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In this work, we use the framework of effective field theory to couple Einstein’s gravity to quantum
electrodynamics (QED) and determine the gravitational corrections to the two-loop beta function of the electric
chargeinarbitraryelectrodynamics(Lorentz-like)andarbitrary(deDonder–like)gravitationalgauges.Ourresults
indicate that gravitational corrections do not alter the running behavior of the electric charge; on the contrary, we
observe that it gives a positive contribution to the beta function, making the electric charge grow even faster.
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I. INTRODUCTION

Even though the classical theory of the gravitational
field is well established by Einstein’s theory of general
relativity, the quantum description of gravity is still an open
problem. Several approaches concur to describe gravity at
the quantum level. As nonperturbative approaches, we can
remark asymptotic safety [1], causal dynamical triangu-
lations [2], lattice quantum gravity [3], and loop quantum
gravity [4] besides superstrings as a possible unifying
theory of all forces. On the other side, perturbative
quantization of Einstein’s theory of gravity, for small
fluctuations, around a flat metric leads to a nonrenormaliz-
able quantum field theory [5–7].
However, the potential harm of nonrenormalizability

in the perturbative approach can be contoured in the
effective field theory (EFT) framework, where there is
an unambiguous way to define a well-behaved and reliable
quantum theory of gravitation, if only we agree to restrict
to processes of low energy compared to the Planck

scale [8,9]. This EFTapproach has been applied to compute
quantum gravitational corrections to several quantities
such as Newtonian and Coulomb potentials [10–12], the
Friedmann-Lemaître-Robertson-Walker metric [13], bend-
ing of light by a massive source [14], and others.
Although the effective field theory of gravitation is

perfectly well defined as a quantum field theory, some
subtleties arise from its nonrenormalizability, such as the use
of the renormalization group equations [15,16], as illustrated
by the controversy involving the gravitational corrections to
the beta function of gauge theories. In 2006, Robinson and
Wilczek announced their conclusion that gravity contributes
with a negative term to the beta function of the gauge
coupling constant, opening the possibility that the coupling
to quantum gravity could make gauge theories asymptoti-
cally free [17]. This result was soon contested in Ref. [18],
where it was shown that the claimed gravitational correction
is gauge dependent, and a lot of subsequent research on the
subject followed with varying conclusions [12,19–27].
In particular, it was shown through the computation of

scattering processes at one loop that quantum gravitational
corrections do not alter the running behavior of the electric
charge in the massless Einstein-scalar quantum electrody-
namics (QED) [28], and the same behavior was observed in
the massive case [29].
In this work, we couple gravity to Abelian gauge fields

and matter, both fermionic and scalar, in order to compute
the gravitational corrections to the beta function of the
electric charge at two loops. We start with fermionic QED
in Sec. II, where we discuss the results for one- and two-
loop (Secs. II A and II B) contributions. In Sec. III, we
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compute the one- and two-loop beta function of the electric
charge in the scalar QED. In Sec. IV, we present some final
remarks.
Throughout this paper, we use natural units c ¼ ℏ ¼ 1.

II. QUANTUM ELECTRODYNAMICS COUPLED
TO GRAVITY

The Lagrangian describing gravity coupled to QED is

L ¼ ffiffiffiffiffiffi

−g
p �

2

κ2
R −

1

4
gμνgαβFμαFνβ þ

i
2
½ψ̄γμð∇⃗μ − ieAμÞψ

− ψ̄ð∇⃖μ þ ieAμÞγμψ � −mψ̄ψ

�

þ LHO þ LGF þ LCT;

ð1Þ
where the Dirac matrices are contracted with the vierbein

(γμ ≡ γaeμa), ∇⃗μψ ¼ ð∂μ þ iωμÞψ , ψ̄∇⃖μ ¼ ð∂μψ̄ − iψ̄ωμÞ,
ωμ ¼ 1

4
σab½eνað∂μebν − ∂νebμÞ þ 1

2
eρaeσbð∂σecρ − ∂ρecσÞecμ−

ða ↔ bÞ� is the spin connection with σab ¼ i½γa; γb�=2, e is
the electric charge, and κ is the gravitational coupling
(κ2 ¼ 32πG ¼ 32π=M2

P), with MP being the Planck mass
and G the Newtonian gravitational constant.
An observation is in order. Even if we go up to two loops,

we restrict the calculations to the exchange of at most one
graviton, which already involves a lot of Feynman graphs.
This limitation also corresponds to restraining to study
processes up to the order of E2 in the energy expansion of
the EFT and to consider higher-order operators (HOs) up to
the order of 6, in the Lagrangian. Two-graviton exchange
would mean to calculate a lot more graphs and the
introduction of several HOs of the order of 8 or more.
Besides that, when considering two-graviton exchange, we
will end up with contributions proportional to κ4, which are
much smaller than the one-graviton exchange approxima-
tion; therefore, we neglect it in this work. We will postpone
that to future studies. Expanding gμν around the flat metric
as gμν ¼ ημν þ κhμν, with ημν ¼ ðþ;−;−;−Þ, we have [30]

L ¼ Lh þ Lf þ LA þ LHO þ LGF þ LCT; ð2Þ
where

Lh ¼ −
1

4
∂μh∂μhþ 1

2
∂μhσν∂μhσν; ð3aÞ

Lf ¼ i
2
ðψ̄γμ∂μψ − ∂μψ̄γ

μψÞ −mψ̄ψ þ eψ̄γμψAμ

þ κ

2
h
�

i
2
ðψ̄γμ∂μψ − ∂μψ̄γ

μψÞ −mψ̄ψ

�

−
κ

4
hμνðψ̄γμ∂νψ − ∂νψ̄γμψÞ

−
1

2
κeðhημν − hμνÞψ̄γμψAν; ð3bÞ

LA ¼ −
1

4
FμνFμν þ

κ

2
hτνFμνFμτ −

κ

8
hFμνFμν; ð3cÞ

LHO ¼ iψ̄
□

M2
P
ðẽ1=∂ − ẽ2mÞψ −

ẽ3
4
Fμν □

M2
P
Fμν

þ iẽ4
M2

P
ψ̄γμ∂νψFμν; ð3dÞ

LGF ¼
1

ξh

�

∂νhμν −
1

2
∂μh

�

2

−
1

2ξA
ð∂μAμÞ2; ð3eÞ

where h ¼ hμμ; Fμν is the usual electromagnetic field
strength, σμν¼ i

2
½γμ;γν�, ξh is the gravitational gauge-fixing

parameter, ξA is the electromagnetic gauge-fixing param-
eter, and ẽi are dimensionless coupling constants related to
the higher (sixth) order operators, needed at our approx-
imations. LCT is the Lagrangian of counterterms. They are
monomials of the same exact form as that of Eq. (3)
multiplied by convenient Z factors, to be properly chosen to
absorb the divergencies obtained in the calculations. We did
not write the Faddeev-Popov Lagrangian (nor the corre-
sponding ghost propagators, below). The electromagnetic
ghosts completely decouple, as known, for Abelian gauge
theories, and the gravitational ghosts are not needed in the
order that we are working (only one-graviton exchange).
From the quadratic part of the Lagrangian (2), we find

the following propagators (in an arbitrary gauge):

hTAμðpÞAνð−pÞi ¼ i
p2

�

ημν − ð1 − ξAÞ
pμpν

p2

�

; ð4aÞ

hTψðpÞψ̄ð−pÞi ¼ i
=p −m
p2 −m2

; ð4bÞ

hThαβðpÞhμνð−pÞi ¼ i
p2

�

Pαβμν − ð1 − ξhÞ
Qαβμν

p2

�

; ð4cÞ

where the projectors Pαβμν and Qαβμν are given by

Pαβμν ¼ 1

2
ðηαμηβν þ ηανηβμ − ηαβημνÞ;

Qαβμν ¼ ðηαμpβpν þ ηανpβpμ þ ηβμpαpν þ ηβνpαpμÞ:
ð5Þ

In the renormalized Lagrangian, we followed the usual
notation for the fields renormalizations: ψ0 ¼ Z1=2

2 ψ and

A0μ ¼ Z1=2
3 Aμ, with the renormalizing factors expanded in

loops, as

Zi ¼ 1þ Zð1Þ
i þ Zð2Þ

i þ � � � : ð6Þ
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The relation between the bare and renormalized electric
charges is given by

e0 ¼ μ2ϵ
Z1

Z2Z
1=2
3

e; ð7Þ

where ZðlÞ
1 is the counterterm in l loops, for the interaction

vertex eψ̄=Aψ , while μ is a mass scale introduced by the
dimensional regularization with D ¼ 4 − 2ϵ.

A. One-loop renormalization group functions

In this section, we will calculate the one-loop relevant Z
factors for the renormalization of the electric charge in
an arbitrary gauge, so we will consider the one-loop self-
energy diagrams in Figs. 1 and 2. To do this, we use a set of
Mathematica packages [31–33], whose files can be found
in Supplemental Material [34].
The corresponding expression for the electron self-

energy (Fig. 1) is

−iΣð1ÞðpÞ ¼ ð32ξAe2þ 37κ2m2− 29ξhκ
2m2Þ=p− 2mð16e2ðξAþ 3Þ− κ2m2ð19ξh − 23ÞÞ

512π2ϵ
þp2κ2=pð15ξh− 19Þþ 12mð3− ξhÞ

128π2ϵ

þZð1Þ
2 =p−mZð1Þ

m þ p2

M2
P
ðZð1Þ

ẽ1
=p−mZð1Þ

ẽ2
Þþ finite: ð8Þ

The first term of the above equation is renormalized by

the counterterms Zð1Þ
2 and Zð1Þ

m , while the second term is

renormalized by the higher derivative operators Zð1Þ
ẽ1

and

Zð1Þ
ẽ2

(they are not needed for our conclusions and we will
not write them, below). Imposing finiteness to ΣðpÞ, we
find the following one-loop counterterms:

Zð1Þ
2 ¼ −

e2ξA
16π2ϵ

−
ð37 − 29ξhÞκ2m2

512π2ϵ
; ð9aÞ

Zð1Þ
m ¼ −

3e2m
16π2ϵ

−
e2mξA
16π2ϵ

−
23κ2m3

256π2ϵ
þ 19κ2m3ξh

256π2ϵ
; ð9bÞ

where we used the minimal subtraction scheme (MS) [35].
For the photon self-energy, straight calculation of the

graphs in Fig. 2 results in

Πð1Þ
μν ðpÞ ¼ ðp2ημν − pμpνÞΠð1Þðp2Þ; ð10Þ

where

Πð1Þðp2Þ ¼ Zð1Þ
3 þ Z̃ð1Þ

3

p2

M2
P
þ ð8e2 − κ2p2ð2 − 3ξhÞÞ

96π2ϵ

þ finite: ð11Þ

As can be seen, Πð1Þ
μν ðpÞ preserves the Lorentz invariance

and the gauge symmetry, that is expressed by the Ward

identity pμΠð1Þ
μν ðpÞ ¼ 0. From the expression for Πð1Þðp2Þ,

we can see that Z3 is the renormalizing factor for the
Maxwell term, while Z̃3 renormalizes the higher derivative
term Fμν

□Fμν. Thus, Z3 is the relevant counterterm for the
beta function of the electric charge.
Imposing finiteness of Πð1Þðp2Þ order by order in powers

of p2, we find (in the MS scheme of renormalization)

Zð1Þ
3 ¼ −

e2

12π2ϵ
; ð12Þ

Z̃ð1Þ
3 ¼ κ2M2

Pð2 − 3ξhÞ
96π2ϵ

: ð13Þ

Note that Zð1Þ
3 is independent of the gravitational

coupling κ. Let us go to the vertex function Γμ. The
contributions to it, in one-loop order, are depicted in Fig. 3.
The resulting expression is

−iΓð1Þ
μ ðpÞ ¼ −eγμ

�

Zð1Þ
1 þ e2ξA

16π2ϵ
þ κ2m2ð37 − 29ξhÞ

512π2ϵ

�

− 2iẽZ̃ð1Þ
1 σμνpν þOðpÞ þ finite: ð14Þ

FIG. 1. Feynman diagrams for the electron self-energy. Con-
tinuous, wavy, and wiggly lines represent the electron, photon,
and graviton propagators, respectively.

FIG. 2. Feynman diagrams for the photon self-energy.
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Z̃ð1Þ
1 absorbs the terms linear in pμ (not shown in the

above expression). Imposing finiteness through the MS
scheme, we find

Zð1Þ
1 ¼ −

e2ξA
16π2ϵ

−
ð37 − 29ξhÞκ2m2

512π2ϵ
: ð15Þ

Note that Zð1Þ
1 ¼ Zð1Þ

2 [see Eq. (9a)], confirming the Ward
identity: pμΓμðpÞ ¼ ΣðqÞ − Σðpþ qÞ (see, for instance,
Ref. [36]), required by gauge symmetry. This result shows
that, up to the order of one loop and κ2, gravitational
corrections do not spoil the gauge invariance.
The beta function of the electric charge can now be

obtained from the relation between bare and renormalized

electric charge [Eq. (7)]. Observe that Zð1Þ
1 and Zð1Þ

2 depend

on κ, but, since Zð1Þ
1 ¼ Zð1Þ

2 , the renormalization of

e0 ¼ μ2ϵZ−1=2
3 e, is independent of κ and βðeÞ at the one-

loop order results in

βð1ÞðeÞ ¼ μ
de
dμ

¼ e3

12π2
; ð16Þ

which is independent of κ, just as in our previous result for
the Einstein-scalar QED in one loop [29].

B. Two-loop corrections of the electric charge

In order to compute the two-loop corrections to the beta
function of the electric charge, we have to evaluate the

two-loop corrections to the photon self-energyΠð2Þ
μν , besides

the two-loop scattering amplitude Γð2Þ
μ and the electron

self-energy Σð2Þ. The diagrams contributing to Πð2Þ
μν are

depicted in Fig. 4. The Feynman integrals were calculated
using the set of computational packages given in
Refs. [31–33,37].
We already used this computational package to calculate

the Lorentz tensor integrals in one loop. In two loops, it
permits one to calculate only Lorentz scalar integrals.

So, for each Feynman graph i contributing to Πð2Þμν
i ðpÞ,

we write the general Lorentz symmetric form:

Πð2Þμν
i ðpÞ ¼ ημνp2Πð2Þ

i ðp2Þ þ pμpνΠ̃ð2Þ
i ðp2Þ; ð17Þ

from which Πð2Þ
i ðp2Þ and Π̃ð2Þ

i ðp2Þ can be obtained through
the projections

Πð2Þ
i ¼ 1

ðD − 1Þp2

�

ημν −
pμpν

p2

�

Πð2Þμν
i ;

Π̃ð2Þ
i ¼ −

1

ðD − 1Þp2

�

ημν −D
pμpν

p2

�

Πð2Þμν
i :

As defined before, D ¼ 4 − 2ϵ. After calculating Πð2Þ
i and

Π̃ð2Þ
i for the several diagrams and adding the results, we

found that their sum satisfies Πð2Þðp2Þ ¼ −Π̃ð2Þðp2Þ. This
result implies that the two-loop photon polarization tensor
has the transversal form, compatible with the Ward identity

pμΠð2Þ
μν ¼ 0 and the preservation of the gauge symmetry.

In those calculations, we reduced the scalar two-loop
integrals using the Tarasov algorithm [38], with the help of
the computational package TARCER [37]. The resulting
scalar two-loop integrals can be found in Ref. [39]. Finally,
we evaluated the integrals, keeping only the UV-divergent
part of Πð2Þðp2 ¼ 0Þ.
The detailed file with the calculations can be found in

Supplemental Material [34], and the resulting expressions
for the UV-divergent part is given by

−iΠð2ÞðpÞ ¼ 3e4

128π4ϵ
−
5e2κ2m2

768π4ϵ
þOðp2Þ: ð18Þ

Corroborating the gauge independence of this result, we see
that this expression does not depend on the gauge param-
eters ξA and ξh. This result provides the renormalization
of the Maxwell term. It also contributes for the two-loop

FIG. 3. One-loop corrections to the ψ̄γμψAμ vertex function.
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correction to the beta function of the electric charge,

through the renormalization constant Zð2Þ
3 [see Eq. (7)].

To get the β function of e in two loops, we would also

need Zð2Þ
2 and Zð2Þ

1 , which means to calculate the electron
self-energy Σð2Þ and the electron-photon scattering ampli-

tude Γð2Þ
μ in two loops. In the previous section, we

calculated these amplitudes in one loop, in an arbitrary
gauge, for both electromagnetism and gravitation, with the

result that Zð1Þ
1 ¼ Zð1Þ

2 . From now on, we will assume

(without proving) that the same result Zð2Þ
1 ¼ Zð2Þ

2 remains
true in two loops. This means that the relation between e0
and e remains given by e0 ¼ μ2ϵZ−1=2

3 e, in two loops.

Let us determine Zð2Þ
3 . The topologies of the counterterm

diagrams are shown in Fig. 5, and the corresponding
expression up to the order of e4 is given by

−iΠCT ¼ −Zð2Þ
3 þ e2

6π2
ðZð1Þ

m − Zð1Þ
1 Þ

¼ −Zð2Þ
3 −

e4

32π4ϵ
þOðp2Þ; ð19Þ

where Zð2Þ
3 is the two-loop order counterterm.

The divergent part of the two-loop photon self-energy

has to be canceled by the counterterm Zð2Þ
3 , so we write

−iΠUVðpÞ ¼ −iΠCTðpÞ − iΠ2ðpÞ

¼ −Zð2Þ
3 −

e4

128π4ϵ
−
5e2κ2m2

768π4ϵ
þOðp2Þ ¼ 0:

ð20Þ

Therefore, the renormalizing factor for the gauge field
Z3, at two-loop order, is given by

Z3 ¼ Zð0Þ
3 þ Zð1Þ

3 þ Zð2Þ
3 þ � � �

¼ 1 −
e2

12π2ϵ
−

e4

128π4ϵ
−
5e2κ2m2

768π4ϵ
þ � � � ; ð21Þ

where we have used Eq. (12). Notice that, in the absence of
gravity (κ → 0), our result agrees with previous calcula-
tions found in the literature (see, for instance, [40]).
The corrections up to two loops and up to the order of κ2

to the β function of the electric charge can, thus, be cast as

βðeÞ ¼ μ
δe
δμ

¼ e3

12π2
þ e5

128π4
þ 5e3κ2m2

768π4
ð22Þ

or, in terms of the fine-structure constant α ¼ e2=4π,

βðαÞ ¼ βðeÞ dα
de

¼ 2α2

3π

�

1þ 5

2π

m2

M2
P

�

þ α3

4π2
; ð23ÞFIG. 5. Topologies of the diagrams of counterterms in the

Einstein-QED model.

FIG. 4. Two-loop corrections to the photon self-energy.
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where MP is the Planck mass. Since MP≈1.22×1019GeV
and the mass of the electron is m ≈ 0.51 MeV, the
gravitational correction to the beta function at α2 order
should be of the order of m2

M2
P
∼ 10−45. As we see,

even though βðeÞ becomes dependent on κ through the
two-loop diagrams, the gravitational corrections do not
qualitatively alter the behavior of the running of the electric
charge.
In the next section, we will compute the two-loop beta

function of the electric charge, in scalar QED, including
gravitational corrections up to the order of κ2, and show that
it does not qualitatively alter its usual behavior.

III. SCALAR ELECTRODYNAMICS COUPLED
TO GRAVITY

We now consider the model described by

L ¼ ffiffiffiffiffiffi

−g
p �

2

κ2
R −

1

4
gμνgαβFμαFνβ − gμνðDμϕÞ†Dνϕ

−m2ϕ†ϕ −
λ

4
ðϕ†ϕÞ2

�

þ LHO þ LGF þ LCT; ð24Þ

where Dμ ¼ ∂μ − ieAμ is the covariant derivative and,
as is well known, we have the additional λðϕ†ϕÞ2 self-
interaction of the scalar field, required by renormalization.
As done in the last section, we will expand the metric

around the flat metric as gμν ¼ ημν þ κhμν. By doing so,
we obtain [30]

L ¼ Lh þ Ls þ LA þ LHO þ LGF þ LCT; ð25Þ

where the parts Lh, LA, and LGF are given by Eqs. (3a),
(3c), and (3e), respectively, and

Ls¼ðDμϕÞ†Dμϕ−m2ðϕ†ϕÞ−λ

4
ðϕ†ϕÞ2−κhμνðDμϕÞ†Dνϕ

þκ

2
h

�

ðDμϕÞ†Dμϕ−m2ϕ†ϕ−
λ

4
ðϕ†ϕÞ2

�

; ð26aÞ

LHO ¼ λ̃1
M2

P
½Reðϕ�∂μϕÞ�2

þ λ̃2
M2

P
½Imðϕ�∂μϕÞ�2 −

ẽ3
4
Fμν □

M2
P
Fμν; ð26bÞ

where we have used the same conventions as the last
section.
The propagators of the photon and the graviton are given

by Eq. (4), and the scalar propagator is given by

hTϕðpÞϕ†ð−pÞi ¼ i
p2 −m2

: ð27Þ

The relations between bare and renormalized coupling
constants are given by

e0 ¼ μ2ϵ
Z1

Z2Z
1=2
3

e; ð28Þ

λ0 ¼ μ2ϵ
Zλ

Z2
2

λ; ð29Þ

where Z1 and Z2 are, respectively, the renormalization
factors for the interaction term ieAμðϕ†∂μϕ − ϕ∂μϕ

†Þ and
the scalar field while Zλ is the counterterm for the scalar
self-interaction.
We now proceed to discuss the one- and two-loop

corrections to the scalar and photon self-energies in order
to compute the relevant Z factors.

A. One-loop renormalization group functions

Let us start with the one-loop scalar self-energy (Fig. 6).
The corresponding expression is given by

ΣðpÞ ¼ m2ðλ − e2ξA − κ2m2ð2 − ξhÞÞ
16π2ϵ

−
p2ðe2ð3 − ξAÞ − κ2m2ð2 − ξhÞÞ

16π2ϵ

þ Zð1Þ
2 p2 − Zð1Þ

m m2 þ HO terms: ð30Þ

Therefore, imposing finiteness through the MS, we have

Zð1Þ
2 ¼ e2ð3 − ξAÞ − κ2m2ð2 − ξhÞ

16π2ϵ
; ð31aÞ

Zð1Þ
m ¼ λ − e2ξA − κ2m2ð2 − ξhÞ

16π2ϵ
: ð31bÞ

For the one-loop photon self-energy (Fig. 7), we found
the expression [29]

−iΠμνðpÞ ¼ −ðp2ημν − pμpνÞ
�

Zð1Þ
3 þ Z̃ð1Þ

3

p2

M2
P
þ e2

48π2ϵ

þ κ2p2ð2 − 3ξhÞ
96π2ϵ

þ finite

�

: ð32Þ

Imposing finiteness, the counterterms can be cast as

Zð1Þ
3 ¼ −

e2

48π2ϵ
; ð33Þ
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Z̃ð1Þ
3 ¼ −

κ2M2
Pð2 − 3ξhÞ
96π2ϵ

; ð34Þ

where Zð1Þ
3 is the Maxwell counterterm and Z̃ð1Þ

3 is a
counterterm that renormalizes the high-order derivative
term Fμν

□Fμν.
Finally, we compute the three-point function diagrams

depicted in Fig. 8. We obtain the following expression:

−iΓμ ¼ eðpμ
1 − 2pμ

2Þ
�

Zð1Þ
1 þ e2ðξA − 3Þ− κ2m2ξhþ 2κ2m2

16π2ϵ

�

þ finite: ð35Þ

Then, imposing finiteness, we find

Zð1Þ
1 ¼ e2ð3 − ξAÞ − κ2m2ð2 − ξhÞ

16π2ϵ
: ð36Þ

From the equation above, we can see that Zð1Þ
1 ¼ Zð1Þ

2 ,
verifying the Ward identity. Substituting this result in

Eq. (28), we get e0 ¼ μ2ϵZ−1=2
3 e, from which the βðeÞ at

one-loop order results in

βðeÞ ¼ μ
de
dμ

¼ e3

48π2
; ð37Þ

which is independent of κ [29]. It is worth to mention that
we also have no gravitational contribution of the order of κ2

for the renormalization of Maxwell’s term at the one-loop
order [29].

B. Two-loop beta function of the electric charge

In order to compute the gravitational corrections to
the two-loop beta function of the electric charge in the
Einstein-scalar QED, we have to evaluate the two-loop
photon self-energy. Here again, all the results are in
arbitrary electromagnetic and gravitational gauges. The
topologies of the graphs contributing to the process are
depicted in Fig. 9. From these topologies, we construct
40 diagrams. The detailed calculations can be found in
Supplemental Material [34]. The resulting expression for
the UV-divergent part is given by

−iΠ2ðpÞ ¼ −
e4

256π4ϵ
−

e2λ
384π4ϵ

−
e2κ2m2

256π4ϵ
þOðp2Þ: ð38Þ

In Fig. 10, we show the topologies of counterterm
diagrams. The resulting expression up to the order of e4 is

FIG. 7. The one-loop photon polarization tensor in the scalar
QED coupled to gravity.

FIG. 6. Self-energy of the scalar field. Dashed, wavy, and wiggly lines represent the scalar field, photon, and graviton propagators,
respectively.

FIG. 8. One-loop corrections to the jμAμ vertex function in the scalar QED.
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−iΠCT ¼ −Zð2Þ
3 þ e2

48π2
ðZð1Þ

m − Zð1Þ
1 Þ

¼ −Zð2Þ
3 þ 2e2λ − 3e4

768π4ϵ
þOðp2Þ; ð39Þ

where Zð2Þ
3 is the two-loop order counterterm.

The vanishing of the divergent part of the two-loop
photon self-energy,

−iΠUVðpÞ ¼ −iΠCTðpÞ − iΠ2ðpÞ

¼ −Zð2Þ
3 −

e4

128π4ϵ
−
e2κ2m2

256π4ϵ
þOðp2Þ ¼ 0;

ð40Þ

together with Eq. (33), gives us

Z3 ¼ 1þ Zð1Þ
3 þ Zð2Þ

3 þ � � �

¼ 1 −
e2

48π2ϵ
−

e4

128π4ϵ
−
e2κ2m2

256π4ϵ
þ � � � : ð41Þ

In Eqs. (31a) and (36), we explicitly verified that, as in

the spinorial QED, Zð1Þ
1 ¼ Zð1Þ

2 . From Eq. (28), assuming,

as we did in the spinorial QED, that Zð2Þ
1 ¼ Zð2Þ

2 , the
gravitational correction to the two-loop beta function of
the electric charge up to the order of κ2 can be calculated.
The result is

βðeÞ ¼ e3

48π2
þ e5

128π4
þ e3κ2m2

256π4
ð42Þ

or, in terms of fine-structure constant,

βðαÞ ¼ α2

6π

�

1þ 6

π

m2

M2
P

�

þ α3

4π2
: ð43Þ

It is easy to see that, just as in the fermionic QED,
although there is a nonzero gravitational contribution,
it does not change the sign of the beta function
and, therefore, does not qualitatively alter the
behavior of the running of the electric charge in the scalar
QED.

IV. FINAL REMARKS

In summary, we have computed the gravitational
corrections to the two-loop beta function of the electric
charge in QED and scalar QED, up to two loops,
restricted to the order of κ2, i.e., considering processes
involving at most one-graviton exchange. We have shown
that, even though the beta function of the electric charge
receives a gravitational correction at two-loop order, this
gravitational correction does not alter its qualitative
behavior.
Functional renormalization group methods have been

used to study the gravitational interaction in the presence
of Abelian fields [41–43]. In Ref. [43], the authors of the
article used this approach to obtain the beta function of the
gauge coupling as

βðeÞ ¼ e3NF

24π2
þ

�

−
5Ĝ

9πð1 − 2Λ̂Þ þ
5Ĝ

18πð1 − 2Λ̂Þ2
�

e;

ð44Þ

where NF is the number of fermions and Ĝ and Λ̂ are the
dimensionless Newton’s gravitational constant and the
dimensionless cosmological constant, respectively. These

FIG. 9. Topologies of the two-loop corrections to the photon self-energy in Einstein-scalar QED.

FIG. 10. Topologies of the diagrams of counterterms in the
Einstein-scalar-QED model.
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gravitational dimensionless parameters are defined from
the ordinary ones, G and Λ, as Ĝ ¼ k2G and Λ̂ ¼ k4Λ,
where k is the functional renormalization group momentum
scale. This rescaling of Newton’s constant seems to be
responsible for the gravitational correction showing up in a
lower order in α. A deeper study is needed to elucidate the
relationship between these two approaches. This will be a
task for an upcoming work.
Previous works have indicated that the presence of

another dimensionful parameter, the cosmological constant
]20 ], through the dimensionless combination κ2Λ, might

render a negative new term to the beta function of the

electric charge. Our tools can be modified to include the
cosmological constant in the calculations, and we plan to
pursue it in future investigation.

ACKNOWLEDGMENTS

The authors thank M. Gomes for the useful comments.
A. J. S. is partially supported by Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under
Project No. 306926/2017-2. H. S. is partially supported by
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES).

[1] R. Percacci, arXiv:0709.3851.
[2] R. Loll, Classical Quant. Grav. 37, 013002 (2020).
[3] H.W. Hamber, Gen. Relativ. Gravit. 41, 817 (2009).
[4] C. Rovelli, Living Rev. Relativity 1, 1 (1998).
[5] G. ’t Hooft and M. J. G. Veltman, Ann. Inst. Henri Poincaré,
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