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We develop a general formalism of duality rotations for bosonic conformal spin-s gauge fields, with
s > 2, in a conformally flat four-dimensional spacetime. In the s = 1 case, this formalism is equivalent to
the theory of U(1l) duality-invariant nonlinear electrodynamics developed by Gaillard and Zumino,
Gibbons and Rasheed, and generalized by Ivanov and Zupnik. For each integer spin s > 2 we demonstrate
the existence of families of conformal U(1) duality-invariant models, including a generalization of the
so-called ModMax electrodynamics (s = 1). Our bosonic results are then extended to the N =1 and
N = 2 supersymmetric cases. We also sketch a formalism of duality rotations for conformal gauge fields of
Lorentz type (m/2,n/2), for positive integers m and n.
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I. INTRODUCTION

Building on the seminal 1981 work by Gaillard and
Zumino [1], the general theory of U(1) duality-invariant
models for nonlinear electrodynamics in four dimensions
was developed in the mid 1990s [2-5] and the early 2000s
[6-8]. The formalism of [2-5] has been generalized to
formulate general U(1) duality-invariant ' = 1 and N/ = 2
globally [9,10] and locally [11-13] supersymmetric theo-
ries. In particular, Ref. [9] put forward the constructive
perturbative scheme to compute A/ =2 superconformal
U(1) duality-invariant actions for the ' = 2 vector multi-
plet. Moreover, extending the earlier proposal of [14], the
first consistent perturbative scheme to construct the N = 2
supersymmetric Born-Infeld action was given in [10].
The formalism of nonlinear realizations for the partial
N =4 - N = 2 breaking of supersymmetry advocated in
[15] reproduced [16] the results of [10]. Further progress
toward the construction of the N =2 supersymmetric
Born-Infeld action has been achieved in [17—19].1
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"It should be pointed out that the A/ =1 supersymmetric
Born-Infeld action [20] is the first nontrivial U(1) duality-
invariant supersymmetric theory [21]. Its remarkable property
is that it is a Goldstone multiplet action for partial N' =2 —
N =1 supersymmetry breaking in Minkowski space [22,23], as
well as in the maximally supersymmetric backgrounds [24]
discovered in [25]: (i) R x S%; (ii) AdS; x R; and (iii) a super-
symmetric plane wave.
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Within the original bosonic formulation [2-5] and its
supersymmetric extensions [9,10], U(1) duality invariance of
a model for nonlinear (super) electrodynamics is equivalent
to the condition that the Lagrangian satisfies a nonlinear
self-duality equation. General solutions of such equations
are difficult to find. Ivanov and Zupnik [6-8] provided a
reformulation of nonlinear electrodynamics which makes
use of certain auxiliary variables in such a way that (i) the
self-interaction depends only on the auxiliary variables; and
(i) U(1) duality invariance is equivalent to the manifest U(1)
invariance of the self-interaction. Supersymmetric exten-
sions of the Ivanov-Zupnik approach were given in [26,27].
In particular, the N" = 2 supersymmetric formulation of [26]
has been used to obtain the closed-form expression for a
superconformal U(1) duality-invariant model proposed to
describe the low-energy effective action for N' = 4 super-
Yang-Mills theory [28].

In this paper we will demonstrate that the known
results for U(1) duality-invariant nonlinear electrodynamics
(spin s = 1) can naturally be generalized to develop a
general formalism of U(1) duality rotations for bosonic
conformal spin-s gauge fields, with s > 2, and their N = 1
and A/ = 2 supersymmetric cousins in a conformally flat
four-dimensional background.

Our paper is organized as follows. In Sec. II we introduce
the notion of U(l) duality-invariant conformal higher-
spin (CHS) theories and present examples of such models,
including higher-spin generalizations of the so-called
“ModMax electrodynamics” [29] (see also [30]). This
purely bosonic study is extended in Sec. III to the case
of N =1 superconformal higher-spin (SCHS) multi-
plets. We present a one-parameter self-dual SCHS action,
which generalizes the ' = 1 superconformal U(1) duality-
invariant electrodynamics [28,31]. In Sec. IV we uplift the
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technical machinery of the previous two sections to
N = 2 superspace and derive the self-duality equation for
N =2 SCHS models. In Sec. V we provide concluding
comments and sketch the formalism of duality rotations
for CHS gauge fields of arbitrary rank. The main body
of this paper is accompanied by four technical appe-
ndixes. Appendix A reviews the salient details of confo-
rmal geometry in four dimensions pertinent to this work.
Appendixes B and C review the relevant aspects of
N =1 and N = 2 conformal superspace, respectively. In
Appendix D we derive a class of duality-invariant CHS
models via the auxiliary field approach. In Appendix E we
provide arguments to fix the overall signs of the free (super)
conformal higher-spin actions.

II. DUALITY-INVARIANT CHS MODELS

In this section we develop a formalism of duality
rotations for CHS fields and propose some duality-invariant
models.

Consider a dynamical system describing the propaga-
tion of a conformal spin-s field hg(5)a(s) = ha,..ai..q, =
ha,...a)(@...a,)» With s > 1, in curved spacetime. Its action
functional S®) [C, @] is assumed to depend on a field
strength Cy(o4) and its conjugate @(-,@X), with Cq ) being
defined as

Ca(Zs) = V(a]ﬂ‘ ..V, Pih

s as+l"'a2x)[.j(5)’

(2.1)

where V, denotes the conformally covariant derivative, see
Appendix A. The real unconstrained prepotential /,()4(s) 18
a primary field, K, hy()q(s) = 0, where K, is the special
conformal generator. It is defined modulo gauge trans-
formations of the form
Schas)ats) = Via(@ Ca...a)in...q,): (2.2)
with the gauge parameter Cy(_1)q—1) also being
primary. This transformation law is conformally invariant
provided
Dho(syas) = (2= )ha(s)ats)» (23)
where D is the dilatation generator. The field strength (2.1)
is primary in a generic gravitational background,
Kbca(zs) = O, Dca(zs) = an(2s)- (24)
However, the gauge transformations (2.2) leave Ca<2s>
invariant only when s = 1, §;Cy(;) = 0. For s > 2 gauge
invariance holds only if the background is conformally flat,

Ca(4) =0= 54'0&(25) =0, (25)

where C,y) is the self-dual part of the background Weyl
tensor, see Appendix A. For the remainder of this section
we will assume such a geometry.

We point out that C,() is Maxwell’s field strength and

Ca(4) 1s the linearized Weyl tensor. We will refer to Cy(,,) for
s > 2 as the linearized spin-s Weyl tensor.

A. U(1) duality-invariant models
It is important to note that the field strength (2.1) obeys

the Bianchi identity

A& (& ...vﬂ‘YdQCa(s)ﬂ(s) = V(alﬁl ...vas)ﬂféd (26)

(9)B(s)"

Now, we assume that S®)[C, (] is extended to be a func-
tional of an unconstrained field C,(,) and its conjugate.
We introduce

, sst[c,C]
IM”‘(23> '_ SC(25) (27)
where we have defined
_ ssWc,C
(s) — 4 a(2s) 25 101
8SWIC, (] /d xedC S0 + c.c. (2.8)

Varying S®)[C, C] with respect to the prepotential ha(s)ats)
yields

VA Gy VP i) Magopis) = Via V) M)
(2.9)

A crucial feature of our analysis above is that the
functional form of the equation of motion (2.9) mirrors
that of the Bianchi identity (2.6). Consequently, the union
of Egs. (2.6) and (2.9) is invariant under the SO(2) =~ U(1)
duality transformations:

51Ca(2s) = AM&(Z&)v 5iMa(2s) = _Aca(h)’ (210)
where A is a constant, real parameter. One may then obtain
two equivalent expressions for the variation of S©)[C,C]
with respect to (2.10)

5,8W[C,C] = % / d*xe{C* - M?} +c.c.

il

:—E/d“xe./\/lz—l—c.c., (2.11)

as a generalization of similar derivations in nonlinear
electrodynamics [4,5,10]. This implies the self-duality
equation

125003-2



DUALITY-INVARIANT SUPERCONFORMAL HIGHER-SPIN ...

PHYS. REV. D 104, 125003 (2021)

Im / d*x e{C*PICy 0 + M I Mya} =0, (2.12)

which must hold for an unconstrained field Ca(Zs) and its
conjugate. In (2.11) we have employed the notational
shorthand 7% = T" T, (similarly T? = T, T¢™).
The simplest solution of the self-duality equation (2.12)
is the free CHS model (El), which was introduced in
[32-34] in the case of Minkowski space and extended to
arbitrary conformally flat backgrounds in [35].2

In the s =1 case, the self-duality equation (2.12) was
originally derived by Bialynicki-Birula [36], but unfortu-
nately this work was largely unnoticed.” It was independ-
ently re-discovered by Gibbons and Rasheed in 1995 [2].
Two years later, it was rederived by Gaillard and
Zumino [4] with the aid of their formalism developed back
in 1981 [1] but originally applied only in the linear case.

As is known, all gravity-matter theories allow for a Weyl-
invariant formulation [37,38] in which the gravitational field
is described in terms of two gauge fields. One of them is the
inverse vielbein e,” and the other is a conformal compensa-
tor W, the latter being a nowhere vanishing scalar field. In this
setting the gravity gauge group also includes Weyl trans-
formations, which act on the gravitational fields as follows:
Y — e’V.

e, —¢e%,",

(2.13)
|

2

_ 2 —-1)* _ . 2 _ (2)\2
Stieen[C.C: ¥] = — / d4xe‘I’4{1— <1+@{( ) coshy(Cz+Cz)+sinhy(CZCZ)7} +&>

For s = 1 this model was introduced in [41].

B. Self-duality under Legendre transformation

In the case of nonlinear (super) electrodynamics, U(1)
duality invariance implies self-duality under Legendre
transformations, see [10] for a review. This remarkable
property proves to extend to the higher-spin case, as will be
shown below.

We start by describing a Legendre transformation for a
generic theory with action S®)[C, C]. For this we introduce
the parent action

s6[c,,cP, P

= sWie, ¢ + /d4xe<%ca(2s)caD<23) +c.c.). (2.17)

’For the free CHS model (E1), one can also consider scale
transformations in addition to the U(1) duality ones (2.10), which
is similar to the case of electrodynamics discussed, e.g., in [10].

*We thank Dmitri Sorokin for bringing Ref. [36] to our
attention.

Truly conformal theories, such as conformal gravity, do not
depend on the compensator. In the approach of [39], the
gauge group is further enlarged to local conformal trans-
formations, and the compensator is a primary dimension-1
scalar field,
K,¥ =0, DY = VY. (2.14)
If we allow for the action S¢)[C,C] to depend on the
compensator, then the family of U(1) duality-invariant
theories (2.12) is very large. For instance, the following
U(1) duality-invariant model

)
Sgl)[cvé;‘}'] = —/d4xe‘P4{1 - (1 + (_1)8%

(C2 _ C2>2 %
T
4y
is a higher-spin generalization of Born-Infeld electrody-
namics [40]. The latter is obtained from (2.15) for s = 1 by

making use of local scale transformations to impose a
gauge condition ¥? = ¢g~! = const. Owing to the depend-

(2.15)

ence of SU/[C.C; ] on the compensator ¥, it is clear that
(2.15) is not conformal.

As another solution of the self-duality equation (2.12), we
propose a one-parameter duality-invariant extension of (2.15)

[T

s } yeR.  (2.16)

|
Here Cgy) is an unconstrained field and CS(zs) takes the
form

By = Vi V12

s Ay ...Q )/}(‘) ’

(2.18)

where h5<s> als) is a Lagrange multiplier field. Indeed, upon
varying (2.17) with respect to h](?(S) (s) one obtains the

a
Bianchi identity (2.6), and its general solution is given
by eq. (2.1), for some real field 7y )4(;). As a result the
second term in (2.17) becomes a total derivative, and we
end up with the original action S©)[C,C]. Alternatively, if
we first vary (2.17) with respect to C*?%), the equation of
motion is

Mg = —CE(ZS), (2.19)
which we may solve to express Cy o) as a function of CaD(Zs)

and its conjugate. Inserting this solution into (2.17), we
obtain the dual model

125003-3
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S [CP.C7)

- i
- {sm o)+ [axe <Eca<2s>c5(25> n c.c.)]

C=C(CD,(_2D)‘
(2.20)

Now, given an action S*)[C, C] satisfying (2.12), our aim
is to show that it satisfies

(2.21)

which means that the corresponding Lagrangian is invariant
under Legendre transformations. A routine calculation
allows one to show that the following functional

SWI[C,Cl + / d4xe< Co)Cyay) + cc. > (2.22)

is invariant under (2.10). The latter may be exponentiated to
obtain the finite U(1) duality transformations

Ct/x(Zs) = €08 ACy(25) + SINAM 2y,

M5 = =8I ACya5) + €08 AM g2y (2.23)

Performing such a transformation with 1 =7 on (2.22)
yields

sWie,cl = sWicP,cP] - / d4xe< CH2ICD +c.c.).

(2.24)

Upon inserting this expression into (2.20), we obtain (2.21).

In the above analysis, we made use of the fact that the
general solution of the Bianchi identity (2.6) is given
by (2.1). To justify this claim, it suffices to work in
Minkowski space. Let Cun, be a field subject to

Eq. (2.6), with V, = 9. Introduce its descendant defined by

Masyats) = i+ 0"a Catoypis) = O oy -0 Caoppio)
(2.25a)
which is automatically transverse,
PPt =0. (2.25Db)

Pa(s—1)pa(s—1)

The Bianchi identity (2.6) tells us that h= ls) is real,

a(s)a(s
hl() = hl(s Js)* Now we can express Cg(p) in terms

of (2. 25a)

D Pt

Capas) = 070" et o) B(5)

= o100 (2.26)

. ...112‘\.)/.)’(s)’

where L] = 0“0,,. In the final relation the real field /)4 () 18
not assumed to be transverse. This field is related to
D_Shi(s)a(s) by a gauge transformation

(2.27)

S¢ha(s)a(s) = O Can...a)in..,)

with a real gauge parameter {y(;_1)4(s—1)- Our consideration

may be extended to the A" = 1 and J\/ 2 supersymmetric
cases studied in the next sections.

C. Auxiliary variable formulation

As a generalization of the Ivanov-Zupnik [6-8]
approach, here we will introduce a powerful formalism
to generate duality-invariant models that makes use of
auxiliary variables.

Consider the following action functional

> 1
sIC.Cpupl = (1) [ d4xe{zpc-p2 —502}

+cc.+8Yp.pl. (2.28)

Here we have introduced the auxiliary variable p,(,,) which
is chosen to be an unconstrained primary dimension-2 field,

Kbpa(Zs) =0, D/)a(Zs) = 2pa(2s)' (229)
The functional Sl(;t) [p, p], by definition, contains cubic and

higher powers of p,(») and its conjugate. The equation of
motion for p*2s) is

(=1) 85lp. ).

= Cy(25) T 2 g

Pa(2s) (230)

Equation (2.30) allows one to express p,(ay) as a functional
of Cuoy and its conjugate. This means that (2.28) is
equivalent to a CHS theory with action

(Gl

sWC,Cl = 5

/d4xeC2+cc +sWe. e, (2.31)

int

Thus, (2.28) and (2.31) provide two equivalent realizations
of the same model.

The power of this formulation is most evident when the
self-duality equation (2.12) is applied. A routine compu-
tation reveals that this constraint is equivalent to

(). =
Im / d*xe pa(2s) a‘sint [p’ ,0] —=0.

e (2.32)

125003-4
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Thus, self-duality of the action (2.28) is equivalent to the
requirement that Sl(it)UJ[)] is invariant under rigid U(1)

phase transformations

Sple?p.evp = Shlp.pl. peR.  (2.33)

For instance we can consider the model
(s) p°p°
Sint 95 93] = /d4x e V'E <W>, (2.34)

where $(x) is a real analytic function of a real variable.
However, such models are not conformal if the action
does depend on V. The condition of conformal invariance
imposes additional nontrivial restrictions.

D. Conformal U(1) duality-invariant models

In the s = 1 case, there is the unique conformal U(1)
duality-invariant electrodynamics proposed in [29] (see
also [30]). It was called ModMax electrodynamics in [29].
It turns out that for s > 1, families of conformal U(1)
duality-invariant models exist.

As a warm-up example, let us consider the following
nonlinear conformal action:

soe.g =) [awete+ e

+ﬂ/d4xe\/cz(‘22, a,peER. (2.35)

Requiring this action to obey the self-duality equa-
tion (2.12), we obtain the constraint

a* - =1=a=coshy, p=sinhy, y€R. (2.36)
Thus, the nonlinear theory
_ —1)* cosh _
sWe,C) = (=1)* coshy 2COS y/d“x e{C* +C*}
+sinhy [ d*xeVC?C?, yeR, (2.37)

is a one-parameter conformal U(1) duality-invariant exten-
sion of the free CHS action (E1). In the s = 1 case our
model coincides with ModMax electrodynamics.

In order to construct more general models, it is advanta-
geous to make use of the auxiliary variable formulation
described above. We introduce algebraic invariants of
the symmetric rank-(2s) spinor p,(), which has the
same algebraic properties as the linearized spin-s Weyl
tensor Cy(24):

P = (=1)paeppi) ™,
p3 =

Pats)” sy Py *, (2.38)
If s is odd, all invariants p***!, with n a non-negative
integer, vanish.

For simplicity, we restrict our analysis to the conformal
graviton, s = 2. In this case the family of invariants (2.38)
contains only two functionally independent invariants [42],
p? and p°. In particular, one may show that

(2.39)

Now we choose the self-interaction in (2.28) to be of
the form

Sillo.p) = [ dxelpl?p)}+ o)),

where f and k are real coupling constants. The resulting
model is clearly conformal and U(1) duality invariant. For
k # 0, elimination of the auxiliary variables p,4) and pg(4)
does not result in a simple action like (2.37). In particular,
such an elimination, to quadratic order in the couplings,
yields the following self-dual model:

_ 1 1 _
() - - ) 2 2
s@c,C] —/d4xe{2 <1+2ﬂ )(C +C?)
+ B(C2CP): + K(C3CP):
l (63)252 + (C_3)2C2 i ) (Cz)z + (62)2
+ 2ﬁK (0383)%(02@2)% + 12K (6363)%

! 2<63>2<62>2+<c‘3>2<62>2+“_}_

24~ ()

(2.41)

The ellipsis in (2.41) denotes additional contributions to the
full nonlinear theory which are cubic or higher order in the
coupling constants. We emphasize that for the special case
x = 0 the above action yields (2.37). A proof of this result
is given in Appendix D.

For s > 2 the number of algebraic invariants of p,(a)
grows, and therefore one can define families of conformal
U(1) duality-invariant models.

IIl. A/ =1 DUALITY-INVARIANT SCHS MODELS

The purely bosonic study undertaken in the previous
section can be generalized to the supersymmetric case. To
this end, we consider a dynamical system describing the
propagation of a conformal superspin-(s + %) gauge multi-
plet Hy)a(s)» s > 0, in N =1 curved superspace [35,43].

125003-5
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The prepotential H,(y)4(s) s a real unconstrained superfield
being defined modulo the gauge transformations

(3.1)

with a primary unconstrained gauge parameter ¢y (s)a(s—1)-
This gauge transformation law is superconformal provided

5§Ha(s)('l(s) = v(a]é’az.“a\.)d(s) - v({‘l[é’(l(A‘)(‘l'z..J‘{J’

KBHa(s)d(s) =0, DHa(s)('l(s) = _SHa(s)éc(s) (32)
where K® = (K", 8/, 5;) are the special conformal gene-
rators, see Appendix B. The action functional of the dyna-

mical system is required to take the form SG)[W, W),
where W,(5,11) is the following chiral descendant of

Ha(x)()l(s) .

A1 "y age)B(s)°

(3.3)

lepe ,
Wetastn) = —szvmlﬂ‘ V.V, H ,
V/f]/\/a(zsﬂ) = 0

This field strength proves to be primary in a generic
supergravity background [35,43],

3
DWaas+1) = 5 Wazs+1)-

KBWa(2s+1) =0, )

(3.4)

However, the gauge transformations (3.1) leave Wy(5441)
invariant only if the supergravity background is confor-
mally flat,

Wa(3) =0= SCW(X(ZS*‘F]) =0, (35)
where W3 is the background super-Weyl tensor, see
Appendix B. For the remainder of this section we will
assume such a geometry.

It should be pointed out that the prepotential H
encodes the linearized conformal supergravity multiplet
and its field strength W, is the linearized super-Weyl
tensor [44,45]. We will refer to Wy(5,11) for s > 1 as the
linearized superspin-(s +%) Weyl tensor, or simply as a
higher-spin super-Weyl tensor.

With the exception of the gauge transformation law (3.1),
the above results are also valid in the s = 0 case corre-
sponding to the massless vector multiplet. As is well
known, its prepotential H is defined modulo the gauge
transformations [46,47]

SH=y+3  Viy=0, (3.6)
with the chiral scalar y being primary and dimensionless.
Unlike the s > 1 case considered above, the vector multi-
plet field strength W, = —;{vZVaH is gauge invariant,
0,W, = 0, for an arbitrary supergravity background.

A. U(1) duality-invariant models

It is important to note that the field strength (3.3) obeys
the Bianchi identity* [48]

\v/J (i _Vﬂ.\-&x)Vﬁsﬂ Wa(s)ﬁ(s+])
— .l .y Y, .}s 1 A .
- _v((llﬁ .. .V(lﬂﬂ‘ v/ + Wa(s)ﬁ'(s+1)‘ (3.7)

Moreover, the real superfield

Busyits) = VP @y VP i) VP Wepienny - (3.8)
proves to be primary,
KB )as) = 0. DByats) = (2 + 5)Bagsyats),  (3:9)

and may be called the linearized superspin-(s + 1) Bach
tensor. For s > 1 B,,m(-,(x) is also referred to as a higher-spin
super-Bach tensor.

We assume that S®)[W, W) is consistently defined as a
functional of a general chiral superfield W, 1) and its
conjugate. This allows us to introduce the symmetric
spinor

. SSOW, W
1Ma(2s+l) =2 5Wa<25+—1) s (310)
where the variational derivative is defined by
i 8SE W, W)
s — 4,42 o(2s+1 ’
55( )[W,W] = /d xd 955W (2s+ )W+C.C.
(3.11)

and & is the chiral integration measure. It follows that
M 2541y 18 @ primary chiral superfield,

K M,o441) = 0, VI Myas41) =0,
3

DM(Z(ZA‘+1) = _M(1(2x+1)'

5 (3.12)

Varying the action with respect to the prepotential H ;()4(s)
yields the equation of motion

vﬂl (a] .. ‘vﬂxdl‘)vﬂﬁ»l Ma(Y)/}(Y+1)

= -V PV B M, (3.13)

$)B(s+1)°
Here the real superfield VA, ... VP, \VPri M50
proves to be primary.

The analysis above indicates that the functional form
of (3.13) coincides with that of (3.7). It then follows that the

“This differs from the Bianchi identity for the nonlinear super-
Weyl tensor (B3b) on historical grounds.
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system of equations (3.7) and (3.13) is invariant under the
U(1) duality rotations:

5)»Wa(2s+l) = A'Ma(stLl)’ 5iMa(2s+l) = _lwa(Zerl)a

(3.14)

where A is a constant, real parameter. One may then obtain

two equivalent expressions for the variation of S©*)[W, W]
with respect to (3.14)

BSWI) = [ ExPOEIN - M} e

i
— _2/d4xd295/v12 +c.c., (3.15)

as a generalization of similar derivations in nonlinear
N =1 supersymmetric electrodynamics [9-11].° This
implies the self-duality equation

Im / dtx d2OEIV TN 00

+ MEEFOW, 60} =0, (3.16)

which must hold for a general chiral superfield W,(5,41)

and its conjugate. Every solution S®)[W, W] of the
self-duality equation describes a U(1) duality-invariant
theory. In the s = 0 case, Eq. (3.16) was originally derived
in [9] in Minkowski superspace and extended to super-
gravity in [11]. The simplest solution of the self-duality
equation (3.16) is the free N' = 1 SCHS model (E5), which
was introduced in [43] for the cases of Minkowski and
anti—de Sitter (AdS) backgrounds and later was generalized
to arbitrary conformally flat backgrounds in [35].

The above results allow one to prove, in complete
analogy with the nonsupersymmetric analysis conducted
in Sec. II B, that the U(1) duality-invariant theories are self-
dual under Legendre transformations.

B. Auxiliary variable formulation

As a generalization of the auxiliary variable formalism
sketched in Sec. II C, here we will develop a reformulation
of the U(l) duality-invariant systems introduced in the
previous subsection. In the s = 0 case, it will reduce to
the auxiliary superfield approach for U(1) duality-invariant
supersymmetric electrodynamics introduced in [26,27].

°In Eq. (3.15) and the remainder of this section we make
use of the notational shorthand W? = W"(z““)Wa(zHl) and
W? = Wd(2S+1)Wa(2s+l).

Consider the action functional

1 1
SOV W, n.77) = (—1)S/d4xd295{;7W—§;72 —sz}

+cc.+ S l. (3.17)
Here we have introduced the new dimension-3/2 multiplet
Na(2s+1)> Which is required to be primary and covariantly

chiral,

- 3
KBna(Zerl) =0, V&na(ZSqu) =0, Dr]a(2s+l) = 5’7(1(2s+1)'

(3.18)

By definition, the functional Sl([ft) [7,7], contains cubic and

higher powers of 7,(2,,1) and its conjugate.
The equation of motion for 7*>+1) is
383 n. 1

6’7(1(254»1) ' (3 19)

Ma(2s+1) = Wa(2S+1) + (_1>

Employing perturbation theory, Eq. (3.19) allows one to
eXPIESS 7g(25+1) as a functional of W5,y and its con-
jugate. This means that (3.17) is dual to a SCHS theory
with action

nt

_ —1)s ) _
SOW, W] = % / dx 2OEW? + c.c. + SO WV
(3.20)

Thus, (3.17) and (3.20) provide two equivalent realizations
of the same model.

The power of this formulation is most evident when the
self duality equation (3.16) is applied. A routine compu-
tation reveals that this constraint is equivalent to

(). =
Im / d*xd?0Ena>s+1) 05 n.i] _ 0.

51,1(1(2s+1) (321)

Thus, self-duality of the action (3.17) is equivalent to the
requirement that Sfrft) [n.7] is invariant under rigid U(1)
phase transformations
Swlen e = Solln.7l. peR. (3:22)
Within the superconformal approach to supergravity-
matter dynamical systems [39], every theory of Einstein
supergravity coupled to supersymmetric matter is realized
as a coupling of the same matter multiplets to conformal
supergravity and a superconformal compensator, see,

e.g., [49]. Truly superconformal theories are independent
of any compensator. Different off-shell formulations for
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Einstein supergravity correspond to different choices of the
compensating multiplet. The most famous compensators
are (i) a chiral compensator S, of the old minimal super-
gravity and (ii) a real linear compensator . = L of the new
minimal supergravity. Both S, and L are required to be
nowhere vanishing, such that (S;)~" and L=! exist, and they
satisfy the following superconformal properties:

KBSO - 0, v,-lSO - 0,

DSO = SO; (3238.)

K®L =0, V’L=0= DL=2L (3.23b)

If we allow the action (3.20) to depend on a super-
conformal compensator, either S, or L, we can generate
families of U(1) duality-invariant theories which satisfy
the condition (3.22). For simplicity, unless otherwise
stated, here we will restrict our attention to the following

interaction:

) PP S22
i Y] = ———— [ d*xd*0d20FE ————
Sll’lt[rl’rl’ ] 2(2S—|—2)!/ xd=0d-0 ’r3s+2
x ) (v, ), (3.24a)
where
L oo a2
V= gv " T~=], (3.24b)

and the compensator T has one of the two realizations:
either T = 5,8, or T = L. Applying (3.22), we find that
our model is U(1) duality invariant provided

(3.24c)

C. Superconformal U(1) duality-invariant model

The U(1) duality-invariant model (3.24) is superconfor-
mal if the action is independent of Y. This uniquely
fixes the functional form of F(v?) modulo a single real
parameter

=

k €R. (3.25)

Employing (3.19), we arrive at

(=1)’x V2
8(2s +2)!
25 =25+2
X |:(2S + 2)’7 il %ég

W(l(2s+l) = Na(25+1) {1 +

T3s+2

725+2
n

+ 4T3s+2

vz(nwa,,%‘s%)]}, (3.26)

which, along with its conjugate, allows us to integrate out
the auxiliary variables present in (3.17). The final result for
s =0 is the model for superconformal U(1) duality-
invariant electrodynamics introduced in [28,31]

- 1
SOW, W] = 4—1cosh7//d4xd2951/\/2 +c.c.

W22
Y2/ui’

where y is a real coupling constant. For s > 0 the resulting
model is

1 _
+—sinhy / d*xd20d20E (3.27)

4

S(s>0) [W, W}

—1)s
:% / d*xd20EW? + c.c.

K - (1/\/21/_\/2)“’+l
— | d*xd?0d?0F ———————— . (3.28
+ 2(2s 4+ 2)! / s T3s+2(uu)i(3s+2> ( )
In both cases we have made use of the shorthand
1_,W?

We note that (3.28) is invariant under the following

rescaling of the conformal compensator:
T =&Y, (3.30)

which implies that the dependence of (3.28) on Y is purely
superficial. Consequently, the action is superconformal.

It is important to note that, at the component level, the
purely bosonic sector of the interaction (the x-term) present
in (3.28) identically vanishes.® Thus, these actions describe
different duality-invariant models than those presented in
Sec. II D. However, one may construct a supersymmetric
duality-invariant model that contains, for instance, the
bosonic theory (2.37) at the component level.

Consider the following supersymmetric duality-invariant
model:

SOV, W, n, 775 Y|

1 1
= (—l)s/d“xdzé’é’{r]W—znz —4W2} +c.c.

n*i’

Y2\/op

+§ / d*xd>0d*0E (3.31)

®The numerator in the x-term in (3.28) contains a product of
4(s + 1) fermionic superfields. Since the component reduction of
this term is computed according to the rule (3.33b), it is clear we
do not have enough spinor derivatives to convert all the fermionic
superfields into bosonic ones for s > 0.
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It does not enjoy invariance under (3.30) and thus (3.31) is
not superconformal. However, we are going to demonstrate
below that, at the component level, this model contains
certain conformal duality-invariant actions. For this we
restrict our attention to the bosonic sector of (3.31). The
bosonic field strengths contained in Wy, 1) are

V2i
CG(ZS+2) = T v(alwaz-»~02s+z) |9:0’

1 2s+1
Caze) = 7\ 57 ¥ Wretzs)lo=o- (3.32a)
The bosonic component fields of 7, 1) are
V2i
p(l(ZSJrZ) = T ((1171(12...(12&2) |9=07
1 R2s+1
Paze) = 7\ 57 ¥ etz lo=o- (3.32b)

Action (3.31) can be reduced to components using the
standard reduction rules

1 _ .
/d4xd29¢€’£c = —Z/d“xevzﬁcbzo, VeL. =0,

(3.33a)

_ 1 -
/ 4P OPDEL = - / dxe VYL . (3.33b)

Since we are interested only in the bosonic sector, it suffices
to approximate

2
U|9:O ~ (T )2 {pa(2s+2)pa(2s+2) - pa(ZS)pa(Zs)},

T =T|yp- (3.34)
Further, it may be checked that the interaction (the f-term)
in (3.31) does not contain contributions which are (i) linear
in pg(a) and its conjugate and (ii) linear in pg (2,42 and its
conjugate. Therefore, if we switch off the spin-s field,

then

Pa(2s) = 0 (336)
is a solution of the corresponding equation of motion.
Under the conditions (3.35) and (3.36), the resulting
bosonic action proves to coincide with SG+D[C,C, p, 7]
obtained from (D1) by replacing s with s + 1. We empha-
size that the compensator Y does not contribute to this

action, and therefore SG+1) [C, C.p, p| is locally conformal.’
Instead of considering the branch (3.35), we may switch
off the spin-(s + 1) field, Cy(2542) = 0. Then it follows
that pg(2542) = 0 is a solution of the corresponding equation
of motion, and the resulting bosonic action proves to
coincide with the conformal duality-invariant action
SWI[C,C, p.pl, Eq. (D).

To conclude this section, we derive a supersymmetric
extension of the cubic interaction present in (2.40). For this
purpose, we will fix s =1 in (3.17). The relevant inter-
action is constructed in terms of the two scalar primary
descendants of 7,3):

E= ina@)ﬁna@)ﬁv(al Nayasas): W = 4V? {%} . (3.37)

and the conformal compensator Y. Using these, we con-
struct the following action:

SWV. W, ;] = —/d“xszS{nW—%nz_%WZ}

+ c.c.
+ 32k / A xd20d20E — ==
T4 (ww)s

(3.38)

We note that it is not superconformal as it lacks invariance
under (3.30), though we will show that, at the component
level, it contains the cubic interaction present in (2.40). To
demonstrate this, we restrict our attention to the bosonic
sector of (3.38), which allows us to approximate

V2 [,
Wlg_o & e <P @ 52P" 2P P a2y

9
_ _pa(2)pa(2)pa(4)) .

> (3.39)

It follows then that the interaction (the k-term) present in
(3.38) contains no terms linear in p,(;) and its conjugate.
Hence, if we switch off the spin-1 field, Ca(z) =0, then
Pa(2) = 0 solves the corresponding equation of motion.

Under these conditions, the resulting bosonic action takes
the form

s@ [C, @,p,[)] = /d4xe{2pC —p? = %C2} +c.c.

+ K / d*xe(p’p? ). (3.40)

’As demonstrated in Appendix D, the action (D1) leads
to (2.37) upon eliminating the auxiliary field p,o,) and its
conjugate.
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In particular, we note that it is locally conformal as it is
independent of the compensator. Thus, (3.38) is a super-
symmetric extension of the cubic interaction of (2.40). In
closing, we emphasize that if one instead attempts to
consider the branch Cy4) = 0 and Cy(5) # 0, it is not legal
to set pg4y = 0. Such a choice would imply w]p_o &0,
making the corresponding component action of (3.38)
undefined.

IV. N =2 DUALITY-INVARIANT SCHS MODELS

This section is devoted to a brief study of duality-
invariant models for A/ = 2 conformal superspin-(s + 1)
gauge multiplets, with s > 0, in conformally flat back-
grounds.8 Our approach will generalize the general theory
of U(1) duality-invariant models for ' = 2 supersymmet-
ric nonlinear electrodynamics (superspin-0) developed in
[9,10,13,26]. The essential information about N = 2 con-
formal superspace, which is used throughout this section, is
collected in Appendix C.

We start with a review of SCHS gauge multiplets [52].
Given a non-negative integer s, the conformal superspin-
(s + 1) gauge multiplet is described by a real unconstrained
prepotential  H,(5)4(5), Which is a primary superfield,
KBHG(S)O-,(S> =0, defined modulo gauge transformations
of the form

s > 0: 5§H(z(s)('l(x) = vl(.al 5(12...(1A.)('1(‘3')i + vé[z] é‘(l(x)&z...&x)i’
(4.1a)
s=0: &:H=Vif,;+Vi¢,, (4.1b)

with the gauge parameters {y(y)q(s—1); and ¢;; being primary
and complex unconstrained. Here we have defined the
second-order operators

Vil = VIVA) | il = Ve (4.2)

The gauge transformation laws (4.1) are superconformal
provided

[DH(I(S)&(S) = —(S + Z)Ha(s)ix(s)- (43)

Associated with the gauge prepotential H (s is the
chiral descendant [52]

Ay 13- 00512)B(5)°

(4.4)

Waasia) = ViV 1.V, PV

s
X1 X2

vljﬂ‘yvoz(ZerQ) =0,

8See, e.g., [50,51] for the notions of N =2 superspin and
superisospin. For all superconformal multiplets considered in this
section, their superisospin is equal to zero.

where we have introduced the chiral projection operator

_ 1 = o
v4 = 4—8V']Vl-j (45)
and the second-order operators
Vo= ViV V= VIOE (46)

It can be shown that W, (,,,) is primary in an arbitrary
supergravity background,

KBWa(25+2) =0, Dwa(25+2) = W(z(2s+2)' (47)
However, the gauge transformations (4.1) leave W (a,2)
invariant, 6;We(as42) = 0, only if the background curved
superspace is conformally flat,

Waa) =0 = §:Wyas42) =0, (4.8)
where W, is the background super-Weyl tensor, see
Appendix C. Throughout this section, we will restrict
ourselves to such a geometry.

We should point out that the gauge prepotential H
describes the linearized A/ =2 conformal supergravity
multiplet, and its field strength W, is the linearized
super-Weyl tensor. For s > 0 we will refer to the fields
strengths We(o,4) as the linearized higher-spin super-
Weyl tensors.

The chiral field strength defined by (4.4) carries at
least two spinor indices. A chiral scalar field strength
W corresponds to the massless A" = 2 vector multiplet
[53]. It can be described in terms of the curved superspace
analogue of Mezincescu’s prepotential [54] (see also [55]),
Vij = Vj;, which is an unconstrained real SU(2) triplet,
V= Vi =¢*ellV,,. The expression for W in terms of
V;; was found in [56] to be

W = %?4vijv..

ijo

VfW — O, Vl“

j (4.9)
The field strength YV defines a primary reduced chiral
superfield of dimension +1,

Viw =Viw, DW=W, KW=0, (4.10)
and is invariant under gauge transformations of the
form [57]
6§Vij = v(lkg(lki'i + v&kg(-lkij’ é’(lkij = é’a(kij)7 (41 1)
with %/ being primary and unconstrained modulo the
algebraic condition given. In the flat-superspace limit, the
gauge transformation law (4.11) reduces to that given in
[54,55]. It is important to emphasize that YV is invariant
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under the gauge transformations (4.11) in an arbitrary
supergravity background.

The formalism we introduce below for nonlinear
SCHS models generalizes the existing framework for
U(1) duality-invariant theories of the vector multiplet.
The latter have been studied extensively in [9,10,26,28],
thus we omit this special case from our considerations.

A. U(1) duality-invariant models

We consider a dynamical system describing the propa-
gation of the superconformal gauge multiplet Hga(s),
s >0, in a conformally flat superspace. We require its
action functional to take the form S)[W, W], where the
gauge-invariant chiral field strength W,,0) is given
by Eq. (4.4).

It is important to note that the field strength (4.4) obeys
the Bianchi identity

vﬂl (ll] .. _vﬂ:ds)vﬂs+lﬂx+lwa(s>ﬂ(s+2)

= V<a1/j1 B .Vas)ﬂs Vhst1Psia Wa(s)ﬁ(wz) ) (4 12)

We then assume that S)[W, W] can be defined as a
functional of a general chiral superfield W(s,.,) and its

conjugate. This allows us to introduce the symmetric spinor

5SC W, W)

5W¢1(2s+2) ’ (413)

iMa(23+2) =

which defines an arbitrary variation of the action

S W W

5W(1(2x+2) tc.c.,

5SS W, W) = / d*xd29Es W (25+2)
(4.14)

where € is the N =2 chiral integration measure.”
It follows that M ,(5,5) is a primary chiral superfield,

KM 2510 = 0, vfMa(Zs-&-Z) =0,

DMa(ZHQ) = Ma(25+2)' (415)

Varying the action with respect to the prepotential H ;()4(s)
yields the equation of motion

vﬂl ((X] .. .vﬂsds)vﬂs+lﬂx+2Ma<s)ﬂ(s+2)

— v(al /}l . va,)/}) v/”.\-ﬂf.”wz M{l(s)ﬁ( (4 16)

s+2)°

This analysis above indicates that the functional form of
(4.16) coincides with that of (4.12). As a result, the system

°The chiral and full superspace integrals are related to each
according to Eq. (C9).

of Egs. (4.12) and (4.16) is invariant under U(1) duality
rotations:

O Wa(2s+2) = AMg(2542)5 6:Masr2) = =AWy(2542)
(4.17)

where A is a constant, real parameter. One may then obtain

two equivalent expressions for the variation of S*) (W, W)
with respect to (4.17)

5,8 W, W] = % / d*xd*0E{W? — M?} +c.c.

i

— 2/d4xd498M2+c.c., (4.18)

as a generalization of similar derivations in nonlinear
N =2 supersymmetric electrodynamics [9,10,13]. This
implies the self-duality equation

Im / d4xd4t98{ Wa(2s+2) Wa(2s+2)

+ Ma(2s+2)Ma(25+2)} =0, (419)

which must hold for a general chiral superfield W (,.2)

and its conjugate. Every solution )W, W) of the self-
duality equation describes a U(1) duality-invariant theory.
Equation (4.19) allows one to prove, in complete analogy
with the nonsupersymmetric analysis conducted in
Sec. IIB, that the U(1) duality-invariant theories are
self-dual under Legendre transformations. The simplest
solution of the self-duality equation (4.19) is the free
N =2 SCHS model (E8) proposed in [52], including
the action for linearized conformal supergravity (s = 0).

B. Auxiliary variable formulation

This subsection is aimed at generalizing the auxiliary
variable formalism employed in Sec. III B to construct self-
dual A/ = 1 SCHS models to an N = 2 setting.'’ To this
end, we consider the action functional

S<S)[W»WJ1J_1]_(—1)3/d“xd“eg{nw_%;f_%y\ﬂ}

+ec. 488 ., (4.20)
where we have introduced the auxiliary dimension-1
multiplet Na(2s+2)> Which is primary and covariantly chiral,

%Such a setup was recently utilized in [28] to construct N = 2
superconformal duality-invariant models for an Abelian vector
multiplet in a conformal supergravity background.
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KPNaas12) = 0. Viiagio) =0, Dy = Nlaasra)-

(4.21)

By construction, the self-interaction Sl(rfg [7,77] contains
cubic and higher powers of #,,,15) and its conjugate.
Varying (4.20) with respect to this superfield yields

680 . 7

e (4.22)

”{1(2.v+2) = W(z(2s+2) + (_1)

Employing perturbation theory, Eq. (4.22) allows one to
eXpress g(.42) as a functional of W, and its

conjugate. This means that (4.20) is equivalent to a
SCHS theory with action

(="

SO W] == / dxd*OEW? + c.c. + SE W W,

(4.23)

Thus, (4.20) and (4.23) provide two equivalent realizations
of the same model.

We now analyze the self duality equation (4.19). It is
easily verified that this constraint is equivalent to

(s) _
Im / d4xd498’1a(2s+2) asim [’77 ’1] —0. (424)

5na(25+2)
Thus, the U(1) duality invariance of the model (4.20) is

equivalent to the requirement that 81(;2 [7,7] is invariant
under rigid U(1) phase transformations
S(‘) ig. —ips :S(‘) -
inc (€711, €771] = Sy 1,71,

pER.  (4.25)

If we allow the action (4.20) to depend on a super-

conformal compensator, it is trivial to construct interactions
satisfying the condition (4.25), for instance

S, 11; Wo, W)

— / d4xd49d4éE% <na(2s+2)”a(2s+2)ﬁd(2s+2)ﬁd(zs+2)) |

(WoW,)?
(4.26)

Here $(x) is a real analytic function of a real variable, and
W, is the chiral field strength of a compensating vector
multiplet.

It is not difficult to construct explicit examples of N = 2
superconformal and U(1) duality-invariant higher-spin
theories, as a generalization of the A/ = 2 vector multiplet
models presented in [28]. For simplicity, here we restrict
our attention to A =2 Minkowski superspace. Let us
consider the self-interaction

Sl(rit) .7 = c / d*xd*0d*0In P’ Inip?,  (4.27)

with ¢ a coupling constant. It is clearly invariant under rigid
U(1) phase transformations, Eq. (4.25), and therefore it
generates a U(1) duality-invariant model. It is also N = 2
superconformal, which may be checked using the proper-
ties of N' = 2 superconformal transformations [58,59]. The
above functional is well defined provided the auxiliary
variables 7]4(2,2) are chosen to belong to the open domain

7 =" n,050) #0. A similar condition should be
imposed in the case of nonsupersymmetric model (2.41).

C. On N =2 super ModMax theory

So far, an N =2 superconformal extension of the
ModMax theory has not been constructed. Perhaps it does
not exist (see the discussion in [28]), the main reason
being the fact that the full N' = 2 superspace measure is
dimensionless. However, if the action functional is allowed
to depend on compensators, an A/ =2 supersymmetric
extension of the ModMax theory can be introduced.
Specifically, let us consider the following A = 2 vector
multiplet model'":

S[W,W’n’ﬁ;W()»WO]
_l 414 _l 2_1 2
—2/d xd 95{11)/\) X 4VV +c.c.
+ S 171 Wo. W)
Sint [’1’ ’_1? WO s WO]
i

=K / d*xd*0d*6E ,

WoWo, VAPV [T

(4.28)

where « € R is the coupling constant. We are going to
show that this model incorporates N' = 1 superconformal
ModMax theory, Eq. (3.27), in the sense described below.

The field strength W of the N =2 vector multiplet
contains two independent ' = 1 chiral components, ® and
W,, defined by

W|62:0 = \/Eq),
ViWlg,—o = 2iW, = (V2P W], _, = V2V2D.  (4.29)

Here W, is the chiral field strength of the A/ = 1 vector
multiplet, VOW, = V, V¥ The auxiliary A" =2 chiral
superfield 5 contains three independent N = 1 chiral
components, y, 1, and ¥, defined by

"Our normalization of the quadratic part of the vector
multiplet action follows [28].
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2 ) 1
71|92:0 = \/5)(7 vE’ﬂagzo = 2ing, —Z(vg)z’ﬂeg:o =Y.
(4.30)

Using the standard V' = 2 — N = 1 reduction rules

/ d*xd*0EL, = —% / d*xd?0E(V2)* L |g,—o.
VéL, =0,
/ d*xd*od*0EL :% / d4xd29d29E(V2)2(72)2[492:0,
(4.31)

we may reduce the action (4.28) to N = 1 superspace.
Here we restrict our attention to the A/ = 1 vector multiplet
and switch off the A/ = 1 scalar multiplet, ® = 0. Then it
may be shown that setting y = 0 and ¥ = 0 gives a solution
of the equations of motion for these auxiliary superﬁelds.12
The resulting AV = 1 superspace action is

- 1 1
SIW, W, n, 7] = /d4xd295{11W—§172 —sz} +c.c.

n*i’

Y2/’

Here v is defined as in (3.24b), and we utilize the realization
T =5, for the compensator, with W,|=S,. The action
(4.32) was proposed in [28] to describe N =1 super-
conformal U(1l) duality-invariant electrodynamics. Upon
eliminating the auxiliary chiral spinor 7, and its conjugate,
this model was shown in [28] to reduce to N’ = 1 super-
conformal ModMax theory, Eq. (3.27), introduced in [31].

+ K / d*xd’0d’0E (4.32)

V. CONCLUSION

In this paper we have generalized the general theory
of U(1l) duality-invariant nonlinear electrodynamics [3—8]
and its N =1 and N =2 supersymmetric extensions
[9-13,26,27] to the cases of bosonic conformal spin-s
gauge fields, s > 2, and their N'=1 and N = 2 super-
conformal cousins. These self-dual higher-spin theories
share several important features of duality-invariant
electrodynamics, such as self-duality under Legendre trans-
formations. The crucial difference between the U(1)
duality-invariant models for electrodynamics and their
higher-spin counterparts is that the former are consistently
defined on arbitrary gravitational backgrounds, while the
latter are formulated in a conformally flat space.

In the nonsupersymmetric case, we presented several
families of self-dual models. The simplest of these is (2.37),

"This follows from the fact that the A/ =1 superspace
reduction of (4.28) does not have terms linear in y, ¥ and their
conjugates provided @ = 0.

which is a higher-spin generalization of ModMax electro-
dynamics [29]. We also introduced a two-parameter
family of models for the conformal graviton (2.40) and
provided insights on the construction of new families of
multiparameter duality invariant models for conformal
higher-spin fields. Finally, in the supersymmetric case,
we generalized the construction of N” = 1 superconformal
duality invariant electrodynamics [28,31] to higher spins
(3.28). A distinguishing feature of this family of models is
that, at the component level, their purely bosonic sectors
vanish, which may be verified via a component reduction.

It should be emphasized that the literature on duality is
huge and, unfortunately, it is not possible to mention all
publications here. In this paper we were interested in duality
as a continuous symmetry of the equations of motion. There
exists a different approach to duality as a manifest symmetry
of the action. The latter was advocated in [60-66]. Another
important approach was inspired by early examples of dual
field theories [67-73] and resulted in various dual formu-
lations for massless, massive and partially massless higher-
spin field theories, see [74—80] and references therein. This
approach corresponds to discrete dualities.

There may be several generalizations of our results that are
modeled on similar properties of duality-invariant theories of
spin-1 gauge fields, see [81] for a review. In particular, we
recall that, given a U(1) duality-invariant model for nonlinear
electrodynamics, its compact duality group U(l) can be
enhanced to the noncompact SL(2,R) group by coupling
the electromagnetic field to the dilaton and axion [3-5]. It may
be shown that this construction naturally extends to the
higher-spin case. We should point out that a generalization
of the method of [6-8] to the case of SL(2, R) duality was
given by Ivanov, Lechtenfeld and Zupnik [82].

Fundamental to our analysis in this paper has been the
formalism of conformal (super) space, which trivializes
calculations in backgrounds with vanishing (super) Weyl
tensor. For the purpose of applications, however, it is often
useful to work with Lorentz covariant derivatives as opposed
to their conformally covariant counterparts. The process of
translating results expressed in terms of the latter to the
former is known as degauging. The general prescription
for such an analysis is well known (see e.g. [35,83,84]),
however such calculations are often highly nontrivial on
generic curved backgrounds. If the background geometry is
restricted by turning off several components of the curvature,
the resulting computations are greatly simplified. To this
end, we now provide a dictionary to translate our main
results to the AdS (super)space."

We begin with the nonsupersymmetric story. The geom-
etry of AdS, is encoded within the Lorentz covariant
derivatives D,, which obey the algebra

"The conformal flatness of A/-extended AdS superspace in
four dimensions was established in [85] and further elaborated
in [86].
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[Daa'w D[)’[)’} = _Zﬂﬂ<8(}ﬁMaﬂ + gaﬂM(}[}’)’ (51)
where y is a nonzero complex constant with the dimension
of mass encoding the curvature of the spacetime and uji is
proportional to the scalar curvature. It may be shown that in
this geometry, Eq. (2.1) takes the form

Ca(Zs) = D(alﬁ] e 'Dasﬁshaﬁl...azb\.)/.}(s)' (52)
Further, Cy(»,) satisfies the Bianchi identity (2.6)
Db (& '--Dﬂxds)ca(s)ﬂ(s) = D(alﬁl "'D%)ﬂjcd(s)p"(s)’ (53)

Next, the geometry of the N =1 AdS superspace,
AdS**, is described by the covariant derivatives D, =
(D,.D,. D%, which obey the algebra (see, e.g., [87])
{Da’ D/f} = _4/'_4Ma/37
{Ds. Dy} = 2iDyq

{/Z_)(’u IZ_Dﬂ} = 4ﬂMdﬁv
(5.4a)

[Da,Dﬁﬁ] = iﬂeaﬁl_), [Z_)d,Dﬁﬁ] = —ipe, ; Dy, (5.4Db)
where u is a nonzero constant having the dimension of
mass. In this supergeometry the field strengths Wy(e1)

take the form [88]

1 - . .
Watasi1)y==7(D* =4) Do, .. Do Dy H ,

A1 "y agi1)(s)

(5.5)
and obey the Bianchi identity

D1 (g, . DPr g DI Wogsy s
= —iD(alﬂl ‘",Da,g)ﬂ“DﬂHlWd(s)ﬁ(s-&-l)' (56)

Finally, we consider AdS*B, the N = 2 AdS superspace.
Recall that its geometry is encoded within the covariant
derivatives D, = (D,, D, D?), which obey the algebra
(see [86] for the technical details):

{Di. D)} = 4SUM 45 + 2,5 ST .

{Décv Djﬂ} = _2i5j'Daﬁ’ (57)
where S is a nonzero covariantly constant isotriplet,
§Ji =S¥, satisfying the integrability condition [S,ST] = 0,
with § = (S j).14 Here, the field strengths W) take
the form

“The integrability condition implies that S/ can be chosen to
be real, SV = S;; = e;£;S"'. However we will not impose the
reality condition.

1 .. -
Waast2) = 4_8(2)” +45Y)D;;

X Dy ".. Dy Dy o H :

U152 a5 t50)(s)?
(5.8)
and satisfy the Bianchi identity
Db (@ _..pﬁsdx)pﬂm/fﬁzwa(s)ﬂ(ﬁz)
— .31 .x T .’.\-H }.r+2 A .
— D(all .. .Das)ﬁ D/ / W&(x)/ﬁ’(s+2)‘ (59)

Throughout this work we have restricted our attention to
the analysis of models described by real gauge prepoten-
tials. However, our construction readily extends itself to the
complex case. In particular, one may consider a complex
CHS gauge prepotential ¢y (,)5(n)» Withm, n > T and m # n
[35,43,89]. It is a primary field, K;$q(m)a(n) = 0, defined
modulo

O¢Patmain) = V(@@ an...ay)i...it,)> (5.10)

where the gauge parameter (u_1)a(u-1) 1S also
primary. Conformal invariance of (5.10) uniquely fixes
the dimension of the gauge field, Ddy(n)an) =

(2 =3 (m + 1))@ am)a(n)- The action functional describing

its dynamics is required to take the form S [@ C. é é]
where we have made the definitions
é(Jz(ern) = v(m g . 'va,,/}nqﬁ (5 1 la)

Xpyy-- -am+rz)/}(n) ’

Ca(m-‘rn) = v(alﬂl . 'vamﬂm$ ;

LEREE 'am+n)ﬁ(’n) '

(5.11b)

The descendants introduced above are primary in generic
backgrounds,

A A

th(l(m+n) =0, D@u(ern) = <2 + E (Vl - m))ca(ern);

(5.12a)
KiCotmin) =0, DCymin) = <2 + % (m— "))éa(m+n),
(5.12b)
and gauge-invariant in all conformally flat ones,
Coty = 0= 8,Cotmin) = 6Co(msmy =0.  (5.13)

It is important to note that the field strengths (5.11) also
obey the Bianchi identity

v

By . B . (7 _ B, B, .
VA o VP Catmpom) = Vi V)"
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Now, considering S("-") [@, C, é, (CZ} as a functional of the
unconstrained fields @a(m +n)> éa(m +n) and their conjugates,
we may introduce the primary fields

. mn)(C,C,C.C)
im+n+1 — >
1 Ma(ern) = 5éa(m+n
, . m(E,¢,C. 0
M iy = Spal i) , (5.15)

where we have made the definition

X 3 m,n) 5% 5 %
5smm e, ¢, ¢, 8] = / d4xe{5é“(”’+">w

i SSPC.C.C.C
+ 5Ca(m+n [ ]} +ec
5C(1 m+n
(5.16)
The conformal properties of the fields (5.15) are
KbMa(m+n) =0,
N 1 .
DMa(m+n) = <2 + 5 (n - m))Ma(ern), (5173)
KhMa (m+n) O
DMa(m+n < E )Ma(m+n)' (517b)
Varying S [é C. é, é] with respect to Py(m)a(n) yields
VP VP Mampon = Via™ -V Magmyjin-
(5.18)

It is clear from the discussion above that the system of
Egs. (5.14) and (5.18) is invariant under the U(1) duality
rotations

A

5ica(m+n) = )'Ma(ern)ﬂ 5lé(x(m+n) = ﬂMa(men)’
(5.19a)

51Ma(n1+n) = _ﬂéa(m—kn)v 51Ma(m+n) = _léa(m—kn)'

(5.19b)

One may then perform similar analyses to those undertaken
in Sec. II and construct U(1) duality-invariant nonlinear
models for such fields."”” They satisfy the self-duality
equation

">We mention in passing that such a construction can also be
uplifted to the case of a SCHS theory described by a complex
prepotential, such as those of [35,48,90].

il /d4x e{éa(m+’1)éa(m+n) + Ma(m+n)/\v/la(m+’1)}

+cc. =0, (5.20)

which must hold for unconstrained fields @a(m +n) and

éa(,n+,,). The simplest solution of this equation is the free
CHS action

S e, 8,8, = ime / Qe G e
(5.21)

which reduces to (E1) for m = n = s and real prepotential.

U(1) duality-invariant actions of the type considered
above naturally arise at the component level of super-
symmetric self-dual theories, such as those discussed in
Secs. Il and IV. Such considerations are beyond the scope
of the current paper and present an interesting avenue
for further work. It would also be interesting to study
duality-invariant models of the higher-depth (super)fields
of [35,91].
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APPENDIX A: CONFORMAL SPACE

This appendix reviews the salient details of conformal
geometry in four dimensions [92] pertinent to this work.'®
We adopt the spinor conventions of [87], which are similar
to those of [94]. We consider a curved spacetime M*
parametrized by local coordinates x”. The structure group
is chosen to be SU(2,2), whose Lie algebra is spanned by
the translation P, Lorentz M ,;,, dilatation D and the special
conformal K, generators. The covariant derivatives V, then
take the form

1
va = eamam - Ea)abchc -b,D— fabKlw (Al)
where e,™ is the inverse vielbein, w,”® the Lorentz spin
connection, b, the dilatation connection and f,” the special
conformal connection. The commutation relations of V,

1%See also [32] for a pedagogical review of conformal
(super)gravity and [35,83,93] for the modern formulation of
conformal geometry we use.
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with the generators M., D and K, are obtained from those

of P, with the same generators by replacing P, — V,.
The covariant derivatives (A1) obey the commutation

relations

[vail’ V/}ﬂ] ( aﬂ (lﬁy(SM + grz[)’C /}/5 5)

1

Z( v }/Cu/)’(sy + S(zﬂv Caﬂ(s ) (AZ)

Here C,,5 and Ca 75 are the self-dual and anti-self-dual
parts of the Weyl tensor C,,.4, and are primary. We remind
the reader that a field ¢ (with suppressed indices) is said to
be primary if it obeys

Koap = 0. (A3)
The commutation relations (A2) should be accompanied by
the relations

[D’ vaa] vaa?

[Kaix’ v/} ] 4( (lﬁ + gaﬁMa/'} - gaﬁedﬁ’D)’ (A4)
and we recall that the Lorentz generators act on vectors and
Weyl spinors as follows:

M,V = znc[a Vh] >

Moy, = ,aWp). M5 =

(AS)

APPENDIX B: A =1 CONFORMAL SUPERSPACE

In this appendix we review the elements of the NV = 1
conformal superspace approach to off-shell conformal
supergravity relevant to this work. For more details we
refer the reader to the original paper [83] (see also
Appendix A of [48]).

Consider a curved A" = 1 superspace M** parametrized
by local coordinates 77 = (x™, 6, 9;-,). The structure group
is chosen to be SU(2, 2|1). Its corresponding superalgebra
is spanned by the translation P, = (P,, Q,, Q") Lorentz
M, dilatation D, R-symmetry Y and the special conformal
KA = (K%, 8% S,) generators. The covariant derivatives
V, then have the form

vA = (va’ va’ v{l)
1
=EM0y — EQAbCth —i®,Y - ByD — FspK”,

(B1)

where E,M denotes the superspace inverse vielbein, Q4%
the Lorentz connection, @, the U(1), connection, B, the
dilatation connection, and 45 the special superconformal
connection.

EraWp):-

The covariant derivatives (B1) obey the algebra

{V..Vs} =0, (V..V} = =2iV,, (B2a)
[vd, Vﬁﬂ] = —i&'&[‘} <2Wﬁy(S 76 + V Wa'/jy
1_ .
+3 V”VW{I,,VKW) ) (B2b)

Here W4, is the N = 1 super-Weyl tensor and is subject to
the constraints:

KPW,5 =0,  VPW,5 =0,
DWs, = %Waﬂy, YWes, = =W, (B3a)
as well as the Bianchi identity
=iV/ V' Wy, =iVViIW, ;. =By, (B3b)

where the primary superfield B,; is the super-Bach tensor
and was introduced in [95], see also [35,43,87].

We remind the reader that a tensor superfield ¥ (with
suppressed indices) is said to be primary and of dimension
Ay and U(1), charge gy if the following conditions hold:

KBY =0, DY = Ay, YV =gy¥?. (B4)
Of particular importance are primary chiral superfields,
which satisfy
KBW =0, Viw=o. (BS)
Requiring consistency of these constraints with the super-
conformal algebra yields highly nontrivial implications.
Specifically, it must take the form ¥ = W), and its U(1)

charge and dimension are related as follows

2
qy = — 3 Ay. (B6)
The algebra (B2) is to be accompanied by the following
(anti-)commutation relations: the U(1)g, dilatation and

special conformal generators obey

Y.V =V, [V, V==V (B7a)

BV =V DY) =3V [V =17
(B7b)

Y, 8% = =8, Y, Sa] = S {Sa i} = 2iK

(B7¢)
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1 - 1-

D, Koo = Koo [D.5%] = 5% D, Se] = —5 5

(B7d)
while the algebra of K, and Vj takes the form
[Km'l’ V/}ﬁ] = 4(‘9&/}Maﬁ + g(z/}M&/} - gaﬁga/}'D)v (B7C)
{S(u v/)’} = 8(1/3(2|D - 3Y) - 4M{lﬂ’ (B7f)
{Sc-,,v/;} = _gdﬁ(2D+3Y) +4Mdﬁ’ (B7g)
(K i V| = —2ie5S, [Kair Vi) = 2ie;3Sq,  (BTh)
[Sar V3] = 2ieqsV, [Si» Vil = —2ie, 3V, (BTH)

where all other graded commutators vanish.
The chiral and full superspace integrals are related
according to the rule

_ 1 _
/ d*xd?0d?0FEU = o / d*xd?0EVPU,

E~!' = Ber(E M), (B8)

where U is a primary real superfield of dimension +2.

APPENDIX C: N =2 CONFORMAL
SUPERSPACE

This appendix reviews N = 2 conformal superspace, a
formulation for off-shell V' =2 conformal supergravity
developed by Butter [84] and then reformulated in [96].

We consider a curved N =2 superspace M
parametrized by local coordinates z = (x™, 6, é;) The
structure group is chosen to be SU(2, 2|2). The correspond-
ing superalgebra is spanned by the Lorentz M ,;,, translation
P, = (P,, Qi, 0%), dilatation D, R-symmetry Y and J;;,
and the special conformal K4 = (K¢, 5%, S!) generators.
The covariant derivatives V, = (V,, Vi, V%) then have
the form

1 .
VA - EA _EQAabMab _q)AUJij —lq)AY—BA[D - %ABKB.

(C1)

As compared with (B1), we have introduced ®,", the
SU(2), connection. The corresponding generator acts on
isospinors as follows:

Jiyk = ghliyi) (C2)

The covariant derivatives (C1) obey the algebra
. ; S K
{Vi, Vi) = 2elie,yW, sM7° + 3 €5V WSk

1 .. . .
- §€lj€(lﬁvy$W5yKW, (C3a)

i TP _risivy
{Ve. Vit = -2i5)V./, (C3b)

. [ S B
Vain V)] = =ieapW 9 =3 0y W, 0
I =p= . epe .
— Zsaﬂvﬂ’ WdﬁY + 1€a/}vaM]lf

— ity Vi Wyl = 2 ey VLW S
(U S
+ EfaﬁvyﬂW&/}S; + ZeaﬁVdV@WVﬂKﬂ;.
(C3c¢)

Here W, is the N = 2 super-Weyl tensor and is subject to
the constraints:

KW, =0,  ViWg =0, DW, =W,
YWaﬁ = _Waﬁ' (C4a)

We also find that Wop obeys the Bianchi identity
B=V, W =YW, —B  (C4b)

where the primary superfield B is the A' = 2 super-Bach
tensor. We remind the reader that a superfield ® (with
suppressed indices) is said to be primary of dimension Ay
and U(1), charge gy if the following conditions hold:
KBY =0, DY = Ay, Y¥ =qy?¥. (C5)
Of particular importance are primary chiral superfields,
which satisfy
KPw =0, Viw—o. (C6)
The consistency of these constraints with the superconfor-
mal algebra leads to highly nontrivial implications. In
particular, it can carry no isospinor or dotted spinor indices,
¥ = W, (), and its U(1), charge and dimension are related
as follows:
gy = —2Ay. (C7)
Further, we note that for any primary tensor superfield
U,y with the property gy = —2Ay, the following object
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4 _
a m) v = 48 ij~ta(m)

(C8)
is both primary and chiral in conformally flat back-
grounds [84,97].

The chiral and full superspace integrals are related
according to the rule

/ d*xd*0d*0EU = / d*xd*0EV*U, E~' = Ber(E,M),
(C9)

where U is a primary real dimension-0 superfield.

For further details regarding N = 2 conformal super-
space, we refer the reader to the original work [84], as well
as [52,96].

APPENDIX D: ELIMINATION OF AUXILIARY
VARIABLES

This appendix is devoted to a derivation of the conformal
U(1) duality-invariant CHS models (2.37) via the auxiliary
variable formalism introduced in Sec. II C. We emphasize
that the latter is a higher-spin generalization of the Ivanov-
Zupnik approach [6-8].

Consider the following action functional:

SWIC,C,p,p) = (—1)“/d4x e{2pC—p2 —%CZ}

+cc. +p / d*xey/p*p°,

where one should keep in mind the definitions of Sec. II.
It is clear that (D1) is both conformal and U(1) duality
invariant. Varying this action with respect to the auxiliary
variable p*?) yields

(D1)

(=1)*B P20y’

2

Pa(2s) = Ca(Zs) + (Dz)

Employing this result, it is possible to integrate out pg ).
As a result, we obtain the self-dual model

e (D14 (8/2) 5
soie.g =1 (ﬁ/z)z/d4xe{02 + Y
p
LEpTYS /2 d*x e/ C?C. (D3)
Now, upon making the identification
R ) R
cosh Y 1= (ﬁ/z)z < sinh Yy = W’ (D4)

it is clear that (D3) coincides with (2.37), which concludes
our analysis. It is important to note that, in the s = 1 case,
this computation was first performed in [28].

APPENDIX E: OVERALL SIGNS
FOR FREE (S)CHS ACTIONS

In this appendix we show that the overall signs of the free
CHS actions [32-34]

sofe.g) =5

/d4x e{C"‘(QS)Ca(Zx) + C.C.} (El)

can be fixed by making use of supersymmetry consider-
ations in conjunction with the known action of Maxwell

theory for s =1,
! / dix e{CaC)C
xe
2

1
= —Z/d“xeC“bCab, (E2)

Mic,Cl = - () tcc.}

where C,, = V,h, — V,h,. Moreover, similar arguments
allow us to correctly fix the overall signs of the free NV = 1
and V' =2 SCHS actions.

The overall sign in (E1) is also fixed by identifying the
action S)[C, C] with the induced one obtained by comput-
ing the logarithmically divergent part of the effective action
of a conformal scalar field coupled to background con-
formal higher-spin fields [98].

1. A =1 actions

Consider the chiral field strength W, 1) and introduce
its bosonic components

1
a(2s) = 7l Wﬂa 2s) lo—0> (E3a)

V2i

Ca(2s+2) = Tv(al Waz,..az,.ﬁ) |9:0’ (E3b)

which have been defined such that Bianchi identity (2.6)
holds both for field strengths. We then compute the bosonic
part of the SCHS action [35,43]

SO, W

= Z4-Y/d4xd295W(l(2s+l)W(1(25+l) 4+ c.c.

ZS al S
—1—6/d4er2(W CFIWoa541)) oo + C-C.

—z / @ e(CHOIC, ) — CH2 0 10)) + -+ .

(E4)
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where the ellipses denote the fermonic sector, which is
irrelevant to our analysis. For the overall signs of the
component actions present in (E4) to agree with those of
(E1), we require z; = (—1)*. Therefore, the N' = 1 SCHS
actions take the form [35,43]

—1)*
SOV, W] = % / d*xd?0EW EHTIW, o + cec.
(ES)

2. N =2 actions

Consider the chiral field strength W, p,5). It contains
two N = 1 fermionic superfields in its multiplet

i [/s+1

Wagst1) =51/75 n 3Vﬁ Waas+plo,—o- (E6a)
V22

Wa(2s+3) = T v(a] Waz...azﬁg) |92=0, (E6b)

which have been defined such that the Bianchi identity
(3.7) holds for both field strengths. Next, we reduce the
N =2 SCHS action [52] to N' = 1 superspace

SOW, W]

::%/d4xd4ggwa(2s+1)wa(zs+l)+C'C.
Ls a2yy2 a(2s
:_E/d4xd298v zva(w 2 +1)W(l(2‘v+l))|ag:92:0+C‘C‘

= Zs/d4Xd2€g(W(l(2x+l)W(I(Z.erl) - W(l(2S+3>W(z(2s+3))

+---+c.c. (E7)
where the ellipses denotes the sector containing
integer superspin field strengths, which is irrelevant to
our analysis. For the overall signs of the N' =1 actions
present in (E7) to agree with those of (E5), we require
zy = (—1)*. Therefore, the N' =2 SCHS actions take the
form [52]

(="

S(s) W, W] =

/ d*xd*OEW B H2W, o) + cc.

(E8)
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