iϵÞ2 þ jΔxj2�n−14

×Kn−1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔt − iϵÞ2 þ jΔxj2

q �
: ð46Þ

We can regard the UV regulator ϵ as providing a nascent
family of complex-valued functions whose limit gives the
Wightman function above. By plotting the nascent family
for finite nonzero ϵ, one can see the same oscillatory
behavior of jM�j, including the number of peaks that
appear in them.
Notice that while both massless fields in even spatial

dimensions and massive fields have commutators with
support for timelike separation, their relative contributions
to the entanglement generated between two timelike

separated detectors are quite different. Namely, on the
one hand, for the massless case entanglement deep into the
region of timelike separation is dominated by the commu-
tator contribution, and therefore it cannot be attributed to
genuine harvesting. On the other hand, for the massive case
both communication and harvesting can be thought of as
contributing equally to the detectors’ entanglement.

C. Compactly supported switching function

Finally, we complete our analysis by showing that the
main claims of this work are not affected by the use of
noncompact switching, as long as the strong supports of
both detectors are in spacelike separation. We do this by
performing the same calculations for compactly supported
switching functions and restricting our attention to the
simple case of a massless scalar field in (3þ 1) dimensions.
Unlike the Gaussian case, there is not much in the way of
simplification that we can effect for the matrix elements
of ρ̂AB; thus we calculate the matrix elements for the case of
compact switchings numerically from (15) and (16) using
the standard formula for the Wightman function for a
massless field in (3þ 1) dimensions using Eq. (44):

Wðx; x0Þ ¼ −
1

4π2
1

ðΔt − iϵÞ2 − jΔxj2 : ð47Þ

The compact switching we consider is the truncated
Gaussian,

(a) (b) (c)

FIG. 7. Detector entanglement as a function of time delay tAB between their switching peaks in (3þ 1) dimensions for massive scalar
fields. (a) mT ¼ 0.2. (b) mT ¼ 0.5. (c) mT ¼ 1. The parameters are ΩT ¼ 7 and L ¼ 7T. The vertical straight lines are the light cones
of detector A emanating from the event ðtA; 0Þ. The red-shaded region denotes Alice’s light cone arising from the strong support SA.
Observe that for small mass the behavior is close to massless fields and their increasing oscillatory behavior as the mass of the field
increases.
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χtruncj ðtÞ ¼ e−
ðt−tjÞ2
T2 ΦRj

; ð48Þ

where ΦRj
is the indicator function on the compact interval

Rj ¼ ½−3T þ tj; 3T þ tj�, given by

ΦRj
≔

	
1 t ∈ Rj

0 t ≠ Rj
: ð49Þ

This choice of truncated Gaussian allows us to compare the
result with the full Gaussian switching more easily. As the
detector separation is set at L ¼ 7T, in this case the two
detectors can be made strictly spacelike separated without
any tails putting them in marginal light contact. The
comparison is shown in Fig. 8. The gray-shaded region
marks the light cone of Alice’s compact support if the
switching is the truncated Gaussian, which spans the
interval of 6T. The red-shaded region marks the light cone
of Alice’s strong support if the switching is Gaussian.
Our example here gives essentially identical communi-

cation-assisted entanglement estimator I ½ρ̂AB� in Fig. 8(a).
We also see from Fig. 8(b) up to small oscillations near the
boundary of compact support, the use of compactly
supported switching leads to essentially the same result
as the noncompact switching: namely, the communication
component (commutator contribution) dominates near the
light cone while the vacuum harvesting component (anti-
commutator contribution) vanishes. This is not surprising
because the essential reason for the dominance of commu-
nication over harvesting at null separation is not influenced
by the shape of the switching function but rather the
distributional behavior of the real and imaginary parts of
the Wightman function.

VII. CONCLUSIONS

In this paper we analyzed whether entanglement harvest-
ing can be achieved when particle detectors are causally
connected, are able to exchange information, and therefore
get entangled without harvesting correlations from the
field.
In particular, we studied the role of the field-mediated

communication in the so-called entanglement harvesting
protocol for the Minkowski vacuum in arbitrary spacetime
dimensions. By varying the time delay between the switch-
ing functions of two detectors and hence their causal
relationships, we investigated how much of the entangle-
ment acquired by the two detectors after interaction with
the fields is due to field-mediated communication between
them and how much is due to vacuum entanglement
harvesting.
More specifically, the communication between two

detectors at leading order communication between the
two detectors is mediated by the field commutator (see,
e.g., [27–29]), which does not care about the correlations
preexisting in the field since it is state independent.
Therefore its contribution would be the same whether
the field state has correlations to harvest or not. We hence
argue that the ability to harvest entanglement is mediated
by the field anticommutator. Both the commutator and the
anticommutator have very different behavior depending on
the dimensions of spacetime.
We compared the contribution of the commutator and the

anticommutator to the entanglement acquired by two
detectors interacting with the field. We showed that, for
massless fields in any dimensions, when the two detectors
are causally connected, the entanglement they acquire does
not come from harvesting. Instead, it is dominated by the
field-state independent commutator contribution to the
correlation between the detectors, hence being due to

(a) (b)

FIG. 8. Comparison between compact and noncompact switching on detector entanglement in (3þ 1) dimensions for massless scalar
fields. The parameters are ΩT ¼ 4 and L ¼ 7T. (a) Comparison of the communication-assisted entanglement estimator for full and
truncated Gaussian switchings. (b) Comparison of jM�j for the full and truncated Gaussian switchings. The truncated Gaussian has
compact support Rj ¼ ½−3T þ tj; 3T þ tj�. The vertical straight lines are the light cones of detector A emanating from the event ðtA; 0Þ.
The white region between the gray zones near the origin shows the values of tAB where the two compactly supported detectors can be
truly spacelike separated. The red regions are Alice’s light cone with respect to the full Gaussian switching’s strong support.
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communication and not harvesting as has been sometimes
claimed.
We have also analyzed the case of massive fields, where

the behavior is somewhat different: for massive enough
fields the contributions of harvesting and communication to
the entanglement acquired by the detectors in causal
connection tends to be equally contributed by both com-
munication and harvesting.
Finally we have considered how our results also apply to

more general scenarios such as curved spacetimes, smeared
detectors, detectors with indefinite causal order, or deriva-
tive coupling UDW models. In this context, we have
discussed how the results about harvesting vs communi-
cation largely apply to all these general scenarios.
The key takeaway in view of our results is that for a

genuine “entanglement harvesting protocol,” the entangle-
ment “swapped” from the existing field correlations should
be the major contributor to the bipartite entanglement
between the detectors. In this context, we have seen that
in the cases when the field commutator is the leading
contribution to the entanglement between detectors, the
entanglement cannot come from harvested correlations.
This is so because the commutator contribution is the same
regardless of the state of the field, and hence it will entangle
the detectors in the same way whether the field has
preexisting correlations or not. That is the case in most
massless field scenarios when the two detectors are in
causal contact, where their entanglement comes from their
ability to signal each other via the field. Our results
emphasize the importance of remaining spacelike separated
to properly claim that the detectors harvest entanglement
from the field.

ACKNOWLEDGMENTS

E. T. acknowledges generous support from the Mike and
Ophelia Lazaridis Fellowship. E. M.-M. acknowledges
support through the Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grants
program as well as the Ontario Early Researcher Award.
This work is conducted on the traditional territory of the
Neutral, Anishnaabeg, and Haudenosaunee Peoples. The
University of Waterloo and the Institute for Quantum
Computing are situated on the Haldimand Tract, land that
was promised to Six Nations, which includes six miles on
each side of the Grand River.

APPENDIX A: NONLOCAL TERM IN
ARBITRARY DIMENSIONS

Here we will derive the nonlocal term M, generalizing
the result of [10] to an arbitrary number of spatial
dimensions n and mass m. We will also show how the
derivation of M conveniently splits the contributions
coming from the field commutator and anticommutator.
First, we recall that we have two identical detectors

which are pointlike and at rest relative to the quantization
frame with Minkowski coordinates ðt; xÞ. The detector
trajectories xjðtÞ (j ¼ A; B) are static relative to the quan-
tization frame so we can write xjðtÞ ¼ ðt; xjÞ where xj are
constant. The detectors are turned on for the same effective
duration (controlled by Gaussian width T) but they are
allowed to be turned on at different times [different
Gaussian peaks in Eq. (27)]. We will comment on the
inclusion of spatial smearing at the end of this section.
Under these assumptions, the nonlocal contribution M

can be written as

M ¼ −λ2
Z

∞

−∞
dt
Z

t

−∞
dt0eiΩðtþt0Þ

�
e−

ðt−tAÞ2
T2 e−

ðt0−tBÞ2
T2

Z
dnk

2ð2πÞnωk
e−iωkðt−t0Þþik·ðxA−xBÞ þ ðA ↔ BÞ

�
; ðA1Þ

where we have implemented the time ordering Θðt − t0Þ as a nested integral and ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
is the relativistic

dispersion relation. It is convenient to perform the following redefinition and change of variables:

tAB ≔ tB − tA; xAB ≔ xB − xA; t → t − tA; t0 → t0 − tA: ðA2Þ

This will give the more symmetric expression

M ¼ −λ2
Z

∞

−∞
dt
Z

t

−∞
dt0

Z
dnk

2ð2πÞnωk
e−iωkðt−t0ÞeiΩðtþt0þ2tAÞ

h
e−

t2

T2e−
ðt0−tABÞ2

T2 e−ik·xAB þ e−
ðt−tABÞ2

T2 e−
t02
T2eik·xAB

i
: ðA3Þ

Let us rewrite this in a more compact form:

M ¼ −λ2e2iΩtA
Z

dnk
2ð2πÞnωk

KðkÞ; ðA4Þ

KðkÞ ≔
Z

∞

−∞
dt
Z

t

−∞
dt0e−iωkðt−t0ÞeiΩðtþt0Þ

h
e−

t2

T2e−
ðt0−tABÞ2

T2 e−ik·xAB þ e−
ðt−tABÞ2

T2 e−
t02
T2eik·xAB

i
; ðA5Þ
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where we keep all the global phases for clarity. The integral can be done in closed form:

KðkÞ ¼ π

2
T2e−

T2
2
ðΩ2þω2

kÞ½eik·xABþitABðΩ−ωkÞ þ e−ik·xABþitABðΩþωkÞ�

þ
ffiffiffi
π

p
2

T2e−
t2
AB

T2

�
eik·xABJ

�
Tðωk þΩÞ

2
; Tðωk −ΩÞ þ 2itAB

T

�
þ e−ik·xABJ

�
Tðωk þΩÞ

2
−
itAB
T

; Tðωk −ΩÞ
��

; ðA6Þ

where we define

J ða; bÞ ≔ −i
ffiffiffi
π

p
e−a

2−b2
4 erfi

�
aþ b=2ffiffiffi

2
p

�
; ðA7Þ

with erfiðzÞ ¼ −ierfðizÞ and erfðzÞ is the error function.
Next, we separate the radial and angular part of the integration measure in (A4):

Z
dnk

2ð2πÞnωk
¼ 1

2ð2πÞn
Z

∞

0

djkj jkjn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
Z

dΩn−1 ¼
1

2ð2πÞn
Z

∞

0

djkj jkjn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
Z

dμn−2

Z
π

0

dθsinn−2θ; ðA8Þ

where dΩn−1 is the area element of the unit sphere Sn−1 and dμn−2 is the remaining angular part of the integration measure:

dΩn−1 ¼ dθðsin θÞn−2dμn−2; dμn−2 ≔
Yn−2
i¼1

dφiðsinφiÞn−2−i: ðA9Þ

The integral over dμn−2 can be found using the trick in [50] as follows:

Z
dΩn−1 ¼

Z
dμn−2

Z
π

0

dθ sinn−2 θ ¼ 2π
n
2

Γðn
2
Þ ; ðA10Þ

Z
dθ sinn−2 θ ¼

ffiffiffi
π

p
Γðn−1

2
Þ

Γðn
2
Þ ⇒

Z
dμn−2 ¼

2π
n−1
2

Γðn−1
2
Þ : ðA11Þ

Hence we get

Z
dnk

2ð2πÞnωk
¼ 1

2ð2πÞn
2π

n−1
2

Γðn−1
2
Þ
Z

∞

0

djkj jkjn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
Z

π

0

dθsinn−2θ: ðA12Þ

The only component that depends on the angular variable is the phase e�ik·xAB ; thus we can perform this integral first:

Z
π

0

dθ sinn−2 θe�ik·xAB ¼
Z

π

0

dθ sinn−2 θe�ijkjjxABj cos θ ¼ ffiffiffi
π

p
Γ
�
n − 1

2

�
0F̃1

�
n
2
;−

jkj2jxABj2
4

�
; ðA13Þ

where 0F̃1 is the regularized generalized hypergeometric function [43]. For completeness, we note that this could also be
equivalently written in terms of the Bessel function using the fact that for n > 1 we have [44]

0F̃1

�
n
2
;−

jkj2jxABj2
4

�
¼

�
2

jkjjxABj
�n−2

2

Jn−2
2
ðjkjjxABjÞ: ðA14Þ

This is also called the Bessel-Clifford function, denoted as CnðzÞ ¼ 0F̃1ðnþ 1; zÞ [44].
Since KðkÞ in (A6) has four terms, it is convenient to rewrite the expression as K ¼ K1 þK2 þK3 þK4, where

K1ðjkjÞ ¼ 2−n−1π1−
n
2T2

0F̃1

�
n
2
;−

jkj2jxABj2
4

�
e−

1
2
T2ðjkj2þΩ2ÞþitABðΩ−jkjÞ; ðA15Þ
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K2ðjkjÞ ¼ 2−n−1π1−
n
2T2

0F̃1

�
n
2
;−

jkj2jxABj2
4

�
e−

1
2
T2ðjkj2þΩ2ÞþitABðjkjþΩÞ; ðA16Þ

K3ðjkjÞ ¼ −i2−nπ1
2
−n
2T2eitABΩ−

t2
AB

2T2
−T2Ω2

2 F
�jkjT2 þ itABffiffiffi

2
p

T

�
0F̃1

�
n
2
;−

jkj2jxABj2
4

�
; ðA17Þ

K4ðjkjÞ ¼ −i2−nπ1
2
−n
2T2eitABΩ−

t2
AB

2T2
−T2Ω2

2 F
�jkjT2 − itABffiffiffi

2
p

T

�
0F̃1

�
n
2
;−

jkj2jxABj2
4

�
; ðA18Þ

where F ðzÞ ≔ e−z
2 R z

0 dye
y2 is Dawson’s integral [43]. We

have made explicit the fact that Kj depends only on the
magnitude of the momentum vector jkj; thus it is conven-
ient to write k ≔ jkj. The full expression for M now reads

M ¼ −λ2e2iΩtA
Z

∞

0

dk
kn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
X4
j¼1

KjðkÞ: ðA19Þ

This is the final expression for the nonlocal matrix element
M for arbitrary mass m ≥ 0.
In what follows we would like to be able to split M into

two parts, one which depends only on the anticommutator,
denoted by Mþ, and the other which depends only on the
field commutator, denoted by M−. This split is necessary
for splitting the harvesting contribution (which depends on
the anticommutator) from communication contribution
(which depends on the commutator). Let us write the
expectations of the anticommutator and the commutator in
terms of the Wightman function:

C�ðx; x0Þ ¼ Wðx; x0Þ �Wðx0; xÞ: ðA20Þ

Remarkably, what is perhaps not obvious from the splitting
ofM into Kj’s is that the field anticommutator expectation
Cþðx; x0Þ depends only on K1 and K2, while the field
commutator expectation C−ðx; x0Þ depends only on K3

and K4. Consequently, the (anti)commutator contributions
can be written as M� ¼ M�M0, where M0 is the same
integral as M in Eq. (A4) but with the replacements
ωk → −ωk and k → −k. Under these replacements, we have

M0 ¼ −λ2e2iΩtA
Z

∞

0

dk
X4
j¼1

K0
jðkÞ; ðA21Þ

where as before we use k ¼ jkj and

K0
1ðkÞ ¼ K2ðkÞ; K0

2ðkÞ ¼ K1ðkÞ;
K0

3ðkÞ ¼ −K4ðkÞ; K0
4ðkÞ ¼ −K3ðkÞ: ðA22Þ

Hence, the (anti)commutator contributions to M are com-
pactly expressible as

Mþ ¼ −λ2e2iΩtA
Z

∞

0

dk
kn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ðK1ðkÞ þK2ðkÞÞ;

ðA23Þ

M− ¼ −λ2e2iΩtA
Z

∞

0

dk
kn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ðK3ðkÞ þK4ðkÞÞ:

ðA24Þ

APPENDIX B: SPATIALLY SMEARED
DETECTOR

The calculation for the case of a spatially smeared
detector is straightforward. For simplicity, we will consider
the special case where both detectors have identical spatial
smearing and switching functions (up to spacetime trans-
lation), with the same inertial trajectory at rest in the
quantization frame.
Under these assumptions, we can write χjðtÞ ≔ χðt − tjÞ

where j ¼ A;B and χðtÞ is some real function. The spatial
smearing of both detectors is a common real-valued
function FðxÞ that is L1-normalized to unity, and we write
FjðxÞ ¼ Fðx − xjÞ. The resulting matrix elements in (15)
and (16) are modified into

Lij ¼ λ2
Z

dtdt0
Z

dnxdnx0χiðtÞχjðt0ÞFiðxÞFjðx0Þe−iΩðt−t0ÞWðt; x; t0; x0Þ; ðB1Þ
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M ¼ −λ2
Z

dtdt0
Z

dnxdnx0eiΩðtþt0ÞχAðtÞχBðt0ÞFAðxÞFBðx0ÞΘðt − t0ÞWðt; x; t0; x0Þ

þ eiΩðtþt0ÞχAðtÞχBðt0ÞFAðxÞFBðx0ÞΘðt0 − tÞWðt0; x0; t; xÞ�: ðB2Þ

The expression for Lij in Eq. (15) is modified to

Lij ¼ λ2
Z

dnk
2ð2πÞnωk

χ̃iðΩþ ωkÞχ̃�jðΩþ ωkÞF̃iðkÞF̃�
jðkÞ; ðB3Þ

where F̃iðkÞ is the Fourier transform of FiðxÞ. The translation property of the Fourier transform allows us to write this as

Lij ¼ λ2
Z

dnk
2ð2πÞnωk

jχ̃ðΩþ ωkÞj2jF̃ðkÞj2e−iðΩþωkÞðti−tjÞeik·ðxi−xjÞ: ðB4Þ

Note thatLjj (the excitation probability of detector j) is independent of tj and xj, as we expect from translational invariance.
The pointlike limit is recovered simply by setting F̃ðkÞ ¼ 1.
For the nonlocalMmatrix element we can proceed similarly. For the Gaussian switching considered in Appendix A, the

resulting expression for M in (A4) turns out to be obtainable by simply replacing

KðkÞ → jF̃ðkÞj2KðkÞ: ðB5Þ

This follows straightforwardly from the definition of Fourier transform and its translation property and is consistent with the
expression found in [10].
Finally, we remark that the usual dipole coupling in light-matter interaction allows for complex-valued smearing

functions, e.g., when one considers a hydrogen atom coupled to electric field. So long as there is no exchange of angular
momentum involved between the detectors and the field, the results obtained using real-valued smearing and switching
functions will be qualitatively similar [7].

APPENDIX C: COMMUTATOR IN ARBITRARY DIMENSIONS AND STRONG HUYGENS’ PRINCIPLE

In this section we calculate the expression for the (vacuum expectation value of the) field commutator C−ðx; x0Þ ¼
½ϕðxÞ;ϕðx0Þ� in arbitrary dimensions. We note that this expectation value is state-independent, and all the state-dependence
of the Wightman function is contained in the expectation value of the anticommutator Cþðx; x0Þ. Using the fact that
C−ðx; x0Þ ¼ Wðx; x0Þ −Wðx0; xÞ and Eq. (A12) we have

C−ðx; x0Þ ¼ i
ð2πÞn

2π
n−1
2

Γðn−1
2
Þ
Z

∞

0

djkjjkjn−2
Z

π

0

dθ sinn−2 θ sin ð−ijkjΔtþ ijkjjΔxj cos θÞ; ðC1Þ

where we have used the shorthand Δt ¼ t − t0;Δx ¼ x − x0. Writing ω ¼ jkj and performing the angular integral, we get

C−ðx; x0Þ ¼ −
iffiffiffiffiffiffiffiffiffiffiffið4πÞnp

�
2

Z
∞

0

dωωn−2 sinðωΔtÞ0F̃1

�
n
2
;−

1

4
jΔxj2ω2

��
; ðC2Þ

where 0F̃1 is the regularized generalized hypergeometric function [43]. Note that the term in the square brackets is in the
form of a Fourier sine transform. As an example, we can readily recover the case for n ¼ 1, n ¼ 2, and n ¼ 3 previously
calculated, for example, in [28]:

C−
1 ðx; x0Þ ¼ −

iffiffiffiffiffiffi
4π

p
�
2

Z
∞

0

dω sinðωΔtÞ cosðωjΔxjÞ
ω

ffiffiffi
π

p
�
¼ −

isgnðΔtÞ
2

ΘðjΔtj − jΔxjÞ; ðC3Þ

C−
2 ðx; x0Þ ¼ −

i
4π

�
2

Z
∞

0

dω sinðωΔtÞJ0ðωjΔxjÞ
�
¼ −

isgnðΔtÞ
2π

ΘðΔt2 − jΔxj2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2 − jΔxj2

p ; ðC4Þ
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C−
3 ðx; x0Þ ¼ −

i

ð4πÞ3=2
�
2

Z
∞

0

dωω sinðωΔtÞ 2 sinðωjΔxjÞffiffiffi
π

p jΔxj
�
¼ i

4πjΔxj ½δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ�: ðC5Þ

The expressions for arbitrary dimensions can be worked out analogously.
Let us consider what happens for the commutator when n is odd and n ≥ 3. The strong Huygens’ principle says that for

an odd number of spatial dimensions (odd n), the support of the commutator is only along the null direction Δt ¼ �jΔxj.
Wewill calculate this explicitly for n ¼ 5 and n ¼ 7 and provide the generic form for arbitrary odd n. The crucial part of the
upcoming calculation is that for odd n ≥ 5, the support is confined to be along the null direction. However, notice that it
involves not only Dirac delta functions but also their distributional derivatives. Let us denote the distributional derivatives of
the Dirac delta function by δðkÞðzÞ where (k) denotes the number of derivatives. The distributional derivative has the
property that

Z
∞

−∞
dzfðzÞδðkÞðz − z0Þ ¼ ð−1Þk d

kf
dzk

ðz0Þ; ðC6Þ

and, in particular,
R
dzδðkÞðzÞ ¼ 0 for all k ≥ 1.

In order to calculate the commutator for n ¼ 5, first we rewrite Eq. (C2) as

C−
5 ðx; x0Þ ¼ −

2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ5

p
Z

∞

0

dωω3 sinðωΔtÞ0F̃1

�
5

2
;−

1

4
jΔxj2ω2

�

¼ 2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ5

p
Z

∞

0

dω
2ffiffiffi

π
p jΔxj3 ½cosðωΔtþ ωjΔxjÞ − cosðωΔt − ωjΔxjÞ�

þ 2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ5

p
Z

∞

0

dω
2ωffiffiffi
π

p jΔxj2 ½sinðωΔtþ ωjΔxjÞ þ sinðωΔt − ωjΔxjÞ�: ðC7Þ

Integrating over ω from 0 to∞, the first line in the last step is essentially the Fourier cosine transform of a constant function,
while the second line is proportional to the Fourier sine transform of ω. Therefore, we obtain

C−
5 ðx; x0Þ ¼

i
8π2jΔxj3 ½δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ� − i

8π2jΔxj2 ½δ
ð1ÞðΔtþ jΔxjÞ þ δð1ÞðΔt − jΔxjÞ�: ðC8Þ

Note that the commutator is supported only along the null direction, but there is a contribution due to the first derivative of
the Dirac delta function δð1ÞðΔt� jΔxjÞ which dominates for larger jΔxj.
In order to calculate the commutator for n ¼ 7, first we rewrite Eq. (C2) as

C−
7 ðx; x0Þ ¼ −

2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ7

p
Z

∞

0

dωω5 sinðωΔtÞ0F̃1

�
7

2
;−

1

4
jΔxj2ω2

�

¼ 2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ7

p
Z

∞

0

dω
12ffiffiffi
π

p jΔxj5 ½cosðωΔtþ ωjΔxjÞ − cosðωΔt − ωjΔxjÞ�

þ 2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ7

p
Z

∞

0

dω
12ωffiffiffi
π

p jΔxj4 ½sinðωΔtþ ωjΔxjÞ þ sinðωΔt − ωjΔxjÞ�

−
2iffiffiffiffiffiffiffiffiffiffiffi
ð4πÞ7

p
Z

∞

0

dω
4ω2ffiffiffi
π

p jΔxj3 ½cosðωΔtþ ωjΔxjÞ − cosðωΔt − ωjΔxjÞ�: ðC9Þ

Integrating over ω from 0 to ∞, the first line is the Fourier cosine transform of a constant function, the second line is the
Fourier sine transform of ω, and now we also have the third line proportional to the Fourier cosine transform of ω2.
Therefore, we obtain
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C−
7 ðx; x0Þ ¼

3i
16π3jΔxj5 ½δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ� − 3i

16π3jΔxj4 ½δ
ð1ÞðΔtþ jΔxjÞ þ δð1ÞðΔt − jΔxjÞ�

þ i
16π3jΔxj3 ½δ

ð2ÞðΔtþ jΔxjÞ − δð2ÞðΔt − jΔxjÞ�: ðC10Þ

Note that the commutator is supported only at the light cone, but there are contributions due to first and second derivatives
of the Dirac delta function, with the second derivatives dominating at small distances.
More generally, following the same procedure one can show that odd n ≥ 3, the commutator takes the generic form

C−
n ðx; x0Þ ¼ i

Xn−32
j¼0

aj
jΔxjn−2−j ½δ

ðjÞðΔtþ jΔxjÞ þ ð−1Þjþ1δðjÞðΔt − jΔxjÞ�; ðC11Þ

where aj are real constants, and at small distances the
commutator is dominated by the highest derivative of the
Dirac delta function. Thus we showed that the strong
Huygens’ principle is satisfied in Minkowski spacetimes
with an odd number of spatial dimensions n ≥ 3.
Finally, we remark that the distributional derivatives of

the Dirac delta function are responsible for the increasing
number of peaks in jM−j in a higher dimension. Roughly
speaking, this comes from the fact that M− is an integral
with respect to t, t0 over the switching functions multiplied
with the commutator C−

n ðx; x0Þ. Since we considered
detectors that are sufficiently separated spatially (large
enough jΔxj), the dominant contribution comes from the
highest (n−3

2
-th) derivative of the delta function. Therefore,

the dominant feature of jM−j comes from convolution of
the switching functions with the highest derivative, so the

peaks of jM−j come from the behavior of the derivatives of
the switching functions centered about the null direction.

APPENDIX D: WIGHTMAN FUNCTION FOR
MASSIVE SCALAR FIELDS IN ARBITRARY

SPACETIME DIMENSIONS

Here we study the behavior of theWightman functions of
arbitrary m ≥ 0 and n ≥ 2. For completeness we will first
derive the Wightman function for a massive scalar field in
arbitrary dimensions. The Wightman function was also
derived in [49] but the steps in there required restrictions to
timelike-separated points. Here we present a more general
expression.
Following the procedure in Appendix A, we know that

the Wightman function can be written as

Wðx; x0Þ ¼ 1

2ð2πÞn
2π

n−1
2

Γðn−1
2
Þ
Z

∞

0

djkj jkjn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p e−i
ffiffiffiffiffiffiffiffiffiffiffiffi
jkj2þm2

p
Δt
Z

π

0

dθsinn−2θeik·Δx; ðD1Þ

where Δt ¼ t − t0 and Δx ¼ x − x0. The angular part has been solved in (A13), but it will be convenient for us to use the
Bessel-Clifford functions (A14) and write this as

Wðx; x0Þ ¼ 2π
n
2

2ð2πÞn
Z

∞

0

djkj jkjn−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p e−i
ffiffiffiffiffiffiffiffiffiffiffiffi
jkj2þm2

p
Δt
�

2

jkjjΔxj
�n−2

2

Jn−2
2
ðjkjjΔxjÞ: ðD2Þ

We perform the change of variable s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

p
=m, so that

Wðx; x0Þ ¼ m
n
2

2ð2πÞn2jΔxjn−22
Z

∞

1

dsðs2 − 1Þn−22 e−imsΔtJn−2
2

�
mjΔxj

ffiffiffiffiffiffiffiffiffiffiffiffi
s2 − 1

p �
: ðD3Þ

We can now use the identity #6.645 in [51]:

Z
∞

1

dxðx2 − 1Þν2e−αxJν
�
β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p �
¼

ffiffiffi
2

π

r
βνðα2 þ β2Þ−ν

2
−1
4Kνþ1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

q �
; ðD4Þ

WHEN ENTANGLEMENT HARVESTING IS NOT REALLY … PHYS. REV. D 104, 125005 (2021)

125005-19



where Kμ is the modified Bessel function of the first kind. Setting ν ¼ n−2
2
, β ¼ mjΔxj and analytic continuing using

α ¼ ϵþ imΔt give

Wðx; x0Þ ¼ m
n−1
2

ð2πÞnþ1
2

1

½−ðΔt − iϵÞ2 þ jΔxj2�n−14 Kn−1
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðΔt − iϵÞ2 þ jΔxj2

q �
; ðD5Þ

where this expression should be understood as a (bi)distribution. The corresponding commutator and anticommutator can
then be obtained using C�ðx; x0Þ ¼ Wðx; x0Þ �Wðx0; xÞ. Note that the small mass limitm → 0þ will give us the Wightman
function for the massless scalar field in Eq. (44).
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