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Heat always flows from hotter to a colder temperature until thermal equilibrium is finally restored in
agreement with the usual (zeroth, first, and second) laws of thermodynamics. However, Tolman and
Ehrenfest demonstrated that the relation between inertia and weight uniting all forms of energy in the
framework of general relativity implies that the standard equilibrium condition is violated in order to
maintain the validity of the first and second law of thermodynamics. Here we demonstrate that the thermal
equilibrium condition for a static self-gravitating fluid, besides being violated, is also heavily dependent on
the underlying spacetime geometry (whether Riemannian or non-Riemannian). As a particular example,
a new equilibrium condition is deduced for a large class of Weyl and fðRÞ type gravity theories. Such
results suggest that experiments based on the foundations of the heat theory (thermal sector) may also be
used for confronting gravity theories and prospect the intrinsic geometric nature of the spacetime structure.
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I. INTRODUCTION

In 1930, Tolman [1], and Tolman and Ehrenfest [2]
argued that heat, as any other source of energy, would be
subjected to gravity, and, as a result, a new thermogravita-
tional effect absent in the classical thermodynamics
was derived for a self-gravitating fluid described by the
general relativity. By assuming a static fluid configuration
described by the line element (in our units c ¼ 1)

ds2 ≡ gαβdxαdxβ ¼ g00dt2 − gijdxidxj; ð1Þ

where all the gαβðxiÞ are independent of time but depend on
the spatial coordinates xi (i ¼ 1, 2, 3), they obtained an
extended thermal equilibrium condition, sometimes dubbed
Tolman-Ehrenfest (TE) law:

∂i lnT ¼ −∂i ln
ffiffiffiffiffiffi
g00

p
⇔ T

ffiffiffiffiffiffi
g00

p ¼ T̃ ¼ const; ð2Þ

where ∂i ≡ ∂=∂xi and T is the temperature measured at
different positions by local observers at rest in the single-
fluid system. This temperature T is the physical funda-
mental quantity that we mean by temperature at a given
point of the medium.
The most striking feature of such a relation is that

the proper temperature varies from point to point within the
self-gravitating fluid, a condition clearly violating the

so-called “zeroth” law of thermodynamics. This happens
even assuming the energy conservation (first law) and also
that the second law is strictly obeyed since the heat flow is
absent [3,4].
In 1949, by assuming the validity of the TE law, it was

proved by Klein [5] that a similar relation is also valid for
the chemical potential μ, namely:

∂i ln μ ¼ −∂i ln
ffiffiffiffiffiffi
g00

p
⇔ μ

ffiffiffiffiffiffi
g00

p ¼ const: ð3Þ

In the literature, Eqs. (2) and (3) are thought as being
independent relations, and, as such, were critically dis-
cussed by many authors based on different considerations
[6–10].
Nevertheless, based only on thermodynamics and gen-

eral relativity theory (GRT), it was recently claimed that the
original Tolman-Ehrenfest and Klein laws are not inde-
pendent [11]. For the perfect fluid (source of curvature), it
was found that the temperature, its chemical potential, and
the metric coefficient g00ðxiÞ are combined in such a way
that a unique general relation uniting such quantities is
obeyed

∂i lnðT
ffiffiffiffiffiffi
g00

p Þ þ μ

Tσ
∂i lnðμ

ffiffiffiffiffiffi
g00

p Þ ¼ 0; ð4Þ

where σ is the specific entropy (per particle).
In the above expression, all local quantities depend only

on the spatial position. This relation uniting T, μ, and g00
holds regardless of the equation of state satisfied by the
medium and also is fully independent of the Einstein field
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equations. Henceforth, the above expression will be
referred to as Tolman-Ehrenfest-Klein (TEK) law. It means
that the original TE law (2), as deduced in GRT, is valid
only if the Klein law μ

ffiffiffiffiffiffi
g00

p ¼ const is obeyed. In par-
ticular, it remains valid for μ ¼ 0. Conversely, Klein’s
relation (3) is also recovered when the TE law is assumed.
However, the laws are not independent in the general case.
Although independent of the Einstein field equations, it

is worth noticing that TEK type laws may also depend on
the underlying theory of gravity. This is an interesting
connection since the geometrical settings of Einstein’s
theory of gravitation is completely based on Riemannian
geometry and further developments of GRT gave rise to
new geometrical (non-Riemannian) spacetime structures
for describing gravitational phenomena [12]. Hence, it
seems natural to investigate whether the thermogravita-
tional equilibrium condition depends on the spacetime
sctructure.
In this concern, it is worth noticing that there has been a

renewed interest in the Weyl geometry [13], mainly
due to the possibility of incorporating local conformal
symmetry—also known as Weyl symmetry—into funda-
mental physics aiming to recast the standard model of
particle physics plus gravity into a locally gauge invariant
theory. This is done by adding new fields and introducing
compensating gauge symmetries such that all couplings are
dimensionless [14–16]. A natural framework in which such
scale-invariance is realized is given by Weyl geometry [17].
Some authors [18] have also shown how to formulate GRT
using a particular Weylian geometry known as Weyl
integrable spacetime (WIST), in which the gravitational
field is described by two geometrical objects: the metric
tensor and the so-called Weyl scalar field. We will follow
this formulation in order to show how TEK’s law presents
itself in this geometry (see also [19]).
Another interesting extension of general relativity is

known as fðRÞ modified gravity. In such theories, the
standard GRT hypothesis of a strictly linear gravitational
action in the Ricci curvature scalar R is relaxed [20,21].
One aspect of this extension, known as Einstein-Palatini’s
approach (see [22] for a review), considers the metric and
the connections as basic variables in the gravitational action
Sg ¼ S½gμν;Γλ

αβ;…� thereby leading to non-Riemannian
geometries [23]. In this context, it is interesting both from
methodological and theoretical viewpoints to investigate
the TEK thermal-gravitational effect in extended theories of
gravity, especially those formulated in a non-Riemannian
environment. As we shall see, the results discussed here
suggest naturally a new intriguing and compelling pos-
sibility, namely: the spacetime structure would be pro-
spected through local experiments in the thermal sector
guided by an extended TEK law.
With that goal in mind, we recall that the basics of

relativistic thermodynamics is described by three fluxes:
the energy-momentum tensor (EMT) Tαβ, the particle flux

Nα, and entropy flux Sα. For a perfect fluid such quantities
are defined by [24]

Tαβ¼ðρþpÞuαuβ−pgαβ; Nα¼nuα; Sα¼nσuα; ð5Þ

where ρ, p, n, and σ denote the energy density, thermostatic
pressure, particle density and specific entropy (per particle).
Such quantities are related by the Gibbs law [25,26]

nTdσ ¼ dρ −
ρþ p
n

dn: ð6Þ

For a static inhomogeneous configuration as the one
geometrically described by the metric (1), such differentials
are increments relating to neighboring points. This means
that for a static medium the above expression implies
that

nT∂iσ ¼ ∂iρ −
�
ρþ p
n

�
∂in; ð7Þ

while the chemical potential is defined by the standard local
form of Euler’s relation:

μ ¼ ρþ p
n

− Tσ: ð8Þ

The phenomenological expressions (5)–(8) are basic con-
sequences of the Einstein equivalence principle (EEP), and,
as such, play a fundamental role here since their validity
can be assumed for all metric theories of gravity where the
local flat geometry of special relativity is taken for granted.

II. TEK LAW IN WEYL
INTEGRABLE SPACETIME

The geometrical features of Weyl’s theory consists of a
fourdimensional spacetime manifold M with an extended
symmetric connection and a Lorentzian metric gμν. In this
geometry the connection is not a metric connection with
respect to gμν and the covariant differentiation of the metric
is given by

∇Wαgμν ¼ Aαgμν; ð9Þ

where∇with a superscriptW indicate covariant derivatives
in Weyl geometry. The quantities Aα are components in the
coordinate basis f∂αg of some one-form field A defined on
M. In what follow we will use the notation ∇ and Γ with a
superscript letter W to indicate covariant derivatives and
connections respectively in Weyl geometry, while the
superscript R refers to Riemannian geometry.
In theWeyl integrable spacetime A is an exact one-form,

A ¼ dϕ, where ϕ is a scalar function. In the so-called Weyl
frame, the gravitational interaction is now described by the
pair [gμνðxαÞ, ϕðxαÞ]. This scalar field ϕ is of entirely
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geometric nature [19], and together with the metric gμν
determine the WIST connection to be [18]

Γ
W μ

αβ ¼ Γ
Rμ
αβ −

1

2
ðδμαδνβ þ δμβδ

ν
α − gαβgμνÞ∂νϕ; ð10Þ

where Γ
Rμ
αβ ¼ gμσð∂αgσβ þ ∂βgασ − ∂σgαβÞ=2 are the com-

ponents of the Levi-Civita connection of gαβ.
The Weyl covariant divergence for a second order mixed

tensor Tα
β is given by

∇WαTα
β ¼ ∂αTα

β þ Γ
W α

μαTμ
β − Γ

W μ
βαTα

μ: ð11Þ

Substituting Eq. (10) in Eq. (11), a straightforward calcu-
lation shows that

∇WαTα
β ¼ ∇RαTα

β − 2Tα
β∂αϕþ Tα

α

2
∂βϕ; ð12Þ

where Tα
α is the trace of the tensor. Next let us consider that

Tα
β is the matter source in Einstein’s gravity. One may think,

from Eq. (12), that in WIST geometry the conservation of
the EMT is violated unless ϕ ¼ const. However, this is not
the case since the scalar field ϕ is an essential part of Weyl’s
geometry, and, as such, it should appear in any equation
describing the behavior of the matter in spacetime [18].
With these considerations in mind, in what follows we
consider W∇αTα

β ¼ 0 in Eq. (12) for a self-gravitating static
perfect fluid whose energy-momentum tensor is given by
Eq. (5). We thus obtain

uβ∇
R

α½ðρþ pÞuα� þ ðρþ pÞuα∇Rαuβ

− ∂βp − 2Tα
β∂αϕþ Tα

α

2
∂βϕ ¼ 0: ð13Þ

Contracting this last equation with uβ and substituting
the result back in Eq. (13) we obtain, after some
simplifications,

uα∂αuβ − Γ
Rμ
αβuαuμ þ Pα

β

� ∂αp
ρþ p

−
1

2
∂αϕ

�
¼ 0; ð14Þ

where Pα
β ¼ uαuβ − δαβ is the projector on the three-space.

Now, in order to deduce the TEK law inWIST theory, we
recall that for the static self-gravitating fluid described by
the metric (1), an observer at rest in the fluid has
normalized four-velocity uα ¼ δα0=

ffiffiffiffiffiffi
g00

p
and uα ¼ ffiffiffiffiffiffi

g00
p

δ0α
and also that under static conditions ∂tρ ¼ ∂tp ¼ ∂tϕ ¼ 0.
By taking this into account the conservation equation (14)
reduces to

∂i ln½ðρþ pÞ ffiffiffiffiffiffi
g00

p � − 1

2
∂iϕ ¼ ∂iρ

ρþ p
: ð15Þ

In this case, from Eq. (8) we have that ρþp¼nðTσþμÞ
and substituting this into the EMT conservation law (15)
for the general static configuration, we obtain

∂i lnðT
ffiffiffiffiffiffi
g00

p Þ−1

2
∂iϕ¼ 1

ρþp

�
∂iρ−

ρþp
n

∂in

−nT∂iσ−
ρþp

σþμ=T
∂i

�
μ

T

��
: ð16Þ

Now by taking into account relation (7), the above equation
reduces to

∂i ln ðT ffiffiffiffiffiffi
g00

p Þ − 1

2
∂iϕþ ∂iðμ=TÞ

σ þ μ=T
¼ 0; ð17Þ

which can be rewritten as:

∂i ln
�
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ϕg00

q �
þ μ

Tσ
∂i ln

�
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ϕg00

q �
¼ 0: ð18Þ

This is the Tolman-Ehrenfest-Klein’s law for WIST when
arbitrary values of the chemical potential are considered.
By assuming μ ¼ 0, or even μ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ϕg00

p
¼ const (Klein’s

law in WIST), it follows that

T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e−ϕg00

q
¼ const; ð19Þ

which is the TE law in WIST theory. Conversely, we also
see from Eq. (18) that the Klein law in WIST is also
obtained when the TE law in WIST is taken for granted.
In general, as should be expected, by comparing Eqs. (18)
and (4) we see that for ϕ ¼ const the TEK expression for
GRT is recovered.

III. TEK LAW IN f ðRÞ GRAVITY

The basics of fðRÞ gravity is that in the Einstein-Hilbert
action the Ricci scalar R is substituted by a nonlinear
function fðRÞ, such that for fðRÞ ¼ R we recover the
Einstein’s general relativity. However, in dealing with such
theories two different variational approaches have been
considered in the literature: (i) the metric, and (ii) the
Palatini variational formulation.
In the metric variational formalism the connection is

assumed a priori to be the Levi-Civita one, thus the only
independent variable in the action is the metric gμν. In this
case covariant derivatives must be taken with this con-
nection. Although the dynamic equations in fðRÞ gravity
are very different from GRT, the TEK result is immediate
and will be announced here in the form of a theorem:
(A) In fðRÞ metric theory the TEK law is exactly the

same of Einstein’s gravity.
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In light of the previous results [see Eqs. (4) and (18)], the
logic and validity of the above theorem can be inferred
based on two complementary reasons: (i) the deduction of
TEK is independent of the field equations, and (ii) the
covariant derivatives are exactly the same for fðRÞ metric
theory and Einstein’s gravity (GRT). Nevertheless, in
Palatini’s formulation the covariant derivatives depend
on the specific function fðRÞ, thus the TEK theorem is
modified as we shall see below.
One of the main features of Palatini variational formu-

lation is that in the gravitational action the connection and
the metric are considered as independent fields while the
matter action is assumed not to couple with the independent
connections. In this case the Palatini connection coeffi-
cients are given by

Γ
P μ
αβ ¼ Γ

Rμ
αβ þ

1

2
ðδμαδνβ þ δμβδ

ν
α − gαβgμνÞ∂ν lnF; ð20Þ

where, as before, Γ
Rμ
αβ are the components of the Levi-Civita

connection of gαβ and F ¼ df=dR. Note that if fðRÞ ¼ R
the two connections are equal and GRT is recovered.
The Palatini covariant divergence for a second order

mixed tensor Tα
β is given by

∇P αTα
β ¼ ∂αTα

β þ Γ
P α
μαTμ

β − Γ
P μ
βαTα

μ; ð21Þ

where ∇ and Γ with a superscript P denote covariant
derivatives and connections in the Palatini setting. By
replacing (20) in the above equation, a straightforward
calculation shows that

∇P αTα
β ¼ ∇RαTα

β þ 2Tα
β∂α lnF −

T
2
∂β lnF; ð22Þ

where T ¼ Tα
α is the trace of Tαβ. Hence, following the

similar reasoning towhatwepresented inWISTcase, inwhat
follows we put ∇P

αTα
β ¼ 0 in Eq. (22) for a static perfect

fluid with energy-momentum tensor Tα
β as given by Eq. (5),

thereby obtaining after some straightforward calculation

1ffiffiffiffiffiffi−gp ∂α½
ffiffiffiffiffiffi
−g

p ðρþ pÞuαuβ� − ðρþ pÞΓRμ
αβuαuμ − ∂βp

þ 2ðρþ pÞ
�
uαuβ −

1

4
δαβ

�
∂α lnF ¼ 0: ð23Þ

Next we assume that the self-gravitating fluid generates a
static gravitational field described by themetric (1), therefore
the conservation equation (23) reduces to

ðρþ pÞ½∂β ln
ffiffiffiffiffiffiffiffiffiffi
Fg00

p
− 2ðuα∂α lnFÞuβ� þ ∂βp ¼ 0: ð24Þ

The β¼0 component from Eq. (24) yields ðρþpÞ∂t lnF¼0,
and considering ρþ p ≠ 0, we have that ∂t lnF ¼ 0.

This result is not generally valid for fðRÞ gravity in the
Palatini formulation, it is in fact a consequenceof the particular
spacetime (1) used here. Thereforewe obtain, after dividing by
ρþ p, for the spatial components of Eq. (24),

∂i ln ½ðρþ pÞ
ffiffiffiffiffiffiffiffiffiffi
Fg00

p
� ¼ ∂iρ

ρþ p
: ð25Þ

In order to obtain the Tolman-Ehrenfest temperature law in
Palatini fðRÞ gravity we next use the Euler relation (8). The
calculations are similar to those done forWIST, so we present
it here only briefly. Substituting Eqs. (8) in (25) we obtain,
after some calculations,

∂i ln ðT
ffiffiffiffiffiffiffiffiffiffi
Fg00

p
Þ ¼ 1

ρþ p

�
∂iρ −

ρþ p
n

∂in

− nT∂iσ −
ρþ p

σ þ μ=T
∂i

�
μ

T

��
: ð26Þ

Now, by taking into account relation (7) the above equation
reduces to

∂i ln ðT
ffiffiffiffiffiffiffiffiffiffi
Fg00

p
Þ þ ∂iðμTÞ

σ þ μ
T

¼ 0; ð27Þ

which can be rewritten as:

∂i ln ðT
ffiffiffiffiffiffiffiffiffiffi
Fg00

p
Þ þ μ

Tσ
∂i ln ðμ

ffiffiffiffiffiffiffiffiffiffi
Fg00

p
Þ ¼ 0: ð28Þ

This is the general form of Tolman-Ehrenfest-Klein’s law
for fðRÞ gravity when arbitrary values of the chemical
potential are considered. Again, by assuming μ ¼ 0 or even
μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðRÞg00

p ¼ const [Klein’s law in fðRÞ] it follows that

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðRÞg00

p
¼ const; ð29Þ

which is the TE law in the Palatini version of fðRÞ gravity.
From Eq. (28) we also see that the Klein law in fðRÞ is also
obtained when the TE law is taken for granted. In general, we
also see fromEqs. (28) and (4) that for fðRÞ ¼ Rþ const, the
TEK expression for Einstein gravity is recovered [cf. Eq. (4)].
It is also interesting to note the similarity between

the two connections given by relations (20) and (10),
which become mathematically identical whether we make
FðRÞ≡ exp½−ϕðxÞ�. However, we must keep in mind that
WIST and Palatini fðRÞ gravity have different physical
base as well as different Lagrangian formulations. Without
going into detail, in WIST the scalar field ϕðxÞ already
appears in the formulation of the gravitational action [18],
which must be varied in relation to the metric and to the
field ϕðxÞ, while in Palatini formulation the fields consid-
ered as independent are the metric and the connections.
Indeed, as shown in [23], fðRÞ actions of gravity in Palatini
formulation lead generically to theories with intrinsic
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nonmetricity. In this kind of theory the nonmetricity is
induced by the form of fðRÞ as∇P

αgμν ¼ −∂αðlnFÞgμν. The
only exception to this is the standard GRT linear function
fðRÞ ¼ Rþ const. Physically, however, the nonmetricity
induced by Palatini fðRÞ gravity is different from that
presented in WIST. In [27], for example, the author
presents a comparative study of inflation in Weyl and
Palatini quadratic gravity and shows how the different
nonmetricities impact the predictions of some inflationary
scenarios.

IV. DISCUSSION AND CONCLUSION

In the present communication, we advanced a
rigorous proof of the Tolman-Ehrenfest-Klein (TEK)
thermodynamic theorem for some Riemannian and non-
Riemannian geometries [see Eqs. (18), (28), and theo-
rem 1]. The derivation presented here is as independent as
possible of the properties of a specific medium or the
physical state of matter. It means that one of the main
signatures of gravitation in thermodynamics which is the
presence of gradients violating the standard thermal equi-
librium is heavily dependent on the underlying gravita-
tional theory.
The main aspects of our proof are: (i) The TEK

equations (4), (18), and (28) are independent of the field
equations for Riemannian and non-Riemannian geometries,
but are heavily dependent on the covariant derivatives, and
(ii) such unified relations uniting T, μ and the metric
coefficient are valid for arbitrary expressions of the
chemical potential. As happens in the general relativity,
the fluid is not restricted to blackbody radiation (μ ¼ 0) and
the approach followed here can naturally be extended for
fluid mixtures.
On experimental grounds, the direct verification of the

general TEK law or some of its particular cases has
considerable physical interest, and, as such, deserves a
closer scrutiny. The results are based on the validity of
Einstein’s equivalence principle, the apparatus of equilib-
rium relativistic thermodynamics, as well as on the under-
lying geometric structure of the spacetime. Riemannian and

non-Riemannian geometries satisfy different relations
where the zeroth equilibrium thermodynamic condition
are violated by the presence of gradients in the equilibrium
states (ΔT ≠ 0, Δμ ≠ 0). Thus, since the equivalence
principle does not determine the spacetime geometry, such
results together are suggesting that its intrinsic geometric
nature would also be revealed by a suitable crucial test in
the thermal sector.
Naturally, possible experimental tests may be simplified

by considering particular cases of TEK laws for Weyl and
Palatini fðRÞ gravity theories. For example, the geometric
nature of the spacetime can be tested by using the modified
Tolman-Ehrenfest law with μ ¼ 0 (photons) or more
generally with μ=T ¼ const [see Eqs. (19) and (29)]. As
far as we know, more than nine decades after the theoretical
seminal paper of Tolman in Einstein gravity (1930), such a
prediction has not been subjected to any experimental
test. This probably happened because this astonishing
effect is extremely tiny. In the weak field approximation,
g00 ¼ 1þ 2ϕ=c2, the gradient at the Earth surface with
the radial position is dlnT=dr ¼ −g=c2 ≃ −10−18 cm−1.
Hence, it has the same order of magnitude presented by the
gravitational redshift (the apparent weight of photons) at
Earth’s surface which was tested only in the begin of the
sixties through the so-called Pound-Rebka experiment [28].
The calculations presented here reinforce the interest to

test this striking thermal-gravitational result delimiting the
general validity of the standard zeroth thermodynamic law,
not only as a sort of visual phenomenon, but a real thermal
effect closely related with the intrinsic geometric nature of
the spacetime. However, apart from the theoretical treat-
ment, such a challenging experiment is not so simple at
least in principle, which leaves the question of its feasibility
with the present day technology.
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