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We investigate the separability of the Klein-Gordon equation on near horizon of d-dimensional rotating
Myers-Perry black hole in two limits: (i) generic extremal case and (ii) extremal vanishing horizon case. In
the first case, there is a relation between the mass and rotation parameters so that black hole temperature
vanishes. In the latter case, one of the rotation parameters is restricted to zero on top of the extremality
condition. We show that the Klein-Gordon equation is separable in both cases. Also, we solved the radial
part of that equation and discuss its behavior in small- and large-r regions.
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I. INTRODUCTION

The four-dimensional Kerr black hole has been widely
studied from various aspects. From the geometric point of
view, Carter showed that it has integrable geodesics [1]. The
extension to higher dimensions is known as Myers-Perry
black hole. In d dimensions, it is described by one mass
parameter and N (= [4]) number of rotation parameters. It has
integrable geodesic equations just like its four-dimensional
equivalent. Other extensions such as including the cosmo-
logical constant and Newman-Unti-Tamburino (NUT)
charge does not change this behavior [2—4]. The integrability
of the Klein-Gordon, Maxwell field and gravitational
perturbation equations have been also studied on the
d-dimensional Kerr-(A)dS-NUT space-time [2,3,5-9].

One can construct another solution to Einstein equations
in the near horizon extremal limit [10—13] of Myers-Perry
(NHEMP) black hole [14] (see [15-20] for recent studies).
The extremal limit of the parameters describes a black hole
(BH) with the biggest allowed angular momentum for a
given BH mass. When one of the rotation parameters
of the BH vanishes, we arrive at yet another solution of
Einstein equations referred to as extremal vanishing
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horizon (EVH) geometry [21,22]. Although the generic
extremal limit of Myers-Perry black hole exists in both
even and odd dimensions, the special EVH limit exists only
in odd dimensions.

A set of the Killing vectors of NHEMP obeys the
structural relation of SL(2,R) algebra corresponding to
AdS, subspace. It has been demonstrated (e.g., [23-26])
that the Casimir element of this SO(2, 1) algebra gives rise
to a reduced Hamiltonian system called spherical or angular
mechanics, which contains all the necessary information
about the near horizon geometry. In other words, a massive
particle moving in the near horizon geometry of an ex-
tremal rotating black hole possesses a dynamical conformal
symmetry, i.e., defines “conformal mechanics” [15,17—
19,25-32], whose Casimir element can be viewed as a
reduced Hamiltonian, which contains all the necessary
information about the whole system.

An eye-catching difference between NHEMP and its
vanishing horizon limit is that the latter has a larger iso-
metry group [33-35]: it includes two copies of SL(2,R)
corresponding to the AdS; subspace instead of one copy of
SL(2,R) for the AdS, factor of the metric. This symmetry
enhancement does not add to the number of independent
constants of motion though [16].

The near horizon geometry of Myers-Perry black
holes contains integrable and superintegrable systems like
Rosochatius and Poschl-Teller which are interestingly
related to the Klein-Gordon equation through a geometri-
zation procedure [36]. The angular part of the near horizon
limit of a fully isotropic Myers-Perry black hole is a super-
integrable mechanics called Rosochatius system. This is a
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direct generalization of the Higgs oscillator. Separation of
variables in Rosochatius system results in a recursive family
of one-dimensional Poschl-Teller system. The quantum
equivalents of Higgs oscillator, Rosochatius, and Pdschl-
Teller systems can be associated with a Klein-Gordon
equation on a static space-time.

In this work, we examine the mentioned near horizon ex-
tremal geometries of odd-dimensional Myers-Perry black
hole by studying a probe scalar field which satisfies the
Klein-Gordon equation. First, we take the near horizon
geometry in the generic extremal case and use the elliptical
coordinates in which the geodesic equation is separable.
The SL(2,R) x U(1)" isometry group of the background
metric helps us to simply separate the part of the Klein-
Gorodon equation related to AdS, subspace and azimuthal
angles. We observe that the Klein-Gordon equation is
separable in the elliptical coordinates. The total number
of independent separation constants is as much as the
number required for the integrability of the Klein-Gordon
equation. This integrability is inherited from the hidden
symmetries associated with the Killing tensors of back-
ground metric (see [37] for review). Interestingly, we find
that the radial part of the Klein-Gordon equation is solved
by Whittaker functions which are related to the confluent
hypergeometric functions. By requiring smoothness in the
large- and small-r regions, we fix the solution. Then, we
study the near horizon EVH space-time and show the
separability of the Klein-Gordon equation on that metric. In
this case, the radial part is solved by Bessel’s functions
which are restricted to Bessel’s function J, by demanding
the smoothness in the large- regions.

II. KLEIN-GORDON EQUATION ON NEAR
HORIZON EXTREMAL GEOMETRY

The near horizon extremal metric of odd-dimensional
(d = 2N + 1) NHEMP in Gaussian null coordinates was
given in [14] and can be written in the Boyer-Lindquist
coordinates as

F dr?
ds? = - —rPdi? + —
g b(rH>( rar )

N N

+ Y+ a)dud + Y yiDe'De’. (1)
i—1 ij=1

where
4 . B! 2 m—1
Dy =dg' +—rdr, B =3Y"" (2
b ry om;
The metric functions are
N 2 N
H; 4 11
Fg=) —&, b(ry)=—) ——,
i=1 i Ty 5 i
}/lj = (r%-l + azz)ﬂizéij + at/’tzzaj)u? (3

Here, m;’s are some constant parameters related to the
horizon radius (ry) and N the number of rotation param-
eters (a;’s) corresponding to azimuthal coordinates ¢’
defined by

2 >
Iy + a;

>1, (4)

m; =

and p; are the latitudinal coordinates which satisfy the
following relation:

dou=1 (5)

The location of the horizon ry is determined by the largest
positive solution of

(ry) = mry, (6)

where I1(r) = [[¥, (r* + a?) and m is a constant related to
the mass of the Myers-Perry black hole.
The extremal limit is given by

Il (ry) = 2mry. (7)

By combining these two relations one finds that m;’s are
restricted by

Z;: 1. (8)

By substituting y; = x;/,/m; for i = 1...N, the new form
of NHEMP metric in an arbitrary odd dimension becomes

ds? dr?
—; = A(x) <—r2d12 + —2)
i r
N N o
—+ Z dxidxi + Z }7l~jx,~ij(p’Dq)J, (9)
i=1 ij=1
where
) ) ) . B
D¢' = d¢' + k'rdr, k' = B
N
A(x) = =28/ mE Y
ryb —'m,
. 1 V= Tx;\/m; = 1x;
yij = 51] + N 2 B . (10)
>0 xp/mj m; m;

The behavior of a massive scalar field @ in the gravi-
tational background is governed by the Klein-Gordon
equation:

1
b =——
Vau!/
where M is the mass of the scalar field and ¢ is the deter-

minant of the metric. Separation of variables of the Klein-
Gordon equation in the background of odd-dimensional

aa( V —gg”ﬂaﬁ(b) = MZCD’ (1 1)
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NHEMP can be carried out in elliptic coordinates 4, which
are related to x; with the following relation:

N
> m; = A
x; = (m; — ;) — (12)
i i i jl:;# m; —m;
where Ay <my < ... <Ay <my <1y <m;. To resolve
the last relation in (10) one should choose 4, = 0. In these

coordinates 4,
ha(2)d22, (13)

with

h, = , (14)
4TI ( )
the NHEMP metric (9) becomes
O =AW <—r2df + > +> by (2)di2
Tn a=1
+ Z 7i%:(A)x; (1) Dg' Dgp/, (15)
where
1TV 2
A(d) = —=4=1"4 16
B =4 (16)

To analysis the Klein-Gordon equation (11), we need to
find the determinant and the inverse metric of (15). The
inverse of NHEMP metric is

8\2 1 (o L 0
2 ( 2 - - (= _ k' i
rH<8s> A(A)r? (8’: ;r 8¢’>
(2 +Zh“
AQ)
Nmy L 100
=T W) x, ) 00 0

where h9(A) and 7V are the inverses of h,(4) and 7;;,
respectively,

oy

. . m; — 1 m;—1
- J

v = 0" —x; - X; .
m; mj

(17)

he(2) = hg'(4),

The determinant of metric (15) has the following form:

—det g=A(4

xp)- - (18)

Taking into account the definition of &, (13) and the
relation (12), [, A, simplifies to

T — o AW G - 20))
a N 2
a=1 i=1 l
(=) (Y, m,)?
.= 4N1H (m —lm) (19)

Using matrix determinant lemma (AS5), the determinant
of 7;; will take a simple form:

; I
det(}/ijx,-xj) = mnx? (20)

Finally inserting (19) and (20) in (18), we find
N—1 2
—detg=¢ (Ha ) <H /1;,—,1“)) . (21)
a<b
with
N -2
¢ =4-N (b H(m, - mj)> . (22)
i<j

Equipped with (17) and (21), we can rewrite the Klein-
Gordon equation (11), and noting two important relations

1 =
8, \/— det :</1C+;lc_ib>\/—detg, (23)
b#c

1 N o
0, ht = [ ——— - he, (24
K (za 2T, ;Aa—ﬂb) 2y
b:

we rewrite the Klein-Gordon equation on NHEMP metric:

(S

] ® + r20%® + 2rd q>)
i=1

N-1 N-1 N ha

+> hi0} @ — ZZ ai
a=1 a=1 i=l1
N N —— 1

Py Lre-y — ! V":’; 8,,0,,® = M.
i=1 i i =1 i J

(25)

To separate the variables in this equation, we apply the
following ansatz:

— R, [ R,
a=1

where @ and L; are arbitrary constants. In this form 4, and r
derivatives of the scalar ® will be

N
a) RPN H eiLven (26)
b=1
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R/ R//
0,d=""®, OPP=-L0,
R, R,
R, f
9,0=-"20, PO=-0, 27
W=7 WP=x (27)

a a

and the Klein-Gordon equation transforms into

1 ,R! R 1 Noo\2
— 2p—L — ir,.
|:A(),)< + Rr r2<a) r;k l>>

// N-1 N ha R/
+Zh“ B 3) Dy

a a=1 i=1

(28)

NN T W
=+
-3y

=17 Q=

One can see that the first term in the above equation only
depends on r. The separability requirement forces it to be a
constant,

R// R/
=L+ 2r —+

R ( —erl ) =%,.  (30)

To write the radial equation (30) as a known differential
equation, we change the radial variable r to z by

y
=22 (31)

r

which brings Eq. (30) into the familiar form of Whittaker’s
equation:

d’R, 1 K (1/4—-u?)
B TR \p — 2
722 +< 4+ + Z ,=0, (32

with

N
K=i) KL; and p (Zk ) + 6.
j=1

(33)

The general solutions to Eq. (32) are Whittaker’s functions:
M ,(z) and # 'k ,(z). These are related to the confluent
hypergeometric functions. It is interesting to study the
behavior of these functions in small- and large-z region.
(we keep K, u parameter fixed and generic.) For the small-z
region, which is related to the » — oo region in the space-
time, we have

My (2) ~T2 as 20

Wk u(2) ~ a2 TV2 4 apz# V2 if Re(p) < =

Wk u(z) ~27#12if Re(p) 2 (34)

N[ =

Here, a;, are some constants related to u, K. The
asymptotic behavior (z = o) of .# ,(z) and #g ,(z)
which is corresponding to the » — 0 region of space-time is
given as

%[(’” (Z) ~ Z_Kez/z

Wi(z)~Ke /2, asz— . (35)

Depending on the values of ¢ and K in (33), the behavior
of the solution is different: .# i , is blowing up in the r — 0
(z > oo0) limit, so we discard it. In the small z, i.e.,
(r = o), #k, is vanishing if Re(u) < 1/2 which is
guaranteed by e.g., ¥, < 0.

The rest of the variables can be separated after applying
the relations (A2), (A3), and (A4) to the Klein-Gordon
equation, which will be transformed to

a MZ( ) )N—Z
Z b= la;ébub /1)

a=1

=0, (36)

where P, (4,) are defined by

4 R// R/ N 1 N
/1 (E_Ez,:mz —/1a> H<mj ~ )

P/la (’154) =-

i=1 i=1

+ go(—A)" 2. (37)

Here g, and g, are some constants, defined by

k2- a N m; — 1 2
o= oo my = (XYY,
i i=1 i
JE
(38)

Equation (36) is only satisfied when

N-1
=Y kA, (39)
a=1

where k,(a=1,...,
ky-y = (1)N2M2.

N —2) are arbitrary constants and
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Accordingly, the R, satisfies

N
R + Z 1 R — Rfla gﬂN_l
o\ =) 4H”£(m~—ﬂ) e

Zkl”‘ 1} =

(40)

N —

N
+b<€2Hm,»+/1aZ

i=1 i=1 i a

which is an ordinary differential equation and depends on
only the 4, coordinate.

III. KLEIN-GORDON EQUATION ON NEAR
HORIZON EVH GEOMETRY

The metric of near horizon EVH Myers-Perry in the
elliptical coordinates parametrized with (7, p,w, 4,, @;) in
d = 2N + 1 dimensions is of the form

N-1 N-1
+ > hdR 4> tatdWe(Ddeadpy, (A1)
a=1 a,b=1

where the metric functions are

N-1 N-1
ﬂa ~ 1 b#a (lb /111)
F(ﬂ) = —> hy =~ _ s
g Mg 4Hi\,71] (mc _/111>
1 %,(4) 2(4)
=96 — 42
Vab ab‘l'F(ﬂ)\/’%;\/-n;l—I;’ ( )
with
N-1 — 1) N-1 4
2(A M, — —1. (43
( ) ;\;/éal( a_ml) ;ma ( )

(We start this section in elliptical coordinates to avoid
writing multiple metrics. For more details, we refer the
reader to [15,16,21].)

The inverse of metric (41) is

@) ra () v (§> (o))

—1 N—
L) L @
where
pab — g, T DI e g

NN

To study the Klein-Gordon equation on this metric,

1
O® = ——0,(/—99%0,®) = M*®, (46)
V=9 ’
we need to compute the determinant of the metric,
N-1
—det g = p>Fy(2)? <H h > det (Fupi,%p).  (47)
a=1

It is easy to show that

ab 1(}vb A )

N-1 N-1
thzé'w, A=4]_NH(ma—mb)_]-
=1 a=1%a

a.b=1
a#b

(48)

Using matrix determinant lemma (AS5), we have

det(j}ah-%u'%h) = '%Z (49)

Finally, the determinant of metric (41) simplifies to

N—-1

—det g = d’,ﬂ(Hﬂ) <H

a,b=1
<a

—za>)2, (50)

with

o (ff) ()

The key relations for the separability of the Klein-Gordon
equation are as follows:

= (1= )V

a

b#a

N-1
O S D Dy

b=1 b#a

);}“. (52)

The Klein-Gordon equation becomes

1 [ Po-R0
F(/l)< p +p 8<D+3p8<1>>

N-1 1
+Z::g8420 Z—\/—— Pa
N-171 a N-1 ila
+Zh“82q>+z aﬂ Zm T 9, ® = M®.
o
(53)

where %“ is defined in (43). To separate the variables, we
use the following ansatz for the scalar field:
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N-1 N—
Ra —k;t+my, ) H eiLb‘/’h,

a=1

into the Klein-Gordon equation (53). We observe that the
first parentheses include only p-dependent term. The
separability requires it to be a constant:

K2 ., A
(P—” - 3pa,,>R,)<p> — ATWR, (). (55)
Replacing

k2 — m?
u T W
R =" ama =V (s

into the radial equation (55), we get Bessel’s equation:
d2

P—u+z7—

2 P)u =0, 57
LRl e 7)

with
VP =1-4%,, (58)

whose solutions are Bessel functions J,(z), Y,(z). The
small- and large-r behavior of the solution is dictated by the
asymptotic behavior of Bessel functions. In the small-r
region of space-time which is related to 7 — oo, they give

1 v T
T (7) ~o— _w_r
,(2) \/Ecos(z > 4>,
1
YV(Z)N—Sin<Z—ﬂ—V—E), asz—> o0, (59)

which is vanishing. Also, in the large-r region of space-
time, corresponding to z — 0, they behave as

")
~ —¥ (%) - (60)

In the case of ‘%2 < 0 which leads to v > 1, Y, blows up
while J, falls off in the large-r region and is an acceptable
solution.

For the rest of the Klein-Gordon equation, we have

Ju(2)

Y,(z)

( 49, L, L,
Fo(ﬂ) ab=1 VMa /My
“R’ NMLohe R
S
i=1 mi_laRa Xa

+Z[ oKy

= M*O. (61)

Using the relations (A2), (A3), and (A4), we see that the
Klein-Gordon equation is separable:

N-1 A 2 N-2
A,) = M2(=2
QA,,(N_)I (—44) —0. (62)

= 1zt (ds — 4a)
where
. " IR/ N—-1 R/ /R N—-1
Qla<’1a>:4 e . ) ( c_/Ia)

Ra j'(/l Ra b—1 my — /la =1

4(%2N—1 N-1 a(/)

- my, + Pt Go(—2a)V 2,
Aoy b=t My~ a

)

(64)
Equation (62) is only satisfied when
A N-1
0,(ha) = > kaAa™, (65)
a=1
where k,(a=1,....,N—2) are arbitrary constants
and ky_; = (=1)N2M2.

Therefore, the R, satisfies the following ordinary differ-
ential equation:

R”+ i % 1 Rl
¢ /1a b mp — )Lu ¢

Zk(,/l‘l 1} =0, (66)

which depends on only 4, coordinate.

IV. DISCUSSION

We studied the separability of the Klein-Gordon equa-
tion on two near horizon geometries in d dimensions:
generic extremal and extremal vanishing horizon cases.
Since the latter case exists only in odd dimensions, we take
d=2n+1 in both cases. We do not expect that the
separability of the Klein-Gordon equations changes for
the first case if we take even dimensions. This expectation
roots from the fact that the separability of geodesic equation
has been shown for both even and odd dimensions [16] and
the Klein-Gordon and geodesic equation are related in
the semiclassical limit: if we write the solution to the
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Klein-Gordon equation @ as ® = .4 exp(2), we get the
Hamilton-Jacobi equation for S in the so-called semi-
classical limit, a — 0. (see [38] for an explicit example.)

It is worth mentioning that since the extremal/EVH limit
does not commute with near horizon limit, we could not get
the Klein-Gordon equation on near horizon EVH geometry
by taking the EVH limit on NHEMP metric. Therefore, we
studied the Klein-Gordon equation on near horizon EVH
geometry, independently.

In the parameter of the near horizon extremal/EVH
geometry, we kept the rotation parameters generic.
However, one can ask what will happen if we set some
or all of the rotation parameters equal. This is one of the
interesting problems to which we will come back in future.

Regarding the solution to the radial equations, we
discussed the asymptotic behavior for the generic values
of the parameters. There are some special limits in the
parameter space which can lead to different asymptotic
behavior (like =0 of .#k, or #g,). These special
limits are known for Whittaker and Bessel functions. We
are interested in the interpretation of their consequences in
near horizon geometries.

To examine these near horizon geometries better, we
should study the other probes such as Dirac, Maxwell, and
gravitational perturbation fields and investigate the sepa-
rability of their field equations in the future.
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APPENDIX: USEFUL IDENTITIES

The following identity holds between N — 1 independent
variables 4, and any parameter «:

_5{1,N—17 (Al)

S 1 ) K)“
3 IE ) _ 15)

where a = {0, ..., N — 1}. For a = 0, this equation reduces

to
D) ()
H )’ _K 1];/11(17&17(}’ )“))“a_K
and for an additional condition of x = 0 we get
1 = 1 1
—. A3
Ay Ay ;Hb lb;éa< ﬂa)la ( )
On the other hand, setting x = 0 in (A1) results in
S
=08y forO0<p<N-1. (A4)
i=1 H;V=1;i¢j (i _if) ’

Another relation that we use in this paper is the so-called
matrix determinant lemma, which states
det(I+xy’) =1+ y'x, (A5)

where I is a unit matrix and xy” is the outer product of two
vectors x and y.
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