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We develop a general formalism of duality rotations for bosonic conformal spin-s gauge fields, with
s ≥ 2, in a conformally flat four-dimensional spacetime. In the s ¼ 1 case, this formalism is equivalent to
the theory of U(1) duality-invariant nonlinear electrodynamics developed by Gaillard and Zumino,
Gibbons and Rasheed, and generalized by Ivanov and Zupnik. For each integer spin s ≥ 2 we demonstrate
the existence of families of conformal U(1) duality-invariant models, including a generalization of the
so-called ModMax electrodynamics (s ¼ 1). Our bosonic results are then extended to the N ¼ 1 and
N ¼ 2 supersymmetric cases. We also sketch a formalism of duality rotations for conformal gauge fields of
Lorentz type ðm=2; n=2Þ, for positive integers m and n.
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I. INTRODUCTION

Building on the seminal 1981 work by Gaillard and
Zumino [1], the general theory of U(1) duality-invariant
models for nonlinear electrodynamics in four dimensions
was developed in the mid 1990s [2–5] and the early 2000s
[6–8]. The formalism of [2–5] has been generalized to
formulate general U(1) duality-invariantN ¼ 1 andN ¼ 2
globally [9,10] and locally [11–13] supersymmetric theo-
ries. In particular, Ref. [9] put forward the constructive
perturbative scheme to compute N ¼ 2 superconformal
U(1) duality-invariant actions for the N ¼ 2 vector multi-
plet. Moreover, extending the earlier proposal of [14], the
first consistent perturbative scheme to construct the N ¼ 2
supersymmetric Born-Infeld action was given in [10].
The formalism of nonlinear realizations for the partial
N ¼ 4 → N ¼ 2 breaking of supersymmetry advocated in
[15] reproduced [16] the results of [10]. Further progress
toward the construction of the N ¼ 2 supersymmetric
Born-Infeld action has been achieved in [17–19].1

Within the original bosonic formulation [2–5] and its
supersymmetric extensions [9,10], U(1) duality invariance of
a model for nonlinear (super) electrodynamics is equivalent
to the condition that the Lagrangian satisfies a nonlinear
self-duality equation. General solutions of such equations
are difficult to find. Ivanov and Zupnik [6–8] provided a
reformulation of nonlinear electrodynamics which makes
use of certain auxiliary variables in such a way that (i) the
self-interaction depends only on the auxiliary variables; and
(ii) U(1) duality invariance is equivalent to the manifest U(1)
invariance of the self-interaction. Supersymmetric exten-
sions of the Ivanov-Zupnik approach were given in [26,27].
In particular, theN ¼ 2 supersymmetric formulation of [26]
has been used to obtain the closed-form expression for a
superconformal U(1) duality-invariant model proposed to
describe the low-energy effective action for N ¼ 4 super-
Yang-Mills theory [28].
In this paper we will demonstrate that the known

results for U(1) duality-invariant nonlinear electrodynamics
(spin s ¼ 1) can naturally be generalized to develop a
general formalism of U(1) duality rotations for bosonic
conformal spin-s gauge fields, with s ≥ 2, and theirN ¼ 1
and N ¼ 2 supersymmetric cousins in a conformally flat
four-dimensional background.
Our paper is organized as follows. In Sec. II we introduce

the notion of U(1) duality-invariant conformal higher-
spin (CHS) theories and present examples of such models,
including higher-spin generalizations of the so-called
“ModMax electrodynamics” [29] (see also [30]). This
purely bosonic study is extended in Sec. III to the case
of N ¼ 1 superconformal higher-spin (SCHS) multi-
plets. We present a one-parameter self-dual SCHS action,
which generalizes theN ¼ 1 superconformal U(1) duality-
invariant electrodynamics [28,31]. In Sec. IV we uplift the
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1It should be pointed out that the N ¼ 1 supersymmetric
Born-Infeld action [20] is the first nontrivial U(1) duality-
invariant supersymmetric theory [21]. Its remarkable property
is that it is a Goldstone multiplet action for partial N ¼ 2 →
N ¼ 1 supersymmetry breaking in Minkowski space [22,23], as
well as in the maximally supersymmetric backgrounds [24]
discovered in [25]: (i) R × S3; (ii) AdS3 × R; and (iii) a super-
symmetric plane wave.
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technical machinery of the previous two sections to
N ¼ 2 superspace and derive the self-duality equation for
N ¼ 2 SCHS models. In Sec. V we provide concluding
comments and sketch the formalism of duality rotations
for CHS gauge fields of arbitrary rank. The main body
of this paper is accompanied by four technical appe-
ndixes. Appendix A reviews the salient details of confo-
rmal geometry in four dimensions pertinent to this work.
Appendixes B and C review the relevant aspects of
N ¼ 1 and N ¼ 2 conformal superspace, respectively. In
Appendix D we derive a class of duality-invariant CHS
models via the auxiliary field approach. In Appendix E we
provide arguments to fix the overall signs of the free (super)
conformal higher-spin actions.

II. DUALITY-INVARIANT CHS MODELS

In this section we develop a formalism of duality
rotations for CHS fields and propose some duality-invariant
models.
Consider a dynamical system describing the propaga-

tion of a conformal spin-s field hαðsÞ _αðsÞ ≔ hα1…αs _α1… _αs ¼
hðα1…αsÞð _α1… _αsÞ, with s ≥ 1, in curved spacetime. Its action
functional SðsÞ½C; C̄� is assumed to depend on a field
strength Cαð2sÞ and its conjugate C̄ _αð2sÞ, with Cαð2sÞ being
defined as

Cαð2sÞ ¼ ∇ðα1
_β1…∇αs

_βshαsþ1…α2sÞ _βðsÞ; ð2:1Þ

where ∇a denotes the conformally covariant derivative, see
Appendix A. The real unconstrained prepotential hαðsÞ _αðsÞ is
a primary field, KbhαðsÞ _αðsÞ ¼ 0, where Kb is the special
conformal generator. It is defined modulo gauge trans-
formations of the form

δζhαðsÞ _αðsÞ ¼ ∇ðα1ð _α1ζα2…αsÞ _α2… _αsÞ; ð2:2Þ

with the gauge parameter ζαðs−1Þ _αðs−1Þ also being
primary. This transformation law is conformally invariant
provided

DhαðsÞ _αðsÞ ¼ ð2 − sÞhαðsÞ _αðsÞ; ð2:3Þ

where D is the dilatation generator. The field strength (2.1)
is primary in a generic gravitational background,

KbCαð2sÞ ¼ 0; DCαð2sÞ ¼ 2Cαð2sÞ: ð2:4Þ

However, the gauge transformations (2.2) leave Cαð2sÞ
invariant only when s ¼ 1, δζCαð2Þ ¼ 0. For s ≥ 2 gauge
invariance holds only if the background is conformally flat,

Cαð4Þ ¼ 0 ⇒ δζCαð2sÞ ¼ 0; ð2:5Þ

where Cαð4Þ is the self-dual part of the background Weyl
tensor, see Appendix A. For the remainder of this section
we will assume such a geometry.
We point out that Cαð2Þ is Maxwell’s field strength and

Cαð4Þ is the linearized Weyl tensor. We will refer to Cαð2sÞ for
s > 2 as the linearized spin-s Weyl tensor.

A. U(1) duality-invariant models

It is important to note that the field strength (2.1) obeys
the Bianchi identity

∇β1 ð _α1…∇βs
_αsÞCαðsÞβðsÞ ¼ ∇ðα1

_β1…∇αsÞ
_βs C̄ _αðsÞ _βðsÞ: ð2:6Þ

Now, we assume that SðsÞ½C; C̄� is extended to be a func-
tional of an unconstrained field Cαð2sÞ and its conjugate.
We introduce

iMαð2sÞ ≔
δSðsÞ½C; C̄�
δCαð2sÞ

; ð2:7Þ

where we have defined

δSðsÞ½C; C̄� ¼
Z

d4x e δCαð2sÞ
δSðsÞ½C; C̄�
δCαð2sÞ

þ c:c: ð2:8Þ

Varying SðsÞ½C; C̄� with respect to the prepotential hαðsÞ _αðsÞ
yields

∇β1 ð _α1…∇βs
_αsÞMαðsÞβðsÞ ¼ ∇ðα1

_β1…∇αsÞ
_βsM̄ _αðsÞ _βðsÞ:

ð2:9Þ

A crucial feature of our analysis above is that the
functional form of the equation of motion (2.9) mirrors
that of the Bianchi identity (2.6). Consequently, the union
of Eqs. (2.6) and (2.9) is invariant under the SOð2Þ ≅Uð1Þ
duality transformations:

δλCαð2sÞ ¼ λMαð2sÞ; δλMαð2sÞ ¼ −λCαð2sÞ; ð2:10Þ

where λ is a constant, real parameter. One may then obtain
two equivalent expressions for the variation of SðsÞ½C; C̄�
with respect to (2.10)

δλSðsÞ½C; C̄� ¼
iλ
4

Z
d4 x efC2 −M2g þ c:c:

¼ −
iλ
2

Z
d4x eM2 þ c:c:; ð2:11Þ

as a generalization of similar derivations in nonlinear
electrodynamics [4,5,10]. This implies the self-duality
equation
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Im
Z

d4x efCαð2sÞCαð2sÞ þMαð2sÞMαð2sÞg ¼ 0; ð2:12Þ

which must hold for an unconstrained field Cαð2sÞ and its
conjugate. In (2.11) we have employed the notational
shorthand T2 ¼ TαðmÞTαðmÞ (similarly T̄2 ¼ T̄ _αðmÞT̄ _αðmÞ).
The simplest solution of the self-duality equation (2.12)
is the free CHS model (E1), which was introduced in
[32–34] in the case of Minkowski space and extended to
arbitrary conformally flat backgrounds in [35].2

In the s ¼ 1 case, the self-duality equation (2.12) was
originally derived by Bialynicki-Birula [36], but unfortu-
nately this work was largely unnoticed.3 It was independ-
ently re-discovered by Gibbons and Rasheed in 1995 [2].
Two years later, it was rederived by Gaillard and
Zumino [4] with the aid of their formalism developed back
in 1981 [1] but originally applied only in the linear case.
As is known, all gravity-matter theories allow for a Weyl-

invariant formulation [37,38] in which the gravitational field
is described in terms of two gauge fields. One of them is the
inverse vielbein eam and the other is a conformal compensa-
torΨ, the latter being a nowhere vanishing scalar field. In this
setting the gravity gauge group also includes Weyl trans-
formations, which act on the gravitational fields as follows:

eam → eσeam; Ψ → eσΨ: ð2:13Þ

Truly conformal theories, such as conformal gravity, do not
depend on the compensator. In the approach of [39], the
gauge group is further enlarged to local conformal trans-
formations, and the compensator is a primary dimension-1
scalar field,

KbΨ ¼ 0; DΨ ¼ Ψ: ð2:14Þ

If we allow for the action SðsÞ½C; C̄� to depend on the
compensator, then the family of U(1) duality-invariant
theories (2.12) is very large. For instance, the following
U(1) duality-invariant model

SðsÞBI ½C; C̄;Ψ� ¼ −
Z

d4x eΨ4

�
1 −

�
1þ ð−1Þs C

2 þ C̄2

Ψ4

þ ðC2 − C2Þ2
4Ψ8

�1
2

�
ð2:15Þ

is a higher-spin generalization of Born-Infeld electrody-
namics [40]. The latter is obtained from (2.15) for s ¼ 1 by
making use of local scale transformations to impose a
gauge condition Ψ2 ¼ g−1 ¼ const. Owing to the depend-

ence of SðsÞBI ½C; C̄;Ψ� on the compensator Ψ, it is clear that
(2.15) is not conformal.
As another solution of the self-duality equation (2.12), we

propose a one-parameter duality-invariant extension of (2.15)

SðsÞBIgen½C; C̄;Ψ�¼−
Z

d4xeΨ4

�
1−

�
1þ 2

Ψ4

�ð−1Þs
2

coshγðC2þ C̄2ÞþsinhγðC2C̄2Þ12
�
þðC2−C2Þ2

4Ψ8

�1
2

�
; γ∈R: ð2:16Þ

For s ¼ 1 this model was introduced in [41].

B. Self-duality under Legendre transformation

In the case of nonlinear (super) electrodynamics, U(1)
duality invariance implies self-duality under Legendre
transformations, see [10] for a review. This remarkable
property proves to extend to the higher-spin case, as will be
shown below.
We start by describing a Legendre transformation for a

generic theory with action SðsÞ½C; C̄�. For this we introduce
the parent action

SðsÞ½C; C̄; CD; C̄D�

¼ SðsÞ½C; C̄� þ
Z

d4x e
�
i
2
Cαð2sÞCDαð2sÞ þ c:c:

�
: ð2:17Þ

Here Cαð2sÞ is an unconstrained field and CDαð2sÞ takes the

form

CDαð2sÞ ¼ ∇ðα1
_β1…∇αs

_βshD
αsþ1…α2sÞ _βðsÞ; ð2:18Þ

where hDαðsÞ _αðsÞ is a Lagrange multiplier field. Indeed, upon

varying (2.17) with respect to hDαðsÞ _αðsÞ one obtains the

Bianchi identity (2.6), and its general solution is given
by eq. (2.1), for some real field hαðsÞ _αðsÞ. As a result the
second term in (2.17) becomes a total derivative, and we
end up with the original action SðsÞ½C; C̄�. Alternatively, if
we first vary (2.17) with respect to Cαð2sÞ, the equation of
motion is

Mαð2sÞ ¼ −CDαð2sÞ; ð2:19Þ

which we may solve to express Cαð2sÞ as a function of CDαð2sÞ
and its conjugate. Inserting this solution into (2.17), we
obtain the dual model

2For the free CHS model (E1), one can also consider scale
transformations in addition to the U(1) duality ones (2.10), which
is similar to the case of electrodynamics discussed, e.g., in [10].

3We thank Dmitri Sorokin for bringing Ref. [36] to our
attention.
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SðsÞD ½CD; C̄D�

≔
�
SðsÞ½C; C̄� þ

Z
d4xe

�
i
2
Cαð2sÞCDαð2sÞ þ c:c:

������
C¼CðCD;C̄DÞ

:

ð2:20Þ

Now, given an action SðsÞ½C; C̄� satisfying (2.12), our aim
is to show that it satisfies

SðsÞD ½C; C̄� ¼ SðsÞ½C; C̄�; ð2:21Þ

which means that the corresponding Lagrangian is invariant
under Legendre transformations. A routine calculation
allows one to show that the following functional

SðsÞ½C; C̄� þ
Z

d4x e

�
i
4
Cαð2sÞCαð2sÞ þ c:c:

�
ð2:22Þ

is invariant under (2.10). The latter may be exponentiated to
obtain the finite U(1) duality transformations

C0αð2sÞ ¼ cos λCαð2sÞ þ sin λMαð2sÞ;

M0
αð2sÞ ¼ − sin λCαð2sÞ þ cos λMαð2sÞ: ð2:23Þ

Performing such a transformation with λ ¼ π
2
on (2.22)

yields

SðsÞ½C; C̄� ¼ SðsÞ½CD; C̄D� −
Z

d4x e

�
i
2
Cαð2sÞCDαð2sÞ þ c:c:

�
:

ð2:24Þ

Upon inserting this expression into (2.20), we obtain (2.21).
In the above analysis, we made use of the fact that the

general solution of the Bianchi identity (2.6) is given
by (2.1). To justify this claim, it suffices to work in
Minkowski space. Let Cαð2sÞ be a field subject to
Eq. (2.6), with∇a ¼ ∂a. Introduce its descendant defined by

h⊥αðsÞ _αðsÞ ≔ ∂β1
_α1…∂βs

_αsCαðsÞβðsÞ ¼ ∂β1 ð _α1…∂βs
_αsÞCαðsÞβðsÞ;

ð2:25aÞ

which is automatically transverse,

∂β _βh⊥
βαðs−1Þ _β _αðs−1Þ ¼ 0: ð2:25bÞ

The Bianchi identity (2.6) tells us that h⊥αðsÞ _αðsÞ is real,

h⊥αðsÞ _αðsÞ ¼ h⊥αðsÞ _αðsÞ. Now we can express Cαð2sÞ in terms

of (2.25a),

Cαð2sÞ ¼ □
−s∂ðα1

_β1…∂αs
_βsh⊥

αsþ1…α2sÞ _βðsÞ

¼ ∂ðα1
_β1…∂αs

_βshαsþ1…α2sÞ _βðsÞ; ð2:26Þ

where□ ¼ ∂a∂a. In the final relation the real fieldhαðsÞ _αðsÞ is
not assumed to be transverse. This field is related to
□

−sh⊥αðsÞ _αðsÞ by a gauge transformation

δζhαðsÞ _αðsÞ ¼ ∂ðα1ð _α1ζα2…αsÞ _α2… _αsÞ; ð2:27Þ

with a real gauge parameter ζαðs−1Þ _αðs−1Þ. Our consideration
may be extended to theN ¼ 1 andN ¼ 2 supersymmetric
cases studied in the next sections.

C. Auxiliary variable formulation

As a generalization of the Ivanov-Zupnik [6–8]
approach, here we will introduce a powerful formalism
to generate duality-invariant models that makes use of
auxiliary variables.
Consider the following action functional

SðsÞ½C; C̄; ρ; ρ̄� ¼ ð−1Þs
Z

d4x e

�
2ρC − ρ2 −

1

2
C2
�

þ c:c:þ SðsÞ
int ½ρ; ρ̄�: ð2:28Þ

Here we have introduced the auxiliary variable ραð2sÞ which
is chosen to be an unconstrained primary dimension-2 field,

Kbραð2sÞ ¼ 0; Dραð2sÞ ¼ 2ραð2sÞ: ð2:29Þ

The functional SðsÞ
int ½ρ; ρ̄�, by definition, contains cubic and

higher powers of ραð2sÞ and its conjugate. The equation of
motion for ραð2sÞ is

ραð2sÞ ¼ Cαð2sÞ þ
ð−1Þs
2

δSðsÞ
int ½ρ; ρ̄�
δραð2sÞ

: ð2:30Þ

Equation (2.30) allows one to express ραð2sÞ as a functional
of Cαð2sÞ and its conjugate. This means that (2.28) is
equivalent to a CHS theory with action

SðsÞ½C; C̄� ¼ ð−1Þs
2

Z
d4xe C2 þ c:c:þ SðsÞint ½C; C̄�: ð2:31Þ

Thus, (2.28) and (2.31) provide two equivalent realizations
of the same model.
The power of this formulation is most evident when the

self-duality equation (2.12) is applied. A routine compu-
tation reveals that this constraint is equivalent to

Im
Z

d4xe ραð2sÞ
δSðsÞ

int ½ρ; ρ̄�
δραð2sÞ

¼ 0: ð2:32Þ
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Thus, self-duality of the action (2.28) is equivalent to the

requirement that SðsÞ
int ½ρ; ρ̄� is invariant under rigid U(1)

phase transformations

SðsÞ
int ½eiφρ; e−iφρ̄� ¼ SðsÞ

int ½ρ; ρ̄�; φ ∈ R: ð2:33Þ

For instance we can consider the model

SðsÞ
int ½ρ; ρ̄;Ψ� ¼

Z
d4x eΨ4F

�
ρ2ρ̄2

Ψ8

�
; ð2:34Þ

where FðxÞ is a real analytic function of a real variable.
However, such models are not conformal if the action
does depend on Ψ. The condition of conformal invariance
imposes additional nontrivial restrictions.

D. Conformal U(1) duality-invariant models

In the s ¼ 1 case, there is the unique conformal U(1)
duality-invariant electrodynamics proposed in [29] (see
also [30]). It was called ModMax electrodynamics in [29].
It turns out that for s > 1, families of conformal U(1)
duality-invariant models exist.
As a warm-up example, let us consider the following

nonlinear conformal action:

SðsÞ½C; C̄� ¼ ð−1Þsα
2

Z
d4x efC2 þ C̄2g

þ β

Z
d4x e

ffiffiffiffiffiffiffiffiffiffi
C2C̄2

p
; α; β ∈ R: ð2:35Þ

Requiring this action to obey the self-duality equa-
tion (2.12), we obtain the constraint

α2−β2¼1⇒α¼ coshγ; β¼ sinhγ; γ∈R: ð2:36Þ

Thus, the nonlinear theory

SðsÞ½C; C̄� ¼ ð−1Þs cosh γ
2

Z
d4x efC2 þ C̄2g

þ sinh γ
Z

d4x e
ffiffiffiffiffiffiffiffiffiffi
C2C̄2

p
; γ ∈ R; ð2:37Þ

is a one-parameter conformal U(1) duality-invariant exten-
sion of the free CHS action (E1). In the s ¼ 1 case our
model coincides with ModMax electrodynamics.
In order to construct more general models, it is advanta-

geous to make use of the auxiliary variable formulation
described above. We introduce algebraic invariants of
the symmetric rank-ð2sÞ spinor ραð2sÞ, which has the
same algebraic properties as the linearized spin-s Weyl
tensor Cαð2sÞ:

ρ2 ≔ ð−1ÞsραðsÞβðsÞρβðsÞαðsÞ;
ρ3 ≔ ραðsÞβðsÞρβðsÞγðsÞργðsÞαðsÞ;… ð2:38Þ

If s is odd, all invariants ρ2nþ1, with n a non-negative
integer, vanish.
For simplicity, we restrict our analysis to the conformal

graviton, s ¼ 2. In this case the family of invariants (2.38)
contains only two functionally independent invariants [42],
ρ2 and ρ3. In particular, one may show that

s ¼ 2∶ ρ4 ¼ 1

2
ðρ2Þ2: ð2:39Þ

Now we choose the self-interaction in (2.28) to be of
the form

Sð2Þ
int ½ρ; ρ̄� ¼

Z
d4x efβðρ2ρ̄2Þ12 þ κðρ3ρ̄3Þ13g; ð2:40Þ

where β and κ are real coupling constants. The resulting
model is clearly conformal and U(1) duality invariant. For
κ ≠ 0, elimination of the auxiliary variables ραð4Þ and ρ̄ _αð4Þ
does not result in a simple action like (2.37). In particular,
such an elimination, to quadratic order in the couplings,
yields the following self-dual model:

Sð2Þ½C; C̄� ¼
Z

d4xe

�
1

2

�
1þ 1

2
β2
�
ðC2 þ C̄2Þ

þ βðC2C̄2Þ12 þ κðC3C̄3Þ13

þ 1

2
βκ

ðC3Þ2C̄2 þ ðC̄3Þ2C2
ðC3C̄3Þ23ðC2C̄2Þ12 þ 1

12
κ2

ðC2Þ2 þ ðC̄2Þ2
ðC3C̄3Þ13

−
1

24
κ2

ðC3Þ2ðC̄2Þ2 þ ðC̄3Þ2ðC2Þ2
ðC3C̄3Þ43 þ…

�
:

ð2:41Þ

The ellipsis in (2.41) denotes additional contributions to the
full nonlinear theory which are cubic or higher order in the
coupling constants. We emphasize that for the special case
κ ¼ 0 the above action yields (2.37). A proof of this result
is given in Appendix D.
For s > 2 the number of algebraic invariants of ραð2sÞ

grows, and therefore one can define families of conformal
U(1) duality-invariant models.

III. N = 1 DUALITY-INVARIANT SCHS MODELS

The purely bosonic study undertaken in the previous
section can be generalized to the supersymmetric case. To
this end, we consider a dynamical system describing the
propagation of a conformal superspin-ðsþ 1

2
Þ gauge multi-

plet HαðsÞ _αðsÞ, s > 0, in N ¼ 1 curved superspace [35,43].
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The prepotential HαðsÞ _αðsÞ is a real unconstrained superfield
being defined modulo the gauge transformations

δζHαðsÞ _αðsÞ ¼ ∇ðα1 ζ̄α2…αsÞ _αðsÞ − ∇̄ð _α1ζαðsÞ _α2… _αsÞ; ð3:1Þ

with a primary unconstrained gauge parameter ζαðsÞ _αðs−1Þ.
This gauge transformation law is superconformal provided

KBHαðsÞ _αðsÞ ¼ 0; DHαðsÞ _αðsÞ ¼ −sHαðsÞ _αðsÞ ð3:2Þ

where KB ¼ ðKb; Sβ; S̄ _βÞ are the special conformal gene-
rators, see Appendix B. The action functional of the dyna-
mical system is required to take the form SðsÞ½W; W̄�,
where Wαð2sþ1Þ is the following chiral descendant of
HαðsÞ _αðsÞ:

Wαð2sþ1Þ ¼ −
1

4
∇̄2∇ðα1

_β1…∇αs
_βs∇αsþ1

Hαsþ2…α2sþ1Þ_βðsÞ;

∇̄_βWαð2sþ1Þ ¼ 0: ð3:3Þ

This field strength proves to be primary in a generic
supergravity background [35,43],

KBWαð2sþ1Þ ¼ 0; DWαð2sþ1Þ ¼
3

2
Wαð2sþ1Þ: ð3:4Þ

However, the gauge transformations (3.1) leave Wαð2sþ1Þ
invariant only if the supergravity background is confor-
mally flat,

Wαð3Þ ¼ 0 ⇒ δζWαð2sþ1Þ ¼ 0; ð3:5Þ

where Wαð3Þ is the background super-Weyl tensor, see
Appendix B. For the remainder of this section we will
assume such a geometry.
It should be pointed out that the prepotential Hα _α

encodes the linearized conformal supergravity multiplet
and its field strength Wαð3Þ is the linearized super-Weyl
tensor [44,45]. We will refer to Wαð2sþ1Þ for s > 1 as the
linearized superspin-ðsþ 1

2
Þ Weyl tensor, or simply as a

higher-spin super-Weyl tensor.
With the exception of the gauge transformation law (3.1),

the above results are also valid in the s ¼ 0 case corre-
sponding to the massless vector multiplet. As is well
known, its prepotential H is defined modulo the gauge
transformations [46,47]

δχH ¼ χ þ χ̄; ∇̄ _βχ ¼ 0; ð3:6Þ

with the chiral scalar χ being primary and dimensionless.
Unlike the s ≥ 1 case considered above, the vector multi-
plet field strength Wα ¼ − 1

4
∇̄2∇αH is gauge invariant,

δχWα ¼ 0, for an arbitrary supergravity background.

A. U(1) duality-invariant models

It is important to note that the field strength (3.3) obeys
the Bianchi identity4 [48]

∇β1 ð _α1…∇βs
_αsÞ∇βsþ1WαðsÞβðsþ1Þ

¼ −∇ðα1
_β1…∇αsÞ

_βs∇̄_βsþ1W̄ _αðsÞ _βðsþ1Þ: ð3:7Þ

Moreover, the real superfield

BαðsÞ _αðsÞ ≔ ∇β1 ð _α1…∇βs
_αsÞ∇βsþ1WαðsÞβðsþ1Þ ð3:8Þ

proves to be primary,

KBBαðsÞ _αðsÞ ¼ 0; DBαðsÞ _αðsÞ ¼ ð2þ sÞBαðsÞ _αðsÞ; ð3:9Þ

and may be called the linearized superspin-ðsþ 1
2
Þ Bach

tensor. For s > 1 BαðsÞ _αðsÞ is also referred to as a higher-spin
super-Bach tensor.
We assume that SðsÞ½W; W̄� is consistently defined as a

functional of a general chiral superfield Wαð2sþ1Þ and its
conjugate. This allows us to introduce the symmetric
spinor

iMαð2sþ1Þ ≔ 2
δSðsÞ½W; W̄�
δWαð2sþ1Þ ; ð3:10Þ

where the variational derivative is defined by

δSðsÞ½W; W̄� ¼
Z

d4x d2θ E δWαð2sþ1Þ δS
ðsÞ½W; W̄�

δWαð2sþ1Þ þ c:c:

ð3:11Þ

and E is the chiral integration measure. It follows that
Mαð2sþ1Þ is a primary chiral superfield,

KBMαð2sþ1Þ ¼ 0; ∇̄_βMαð2sþ1Þ ¼ 0;

DMαð2sþ1Þ ¼
3

2
Mαð2sþ1Þ: ð3:12Þ

Varying the action with respect to the prepotential HαðsÞ _αðsÞ
yields the equation of motion

∇β1 ð _α1…∇βs
_αsÞ∇βsþ1MαðsÞβðsþ1Þ

¼ −∇ðα1
_β1…∇αsÞ

_βs∇̄ _βsþ1M̄ _αðsÞ_βðsþ1Þ: ð3:13Þ

Here the real superfield ∇β1 ð _α1…∇βs
_αsÞ∇βsþ1MαðsÞβðsþ1Þ

proves to be primary.
The analysis above indicates that the functional form

of (3.13) coincides with that of (3.7). It then follows that the

4This differs from the Bianchi identity for the nonlinear super-
Weyl tensor (B3b) on historical grounds.
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system of equations (3.7) and (3.13) is invariant under the
U(1) duality rotations:

δλWαð2sþ1Þ ¼ λMαð2sþ1Þ; δλMαð2sþ1Þ ¼ −λWαð2sþ1Þ;

ð3:14Þ

where λ is a constant, real parameter. One may then obtain
two equivalent expressions for the variation of SðsÞ½W; W̄�
with respect to (3.14)

δλSðsÞ½W; W̄� ¼ iλ
4

Z
d4x d2θ EfW2 −M2g þ c:c:

¼ −
iλ
2

Z
d4x d2θEM2 þ c:c:; ð3:15Þ

as a generalization of similar derivations in nonlinear
N ¼ 1 supersymmetric electrodynamics [9–11].5 This
implies the self-duality equation

Im
Z

d4x d2θEfWαð2sþ1ÞWαð2sþ1Þ

þMαð2sþ1ÞWαð2sþ1Þg ¼ 0; ð3:16Þ

which must hold for a general chiral superfield Wαð2sþ1Þ
and its conjugate. Every solution SðsÞ½W; W̄� of the
self-duality equation describes a U(1) duality-invariant
theory. In the s ¼ 0 case, Eq. (3.16) was originally derived
in [9] in Minkowski superspace and extended to super-
gravity in [11]. The simplest solution of the self-duality
equation (3.16) is the freeN ¼ 1 SCHS model (E5), which
was introduced in [43] for the cases of Minkowski and
anti–de Sitter (AdS) backgrounds and later was generalized
to arbitrary conformally flat backgrounds in [35].
The above results allow one to prove, in complete

analogy with the nonsupersymmetric analysis conducted
in Sec. II B, that the U(1) duality-invariant theories are self-
dual under Legendre transformations.

B. Auxiliary variable formulation

As a generalization of the auxiliary variable formalism
sketched in Sec. II C, here we will develop a reformulation
of the U(1) duality-invariant systems introduced in the
previous subsection. In the s ¼ 0 case, it will reduce to
the auxiliary superfield approach for U(1) duality-invariant
supersymmetric electrodynamics introduced in [26,27].

Consider the action functional

SðsÞ½W; W̄; η; η̄� ¼ ð−1Þs
Z

d4xd2θE
�
ηW −

1

2
η2 −

1

4
W2

�

þ c:c:þ SðsÞ
int ½η; η̄�: ð3:17Þ

Here we have introduced the new dimension-3=2 multiplet
ηαð2sþ1Þ, which is required to be primary and covariantly
chiral,

KBηαð2sþ1Þ ¼0; ∇̄ _αηαð2sþ1Þ ¼0; Dηαð2sþ1Þ ¼
3

2
ηαð2sþ1Þ:

ð3:18Þ

By definition, the functional SðsÞ
int ½η; η̄�, contains cubic and

higher powers of ηαð2sþ1Þ and its conjugate.
The equation of motion for ηαð2sþ1Þ is

ηαð2sþ1Þ ¼ Wαð2sþ1Þ þ ð−1Þs δS
ðsÞ
int ½η; η̄�

δηαð2sþ1Þ : ð3:19Þ

Employing perturbation theory, Eq. (3.19) allows one to
express ηαð2sþ1Þ as a functional of Wαð2sþ1Þ and its con-
jugate. This means that (3.17) is dual to a SCHS theory
with action

SðsÞ½W; W̄� ¼ ð−1Þs
4

Z
d4x d2θEW2 þ c:c:þ SðsÞint ½W; W̄�:

ð3:20Þ

Thus, (3.17) and (3.20) provide two equivalent realizations
of the same model.
The power of this formulation is most evident when the

self duality equation (3.16) is applied. A routine compu-
tation reveals that this constraint is equivalent to

Im
Z

d4xd2θEηαð2sþ1Þ δS
ðsÞ
int ½η; η̄�

δηαð2sþ1Þ ¼ 0: ð3:21Þ

Thus, self-duality of the action (3.17) is equivalent to the

requirement that SðsÞ
int ½η; η̄� is invariant under rigid U(1)

phase transformations

SðsÞ
int ½eiφη; e−iφη̄� ¼ SðsÞ

int ½η; η̄�; φ ∈ R: ð3:22Þ

Within the superconformal approach to supergravity-
matter dynamical systems [39], every theory of Einstein
supergravity coupled to supersymmetric matter is realized
as a coupling of the same matter multiplets to conformal
supergravity and a superconformal compensator, see,
e.g., [49]. Truly superconformal theories are independent
of any compensator. Different off-shell formulations for

5In Eq. (3.15) and the remainder of this section we make
use of the notational shorthand W2 ¼ Wαð2sþ1ÞWαð2sþ1Þ and
W̄2 ¼ W̄ _αð2sþ1ÞW̄ _αð2sþ1Þ.
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Einstein supergravity correspond to different choices of the
compensating multiplet. The most famous compensators
are (i) a chiral compensator S0 of the old minimal super-
gravity and (ii) a real linear compensator L ¼ L̄ of the new
minimal supergravity. Both S0 and L are required to be
nowhere vanishing, such that ðS0Þ−1 and L−1 exist, and they
satisfy the following superconformal properties:

KBS0 ¼ 0; ∇̄ _αS0 ¼ 0; DS0 ¼ S0; ð3:23aÞ

KBL ¼ 0; ∇̄2L ¼ 0 ⇒ DL ¼ 2L: ð3:23bÞ

If we allow the action (3.20) to depend on a super-
conformal compensator, either S0 or L, we can generate
families of U(1) duality-invariant theories which satisfy
the condition (3.22). For simplicity, unless otherwise
stated, here we will restrict our attention to the following
interaction:

SðsÞ
int ½η; η̄;ϒ� ¼ 1

2ð2sþ 2Þ!
Z

d4xd2θd2θ̄E
η2sþ2η̄2sþ2

ϒ3sþ2

×FðsÞðv; v̄Þ; ð3:24aÞ

where

v ≔
1

8
∇2½η2ϒ−2�; ð3:24bÞ

and the compensator ϒ has one of the two realizations:
either ϒ ¼ S0S̄0 or ϒ ¼ L. Applying (3.22), we find that
our model is U(1) duality invariant provided

FðsÞðv; v̄Þ ¼ FðsÞðvv̄Þ: ð3:24cÞ

C. Superconformal U(1) duality-invariant model

The U(1) duality-invariant model (3.24) is superconfor-
mal if the action is independent of ϒ. This uniquely
fixes the functional form of Fðvv̄Þ modulo a single real
parameter

FðsÞ
SCðvv̄Þ ¼

κ

ðvv̄Þ14ð3sþ2Þ ; κ ∈ R: ð3:25Þ

Employing (3.19), we arrive at

Wαð2sþ1Þ ¼ ηαð2sþ1Þ

�
1þ ð−1Þsκ

8ð2sþ 2Þ! ∇̄
2

×

�
ð2sþ 2Þ η

2sη̄2sþ2

ϒ3sþ2
FðsÞ

SC

þ η̄2sþ2

4ϒ3sþ2
∇2ðη2sþ2∂vF

ðsÞ
SCÞ

��
; ð3:26Þ

which, along with its conjugate, allows us to integrate out
the auxiliary variables present in (3.17). The final result for
s ¼ 0 is the model for superconformal U(1) duality-
invariant electrodynamics introduced in [28,31]

Sð0Þ½W; W̄� ¼ 1

4
cosh γ

Z
d4xd2θEW2 þ c:c:

þ 1

4
sinh γ

Z
d4xd2θd2θ̄E

W2W̄2

ϒ2
ffiffiffiffiffiffi
uū

p ; ð3:27Þ

where γ is a real coupling constant. For s > 0 the resulting
model is

Sðs>0Þ½W; W̄�

¼ ð−1Þs
4

Z
d4xd2θEW2 þ c:c:

þ κ

2ð2sþ 2Þ!
Z

d4xd2θd2θ̄E
ðW2W̄2Þsþ1

ϒ3sþ2ðuūÞ14ð3sþ2Þ : ð3:28Þ

In both cases we have made use of the shorthand

u ¼ 1

8
∇2

�
W2

ϒ2

�
: ð3:29Þ

We note that (3.28) is invariant under the following
rescaling of the conformal compensator:

ϒ0 ¼ e2σϒ; ð3:30Þ

which implies that the dependence of (3.28) on ϒ is purely
superficial. Consequently, the action is superconformal.
It is important to note that, at the component level, the

purely bosonic sector of the interaction (the κ-term) present
in (3.28) identically vanishes.6 Thus, these actions describe
different duality-invariant models than those presented in
Sec. II D. However, one may construct a supersymmetric
duality-invariant model that contains, for instance, the
bosonic theory (2.37) at the component level.
Consider the following supersymmetric duality-invariant

model:

SðsÞ½W; W̄; η; η̄;ϒ�

¼ ð−1Þs
Z

d4xd2θE
�
ηW −

1

2
η2 −

1

4
W2

�
þ c:c:

þ β

8

Z
d4xd2θd2θ̄E

η2η̄2

ϒ2
ffiffiffiffiffiffi
vv̄

p : ð3:31Þ

6The numerator in the κ-term in (3.28) contains a product of
4ðsþ 1Þ fermionic superfields. Since the component reduction of
this term is computed according to the rule (3.33b), it is clear we
do not have enough spinor derivatives to convert all the fermionic
superfields into bosonic ones for s > 0.
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It does not enjoy invariance under (3.30) and thus (3.31) is
not superconformal. However, we are going to demonstrate
below that, at the component level, this model contains
certain conformal duality-invariant actions. For this we
restrict our attention to the bosonic sector of (3.31). The
bosonic field strengths contained in Wαð2sþ1Þ are

Cαð2sþ2Þ ¼
ffiffiffi
2

p
i

4
∇ðα1Wα2…α2sþ2Þjθ¼0;

Cαð2sÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

sþ 1

r
∇βWβαð2sÞjθ¼0: ð3:32aÞ

The bosonic component fields of ηαð2sþ1Þ are

ραð2sþ2Þ ¼
ffiffiffi
2

p
i

4
∇ðα1ηα2…α2sþ2Þjθ¼0;

ραð2sÞ ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

sþ 1

r
∇βηβαð2sÞjθ¼0: ð3:32bÞ

Action (3.31) can be reduced to components using the
standard reduction rules

Z
d4xd2θELc ¼ −

1

4

Z
d4xe∇2Lcjθ¼0; ∇̄ _αLc ¼ 0;

ð3:33aÞ
Z

d4xd2θd2θ̄EL ¼ 1

16

Z
d4xe∇2∇̄2Ljθ¼0: ð3:33bÞ

Since we are interested only in the bosonic sector, it suffices
to approximate

vjθ¼0 ≈
2

ðϒjÞ2 fρ
αð2sþ2Þραð2sþ2Þ − ραð2sÞραð2sÞg;

ϒj≡ϒjθ¼0: ð3:34Þ

Further, it may be checked that the interaction (the β-term)
in (3.31) does not contain contributions which are (i) linear
in ραð2sÞ and its conjugate and (ii) linear in ραð2sþ2Þ and its
conjugate. Therefore, if we switch off the spin-s field,

Cαð2sÞ ¼ 0; ð3:35Þ

then

ραð2sÞ ¼ 0 ð3:36Þ

is a solution of the corresponding equation of motion.
Under the conditions (3.35) and (3.36), the resulting
bosonic action proves to coincide with Sðsþ1Þ½C; C̄; ρ; ρ̄�
obtained from (D1) by replacing s with sþ 1. We empha-
size that the compensator ϒ does not contribute to this

action, and therefore Sðsþ1Þ½C; C̄; ρ; ρ̄� is locally conformal.7

Instead of considering the branch (3.35), we may switch
off the spin-(sþ 1) field, Cαð2sþ2Þ ¼ 0. Then it follows
that ραð2sþ2Þ ¼ 0 is a solution of the corresponding equation
of motion, and the resulting bosonic action proves to
coincide with the conformal duality-invariant action
SðsÞ½C; C̄; ρ; ρ̄�, Eq. (D1).
To conclude this section, we derive a supersymmetric

extension of the cubic interaction present in (2.40). For this
purpose, we will fix s ¼ 1 in (3.17). The relevant inter-
action is constructed in terms of the two scalar primary
descendants of ηαð3Þ:

Ξ ¼ iηαð2Þβηαð2Þβ∇ðα1ηα2α3α4Þ; w ¼ 4∇2

�
Ξ
ϒ3

�
; ð3:37Þ

and the conformal compensator ϒ. Using these, we con-
struct the following action:

Sð1Þ½W; W̄; η; η̄;ϒ� ¼ −
Z

d4xd2θE
�
ηW −

1

2
η2 −

1

4
W2

�

þ c:c:

þ 32κ

Z
d4xd2θd2θ̄E

ΞΞ̄
ϒ4ðww̄Þ23 :

ð3:38Þ
We note that it is not superconformal as it lacks invariance
under (3.30), though we will show that, at the component
level, it contains the cubic interaction present in (2.40). To
demonstrate this, we restrict our attention to the bosonic
sector of (3.38), which allows us to approximate

wjθ¼0 ≈ −
ffiffiffi
2

p

4ðϒjÞ3
�
ραð2Þβð2Þρβð2Þγð2Þργð2Þαð2Þ

−
9

32
ραð2Þραð2Þραð4Þ

�
: ð3:39Þ

It follows then that the interaction (the κ-term) present in
(3.38) contains no terms linear in ραð2Þ and its conjugate.
Hence, if we switch off the spin-1 field, Cαð2Þ ¼ 0, then
ραð2Þ ¼ 0 solves the corresponding equation of motion.
Under these conditions, the resulting bosonic action takes
the form

Sð2Þ½C; C̄; ρ; ρ̄� ¼
Z

d4xe
�
2ρC − ρ2 −

1

2
C2
�
þ c:c:

þ κ

Z
d4xeðρ3ρ̄3Þ13: ð3:40Þ

7As demonstrated in Appendix D, the action (D1) leads
to (2.37) upon eliminating the auxiliary field ραð2sÞ and its
conjugate.
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In particular, we note that it is locally conformal as it is
independent of the compensator. Thus, (3.38) is a super-
symmetric extension of the cubic interaction of (2.40). In
closing, we emphasize that if one instead attempts to
consider the branch Cαð4Þ ¼ 0 and Cαð2Þ ≠ 0, it is not legal
to set ραð4Þ ¼ 0. Such a choice would imply wjθ¼0 ≈ 0,
making the corresponding component action of (3.38)
undefined.

IV. N = 2 DUALITY-INVARIANT SCHS MODELS

This section is devoted to a brief study of duality-
invariant models for N ¼ 2 conformal superspin-(sþ 1)
gauge multiplets, with s ≥ 0, in conformally flat back-
grounds.8 Our approach will generalize the general theory
of U(1) duality-invariant models for N ¼ 2 supersymmet-
ric nonlinear electrodynamics (superspin-0) developed in
[9,10,13,26]. The essential information about N ¼ 2 con-
formal superspace, which is used throughout this section, is
collected in Appendix C.
We start with a review of SCHS gauge multiplets [52].

Given a non-negative integer s, the conformal superspin-
(sþ 1) gauge multiplet is described by a real unconstrained
prepotential HαðsÞ _αðsÞ, which is a primary superfield,
KBHαðsÞ _αðsÞ ¼ 0, defined modulo gauge transformations
of the form

s > 0∶ δζHαðsÞ _αðsÞ ¼ ∇i
ðα1 ζ̄α2…αsÞ _αðsÞi þ ∇̄i

ð _α1ζαðsÞ _α2… _αsÞi;

ð4:1aÞ

s ¼ 0∶ δζH ¼ ∇ijζ̄ij þ ∇̄ijζij; ð4:1bÞ

with the gauge parameters ζαðsÞ _αðs−1Þi and ζij being primary
and complex unconstrained. Here we have defined the
second-order operators

∇̄ij ≔ ∇̄ði
_α ∇̄ _αjÞ; ∇ij ≔ ∇αði∇̄jÞ

α : ð4:2Þ

The gauge transformation laws (4.1) are superconformal
provided

DHαðsÞ _αðsÞ ¼ −ðsþ 2ÞHαðsÞ _αðsÞ: ð4:3Þ

Associated with the gauge prepotential HαðsÞ _αðsÞ is the
chiral descendant [52]

Wαð2sþ2Þ ¼ ∇̄4∇ðα1
_β1…∇αs

_βs∇αsþ1αsþ2
Hαsþ3…α2sþ2Þ_βðsÞ;

∇̄_β
jWαð2sþ2Þ ¼ 0; ð4:4Þ

where we have introduced the chiral projection operator

∇̄4 ≔
1

48
∇̄ij∇̄ij ð4:5Þ

and the second-order operators

∇αβ ≔ ∇k
ðα∇βÞk; ∇̄ _α _β ≔ ∇̄ð _α

k ∇̄_βÞk: ð4:6Þ

It can be shown that Wαð2sþ2Þ is primary in an arbitrary
supergravity background,

KBWαð2sþ2Þ ¼ 0; DWαð2sþ2Þ ¼ Wαð2sþ2Þ: ð4:7Þ

However, the gauge transformations (4.1) leave Wαð2sþ2Þ
invariant, δζWαð2sþ2Þ ¼ 0, only if the background curved
superspace is conformally flat,

Wαð2Þ ¼ 0 ⇒ δζWαð2sþ2Þ ¼ 0; ð4:8Þ

where Wαð2Þ is the background super-Weyl tensor, see
Appendix C. Throughout this section, we will restrict
ourselves to such a geometry.
We should point out that the gauge prepotential H

describes the linearized N ¼ 2 conformal supergravity
multiplet, and its field strength Wαð2Þ is the linearized
super-Weyl tensor. For s > 0 we will refer to the fields
strengths Wαð2sþ2Þ as the linearized higher-spin super-
Weyl tensors.
The chiral field strength defined by (4.4) carries at

least two spinor indices. A chiral scalar field strength
W corresponds to the massless N ¼ 2 vector multiplet
[53]. It can be described in terms of the curved superspace
analogue of Mezincescu’s prepotential [54] (see also [55]),
Vij ¼ Vji, which is an unconstrained real SU(2) triplet,
Vij ¼ Vij ¼ εikεjlVkl. The expression for W in terms of
Vij was found in [56] to be

W ¼ 1

4
∇̄4∇ijVij; ∇̄_β

jW ¼ 0; Vij ¼ Vji: ð4:9Þ

The field strength W defines a primary reduced chiral
superfield of dimension þ1,

∇ijW ¼ ∇̄ijW̄; DW ¼ W; KAW ¼ 0; ð4:10Þ

and is invariant under gauge transformations of the
form [57]

δζVij ¼ ∇α
kζα

kij þ ∇̄ _αkζ̄
_αkij; ζα

kij ¼ ζα
ðkijÞ; ð4:11Þ

with ζα
kij being primary and unconstrained modulo the

algebraic condition given. In the flat-superspace limit, the
gauge transformation law (4.11) reduces to that given in
[54,55]. It is important to emphasize that W is invariant

8See, e.g., [50,51] for the notions of N ¼ 2 superspin and
superisospin. For all superconformal multiplets considered in this
section, their superisospin is equal to zero.
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under the gauge transformations (4.11) in an arbitrary
supergravity background.
The formalism we introduce below for nonlinear

SCHS models generalizes the existing framework for
U(1) duality-invariant theories of the vector multiplet.
The latter have been studied extensively in [9,10,26,28],
thus we omit this special case from our considerations.

A. U(1) duality-invariant models

We consider a dynamical system describing the propa-
gation of the superconformal gauge multiplet HαðsÞ _αðsÞ,
s ≥ 0, in a conformally flat superspace. We require its
action functional to take the form SðsÞ½W;W̄�, where the
gauge-invariant chiral field strength Wαð2sþ2Þ is given
by Eq. (4.4).
It is important to note that the field strength (4.4) obeys

the Bianchi identity

∇β1 ð _α1…∇βs
_αsÞ∇βsþ1βsþ2WαðsÞβðsþ2Þ

¼ ∇ðα1
_β1…∇αsÞ

_βs∇̄_βsþ1
_βsþ2W̄ _αðsÞ _βðsþ2Þ: ð4:12Þ

We then assume that SðsÞ½W;W̄� can be defined as a
functional of a general chiral superfield Wαð2sþ2Þ and its
conjugate. This allows us to introduce the symmetric spinor

iMαð2sþ2Þ ≔ 2
δSðsÞ½W;W̄�
δWαð2sþ2Þ ; ð4:13Þ

which defines an arbitrary variation of the action

δSðsÞ½W;W̄� ¼
Z

d4xd2θEδWαð2sþ2Þ δS
ðsÞ½W;W̄�
δWαð2sþ2Þ þ c:c:;

ð4:14Þ

where E is the N ¼ 2 chiral integration measure.9

It follows that Mαð2sþ2Þ is a primary chiral superfield,

KBMαð2sþ2Þ ¼ 0; ∇̄_β
jMαð2sþ2Þ ¼ 0;

DMαð2sþ2Þ ¼ Mαð2sþ2Þ: ð4:15Þ

Varying the action with respect to the prepotential HαðsÞ _αðsÞ
yields the equation of motion

∇β1 ð _α1…∇βs
_αsÞ∇βsþ1βsþ2MαðsÞβðsþ2Þ

¼ ∇ðα1
_β1…∇αsÞ

_βs∇̄_βsþ1
_βsþ2M̄ _αðsÞ_βðsþ2Þ: ð4:16Þ

This analysis above indicates that the functional form of
(4.16) coincides with that of (4.12). As a result, the system

of Eqs. (4.12) and (4.16) is invariant under U(1) duality
rotations:

δλWαð2sþ2Þ ¼ λMαð2sþ2Þ; δλMαð2sþ2Þ ¼ −λWαð2sþ2Þ;

ð4:17Þ

where λ is a constant, real parameter. One may then obtain
two equivalent expressions for the variation of SðsÞ½W;W̄�
with respect to (4.17)

δλSðsÞ½W;W̄� ¼ iλ
4

Z
d4xd4θEfW2 −M2g þ c:c:

¼ −
iλ
2

Z
d4xd4θEM2 þ c:c:; ð4:18Þ

as a generalization of similar derivations in nonlinear
N ¼ 2 supersymmetric electrodynamics [9,10,13]. This
implies the self-duality equation

Im
Z

d4xd4θEfWαð2sþ2ÞWαð2sþ2Þ

þMαð2sþ2ÞMαð2sþ2Þg ¼ 0; ð4:19Þ

which must hold for a general chiral superfield Wαð2sþ2Þ
and its conjugate. Every solution SðsÞ½W;W̄� of the self-
duality equation describes a U(1) duality-invariant theory.
Equation (4.19) allows one to prove, in complete analogy
with the nonsupersymmetric analysis conducted in
Sec. II B, that the U(1) duality-invariant theories are
self-dual under Legendre transformations. The simplest
solution of the self-duality equation (4.19) is the free
N ¼ 2 SCHS model (E8) proposed in [52], including
the action for linearized conformal supergravity (s ¼ 0).

B. Auxiliary variable formulation

This subsection is aimed at generalizing the auxiliary
variable formalism employed in Sec. III B to construct self-
dual N ¼ 1 SCHS models to an N ¼ 2 setting.10 To this
end, we consider the action functional

SðsÞ½W;W̄;η; η̄� ¼ ð−1Þs
Z

d4xd4θE

�
ηW−

1

2
η2−

1

4
W2

�

þ c:c:þSðsÞ
int ½η; η̄�; ð4:20Þ

where we have introduced the auxiliary dimension-1
multiplet ηαð2sþ2Þ, which is primary and covariantly chiral,

9The chiral and full superspace integrals are related to each
according to Eq. (C9).

10Such a setup was recently utilized in [28] to constructN ¼ 2
superconformal duality-invariant models for an Abelian vector
multiplet in a conformal supergravity background.
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KBηαð2sþ2Þ ¼ 0; ∇̄_β
jηαð2sþ2Þ ¼ 0; Dηαð2sþ2Þ ¼ ηαð2sþ2Þ:

ð4:21Þ

By construction, the self-interaction SðsÞ
int ½η; η̄� contains

cubic and higher powers of ηαð2sþ2Þ and its conjugate.
Varying (4.20) with respect to this superfield yields

ηαð2sþ2Þ ¼ Wαð2sþ2Þ þ ð−1Þs δS
ðsÞ
int ½η; η̄�

δηαð2sþ2Þ : ð4:22Þ

Employing perturbation theory, Eq. (4.22) allows one to
express ηαð2sþ2Þ as a functional of Wαð2sþ1Þ and its
conjugate. This means that (4.20) is equivalent to a
SCHS theory with action

SðsÞ½W;W̄� ¼ ð−1Þs
4

Z
d4xd4θEW2 þ c:c:þ SðsÞint ½W;W̄�:

ð4:23Þ

Thus, (4.20) and (4.23) provide two equivalent realizations
of the same model.
We now analyze the self duality equation (4.19). It is

easily verified that this constraint is equivalent to

Im
Z

d4xd4θEηαð2sþ2Þ δS
ðsÞ
int ½η; η̄�

δηαð2sþ2Þ ¼ 0: ð4:24Þ

Thus, the U(1) duality invariance of the model (4.20) is

equivalent to the requirement that SðsÞ
int ½η; η̄� is invariant

under rigid U(1) phase transformations

SðsÞ
int ½eiφη; e−iφη̄� ¼ SðsÞ

int ½η; η̄�; φ ∈ R: ð4:25Þ

If we allow the action (4.20) to depend on a super-
conformal compensator, it is trivial to construct interactions
satisfying the condition (4.25), for instance

SðsÞ
int ½η; η̄;W0;W̄0�

¼
Z

d4xd4θd4θ̄EF

�
ηαð2sþ2Þηαð2sþ2Þη̄ _αð2sþ2Þη̄ _αð2sþ2Þ

ðW0W̄0Þ2
�
:

ð4:26Þ

Here FðxÞ is a real analytic function of a real variable, and
W0 is the chiral field strength of a compensating vector
multiplet.
It is not difficult to construct explicit examples ofN ¼ 2

superconformal and U(1) duality-invariant higher-spin
theories, as a generalization of the N ¼ 2 vector multiplet
models presented in [28]. For simplicity, here we restrict
our attention to N ¼ 2 Minkowski superspace. Let us
consider the self-interaction

SðsÞ
int ½η; η̄� ¼ c

Z
d4xd4θd4θ̄ ln η2 ln η̄2; ð4:27Þ

with c a coupling constant. It is clearly invariant under rigid
U(1) phase transformations, Eq. (4.25), and therefore it
generates a U(1) duality-invariant model. It is also N ¼ 2
superconformal, which may be checked using the proper-
ties ofN ¼ 2 superconformal transformations [58,59]. The
above functional is well defined provided the auxiliary
variables ηαð2sþ2Þ are chosen to belong to the open domain

η2 ≔ ηαð2sþ2Þηαð2sþ2Þ ≠ 0. A similar condition should be
imposed in the case of nonsupersymmetric model (2.41).

C. On N = 2 super ModMax theory

So far, an N ¼ 2 superconformal extension of the
ModMax theory has not been constructed. Perhaps it does
not exist (see the discussion in [28]), the main reason
being the fact that the full N ¼ 2 superspace measure is
dimensionless. However, if the action functional is allowed
to depend on compensators, an N ¼ 2 supersymmetric
extension of the ModMax theory can be introduced.
Specifically, let us consider the following N ¼ 2 vector
multiplet model11:

S½W;W̄;η; η̄;W0;W̄0�

¼ 1

2

Z
d4xd4θE

�
ηW−

1

2
η2−

1

4
W2

�
þ c:c:

þSint½η; η̄;W0;W̄0�
Sint½η; η̄;W0;W̄0�

¼ κ

Z
d4xd4θd4θ̄E

η2η̄2

W0W̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇4½ η

W0
�2∇̄4½ η̄

W̄0
�2

q ; ð4:28Þ

where κ ∈ R is the coupling constant. We are going to
show that this model incorporates N ¼ 1 superconformal
ModMax theory, Eq. (3.27), in the sense described below.
The field strength W of the N ¼ 2 vector multiplet

contains two independentN ¼ 1 chiral components,Φ and
Wα, defined by

Wjθ2¼0 ¼
ffiffiffi
2

p
Φ;

∇2
αWjθ2¼0 ¼ 2iWα ⇒ ð∇2Þ2Wjθ2¼0 ¼

ffiffiffi
2

p ∇̄2Φ̄: ð4:29Þ

Here Wα is the chiral field strength of the N ¼ 1 vector
multiplet, ∇αWα ¼ ∇̄ _αW̄ _α. The auxiliary N ¼ 2 chiral
superfield η contains three independent N ¼ 1 chiral
components, χ, ηα and Ψ, defined by

11Our normalization of the quadratic part of the vector
multiplet action follows [28].
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ηjθ2¼0 ¼
ffiffiffi
2

p
χ; ∇2

αηjθ2¼0 ¼ 2iηα; −
1

4
ð∇2Þ2ηjθ2¼0 ¼ Ψ:

ð4:30Þ

Using the standard N ¼ 2 → N ¼ 1 reduction rules

Z
d4xd4θELc ¼ −

1

4

Z
d4xd2θEð∇2Þ2Lcjθ2¼0;

∇̄ _α
iLc ¼ 0;Z

d4xd4θd4θ̄EL ¼ 1

16

Z
d4xd2θd2θ̄Eð∇2Þ2ð∇̄2Þ2Ljθ2¼0;

ð4:31Þ

we may reduce the action (4.28) to N ¼ 1 superspace.
Here we restrict our attention to theN ¼ 1 vector multiplet
and switch off the N ¼ 1 scalar multiplet, Φ ¼ 0. Then it
may be shown that setting χ ¼ 0 andΨ ¼ 0 gives a solution
of the equations of motion for these auxiliary superfields.12

The resulting N ¼ 1 superspace action is

S½W; W̄; η; η̄� ¼
Z

d4xd2θE
�
ηW −

1

2
η2 −

1

4
W2

�
þ c:c:

þ κ

Z
d4xd2θd2θ̄E

η2η̄2

ϒ2
ffiffiffiffiffiffi
vv̄

p : ð4:32Þ

Here v is defined as in (3.24b), and we utilize the realization
ϒ¼S0S̄0 for the compensator, with W̄0j¼S0. The action
(4.32) was proposed in [28] to describe N ¼ 1 super-
conformal U(1) duality-invariant electrodynamics. Upon
eliminating the auxiliary chiral spinor ηα and its conjugate,
this model was shown in [28] to reduce to N ¼ 1 super-
conformal ModMax theory, Eq. (3.27), introduced in [31].

V. CONCLUSION

In this paper we have generalized the general theory
of U(1) duality-invariant nonlinear electrodynamics [3–8]
and its N ¼ 1 and N ¼ 2 supersymmetric extensions
[9–13,26,27] to the cases of bosonic conformal spin-s
gauge fields, s ≥ 2, and their N ¼ 1 and N ¼ 2 super-
conformal cousins. These self-dual higher-spin theories
share several important features of duality-invariant
electrodynamics, such as self-duality under Legendre trans-
formations. The crucial difference between the U(1)
duality-invariant models for electrodynamics and their
higher-spin counterparts is that the former are consistently
defined on arbitrary gravitational backgrounds, while the
latter are formulated in a conformally flat space.
In the nonsupersymmetric case, we presented several

families of self-dual models. The simplest of these is (2.37),

which is a higher-spin generalization of ModMax electro-
dynamics [29]. We also introduced a two-parameter
family of models for the conformal graviton (2.40) and
provided insights on the construction of new families of
multiparameter duality invariant models for conformal
higher-spin fields. Finally, in the supersymmetric case,
we generalized the construction of N ¼ 1 superconformal
duality invariant electrodynamics [28,31] to higher spins
(3.28). A distinguishing feature of this family of models is
that, at the component level, their purely bosonic sectors
vanish, which may be verified via a component reduction.
It should be emphasized that the literature on duality is

huge and, unfortunately, it is not possible to mention all
publications here. In this paper we were interested in duality
as a continuous symmetry of the equations of motion. There
exists a different approach to duality as a manifest symmetry
of the action. The latter was advocated in [60–66]. Another
important approach was inspired by early examples of dual
field theories [67–73] and resulted in various dual formu-
lations for massless, massive and partially massless higher-
spin field theories, see [74–80] and references therein. This
approach corresponds to discrete dualities.
There may be several generalizations of our results that are

modeled on similar properties of duality-invariant theories of
spin-1 gauge fields, see [81] for a review. In particular, we
recall that, given a U(1) duality-invariant model for nonlinear
electrodynamics, its compact duality group U(1) can be
enhanced to the noncompact SLð2;RÞ group by coupling
the electromagnetic field to thedilatonand axion [3–5]. Itmay
be shown that this construction naturally extends to the
higher-spin case. We should point out that a generalization
of the method of [6–8] to the case of SLð2;RÞ duality was
given by Ivanov, Lechtenfeld and Zupnik [82].
Fundamental to our analysis in this paper has been the

formalism of conformal (super) space, which trivializes
calculations in backgrounds with vanishing (super) Weyl
tensor. For the purpose of applications, however, it is often
useful to work with Lorentz covariant derivatives as opposed
to their conformally covariant counterparts. The process of
translating results expressed in terms of the latter to the
former is known as degauging. The general prescription
for such an analysis is well known (see e.g. [35,83,84]),
however such calculations are often highly nontrivial on
generic curved backgrounds. If the background geometry is
restricted by turning off several components of the curvature,
the resulting computations are greatly simplified. To this
end, we now provide a dictionary to translate our main
results to the AdS (super)space.13

We begin with the nonsupersymmetric story. The geom-
etry of AdS4 is encoded within the Lorentz covariant
derivatives Da, which obey the algebra

12This follows from the fact that the N ¼ 1 superspace
reduction of (4.28) does not have terms linear in χ, Ψ and their
conjugates provided Φ ¼ 0.

13The conformal flatness of N -extended AdS superspace in
four dimensions was established in [85] and further elaborated
in [86].
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½Dα _α;Dβ _β� ¼ −2μμ̄ðε _α _βMαβ þ εαβM̄ _α _βÞ; ð5:1Þ

where μ is a nonzero complex constant with the dimension
of mass encoding the curvature of the spacetime and μμ̄ is
proportional to the scalar curvature. It may be shown that in
this geometry, Eq. (2.1) takes the form

Cαð2sÞ ¼ Dðα1
_β1…Dαs

_βshαsþ1…α2sÞ_βðsÞ: ð5:2Þ

Further, Cαð2sÞ satisfies the Bianchi identity (2.6)

Dβ1 ð _α1…Dβs
_αsÞCαðsÞβðsÞ ¼ Dðα1

_β1…DαsÞ
_βs C̄ _αðsÞ _βðsÞ: ð5:3Þ

Next, the geometry of the N ¼ 1 AdS superspace,
AdS4j4, is described by the covariant derivatives DA ¼
ðDa;Dα; D̄ _αÞ, which obey the algebra (see, e.g., [87])

fDα;Dβg ¼ −4μ̄Mαβ; fD̄ _α; D̄_βg ¼ 4μM̄ _α _β;

fDα; D̄ _αg ¼ 2iDα _α; ð5:4aÞ

½Dα;Dβ _β� ¼ iμ̄εαβD̄_β; ½D̄ _α; D̄β _β� ¼ −iμε _α _βDβ; ð5:4bÞ

where μ is a nonzero constant having the dimension of
mass. In this supergeometry the field strengths Wαð2sþ1Þ
take the form [88]

Wαð2sþ1Þ ¼−
1

4
ðD̄2−4μÞDðα1

_β1…Dαs
_βsDαsþ1

Hαsþ2…α2sþ1Þ _βðsÞ;

ð5:5Þ

and obey the Bianchi identity

iDβ1 ð _α1…Dβs
_αsÞD

βsþ1WαðsÞβðsþ1Þ

¼ −iDðα1
_β1…DαsÞ

_βsD̄_βsþ1W̄ _αðsÞ _βðsþ1Þ: ð5:6Þ

Finally, we consider AdS4j8, theN ¼ 2 AdS superspace.
Recall that its geometry is encoded within the covariant
derivatives DA ¼ ðDa;Di

α; D̄ _α
i Þ, which obey the algebra

(see [86] for the technical details):

fDi
α;D

j
βg ¼ 4SijMαβ þ 2εαβε

ijSklJkl;

fDi
α; D̄

_β
jg ¼ −2iδijDα

_β; ð5:7Þ

where Sij is a nonzero covariantly constant isotriplet,
Sji¼Sij, satisfying the integrability condition ½S; S†� ¼ 0,
with S ¼ ðSijÞ.14 Here, the field strengths Wαð2sþ2Þ take
the form

Wαð2sþ2Þ ¼
1

48
ðD̄ij þ 4S̄ijÞD̄ij

×Dðα1
_β1…Dαs

_βsDαsþ1αsþ2
Hαsþ3…α2sþ2Þ_βðsÞ;

ð5:8Þ

and satisfy the Bianchi identity

Dβ1 ð _α1…Dβs
_αsÞD

βsþ1βsþ2WαðsÞβðsþ2Þ

¼ Dðα1
_β1…DαsÞ

_βsD̄_βsþ1
_βsþ2W̄ _αðsÞ_βðsþ2Þ: ð5:9Þ

Throughout this work we have restricted our attention to
the analysis of models described by real gauge prepoten-
tials. However, our construction readily extends itself to the
complex case. In particular, one may consider a complex
CHS gauge prepotential ϕαðmÞ _αðnÞ, withm, n ≥ 1 andm ≠ n
[35,43,89]. It is a primary field, KbϕαðmÞ _αðnÞ ¼ 0, defined
modulo

δlϕαðmÞ _αðnÞ ¼ ∇ðα1ð _α1lα2…αmÞ _α2… _αnÞ; ð5:10Þ

where the gauge parameter lαðm−1Þ _αðn−1Þ is also
primary. Conformal invariance of (5.10) uniquely fixes
the dimension of the gauge field, DϕαðmÞ _αðnÞ ¼
ð2 − 1

2
ðmþ nÞÞϕαðmÞ _αðnÞ. The action functional describing

its dynamics is required to take the form Sðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C�,
where we have made the definitions

ĈαðmþnÞ ¼ ∇ðα1
_β1…∇αn

_βnϕαnþ1…αmþnÞ _βðnÞ; ð5:11aÞ

ČαðmþnÞ ¼ ∇ðα1
_β1…∇αm

_βm ϕ̄αmþ1…αmþnÞ _βðmÞ: ð5:11bÞ

The descendants introduced above are primary in generic
backgrounds,

KbĈαðmþnÞ ¼ 0; DĈαðmþnÞ ¼
�
2þ 1

2
ðn −mÞ

�
ĈαðmþnÞ;

ð5:12aÞ

KbČαðmþnÞ ¼ 0; DČαðmþnÞ ¼
�
2þ 1

2
ðm − nÞ

�
ČαðmþnÞ;

ð5:12bÞ

and gauge-invariant in all conformally flat ones,

Cαð4Þ ¼ 0 ⇒ δlĈαðmþnÞ ¼ δlČαðmþnÞ ¼ 0: ð5:13Þ

It is important to note that the field strengths (5.11) also
obey the Bianchi identity

∇β1 ð _α1…∇βm
_αmÞĈαðnÞβðmÞ ¼∇ðα1

_β1…∇αnÞ
_βn ¯̌C _αðmÞ _βðnÞ: ð5:14Þ

14The integrability condition implies that Sij can be chosen to
be real, Sij ¼ Sij ¼ εikεjlSkl. However we will not impose the
reality condition.
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Now, considering Sðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C� as a functional of the
unconstrained fields ĈαðmþnÞ, ČαðmþnÞ and their conjugates,
we may introduce the primary fields

imþnþ1M̂αðmþnÞ ≔
δSðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C�

δČαðmþnÞ ;

imþnþ1M̌αðmþnÞ ≔
δSðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C�

δĈαðmþnÞ ; ð5:15Þ

where we have made the definition

δSðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C� ¼
Z

d4x e

�
δĈαðmþnÞ δSðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C�

δĈαðmþnÞ

þ δČαðmþnÞ δSðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C�
δČαðmþnÞ

�
þ c:c:

ð5:16Þ
The conformal properties of the fields (5.15) are

KbM̂αðmþnÞ ¼ 0;

DM̂αðmþnÞ ¼
�
2þ 1

2
ðn −mÞ

�
M̂αðmþnÞ; ð5:17aÞ

KbM̌αðmþnÞ ¼ 0;

DM̌αðmþnÞ ¼
�
2þ 1

2
ðm − nÞ

�
M̌αðmþnÞ: ð5:17bÞ

Varying Sðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C� with respect to ϕαðmÞ _αðnÞ yields

∇β1 ð _α1…∇βm
_αmÞM̂αðnÞβðmÞ ¼ ∇ðα1

_β1…∇αnÞ
_βn ¯̌M _αðmÞ _βðnÞ:

ð5:18Þ

It is clear from the discussion above that the system of
Eqs. (5.14) and (5.18) is invariant under the U(1) duality
rotations

δλĈαðmþnÞ ¼ λM̂αðmþnÞ; δλČαðmþnÞ ¼ λM̌αðmþnÞ;

ð5:19aÞ

δλM̂αðmþnÞ ¼ −λĈαðmþnÞ; δλM̌αðmþnÞ ¼ −λČαðmþnÞ:

ð5:19bÞ

One may then perform similar analyses to those undertaken
in Sec. II and construct U(1) duality-invariant nonlinear
models for such fields.15 They satisfy the self-duality
equation

imþnþ1

Z
d4x efĈαðmþnÞČαðmþnÞ þ M̂αðmþnÞM̌αðmþnÞg

þ c:c: ¼ 0; ð5:20Þ

which must hold for unconstrained fields ĈαðmþnÞ and

ČαðmþnÞ. The simplest solution of this equation is the free
CHS action

Sðm;nÞ½Ĉ; Č; ¯̂C; ¯̌C� ¼ imþn

Z
d4xe ĈαðmþnÞČαðmþnÞ þ c:c:;

ð5:21Þ

which reduces to (E1) for m ¼ n ¼ s and real prepotential.
U(1) duality-invariant actions of the type considered

above naturally arise at the component level of super-
symmetric self-dual theories, such as those discussed in
Secs. III and IV. Such considerations are beyond the scope
of the current paper and present an interesting avenue
for further work. It would also be interesting to study
duality-invariant models of the higher-depth (super)fields
of [35,91].
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APPENDIX A: CONFORMAL SPACE

This appendix reviews the salient details of conformal
geometry in four dimensions [92] pertinent to this work.16

We adopt the spinor conventions of [87], which are similar
to those of [94]. We consider a curved spacetime M4

parametrized by local coordinates xm. The structure group
is chosen to be SU(2,2), whose Lie algebra is spanned by
the translationPa, LorentzMab, dilatationD and the special
conformalKa generators. The covariant derivatives∇a then
take the form

∇a ¼ eam∂m −
1

2
ωa

bcMbc − baD − fabKb; ðA1Þ

where eam is the inverse vielbein, ωa
bc the Lorentz spin

connection, ba the dilatation connection and fab the special
conformal connection. The commutation relations of ∇a

15We mention in passing that such a construction can also be
uplifted to the case of a SCHS theory described by a complex
prepotential, such as those of [35,48,90].

16See also [32] for a pedagogical review of conformal
(super)gravity and [35,83,93] for the modern formulation of
conformal geometry we use.
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with the generatorsMbc, D and Kb are obtained from those
of Pa with the same generators by replacing Pa → ∇a.
The covariant derivatives (A1) obey the commutation

relations

½∇α _α;∇β _β� ¼ −ðε _α _βCαβγδMγδ þ εαβC̄ _α _β _γ _δM̄
_γ _δÞ

−
1

4
ðε _α _β∇δ_γCαβδ

γ þ εαβ∇γ _δC̄ _α _β _δ
_γÞKγ _γ: ðA2Þ

Here Cαβγδ and C̄ _α _β _γ _δ are the self-dual and anti-self-dual
parts of the Weyl tensor Cabcd, and are primary. We remind
the reader that a field φ (with suppressed indices) is said to
be primary if it obeys

Kα _αφ ¼ 0: ðA3Þ

The commutation relations (A2) should be accompanied by
the relations

½D;∇α _α� ¼ ∇α _α;

½Kα _α;∇β _β� ¼ 4ðε _α _βMαβ þ εαβM̄ _α _β − εαβε _α _βDÞ; ðA4Þ

and we recall that the Lorentz generators act on vectors and
Weyl spinors as follows:

MabVc ¼ 2ηc½aVb�; Mαβψγ ¼ εγðαψβÞ; M̄ _α _βψ̄ _γ ¼ ε_γð _αψ̄ _βÞ:

ðA5Þ

APPENDIX B: N = 1 CONFORMAL SUPERSPACE

In this appendix we review the elements of the N ¼ 1
conformal superspace approach to off-shell conformal
supergravity relevant to this work. For more details we
refer the reader to the original paper [83] (see also
Appendix A of [48]).
Consider a curvedN ¼ 1 superspaceM4j4 parametrized

by local coordinates zM ¼ ðxm; θμ; θ̄ _μÞ. The structure group
is chosen to be SUð2; 2j1Þ. Its corresponding superalgebra
is spanned by the translation PA ¼ ðPa;Qα; Q̄ _αÞ, Lorentz
Mab, dilatationD, R-symmetry Y and the special conformal
KA ¼ ðKa; Sα; S̄ _αÞ generators. The covariant derivatives
∇A then have the form

∇A ¼ ð∇a;∇α; ∇̄ _αÞ

¼ EA
M∂M −

1

2
ΩA

bcMbc − iΦAY − BAD −FABKB;

ðB1Þ

where EA
M denotes the superspace inverse vielbein, ΩA

bc

the Lorentz connection, ΦA the Uð1ÞR connection, BA the
dilatation connection, and FAB the special superconformal
connection.

The covariant derivatives (B1) obey the algebra

f∇α;∇βg ¼ 0; f∇α; ∇̄ _αg ¼ −2i∇α _α; ðB2aÞ

½∇̄ _α;∇β _β� ¼ −iε _α _β

�
2Wβ

γδMγδ þ
1

2
∇αWαβγSγ

þ 1

2
∇α_γWαβ

γKγ _γ

�
: ðB2bÞ

HereWαβγ is theN ¼ 1 super-Weyl tensor and is subject to
the constraints:

KDWαβγ ¼ 0; ∇̄_δWαβγ ¼ 0;

DWαβγ ¼
3

2
Wαβγ; YWαβγ ¼ −Wαβγ; ðB3aÞ

as well as the Bianchi identity

Bα _α ≔ i∇β
_α∇γWαβγ ¼ i∇α

_β∇̄_γW̄ _α _β _γ ¼ B̄α _α; ðB3bÞ

where the primary superfield Bα _α is the super-Bach tensor
and was introduced in [95], see also [35,43,87].
We remind the reader that a tensor superfield Ψ (with

suppressed indices) is said to be primary and of dimension
ΔΨ and Uð1ÞR charge qΨ if the following conditions hold:

KBΨ ¼ 0; DΨ ¼ ΔΨΨ; YΨ ¼ qΨΨ: ðB4Þ

Of particular importance are primary chiral superfields,
which satisfy

KBΨ ¼ 0; ∇̄_βΨ ¼ 0: ðB5Þ

Requiring consistency of these constraints with the super-
conformal algebra yields highly nontrivial implications.
Specifically, it must take the formΨ ¼ ΨαðmÞ, and its Uð1ÞR
charge and dimension are related as follows:

qΨ ¼ −
2

3
ΔΨ: ðB6Þ

The algebra (B2) is to be accompanied by the following
(anti-)commutation relations: the Uð1ÞR, dilatation and
special conformal generators obey

½Y;∇α� ¼ ∇α; ½Y; ∇̄ _α� ¼ −∇̄ _α; ðB7aÞ

½D;∇α _α� ¼ ∇α _α; ½D;∇α� ¼
1

2
∇α; ½D; ∇̄ _α� ¼ 1

2
∇̄ _α

ðB7bÞ

½Y; Sα� ¼ −Sα; ½Y; S̄ _α� ¼ S̄ _α; fSα; S̄ _αg ¼ 2iKα _α

ðB7cÞ
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½D; Kα _α� ¼ −Kα _α; ½D; Sα� ¼ −
1

2
Sα; ½D; S̄ _α� ¼ −

1

2
S̄ _α;

ðB7dÞ

while the algebra of KA and ∇B takes the form

½Kα _α;∇β _β� ¼ 4ðε _α _βMαβ þ εαβM̄ _α _β − εαβε _α _βDÞ; ðB7eÞ

fSα;∇βg ¼ εαβð2D − 3YÞ − 4Mαβ; ðB7fÞ

fS̄ _α; ∇̄_βg ¼ −ε _α _βð2Dþ 3YÞ þ 4M̄ _α _β; ðB7gÞ

½Kα _α;∇β� ¼ −2iεαβS̄ _α; ½Kα _α; ∇̄_β� ¼ 2iε _α _βSα; ðB7hÞ

½Sα;∇β _β� ¼ 2iεαβ∇̄_β; ½S̄ _α;∇β _β� ¼ −2iε _α _β∇β; ðB7iÞ

where all other graded commutators vanish.
The chiral and full superspace integrals are related

according to the rule

Z
d4xd2θd2θ̄EU ¼ −

1

4

Z
d4xd2θE∇̄2U;

E−1 ¼ BerðEA
MÞ; ðB8Þ

where U is a primary real superfield of dimension þ2.

APPENDIX C: N = 2 CONFORMAL
SUPERSPACE

This appendix reviews N ¼ 2 conformal superspace, a
formulation for off-shell N ¼ 2 conformal supergravity
developed by Butter [84] and then reformulated in [96].
We consider a curved N ¼ 2 superspace M4j8

parametrized by local coordinates zM ¼ ðxm; θμ{ ; θ̄{_μÞ. The
structure group is chosen to be SUð2; 2j2Þ. The correspond-
ing superalgebra is spanned by the LorentzMab, translation
PA ¼ ðPa;Qi

α; Q̄ _α
i Þ, dilatation D, R-symmetry Y and Jij,

and the special conformal KA ¼ ðKa; Sαi ; S̄
i
_αÞ generators.

The covariant derivatives ∇A ¼ ð∇a;∇i
α; ∇̄ _α

i Þ then have
the form

∇A ¼ EA −
1

2
ΩA

abMab −ΦA
ijJij − iΦAY −BAD−FABKB:

ðC1Þ

As compared with (B1), we have introduced ΦA
ij, the

SUð2ÞR connection. The corresponding generator acts on
isospinors as follows:

Jijχk ¼ εkðiχjÞ: ðC2Þ

The covariant derivatives (C1) obey the algebra

f∇i
α;∇j

βg ¼ 2εijεαβW̄ _γ _δM̄
_γ _δ þ 1

2
εijεαβ∇̄_γkW̄ _γ _δS̄k_δ

−
1

2
εijεαβ∇γ _δW̄

_δ
_γKγ _γ; ðC3aÞ

f∇i
α; ∇̄_β

jg ¼ −2iδij∇α
_β; ðC3bÞ

½∇α _α;∇i
β� ¼ −iεαβW̄ _α _β∇̄_βi −

i
2
εαβ∇̄ _βiW̄ _α _βD

−
i
4
εαβ∇̄_βiW̄ _α _βY þ iεαβ∇̄ _β

j W̄ _α _βJ
ij

− iεαβ∇̄i
_β
W̄ _γ _αM̄

_β _γ −
i
4
εαβ∇̄i

_α∇̄_β
kW̄ _β _γS̄

_γk

þ 1

2
εαβ∇γ _βW̄ _α _βS

i
γ þ

i
4
εαβ∇̄i

_α∇γ
_γW̄ _γ _βKγ _β:

ðC3cÞ

HereWαβ is the N ¼ 2 super-Weyl tensor and is subject to
the constraints:

KCWαβ ¼ 0; ∇̄_γ
kWαβ ¼ 0; DWαβ ¼ Wαβ;

YWαβ ¼ −Wαβ: ðC4aÞ

We also find that Wαβ obeys the Bianchi identity

B ¼ ∇αβWαβ ¼ ∇̄ _α _βW̄ _α _β ¼ B̄; ðC4bÞ

where the primary superfield B is the N ¼ 2 super-Bach
tensor. We remind the reader that a superfield Φ (with
suppressed indices) is said to be primary of dimension ΔΨ
and Uð1ÞR charge qΨ if the following conditions hold:

KBΨ ¼ 0; DΨ ¼ ΔΨΨ; YΨ ¼ qΨΨ: ðC5Þ

Of particular importance are primary chiral superfields,
which satisfy

KBΨ ¼ 0; ∇̄_β
jΨ ¼ 0: ðC6Þ

The consistency of these constraints with the superconfor-
mal algebra leads to highly nontrivial implications. In
particular, it can carry no isospinor or dotted spinor indices,
Ψ ¼ ΨαðmÞ, and its Uð1ÞR charge and dimension are related
as follows:

qΨ ¼ −2ΔΨ: ðC7Þ

Further, we note that for any primary tensor superfield
UαðmÞ with the property qU ¼ −2ΔU, the following object
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ΨαðmÞ ¼ ∇̄4UαðmÞ ≡ 1

48
∇̄ij∇̄ijUαðmÞ ðC8Þ

is both primary and chiral in conformally flat back-
grounds [84,97].
The chiral and full superspace integrals are related

according to the rule

Z
d4xd4θd4θ̄EU ¼

Z
d4xd4θE∇̄4U; E−1 ¼ BerðEA

MÞ;

ðC9Þ

where U is a primary real dimension-0 superfield.
For further details regarding N ¼ 2 conformal super-

space, we refer the reader to the original work [84], as well
as [52,96].

APPENDIX D: ELIMINATION OF AUXILIARY
VARIABLES

This appendix is devoted to a derivation of the conformal
U(1) duality-invariant CHS models (2.37) via the auxiliary
variable formalism introduced in Sec. II C. We emphasize
that the latter is a higher-spin generalization of the Ivanov-
Zupnik approach [6–8].
Consider the following action functional:

SðsÞ½C; C̄; ρ; ρ̄� ¼ ð−1Þs
Z

d4x e

�
2ρC − ρ2 −

1

2
C2
�

þ c:c:þ β

Z
d4xe

ffiffiffiffiffiffiffiffiffi
ρ2ρ̄2

q
; ðD1Þ

where one should keep in mind the definitions of Sec. II.
It is clear that (D1) is both conformal and U(1) duality
invariant. Varying this action with respect to the auxiliary
variable ραð2sÞ yields

ραð2sÞ ¼ Cαð2sÞ þ
ð−1Þsβ

2

ραð2sÞρ̄2ffiffiffiffiffiffiffiffiffi
ρ2ρ̄2

p : ðD2Þ

Employing this result, it is possible to integrate out ραð2sÞ.
As a result, we obtain the self-dual model

SðsÞ½C; C̄� ¼ ð−1Þs
2

1þ ðβ=2Þ2
1 − ðβ=2Þ2

Z
d4x efC2 þ C̄2g

þ β

1 − ðβ=2Þ2
Z

d4x e
ffiffiffiffiffiffiffiffiffiffi
C2C̄2

p
: ðD3Þ

Now, upon making the identification

cosh γ ¼ 1þ ðβ=2Þ2
1 − ðβ=2Þ2 ⇔ sinh γ ¼ β

1 − ðβ=2Þ2 ; ðD4Þ

it is clear that (D3) coincides with (2.37), which concludes
our analysis. It is important to note that, in the s ¼ 1 case,
this computation was first performed in [28].

APPENDIX E: OVERALL SIGNS
FOR FREE (S)CHS ACTIONS

In this appendix we show that the overall signs of the free
CHS actions [32–34]

SðsÞ½C; C̄� ¼ ð−1Þs
2

Z
d4x efCαð2sÞCαð2sÞ þ c:c:g ðE1Þ

can be fixed by making use of supersymmetry consider-
ations in conjunction with the known action of Maxwell
theory for s ¼ 1,

Sð1Þ½C; C̄� ¼ −
1

2

Z
d4x efCαð2ÞCαð2Þ þ c:c:g

¼ −
1

4

Z
d4x eCabCab; ðE2Þ

where Cab ¼ ∇ahb −∇bha. Moreover, similar arguments
allow us to correctly fix the overall signs of the freeN ¼ 1

and N ¼ 2 SCHS actions.
The overall sign in (E1) is also fixed by identifying the

action SðsÞ½C; C̄� with the induced one obtained by comput-
ing the logarithmically divergent part of the effective action
of a conformal scalar field coupled to background con-
formal higher-spin fields [98].

1. N = 1 actions

Consider the chiral field strengthWαð2sþ1Þ and introduce
its bosonic components

Cαð2sÞ ≔
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ 1

sþ 1

r
∇βWβαð2sÞjθ¼0; ðE3aÞ

Cαð2sþ2Þ ≔
ffiffiffi
2

p
i

4
∇ðα1Wα2…α2sþ2Þjθ¼0; ðE3bÞ

which have been defined such that Bianchi identity (2.6)
holds both for field strengths. We then compute the bosonic
part of the SCHS action [35,43]

SðsÞ½W; W̄�

≔
zs
4

Z
d4xd2θEWαð2sþ1ÞWαð2sþ1Þ þ c:c:

¼ −
zs
16

Z
d4xe∇2ðWαð2sþ1ÞWαð2sþ1ÞÞjθ¼θ̄¼0 þ c:c:

¼ zs

Z
d4x eðCαð2sÞCαð2sÞ − Cαð2sþ2ÞCαð2sþ2ÞÞ þ � � � þ c:c:

ðE4Þ
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where the ellipses denote the fermonic sector, which is
irrelevant to our analysis. For the overall signs of the
component actions present in (E4) to agree with those of
(E1), we require zs ¼ ð−1Þs. Therefore, the N ¼ 1 SCHS
actions take the form [35,43]

SðsÞ½W; W̄� ¼ ð−1Þs
4

Z
d4xd2θEWαð2sþ1ÞWαð2sþ1Þ þ c:c:

ðE5Þ

2. N = 2 actions

Consider the chiral field strength Wαð2sþ2Þ. It contains
two N ¼ 1 fermionic superfields in its multiplet

Wαð2sþ1Þ ≔
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ 1

2sþ 3

r
∇β2Wαð2sþ1Þβjθ2¼0; ðE6aÞ

Wαð2sþ3Þ ≔
ffiffiffi
2

p

4
∇2

ðα1Wα2…α2sþ3Þjθ2¼0; ðE6bÞ

which have been defined such that the Bianchi identity
(3.7) holds for both field strengths. Next, we reduce the
N ¼ 2 SCHS action [52] to N ¼ 1 superspace

SðsÞ½W;W̄�

≔
zs
4

Z
d4xd4θEWαð2sþ1ÞWαð2sþ1Þ þc:c:

¼−
zs
16

Z
d4xd2θE∇α2∇2

αðWαð2sþ1ÞWαð2sþ1ÞÞjθ2¼θ̄2¼0þc:c:

¼ zs

Z
d4xd2θEðWαð2sþ1ÞWαð2sþ1Þ−Wαð2sþ3ÞWαð2sþ3ÞÞ

þ���þc:c: ðE7Þ

where the ellipses denotes the sector containing
integer superspin field strengths, which is irrelevant to
our analysis. For the overall signs of the N ¼ 1 actions
present in (E7) to agree with those of (E5), we require
zs ¼ ð−1Þs. Therefore, the N ¼ 2 SCHS actions take the
form [52]

SðsÞ½W;W̄� ¼ ð−1Þs
4

Z
d4xd4θEWαð2sþ2ÞWαð2sþ2Þ þ c:c:

ðE8Þ
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