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We construct the first analytic examples of nonhomogeneous condensates in the Georgi-Glashow model
at finite density in (2þ 1) dimensions. The nonhomogeneous condensates, which live within a cylinder of
finite spatial volume, possess a novel topological charge that prevents them from decaying in the trivial
vacuum. Also the non-Abelian magnetic flux can be computed explicitly. These solutions exist for constant
and nonconstant Higgs profile and, depending on the length of the cylinder, finite density transitions occur.
In the case in which the Higgs profile is not constant, the full system of coupled field equations reduce to
the Lamé equation for the gauge field (the Higgs field being an elliptic function). For large values of this
length, the energetically favored configuration is the one with a constant Higgs profile, while, for small
values, is the one with the nonconstant Higgs profile. The non-Abelian Chern-Simons term can also be
included without spoiling the integrability properties of these configurations. Finally, we study the stability
of the solutions under a particular type of perturbations.
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I. INTRODUCTION

One of the most challenging open problems in theoreti-
cal and experimental investigations in quantum chromo-
dynamics (QCD) is to determine the phases diagram at
finite density and temperature, and especially, to shed light
on the confinement mechanism. Asymptotic freedom in the
ultraviolet (UV) supports the melting of hadrons at high
energies when quarks and gluons should be liberated, and
relativistic heavy-ion colliders allowed to realize high
temperature deconfined hadronic matter [1]. This phase
is relevant, for instance, in the analysis of the core of
compact stars (see for instance [2–6]). Unfortunately both,
in any heavy-ion experiment and in the core of compact
stars, QCD physics is dominated by the nonperturbative
effects (see [7] and references therein). In order to get
insight on these difficult problems lattice QCD (LQCD)
simulations are effective [8–15].
A quite remarkable discovery in this area is the appear-

ance of nonhomogeneous condensates at finite density in

the QCD phase diagram [16–24] (see also [25–38]). This
bold statement, also supported by the strong phenomeno-
logical evidences favoring the so-called pasta phase, has
been verified analytically in effective models in (1þ 1)
dimensions such as the Gross-Neveu model [39]. A
nonhomogeneous pionic phase, usually called chiral soliton
lattice (CSL), supported by strong external fields is also
possible. On the other hand, in the CSL the fact that the
order parameter only depends on one space-like coordinate
prevents the CSL itself from having a nontrivial topological
charge and therefore the presence of a strong external
field is needed for stability reasons. In fact, recently it has
been shown that in the Skyrme model, which represents
the low energy limit of QCD in the ’t Hooft expansion
(see [40–45]), possesses analytic crystal-like solutions
with nonvanishing topological charge [46,47] (see also
[48–52]). These configurations can be interpreted as
a topologically nontrivial CSL which are very much
like a topologically protected version of the Larkin–
Ovchinnikov–Fulde–Ferrell (LOFF) states appearing in
normal superconductors [53]. Moreover, perhaps surpris-
ingly, the subleading corrections to the Skyrme model in
the ’t Hooft expansion (see [54,55]) do not spoil such
analytic solutions which “resist” almost unchanged at any
order in the large Nc expansions [47].
Thus, as there are so many evidences of nonhomo-

geneous and topologically nontrivial condensates at finite
density appearing in the low energy limit of QCD at any
order in the ’t Hooft expansion, the natural question is can

*canfora@cecs.cl
†daniel.flores@cinvestav.mx
‡marcela.lagos@uach.cl
§aldo.vera@uach.cl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 125002 (2021)

2470-0010=2021=104(12)=125002(17) 125002-1 Published by the American Physical Society

https://orcid.org/0000-0001-7866-3531
https://orcid.org/0000-0001-8258-0595
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.125002&domain=pdf&date_stamp=2021-12-03
https://doi.org/10.1103/PhysRevD.104.125002
https://doi.org/10.1103/PhysRevD.104.125002
https://doi.org/10.1103/PhysRevD.104.125002
https://doi.org/10.1103/PhysRevD.104.125002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


we find this kind of topologically nonhomogeneous con-
densates directly in Yang-Mills theory? This is a really
fundamental question, as all the relevant nonperturbative
configurations of Yang-Mills theory, which are important
to understand the confinement mechanism, have been
constructed in “infinite space” (see [56–58] for detailed
pedagogical reviews), while the behavior of these non-
perturbative configurations living at finite density is largely
unknown (despite its huge interest in many applications). In
this respect, one of the main issues (which is discussed in
this paper) yet to be properly understood is how topologi-
cally nontrivial configurations react to nontrivial boundary
conditions at finite volume. Here, we analyze what happens
when a finite amount of non-Abelian topological charge
related to gluons (as well as to the Higgs field) is forced to
live within a finite volume.
The simplest nontrivial case on which we focus here is

Yang-Mills-Higgs theory (Georgi-Glashow model with
SUð2Þ gauge group) in (2þ 1) dimensions: this is a non-
trivial interacting and confining gauge theory. Needless to
say, the issue of color confinement in non-Abelian gauge
theories is one of the most important and difficult open
problems inmodern particle physics; especially, but not only
in (3þ 1) dimensions. The available theoretical tools have
not solved the (3þ 1)-dimensional problem but it is pretty
clear that nonperturbative configurations such asmonopoles,
instantons and non-Abelian vortices play a fundamental role
(see [59] for a detailed review). On the other hand, non-
Abelian gauge theories in (2þ 1) dimensions are still
confining and interacting theories but are much better
understood from the analytic viewpoint. That is why the
Yang-Mills-Higgs theory is worth to be further investigated.
The insightful qualitative picture provided by Feynman [60]
(based on his early works on superfluidity in [61]) together
with the pioneering results of Polyakov on the role of
monopoles [62] shed considerable light on the important
role that nonperturbative configurations play in the (2þ 1)-
dimensional confinement mechanism (see also [63,64] and
references therein). TheHamiltonian approach toYang-Mills
theory in (2þ 1) dimensions has also provided remarkable
results on the mass gap, the string tension and the Glueball
spectrum (see [65–68] and references therein), and the
agreement of the results with the lattice approach is very
good (see [69–71] and references therein).
However, in the (2þ 1)-dimensional Georgi-Glashow

model there are very few analytic results on nonperturbative
configurations at finite density. Here it is worth to remind
that the Polyakov discovery in [62] (see also [63,64]) is
based on the well-known ’t Hooft-Polyakov monopoles in
(3þ 1)-dimensional Yang-Mills-Higgs theory interpreted
as Euclidean solutions1 in the three-dimensional Euclidean

flat R3. However, basically no other nonperturbative
configurations have been constructed analytically in the
literature in (2þ 1)-dimensional non-Abelian gauge theo-
ries. Even less is known about how genuine nonperturba-
tive configurations of these (2þ 1)-dimensional models
react to the presence of nontrivial boundary conditions such
as finite volume effects. It is usually assumed that the
presence of finite volume effects (and, more generically, of
nontrivial boundaries) makes the field equations of the
Yang-Mills-Higgs theory (which are already by themselves
a very hard nut to crack) even more difficult to solve since,
for instance, the usual spherical hedgehog ansatz cannot
be used.
However, a systematic method to construct a generalized

hedgehog ansatz which is not spherically symmetric but
keep all the other nice properties of the usual hedgehog
ansatz alive has been developed in [46–52] for the Skyrme
model, and such strategy has been proven useful also in the
Einstein-Yang-Mills case in [72–74]; and generalizations
thereof [75]. In the present case, we generalize this
technique to the case in which the Yang-Mills-Higgs
model is analyzed within a flat region of finite spatial
volume. We construct the first genuine analytic examples
of nonhomogeneous and topologically nontrivial conden-
sates in the Georgi-Glashow model and in the Yang-Mills-
Higgs-Chern-Simons theory in (2þ 1) dimensions. Such
solutions possess a novel topological charge and have
nonvanishing non-Abelian magnetic flux. Moreover, many
relevant physical properties can be computed explicitly
(such as the energy density, the total energy, the pressure
and so on) in terms of the volume, the coupling constants
and the topological charge.
The paper is organized as follows: In Sec. II, we

introduce the Yang-Mills-Higgs-Chern-Simons theory
together with the general parametrization for the funda-
mental fields. In Sec. III, we propose our ansatz and we
show that analytic nonhomogeneous condensates can be
constructed for the pure Yang-Mills theory. In Sec. IV,
we construct nonhomogeneous condensates in the Georgi-
Glashow model. In Sec. V, we study the stability of
the solutions. In Sec. VI, we extend our results to the
Yang-Mills-Higgs-Chern-Simons theory. Finally, in the last
section we draw some conclusions.

II. THE MODEL

In this section, we briefly review the Yang-Mills-
Higgs-Chern-Simons theory and display the general
parameterization for the fundamental fields that
allows the construction of analytic nonhomogeneous
condensates.

A. Yang-Mills-Higgs-Chern-Simons theory

The Yang-Mills-Higgs-Chern-Simons theory in (2þ 1)
dimensions is defined by the action

1In other words, the ’t Hooft-Polyakov monopoles in (3þ 1)-
dimensional Yang-Mills-Higgs theory play the role of instantons
in the (2þ 1)-dimensional Georgi-Glashow model in R3.
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I ¼
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2e2
TrðFμνFμνÞ

þ η

�
1

4
TrðDμφDμφÞ − VðφÞ

��

þ μ

Z
d3xTr

�
AdAþ 2

3
A3

�
; ð1Þ

where

Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν�; A ¼ Aμdxμ ¼ Aj
μtjdxμ;

VðφÞ ¼ γ

4
ðvev2 − jφj2Þ2; jφj2 ¼ −

1

2
Trðφ2Þ; tj ¼ iσj:

ð2Þ
Here e and γ are the coupling constants of Yang-Mills
theory and of the Higgs potential, respectively, while, vev
is the corresponding vacuum expectation value and μ is the
Chern-Simons coupling. In the previous equation, η is
either 0 or 1 depending on whether one is only interested in
pure Yang-Mills theory or in the Georgi-Glashow model.
The matrices tj are the generators of the SUð2Þ group and
σj are the Pauli matrices. Lastly, we mention that φ is the
Higgs field in the adjoint representation and the covariant
derivative acts as

Dμφ ¼ ∂μφþ ½Aμ;φ�:
Varying the action with respect to the fields Aμ and φ we
obtain the field equations of the Yang-Mills-Higgs-Chern-
Simons theory:

∇νFμνþ½Aν;Fμν� þ ηe2

4
½φ;Dμφ� þ 1

2
μe2εαβμFαβ ¼ 0; ð3Þ

DμDμφþ γðvev2 − jφj2Þφ ¼ 0: ð4Þ

On the other hand, the energy-momentum tensor is
given by

Tμν ¼ −
2

e2
Tr

�
FμαFν

α −
1

4
gμνFαβFαβ

�

−
η

2
Tr

�
DμφDνφ −

1

2
gμνDαφDαφ

�
− gμνVðφÞ:

For non-Abelian configurations, there are at least two
possible definitions of magnetic flux. One option can be
found in [76] and is based on the asymptotic symmetries of
the field configurations and the existence of a normalized
and covariantly constant isospin vector. However, this
approach does not apply to our configurations since na

in Eq. (9) (which is the natural choice of normalized unit
vector in the internal space) is not covariantly constant.
Hence, we use the following standard definition for the
non-Abelian magnetic flux:

Ψa
M ¼

Z
d2xεijFij

a: ð5Þ

It is worth emphasizing that the importance of the Chern-
Simons term in combination with the Yang-Mills action has
already been disclosed in the pioneering papers [77,78],
and such a combination is also relevant in the analysis of
QCD at high temperatures. The reason is that in that regime
QCD can be described as an effective three-dimensional
gauge theory in which (after integrating out the fermions)
the Chern-Simons term shows up (see, for instance,
[79,80], and a detailed review in [81]). To the best of
the authors’ knowledge, there is no analytic solution with
nontrivial topological properties in the Yang-Mills-Higgs-
Chern-Simons theory.

B. General parametrization

One of the main motivations of the present analysis is to
understand whether or not interacting non-Abelian gauge
theories possess nonhomogeneous and topologically non-
trivial condensates at finite density, as it happens in many of
the low energy descriptions of QCD. The most natural way
to take into account finite volume effects is to use the metric
defined below:

ds2 ¼ −dt2 þ R2dr2 þ L2dϕ2; ð6Þ

where R and L are positive constants with dimension of
length, representing the size of the cylinder in which we
are analyzing the system.2 Both r and ϕ are dimensionless
coordinates with the following ranges

0 ≤ ϕ < 2π; ri ≤ r ≤ rf; ð7Þ

and the cylinder volume becomes Vc ¼ 2πðrf − riÞLR.
The following general parametrization for the Yang-
Mills and Higgs fields is a natural generalization of the
successful ansatz developed to analyze nonhomogeneous
condensates for the Skyrme model in [46,47,50,51]. Given
UðxÞ ∈ SUð2Þ, where

U�1ðxμÞ ¼ cosðαÞ12 � sinðαÞniti; nini ¼ 1; ð8Þ

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ; ð9Þ

α ¼ αðxμÞ; Θ ¼ ΘðxμÞ; Φ ¼ ΦðxμÞ; ð10Þ

2We would like to point out that the analysis of solitons in
cylindrical geometries, like the one we use in our paper, is very
common in the approach of adiabatic continuity and resurgence
theory see, e.g., [82]. In this area, it is very useful that the volume
of the space in which the solitons live is a free parameter which
can be varied.
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the ansätze for the fields Aμ and φ read

Aμ ¼ λðxμÞU−1∂μU; ð11Þ

φ ¼ hðxμÞnjtj: ð12Þ

It is worthwhile to point out that meronic gauge fields
appear as a particular case of the above configurations
when λ ¼ 1=2. As it is well known (see [83] and references
therein), a very interesting feature of meron-type configu-
rations is that such configurations can only appear in non-
Abelian gauge theories. The reason is that, in Abelian
gauge theories, a gauge potential which is proportional to a
pure gauge is itself a pure gauge3 and therefore is trivial. On
the other hand, in non-Abelian gauge theories, it is possible
to construct gauge potentials which are proportional to pure
gauge but which are not pure gauge themselves; these are
the merons. Thus, in a sense, merons are genuine features
of non-Abelian gauge theories.

III. ANALYTIC NONHOMOGENEOUS
GLUONIC CONDENSATES

Here, we discuss how to construct the ansatz in pure
Yang-Mills theory in (2þ 1) dimensions in order to
describe nonhomogeneous gluonic condensates.

A. The ansatz

In this section, we consider a flat space-time described
by the metric in Eq. (6) with a finite length in the r
direction. Moreover, we consider the pure Yang-Mills case,
taking η ¼ μ ¼ 0 in Eq. (1). Let us begin by discussing the
idea behind the construction of the gauge field. Arguably,
the most convenient ansatz for the non-Abelian gauge
potential in Eq. (11) is the following:

Aμ ¼ λðrÞU−1∂μU: ð13Þ

This widely used choice is convenient because when λ is
either 0 or 1 the gauge field is trivial as it either vanishes or
becomes a pure gauge, respectively. Thus, λ carries (part of)
the responsibility to make the gauge field “nontrivial,” and
the “pure gauge part” U−1∂μU plays an important role in
determining the non-Abelian fluxes.

1. Example: The non-Abelian monopole

For instance, in the usual (3þ 1)-dimensional case, the
spherical hedgehog ansatz is given by Eqs. (8)–(10), and
(13), with the following form for the U field

α ¼ π

2
; Θ ¼ θ; Φ ¼ φ: ð14Þ

Considering the metric for the space-time as4

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ; ð15Þ

the Yang-Mills equations reduce to just one ODE for the
profile (see [56] for details). In this case, when the function
α defined in Eq. (14) is constant the magnetic flux is
determined by the two-form Ω ¼ dΘ ∧ dΦ, where Θ and
Φ are the two functions appearing in the “isospin vector” ni

in Eq. (9). In other words, the magnetic flux is non-
vanishing across the two-dimensional surfaces determined
by the condition

Ω ≠ 0: ð16Þ

Notice that with the choice in Eqs. (8)–(10), and (14) one
gets the usual magnetic flux of a spherical magnetic
monopole. Moreover, very similar arguments also hold
in the case of electric fluxes. On the other hand, the choice
α ¼ const, is not mandatory. In particular, one could
consider an ansatz where Θ is constant and α is not. In
this situation, nontrivial fluxes require Ω0 ¼ dα ∧ dΦ ≠ 0.
Indeed, in the following sections, we show that one can

easily construct two equivalent ansätze; one with α ¼ const
and Ω ≠ 0, while, the other has Θ ¼ const and Ω0 ≠ 0. The
choosing between these ansätze, in the case of pure Yang-
Mills theory, is arbitrary. However, in the case of the
Georgi-Glashow model, the field equations are simpler
with the choice Θ ¼ const, as we present further below.

2. The first ansatz, α= const

The most obvious ansatz in the family defined in
Eqs. (8)–(11) corresponds to

αðxμÞ ¼ π

2
; ΘðxμÞ ¼ ΘðrÞ;

ΦðxμÞ ¼ p

�
t
L
− ϕ

�
; p ∈ Z; ð17Þ

which satisfy the condition in Eq. (16) to have a non-
vanishing magnetic flux. Here pmust be an integer in order
to satisfy the periodicity condition in the ϕ direction of the
field strength and the energy-momentum tensor (see
Appendix). This is a nonspherical generalization of the
usual hedgehog ansatz. Note that this ansatz contains a
light-like function Φ that allows to considerably reduce the
field equations, as seen below, and it was one of the key

3When λ is constant and Aμ is an Abelian pure gauge
configuration (Aμ ¼ ∂μϑ where ϑ is a gauge parameter) then
we have Aμ ¼ λ∂μϑ ⇒ Aμ ¼ ∂μðλϑÞ. Thus, in the Abelian case,
meron-type configurations are trivial.

4Notice that in this metric r is a radial coordinate and is not to
be confused with the r coordinate we use throughout this paper,
cf. Eq. (6).
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ingredients to construct nonhomogeneous condensates in
the Skyrme model [46,47].
The (2þ 1)-dimensional Yang-Mills field equations

corresponding to the above choice reduces to the following
two coupled nonlinear ODEs for the functions ΘðrÞ
and λðrÞ:

Θ00 þ cotðΘÞΘ02 þ 3

2

ð2λ − 1Þ
λðλ − 1Þ λ

0Θ0 ¼ 0; ð18Þ

λ00 þ 2λðλ − 1Þ tanðΘÞΘ00 þ 2ð2 cotð2ΘÞ − cscð2ΘÞ
þ 3 tanðΘÞλÞλ0Θ0 − 4λðλ − 1ÞΘ02 ¼ 0: ð19Þ

3. The second ansatz, Θ= const

The second choice in the family defined in Eqs. (8)–(11)
corresponds to taking

αðxμÞ ¼ αðrÞ; ΘðxμÞ ¼ π

2
;

ΦðxμÞ ¼ p

�
t
L
− ϕ

�
; p ∈ Z; ð20Þ

which satisfies Ω0 ≠ 0; the condition equivalent to Eq. (16)
for the magnetic flux to be nonvanishing. In this case,
the (2þ 1)-dimensional Yang-Mills field equations reduce
to the following two coupled nonlinear ODEs for αðrÞ
and λðrÞ:

α00 þ cotðαÞα02 þ 3

2

ð2λ − 1Þ
λðλ − 1Þ λ

0α0 ¼ 0; ð21Þ

λ00 þ 2λðλ − 1Þ tanðαÞα00 þ 2ð2 cotð2αÞ
− cscð2αÞ þ 3 tanðαÞλÞλ0α0 − 4λðλ − 1Þα02 ¼ 0: ð22Þ

Evidently, the two options are equivalent, in a sense, as one
can see from the comparison of the field equations in
Eqs. (18), (19), (21), and (22). However, in the case of the
Georgi-Glashow theory (which we analyze in the next
sections) the ansatz in Eq. (20) leads to simpler field
equations. Henceforth, we consider Eq. (20) within the
family of configurations defined by Eqs. (6)–(11).

B. Gluonic condensates

At a first glance, the task to find analytic solutions of the
field equations in Eqs. (21) and (22) seems to be completely
hopeless because not only the field equations are nonlinear
(as one would expect in the Yang-Mills theory), but they are
also coupled and there is no obvious BPS trick in this case.
However, this is not the case. We now show that it is indeed
possible to find exact solutions of that system of nonlinear
ODEs. The best strategy to construct analytic nonhomo-
geneous gluonic condensates is, first of all, to think that the
function λ depends on α

λ ¼ λðαÞ; ð23Þ

so that λ depends on the coordinate r only through α.
Second, we have to ask the following question: How

should λ depend on α in such a way that after replacing
such λ ¼ λðαÞ in the two field equations then Eqs. (21) and
(22) reduce to just one equation for αðrÞ?
Although, a priori, it is not obvious at all that such a

functional dependence of λ on α with the above property
really exists, it is a direct computation to show that the
expression here below does the job (see Fig. 1)

λðαÞ ¼ 1

2

�
1� cos αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 αþ k
p

�
; ð24Þ

where the auxiliary parameter k, which is a useful by-
product of our analysis, is an integration constant. Indeed, a
direct computation reveals that if λ depends on α as in
Eq. (24) the Yang-Mills field equations reduce to the
following ODE for αðrÞ:

α00 þ
�
cot αþ 3 sin α cos α

cos2αþ k

�
α02 ¼ 0: ð25Þ

It is noteworthy that k ¼ 0 in Eq. (24) yields the trivial
“pure gauge solutions,” namely λ ¼ 1, 0, as it is clear from
Eq. (11). On the other hand, the limit k → ∞ yields λ ¼ 1

2
,

thus meronic configurations can be obtained in this limit.
The plus and then the minus sign branch of Eq. (24) are
plotted below. Then, with the change of variable in
Eq. (24), our task has been reduced to solving a single
ODE for αðrÞ in Eq. (25). Interestingly enough, such an
ODE is solvable since it can be reduced to the following
quadrature

�
sin2ðαÞ

2ðcos2ðαÞ þ kÞ3
�
α02 ¼ E0; ð26Þ

dα
ρðα; E0Þ

¼ �dr; ρðα; E0Þ ¼
ð2E0Þ1=2ðcos2ðαÞ þ kÞ3=2

sinðαÞ ;

ð27Þ

where E0 is an integration constant. Moreover, Eq. (25) [or,
equivalently, Eq. (27)] can be solved explicitly, however, in
order to compute all the relevant quantities such as the total
energy, pressure and so on, the expression in Eq. (27) is
sufficient.
Summarizing, the function α, determined explicitly by

the quadrature in Eqs. (26) and (27), in turn determines
the dependence of λ on r; through Eq. (24). These
two functions are the analytic solutions of the (2þ 1)-
dimensional Yang-Mills equations in Eqs. (21) and (22) on
the cylinder defined in Eq. (6).
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C. The energy of the condensate

The energy density T00 [which in the case of the ansatz in
Eq. (20) within the family of configurations defined in
Eqs. (8)–(11)] reads

T00 ¼
4p2½4λ2ðλ − 1Þ2α02 þ λ02�sin2ðαÞ

e2R2L2
: ð28Þ

When one takes into account that λ depends on α as in
Eq. (24) the energy density becomes

T00 ¼
ξ

ρðα; 1Þ2 α
02;

ρðα; 1Þ ¼ ρðα; E0 ¼ 1Þ; ξ ¼ 2ðkpÞ2ðkþ 1Þ
ðLReÞ2 ; ð29Þ

where ρðα; E0Þ has been defined in Eq. (27). In this way,
the total energy Etot of the system can be written as

Etot ¼ RL
Z

drdϕT00 ¼ 2Vc
E0k2ðkþ 1Þp2

e2L2R2
; ð30Þ

where Vc is the cylinder volume defined in Eq. (7). It is
worth to emphasize that these inhomogeneous gluonic
condensates are nonperturbative, i.e., Eq. (30) is singular
around e ¼ 0. Moreover, notice that the energy density
turns out to be constant, and it depends on the parameter k
in Eq. (24) as well as on the integration constant E0 in
Eq. (26). E0 is determined through the relation

rf − ri ¼
Z

αðrfÞ

αðriÞ

1

ρðα; E0Þ
dα;

once the boundary conditions are chosen, while the allowed
values of k can be calculated by requiring that the non-
Abelian magnetic flux be quantized. We compute the non-
Abelian magnetic flux in the next section for the most
interesting case of the Georgi-Glashow model, this for two
reasons that we detail here. The first reason is that the
inclusion of the Higgs field allows to derive a BPS bound,
from which a topological charge naturally emerges, and the
nontriviality of this quantity determines the appropriate
boundary conditions for the α profile. The second reason is
that the non-Abelian magnetic flux, both for the case with
Higgs field and without the Higgs, are actually the same.
We detail more about these points in the next section.

IV. ANALYTIC NONHOMOGENEOUS
CONDENSATES IN THE

GEORGI-GLASHOW MODEL

In this section, we construct nonhomogeneous conden-
sates in the Georgi-Glashow model. Thus, we set η ¼ 1 and
μ ¼ 0, in Eq. (1). As it has been already emphasized, in this
model our ansatz is the one in Eq. (20) within the family of

configurations defined in Eqs. (8)–(12), and in the par-
ticular case when the Higgs field is

h ¼ hðrÞ: ð31Þ

A. Solving the field equations

The (2þ 1)-dimensional Georgi-Glashow field equa-
tions for the ansatz defined in Eqs. (6)–(12) and (31)
reduce to the following three coupled nonlinear ODEs for
αðrÞ, λðrÞ, and hðrÞ:

α00 þ cotðαÞα02 þ 3

2

ð2λ − 1Þ
λðλ − 1Þ λ

0α0 ¼ e2R2

4

cotðαÞ
λðλ − 1Þ h

2; ð32Þ

λ00 þ 2λðλ − 1Þ tanðαÞα00 þ 2½2 cotð2αÞ − cscð2αÞ
þ 3λ tanðαÞ�λ0α0 − 4λðλ − 1Þ2α02 ¼ e2R2λh2; ð33Þ

h00 þ γR2ðvev2 − h2Þh ¼ 0: ð34Þ

We emphasize two remarkable features about the ansatz in
Eq. (20), which is a generalization of the strategy developed
in Refs.5 [46,47,50] for the Skyrme model. First, although
we have a nontrivial Higgs field, a direct computation
shows that if λ depends on α, as in Eq. (24), then Eqs. (32)
and (33) reduce again to just one ODE for αðrÞ

α00 þ
�
cot αþ 3 sin α cos α

cos2αþ k

�
α02

þ e2R2

k
cot αðcos2αþ kÞh2 ¼ 0: ð35Þ

Moreover, the energy density becomes

T00 ¼
p2k2ðkþ 1Þ
e2R2L2

sin2ðαÞ
ðcos2ðαÞ þ kÞ3 α

02

þ p2ðkþ 1Þcos2ðαÞ
L2ðcos2ðαÞ þ kÞ h2 þ 1

2R2
h02 þ γ

4
ðvev2 − h2Þ2:

ð36Þ

Second, despite the facts that the ansatz is genuinely non-
Abelian and that the commutators between the Higgs field
and the gauge field as well as the commutators of the gauge
field with itself are nonvanishing (see the Appendix), all the
terms in the field equations for the Higgs field which could,
in principle, couple the Higgs profile hðrÞ with the gauge

5In Refs. [46,47,50], where the Maxwell gauged Skyrme
model was considered, the following issue arose: is it possible
to find an ansatz for the Skyrmion and the gauge field in such a
way that the “gauge field disappears” from the Skyrme field
equations without the gauge field being trivial and at the same
time keeping the baryon charge alive? The answer was proven to
be affirmative.
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field profiles λðrÞ and αðrÞ actually vanish. The main
technical reason behind this simplification is that the fields
α, Θ and Φ in Eq. (10) have been chosen in such a way that

∂μα∂μΦ ¼ ∂μΘ∂μΦ ¼ ∂μΦ∂μΦ ¼ ∂μh∂μΦ ¼ 0:

This “decoupling property” is the Yang-Mills-Higgs gen-
eralization of the approach used in the gauged Skyrme
model minimally coupled with the Maxwell field in
[46,47,50]. Due to this decoupling property, Eq. (34)
can be reduced to the following quadrature

ðh0Þ2
2

−
γR2

4
ðh2 − vev2Þ2 ¼ I0

2

⇒ �dr ¼ dhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0 þ γR2

2
ðh2 − vev2Þ2

q ; ð37Þ

where I0 is an integration constant. Consequently, one can
solve explicitly the Higgs field in Eq. (34) [or equivalently
in Eq. (37)] in terms of a Jacobi elliptic function, that is

hðrÞ ¼ K0snðuðrÞ − u0; κÞ; ð38Þ

with

K0 ¼ κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κ2 þ 1

r
vev; and uðrÞ ¼ K0

κ

ffiffiffi
γ

2

r
Rr: ð39Þ

In the previous equations, the integration constants u0 and κ
correspond to the phase and the elliptic modulus, respec-
tively. Without any loss of generality, we can fix u0 ¼ 0
because it just corresponds to a shift in the r coordinate and
can be absorbed into a coordinate’s redefinition. Moreover,
inserting Eqs. (38) and (39) into (37) yields

I0 ¼ −
γR2ðvevÞ4ð1 − κ2Þ2

2ð1þ κ2Þ2 ; ð40Þ

which makes manifest that κ ¼ 1 corresponds to I0 ¼ 0.
Therefore, we have reduced the problem to solve the

three coupled nonlinear ODEs in Eqs. (32)–(34) to solve
only Eq. (35), where h is explicitly known. Notice that
there are three types of possible solutions for the Higgs
field. The simplest nontrivial solution corresponds to taking
the profile h ¼ �vev in Eq. (34). The second option is to
consider a nonconstant solution of Eq. (37) with I0 ¼ 0 [or
κ ¼ 1 in Eq. (38)], which corresponds to a kink-type
solution. Otherwise, for I0 ≠ 0 in Eq. (37) the solution
is periodic. We consider these three possibilities in separate
subsections.
At this point it is important to emphasize that despite the

dramatic simplification of the field equations that we have
previously shown, the configurations constructed here
are genuinely non-Abelian. Indeed, not only many of the

commutators between the gauge potential and the Higgs
fields are nonvanishing (see the Appendix), but also one
can see that meron-type configurations (which only appear
in non-Abelian gauge theories) are a particular case of
the present family of configurations; cf. Eq. (11) and the
comments below it.

B. Constant Higgs profile

In this subsection we consider h ¼ �vev, for which
Eq. (35) becomes

α00 þ
�
cot αþ 3 sin α cos α

cos2αþ k

�
α02

þ e2R2ðvevÞ2
k

cot αðcos2αþ kÞ ¼ 0; ð41Þ

while, the Higgs equation in Eq. (34) is automatically
satisfied. Quite interestingly, the above equation can be
reduced to a quadrature since Eq. (41) possesses the
following first integral:

�
sin2α

2ðcos2αþ kÞ3
�
α02 þ e2R2ðvevÞ2

2kðcos2αþ kÞ ¼ E0; ð42Þ

where E0 is an integration constant.
6 Thus, the complete set

of field equations of the Georgi-Glashow model can be
reduced to the following quadrature:

dα
ρðα; E0Þ

¼ �dr;

ρðα; E0Þ ¼
cos2αþ k

sin α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcos2αþ kÞE0 −

e2R2ðvevÞ2
k

r
:

ð43Þ
We also mention that the above quadrature can be explicitly
solved in terms of generalized elliptic integrals (see [84]),
although, one can compute analytically relevant physical
quantities, such as the energy and the pressure, just using
Eq. (43), as shown below.

1. Energy density and BPS bound

The energy density in Eq. (36) with h ¼ �vev is
reduced to

T00¼
p2ðkþ1Þ

L2

�
k2 sin2ðαÞ

e2R2ðcos2ðαÞþkÞ3α
02þðvevÞ2 cos2ðαÞ

cos2ðαÞþk

�
:

ð44Þ

A very relevant feature of the above expression for the
energy density and, in fact, of the full energy-momentum

6Indeed, it is easy to see that the derivative of Eq. (42) is
proportional to Eq. (41).
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tensor, is that it has the right periodicity in ϕ. In particular,
we remind the reader that, in the case of gauge theories, one
has to require that physical gauge-invariant observables
(such as the energy density) must be periodic functions
of ϕ. However, the gauge potential itself (which is not
gauge-invariant) need not be so.
In this case, it is possible to derive a nontrivial BPS

bound rewriting T00 as

T00 ¼
p2ðkþ 1Þ

L2
½ðςðαÞα0 �WðαÞÞ2 ∓ 2ςðαÞWðαÞα0�;

ð45Þ

ςðαÞ ¼ k sinðαÞ
eRðcos2ðαÞ þ kÞ3=2 ; WðαÞ ¼ ðvevÞ cosðαÞ

ðcos2ðαÞ þ kÞ1=2 :

ð46Þ

Consequently (since the term 2ςðαÞWðαÞα0 in Eq. (45) is a
total derivative), the following BPS bound on the total
energy, defined in Eq. (30), can be derived

Etot ≥ jQHj; ð47Þ

where the topological charge is given by

QH ¼ �p2ðkþ 1Þ
L2

× 2πRL
Z

rf

ri

2ςðαÞWðαÞ dα
dr

dr

¼ �2πp2kðkþ 1Þvev
eLðcos2αþ kÞ

����αðrfÞ
αðriÞ

: ð48Þ

The above bound can be saturated if and only if the
following first order equation is satisfied:

ςðαÞα0 ¼ �WðαÞ: ð49Þ

It is a very nontrivial result that in the presence of a Higgs
field the BPS condition, here above, implies that the second
order field equation in Eq. (41) is satisfied.
Notice that the first-order equations in Eqs. (42) and (49)

are compatible for a particular value of the integration
constant E0, namely

E0 ¼
e2R2ðvevÞ2

2k2
:

While the solutions of the equation that comes from the
saturation of the BPS bound in Eq. (49) only correspond to
a set of all the allowed solutions of Eq. (41), all solutions of
Eq. (41) are also solution of Eq. (42). Therefore, though the
existence of a BPS bound that allows to solve the Yang-
Mills-Higgs system analytically is something clearly non-
trivial, throughout the paper we do not refer to the solutions
that can be obtained from Eq. (49), but rather to those
general solutions of Eq. (41) [or equivalently Eq. (42)].

2. Boundary conditions and topological charge

Evaluating the topological charge in Eq. (49) at the
top and the bottom of the cylinder in the range defined
in Eq. (7) we see that, in order to have a nonvanishing
topological charge, we must demand that, cos2 αðriÞ ≠
cos2 αðrfÞ. Then, suitable boundary conditions for the α
profile are

αðriÞ ¼
π

2
; αðrfÞ ¼ 0: ð50Þ

In fact, with the above boundary conditions the topological
charge becomes

QH ¼ � 2πp2ðvevÞ
eL

: ð51Þ

Note that the appropriate boundary conditions for the α
profile can be read directly from Eq. (43). Indeed, as we are
looking for regular solutions it is necessary that α0 must not
have singularities or change sign, and this implies that α
can only be extended in a length range from 0 to π

2
. Now, the

integration constant E0 is fixed through the relation

rf − ri ¼ �
Z π

2

0

1

ρðα; E0Þ
dα;

with ρðα; E0Þ defined in Eq. (43).
To the best of the authors’ knowledge, the topological

charge in Eqs. (47), (48) and (51) is novel, nontrivial and
useful. First of all, it is novel since QH does not coincide
with the non-Abelian magnetic flux or the enclosed electric
charge which, usually, play the role of topological charges
in non-Abelian gauge theories. It is nontrivial since we can
construct solutions with nonvanishingQH. It is useful since
the requirement to saturate the BPS bound in Eq. (47) gives
rise to a first order condition, which implies the second
order field equations. These results are likely to be genuine
finite density effects and are, consequently, very relevant
when analyzing the theory within a finite volume.

C. Nonconstant Higgs profile: The general case

Not surprisingly, the case in which the Higgs profile is
nonconstant is considerably more difficult. Nevertheless,
many analytic results can be derived. The field equation for
the profile α in this case is given by

α00 þ
�
cot αþ 3 sin α cos α

cos2αþ k

�
α02

þ e2R2

k
cot αðcos2αþ kÞh2 ¼ 0; ð52Þ

where h is a nonconstant solution of Eq. (37) defined in
general in Eq. (38). In order to simplify the above equation
it is useful to introduce a new function of α, which we
denote by ΓðαÞ, and is defined by the following relation:
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dΓðαÞ
dr

¼ ∓
�

sinðαÞ
2ðcos2ðαÞ þ kÞ3=2

�
α0

⇒ ΓðαÞ ¼ � cosðαÞ
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðαÞ þ k

p ; ð53Þ

so that the profile α can be written7 as

α ¼ arccos

��
kΓ2

1
4k2 − Γ2

�1
2

�
: ð54Þ

Then one is left with the following simpler linear equation

Γ00 − ðe2R2h2ÞΓ ¼ 0: ð55Þ

Notice that by examining Eq. (53) and comparing it with
Eq. (24), the above ΓðαÞ function is proportional to our
earlier defined λðαÞ function

Γ ¼ 2λ − 1

2k
: ð56Þ

From Eq. (54), the complete set of field equations of the
Georgi-Glashow model with a nonconstant Higgs profile
has been reduced to just Eq. (55) where h is a nonconstant
solution of Eq. (37).

1. Mapping with the Lamé equation

We now move on to solving the only pending ODE to
have a complete solution of the Georgi-Glashow field
equations. Let us recall that the nonconstant Higgs profile
obeys Eq. (37). In that equation, the integration constant I0
characterizes the configurations period determined by κ,
and the general solution is an elliptic sine function as
showed in Eq. (38). In this case, the system can be taken to
solve a Lamé equation.
Notice that Eq. (38) is at its simplest in terms of the

variable u defined in Eq. (39). Thus, we transform Eq. (55)
by considering

yðuÞ ¼ ΓðrðuÞÞ; ð57Þ

so that it becomes

d2y
du2

− lðlþ 1Þκ2sn2ðu; κÞy ¼ 0; ð58Þ

where l has been defined so that it satisfies
lðlþ 1Þ ¼ 2e2=γ, for which there are always solutions.

This combination of the coupling constants e and γ is
always positive and so leads to real values of l.
The ODE in Eq. (58) is known as the Lamé equation and

its solutions as Lamé functions. Special situations arise
when l is an integer, however, solutions always exist for
general complex values of l, that would be acceptable to
us. It is well known that the Lamé functions are a special
case of Heun functions. We write the general solution of
Eq. (58) as

yðuÞ ¼ c1H

�
1

κ2
; 0;−

l
2
;
lþ 1

2
;
1

2
;
1

2
; sn2u

�

þ c2snuH

�
1

κ2
;
1þ κ2

4κ2
;
lþ 2

2
;
1 − l
2

;
3

2
;
1

2
; sn2u

�
;

ð59Þ

where every elliptic function has the same elliptic modulus
κ (we have omitted them for simplicity). Moreover, H
denotes a general8 Heun function Hða; q; α; β; γ; δ; zÞ
which satisfies the equation (see [85])

d2w
dz2

þ
�
γ

z
þ δ

z − 1
þ ϵ

z − a

�
dw
dz

þ αβz − q
zðz − 1Þðz − aÞw ¼ 0;

ð60Þ

where ϵ ¼ αþ β − γ − δþ 1. Let us note that for both
Heun functions in Eq. (59) ϵ ¼ 1=2.
Before continuing, we recall that Jacobi elliptic functions

are doubly periodic; they have a real and an imaginary
period. For Lamé functions to be doubly periodic l must be
an integer. However, for any value of l, integer or not, there
are infinitely many solutions with real period 2K or 4K,
where K denotes the quarter period integral which is a
function of κ, the elliptic modulus, i.e.,

KðκÞ ¼
Z

π=2

0

dϖffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2 sin2 ϖ

p : ð61Þ

Henceforth, we fix the integration constant κ in terms of the
length of the space-time cylinder by

rf − ri ¼ 2KðκÞ: ð62Þ

D. Nonconstant Higgs profile: The kink case

In the previous section, we showed that for nonconstant
Higgs profiles solving the complete Georgi-Glashow
model field equations leads generically to a Lamé equation.
However, a very special case arises when in Eq. (37) one
considers I0 ¼ 0 or, equivalently κ ¼ 1 in Eq. (38). In this
case, the Higgs profile becomes a kink

7The idea of the change of variables between α and Γ in
Eqs. (53) and (54) is the following. The first two terms in Eq. (52)
are proportional to the second derivative of the function ΓðαÞ in
Eq. (53). Hence, if one uses Eq. (54) which expresses α in terms
of Γ, then the first derivative term in the field equation in Eq. (52)
disappears. 8As opposed to its confluent special cases.
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hðuÞ ¼ vev tanh u; ð63Þ

as can be seen from equations Eqs. (38) and (39). Notice
that the kink is asymptotically constant, i.e., when u →
�∞ then hðuÞ → �vev. Thus, the kink case is connected
to both of our previously examined cases, constant and
nonconstant profiles.

1. Mapping with the Pöschl-Teller equation

Evaluating Eq. (58) at κ ¼ 1 yields

d2y
du2

− lðlþ 1Þ tanh2ðuÞy ¼ 0; ð64Þ

which can be written as

−
1

2

d2y
du2

−
lðlþ 1Þ

2
sech2ðuÞy ¼ −

lðlþ 1Þ
2

y: ð65Þ

This is a one-dimensional Schrödinger equation with
a Pöschl-Teller potential (see [86]). The solutions of
which are known to be Legendre functions of the form
Pν
l ðtanhðuÞÞ. However, just as Eq. (58) is not the most

general Lamé equation also Eq. (65) is not the most general
Pöschl-Teller equation. In this case, we are restricted by

ν2 ¼ lðlþ 1Þ: ð66Þ

Notice that as u → �∞ then tanhðuÞ → �1. This is
problematic for us as Legendre functions are generically
singular at the points ð−1; 1;∞Þ. In quantum mechanics
this issue is resolved by quantization conditions on l and ν.
These conditions guarantee that the Legendre functions
vanish at the boundary, as they are interpreted as wave
functions. However, under our current restriction we can
only employ one quantization condition. As a consequence,
solutions yðuÞ can be regular only at plus or minus infinity,
but not both.
From its definition in Eq. (53), we see that ΓðαÞ is

bounded from above, which also applies for yðuÞ. This is
incompatible with the Legendre functions in the general
solution of Eq. (65). To resolve this issue, we consider the
space-time cylinder as semi-infinite, meaning

0 < r < ∞; ð67Þ

where we fix the origin at the bound of yðuÞ. The solutions

yðuÞ ¼ P
ffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p
n ð− tanhuÞ; ð68Þ

all fulfill our desiderata whenever n is an integer.
It is interesting to note that when the Chern-Simons term

is included (see Sec. VI) it is natural to expect that only
semi-infinite cylinders are allowed since the Chern-Simons
coupling introduces exponential terms which decay in one
direction but not in the other. What is slightly surprising is
that a similar behavior is also present without the Chern-
Simons term. In a sense, in the limit in which the cylinder
has an infinite volume, the theory feels the presence of the
Chern-Simons term even if it is not included directly in the
action.

E. Non-Abelian magnetic flux

Now we discuss the resulting non-Abelian flux. First,
being in a cylinder, it is clear that we should require
periodic boundary conditions in the ϕ direction (with
period 2π) for the non-Abelian field strength and for the
energy-momentum tensor. As we mentioned before, the
ansatz in Eq. (20) automatically satisfies this condition for
p an integer number. One can check directly that the flux in
Eq. (5) for the configurations defined by the ansatz in
Eqs. (8)–(11) and (20) is given by

Ψ1
M ¼ Ψ2

M ¼ 0; Ψ3
M ¼

Z
drχðrÞ; ð69Þ

where

χðrÞ ¼ −2kpπ
sinðαÞðsin2ðαÞ þ cosðαÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ cos2ðαÞ

p
Þ

ðkþ cos2ðαÞÞ32 α0;

ð70Þ

and we have integrated in the coordinate ϕ and used the
relation λ ¼ λðαÞ in Eq. (24). It is important to note that the
non-Abelian flux is the same for all the configurations
constructed here, that is with and without a Higgs field.
Although in the Georgi-Glashow model the Higgs field h is
implicit in the solutions for the profile α [see for instance
Eq. (43)], the final expression for the non-Abelian flux does
not depend on h since the integration can be carried out in α
instead of the r coordinate. This is due to the fact that the
integrand that appears in the non-Abelian flux in Eq. (70)
has a global factor α0.
Now, considering the boundary conditions in Eq. (50),

the non-null non-Abelian magnetic flux turns out to be

Ψ3
M ¼ pπffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p ð2þ 2kþ k

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
logðkþ 1Þ − 2k

ffiffiffiffiffiffiffiffiffiffiffi
kþ 1

p
logð ffiffiffiffiffiffiffiffiffiffiffi

kþ 1
p þ 1ÞÞ:

Imposing the condition of a quantized magnetic flux, that is
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Ψ3
M ¼ np; with n ∈ Z; ð71Þ

we get to the following (first) allowed values of the k constant:

k1 ¼ 19.4003; k2 ¼ 2.62628; k3 ¼ 0.273648; k4 ¼ −0.42079; k5 ¼ −0.698148;

k6 ¼ −0.828956; k7 ¼ −0.897471; k8 ¼ −0.936029; k9 ¼ −0.958882:

Notice that in our convention [see Eqs. (1) through (4)] the
Yang-Mills coupling constant e, appears in the action and
not in front of commutators. In the alternative convention,
magnetic flux is not dimensionless and the equivalent of
Eq. (71) is a quantization in terms of 1=e.
With the set of values for k displayed above, we can now

plot some relevant physical quantities. In Fig. 2 we show
the α profile for all the cases when the Higgs field is
present. We can see that in all these cases, we are able to
obtain regular solutions for the boundary conditions in
Eq. (50) imposed by the condition of a nonvanishing
topological charge. In Fig. 3 we show the profile, the Γ
function, the energy density and the χ function in the non-
Abelian flux for the three cases in the Georgi-Glashow
model. We see that in all the cases the energy as well as the
non-Abelian flux are concentrated at the origin of the
cylinder. In Fig. 4 we show that finite density transitions
exist between the two configurations of finite height,
namely the constant Higgs case and the periodic case,
and this transition depends on the length of the tube in
which the condensate is confined. For large values of the
volume of the cylinder the energetically favored configu-
ration is the one with a constant Higgs profile, while, for

small volumes is the periodic case. Note that it makes sense
to compare the energy of these configurations since both
configurations have the same magnetic flux, as can be seen
from Eqs. (69) and (70).

FIG. 1. The positive and negative branches of λðαÞ in Eq. (24) are plotted for different values of k.

FIG. 2. The regular α profiles for the solutions with con-
stant Higgs, the kink case and the periodic case for the
boundary conditions in Eq. (50). Here we have considered
e ¼ γ ¼ vev ¼ 1, R ¼ L ¼ p ¼ 1, k ¼ 0.2736, and κ ¼ 1=2
for the periodic solution.
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V. SMALL FLUCTUATIONS AND STABILITY

In this section, we analyze the linearized Yang-Mills-
Higgs equation on the nonhomogeneous condensate con-
structed in the previous sections. Since the full stability
analysis of the nonhomogeneous condensates is extremely
complicated even from the numerical viewpoint (as one
should analyze a coupled system of twelve partial differ-
ential equations in a nontrivial background solution) we
consider here the simplest nontrivial perturbations which
are under some analytic control. It is worth emphasizing

that the linear stability analysis in the present section only
concerns the behavior of the analytic solutions constructed
in the previous sections under small perturbations.
Consequently, in the present section the term “stable”
actually means linearly stable. The situation should be
contrasted with BPS solutions which are stable also at
nonlinear level. This family of perturbations of the Yang-
Mills and Higgs profiles are

hðrÞ → hðrÞ þ ϵP1ðrÞ; ð72Þ

ΓðrÞ → ΓðrÞ þ ϵP2ðrÞ; ð73Þ

with ϵ ≪ 1. The fluctuation’s operator Ô corresponding to
the perturbations defined above is

Ô

�
P1

P2

�
¼
 

− d2P1

dr2 þ γR2ð3h2 − vev2ÞP1

− d2P2

dr2 þ e2R2h2P2 þ 2e2R2hΓP1

!
: ð74Þ

Therefore, a necessary condition for stability is that the
operator Ô should only possess non-negative eigenvalues.
Thus, we analyze the linear equations here below

−
d2P1

dr2
þ γR2ð3h2 − vev2ÞP1 ¼ EP1; ð75Þ

−
d2P2

dr2
þ e2R2h2P2 þ 2e2R2hΓP1 ¼ EP2; ð76Þ

FIG. 3. Behavior of αðrÞ and ΓðrÞ profiles as well as the energy density and the non-Abelian density flux for the solutions with
constant Higgs, the kink case and the periodic case. Here we have considered e ¼ γ ¼ vev ¼ 1, R ¼ L ¼ p ¼ 1, k ¼ 0.2736 and
κ ¼ 1=2 for the periodic solution.
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FIG. 4. Energy comparison between the solutions with finite
height. The length of the tube in which the condensate is confined
determines that for large values of the volume of the cylinder the
energetically favored configuration is the one with a constant
Higgs profile, while, for small volumes is the one with the Higgs
profile given by hðrÞ ¼ K0snðu; κÞ.
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and we discuss in which of the cases discussed above E is
non-negative. The proper boundary conditions in the r
coordinate for the perturbations P1 and P2 must be chosen
in such a way that the topological charge and the non-
Abelian magnetic flux must not change at order ϵ (other-
wise P1 and P2 would not be small perturbations).
Equation (76) shows that it is convenient to solve Eq. (75)
first.

A. Radial perturbations of the condensates with
constant Higgs profile

Let us begin by considering a constant Higgs profile h ¼
�vev in a tube of finite size. In this case, Eq. (75) becomes

P00
1 þ ω2

1P1 ¼ 0; ð77Þ

where

ω2
1 ¼ E − 2γR2vev2: ð78Þ

Indeed, if ω2
1 is not positive, then the perturbation P1 could

not satisfy periodic boundary conditions in r (on the other
hand, when P1 satisfies periodic boundary conditions, the
topological charge and the non-Abelian magnetic flux do

not change at order ϵ). Consequently, we must have
E > 2γR2vev2, so that the necessary condition for stability
discussed above is satisfied.
Now that we have established that radial perturbations of

the profile are harmonic, we move on to Eq. (76) which
requires we know both P1ðrÞ and ΓðrÞ. By proceeding as
above we find that

P00
2 þ ω2

2P2 ¼ FðrÞ; ð79Þ

which is the equation of an undamped driven harmonic
oscillator whose angular frequency is

ω2
2 ¼ E − e2R2vev2: ð80Þ

The driving force is partly described by P1, which is sinu-
soidal, and by Γ which for constant h ¼ �vev is expo-
nential; see Eq. (55). Concretely, the driving force is

FðrÞ ¼ e�eRðvevÞrðA cosðω1rÞ þ B sinðω1rÞÞ; ð81Þ

where A and B are fixed by the boundary conditions for Γ
and P1.
The general solution of Eq. (79) is

P2 ¼ C1 cosðω2rÞ þ C2 cosðω2rÞ þ
eeRhr½ðAγhR − Beω1Þ cosðω1rÞ þ ðBγhRþ Aeω1Þ sinðω1rÞ�

2hRðe2ω2
1 þ γ2R2h2Þ ; ð82Þ

where h ¼ �vev in this case. Notice that perturbations
never explode as the denominator of the particular solution
is always positive. By choosing boundary conditions for P2

such that vanishes at both ends of the tubes, we fix the
integration constants C1 and C2 in terms of A and B. This
choice guarantees that the charges do not change with the
perturbation.

B. Radial perturbations of the condensates with
nonconstant Higgs profile

When the Higgs profile is not constant then radial
perturbations become quite unmanageable. However, for
the semi-infinite kink case we mention the following.
Carrying out the change of variable in Eq. (39) allows
for Eq. (75) to be written as

−
d2p1

du2
þ 6κ2sn2ðu; κÞp1 ¼ Ẽp1; ð83Þ

where P1ðrðuÞÞ ¼ p1ðuÞ and

Ẽ ¼ κ2 þ 1

γR2ðvevÞ2 ½Eþ γR2ðvevÞ2�: ð84Þ

One can see that the perturbation is governed by a Lamé
equation with l ¼ 2, and whose general solution is given in
terms of Heun functions. For the semi-infinite kink case
(that is, setting κ ¼ 1), Eq. (83) becomes a Pöschl-Teller
equation:

−
d2p1

du2
− 6 sech2ðuÞp1 ¼

�
−4þ 2E

γR2ðvevÞ2
�
p1: ð85Þ

In this case, using known results on the Pöschl-Teller
equation [86] one can show that E ≥ 0, so that also in this
case the nonhomogeneous condensate is stable under the
perturbation defined here above.

VI. ANALYTIC NONHOMOGENEOUS
CONDENSATES IN THE YANG-MILLS-HIGGS-

CHERN-SIMONS THEORY

In previous sections, we have seen that Eq. (24) is
applicable for both constant and nonconstant Higgs pro-
files. Remarkably, when the Yang-Mills-Higgs action is
additionally coupled to Chern-Simons theory the equations
of motion are still compatible with our general approach, as
shown below.
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Also in this case, for the ansatz defined in Eqs. (8)–(12)
and (20) together with the relation between λ and α in
Eq. (24), the complete set of Yang-Mills-Higgs-Chern-
Simons field equations in Eqs. (3) and (4) are reduced to
just one equation for the soliton profile, that is

α00 þ
�
cot αþ 3 sin α cos α

cos2αþ k

�
α02

þ e2R2h2

k
cot αðcos2αþ kÞ − μRα0 ¼ 0; ð86Þ

while, the Higgs potential hðrÞ has the general solution
in Eq. (38).
As we did before, this equation can be simplified by

using the change in Eqs. (53) and (54) leading to the
generalization of Eq. (55):

Γ00 − ðe2R2h2ÞΓ − μRΓ0 ¼ 0: ð87Þ

As the Higgs profile h acquires its simplest form in terms
of the variable u, cf. Eq. (39), we make this change and
arrive at

d2y
du2

− lðlþ 1Þκ2sn2ðuÞy −m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p dy
du

¼ 0; ð88Þ

where m ¼ μ
vev

ffiffi
γ

p and lðlþ 1Þ ¼ 2e2
γ , as defined earlier. By

reparametrizing y as

yðuÞ ¼ e
m
2

ffiffiffiffiffiffiffiffi
1þκ2

p
uYðuÞ; ð89Þ

we see that YðuÞ is a Lamé function, as it satisfies

d2Y
du2

− lðlþ 1Þκ2sn2ðuÞY −
1

4
m2ð1þ κ2ÞY ¼ 0: ð90Þ

Moreover, when κ ¼ 1 we have a Pöschl-Teller equation

−
1

2

d2Y
du2

−
lðlþ 1Þ

2
sech2ðuÞY ¼ −

1

2

�
lðlþ 1Þ þ 1

2
m2

�
Y:

ð91Þ

We also remark that, similar to the case m ¼ 0, of previous
sections, desired solutions on a semi-infinite space-time
cylinder are obtained by integer values of l. Interestingly
enough, m can take arbitrary values. In other words,

yðuÞ ¼ e
mffiffi
2

p uP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þþm2=2

p
n ð− tanh uÞ; ð92Þ

where m is real but n is an integer and P is a Legendre
function. To the best of the authors’ knowledge, this is the
first family of analytic topologically nontrivial solutions of
nonhomogeneous condensates in the Yang-Mills-Higgs-
Chern-Simons theory. We analyze the physical properties

of these solutions in a forthcoming paper. Here, we only
remark that, due to the presence of the Chern-Simons term,
the factor e

mffiffi
2

p u (which appears in the solution here above) is
well-defined either on finite intervals or (if one is interested
in the infinite volume limit) when −∞ < u ≤ 0. Hence, in
the case in which the Chern-Simons coupling is included,
one can only have semi-infinite tubes.

VII. CONCLUSIONS

Using a nonspherical generalization of the usual
hedgehog ansatz, the first analytic examples of nonhomo-
geneous condensates, both in the (2þ 1)-dimensional
Georgi-Glashow model as well as in the Yang-Mills-
Higgs-Chern-Simons theory at finite density have been
constructed. These exact configurations live within a
cylinder which can have either finite height or can be
infinitely long on one side, being the maximum of the
energy density located at the origin of the tube. These
nonhomogeneous condensates possess a (novel) nontrivial
topological charge, in such a way that the condensates
cannot decay into the trivial vacuum. Such charge does not
coincide with the non-Abelian magnetic flux, which
usually plays the role of the topological charges in gauge
theories. Requiring the quantization of the non-Abelian
flux one of the free parameters characterizing the ansatz for
the non-Abelian gauge field can be fixed. We show that
depending on the length of the cylinder, finite density
transitions occur. In particular, for large values of L the
energetically favored configuration is the one with a
constant Higgs profile, while, for small values is the one
with the Higgs profile given by an elliptic function. Also,
we have derived some necessary conditions in order to have
stable condensates under radial perturbations. These sur-
prising results open the possibility to study the dynamics of
Quarks moving in these topologically nontrivial conden-
sates with analytic tools. We hope to come back on this
important issue in a future publication.
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APPENDIX: SOME USEFUL TENSORS

In this Appendix, we explicitly show some quantities
that help to clarify the construction of our analytic solutions
starting from the ansatz in Eqs. (6)–(12) and (20).
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First of all, the matrices U and φ are explicitly given by

U ¼
�

cosðαÞ ie−iΦ sinðαÞ
ieiΦ sinðαÞ cosðαÞ

�
;

φ ¼
�

0 ie−iΦhðrÞ
ieiΦhðrÞ 0

�
:

For the computation of relevant physical quantities, it is
convenient to define the following functions

f1ðrÞ ¼ −2 cosðαÞα0ðλ − 1Þλþ sinðαÞλ0;
f2ðrÞ ¼ 2 sinðαÞα0ðλ − 1Þλþ cosðαÞλ0;

and also

g1ðrÞ ¼ 2 sin2ðαÞλ − 1;

g2ðrÞ ¼ sinðαÞλ:

From the above, one can check that the nonvanishing
components of the non-Abelian field strength are

Ftr ¼ p

�
−if1ðrÞ −e−iΦf2ðrÞ
eiΦf2ðrÞ if1ðrÞ

�
sinðαÞ; Frϕ ¼ LFtr:

The non-Abelian character of our solutions is made
manifest by non-null commutators that appear in the field
equations in Eqs. (3) and (4). Indeed, by defining the
following tensors

Pμ ¼ ½Aν; Fμν�;

Jμ ¼ ½φ; Dμφ�;

a direct calculation shows that

Pt ¼ 2p
L

�
−if2ðrÞ e−iΦf1ðrÞ
−eiΦf1ðrÞ if2ðrÞ

�
sinðαÞα0;

Pϕ ¼ 1

L
Pt;

and

Jt ¼ 2p
L

�
ig1ðrÞ e−iΦg2ðrÞ

−eiΦg2ðrÞ ig1ðrÞ

�
h2; Jϕ ¼ 1

L
Jt:

Note that the tensors Pμ and Jμ are zero along the radial
components.
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