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We present a computationally efficient (time-domain) multipolar waveform model for quasicircular spin-
aligned compact binary coalescences. The model combines the advantages of the numerical-relativity
informed, effective-one-body (EOB) family of models with a post-adiabatic solution of the equations of
motion for the inspiral part of the two-body dynamics. We benchmark this model against other state-of-the-
art waveforms in terms of efficiency and accuracy. We find a speed-up of one to two orders of magnitude
compared to the underlying time-domain EOB model for the total mass range 2–100 M⊙. More specifically,
for a low total-mass system, such as a binary neutron star with equal masses of 1.4 M⊙, like GW170817,
the computational speedup is around 100 times; for an event with total mass ∼40 M⊙ and mass ratio ∼3,
like GW190412, the speedup is by a factor of ∼20, while for a binary system of comparable masses and
total mass of ∼70 M⊙, like GW150914, it is by a factor of ∼10. We demonstrate that the new model is
extremely faithful to the underlying EOB model with unfaithfulness less than 0.01% across the entire
applicable region of parameter space. Finally, we present successful applications of this new waveform
model to parameter estimation studies and tests of general relativity.
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I. INTRODUCTION

Since 2015, the detections of gravitational waves (GW s)
have yielded a wealth of remarkable discoveries [1–8].
In the three observing runs [7,8] of the Advanced LIGO [9]
and Advanced Virgo [10] detectors, a total of 50 events
have been observed and confirmed; among these are both
binary black hole (BBH) mergers and binary neutron star
(BNS) mergers [11]. Particularly interesting are the dis-
coveries of binaries GW190412 with mass ratio 3 [12] and
GW190814 (which could be the first ever detected merger
of a black hole and a neutron star) [13] with mass ratio 10.
GW190521 is the most massive binary detected so far with
a total mass of 150 M⊙ [14].
Detections of compact binary mergers are expected to

increase in the coming years [15,16]: during the upcoming
LIGO and Virgo observing runs [17], and with future
ground-based detectors like the Einstein Telescope [18] and
Cosmic Explorer [19], and the space-based mission LISA

[20]. Extracting information from such GW detections
relies on accurate and computationally efficient models of
the gravitational waveforms, which are emitted during
coalescence [21,22]. Firstly, the estimation of the binary
parameters of a typical event (using Bayesian inference,
Markov chains, or similar methods) requires on the order of
several million evaluations of the waveform models
[23,24]. On the other hand, the GW phase needs to be
accurate to less than a cycle of the binary in order to avoid
ambiguity in the estimations [25,26]. Upcoming runs, as
well as future detectors, will require even better waveform
accuracy in order to reliably identify and analyze GW
events [27]. Accurately identifying the properties of a
large population of binaries will allow us to make
inferences on scenarios of compact-object binary forma-
tion [28], and also carry out more stringent tests of general
relativity (GR) in the highly dynamical, strong-field
regime [29]. For these reasons, work on more advanced
and innovative waveform models continues for LIGO,
Virgo, and future GW missions.
Gravitational-wave models that include the inspiral,

merger, and ringdown stages of a compact binary coales-
cence have been developed using the effective-one-body
(EOB) formalism [30–36] (notably the SEOBNR [37–46]
and TEOBResumS [47–50] waveform models), and the
inspiral-merger-ringdown phenomenological approach
[51–59] (i.e., the IMRPhenom models). The EOB families
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of models employ a semianalytic approach that combines
an analytical description of the spinning two-body dynam-
ics and gravitational radiation for the entire coalescence
with numerical relativity (NR) information in the strong-
field merger-ringdown regime [60–68]. Here, we will focus
on the SEOBNR waveform models, which have been
extensively used by LIGO and Virgo detectors to observe
GW signals and infer astrophysical properties (e.g., see
Refs. [7,8]) and test GR (e.g., see Ref. [29]).
The time-domain SEOBNR models [43,45,46] are rou-

tinely employed in data analysis for sufficiently high-mass
binaries with the LIGOAlgorithm Library (LAL) Inference
codes [24], while, for generic-mass binaries, fast param-
eter-estimation codes are required [69]. Nevertheless, the
time for generating a waveform in the low-mass regime
(≲5 M⊙) can be on the order of ∼100 s or even longer
starting at 20 Hz. Thus, there are parts of the binary’s
parameter space, for which the time-domain SEOBNR
models are not suitable for direct use in parameter esti-
mations without further optimizations, like the ones dis-
cussed in the current publication, which was originally
introduced in Refs. [70,71]. Alternative methods have been
developed in order to afford speedy data analysis for
GW s. Reduced order modeling and surrogate techniques
[72–81] have been successfully applied to EOB waveform
models [43,72,73,75,79] and to pure NR-waveforms
[74,76,78,82,83]. These methods work by decomposing
and interpolating the waveforms on a sparse grid in time or
frequency domain, and then using interpolation or more
sophisticated statistical methods to obtain the fitting
parameters across the binary’s parameter space under study.
The resulting waveform model is then verified for accuracy
against an independent testing set. However, although very
successful, such models suffer from certain limitations. By
construction, they are restricted to confined regions of the
parameter space, and have to be developed from scratch if
the underlying time-domain model is updated—for exam-
ple when more physical effects are included or higher-order
post-Newtonian parameters are added to make these wave-
forms more accurate.
Here, we develop the multipolar SEOBNRv4HM_PA

waveform model for spin-aligned compact binaries moving
on quasi-circular orbits. This model is a computationally
cheaper version of the time-domain SEOBNRv4HM
waveform model [45] and, as such, it includes higher-order
harmonics (or higher modes, HM), which are important
for asymmetric mass-ratio binaries, high-mass and high-
inclination systems [84–89]. In the SEOBNRv4HM_PA
waveform model, the binary dynamics is solved using a
post-adiabatic (PA) approach. The latter was proposed and
applied to the TEOBResumS model in Refs. [70,71,90,91]
and used in all subsequent publications (see, e.g.,
Ref. [92–95] and references therein). It was also imple-
mented in LALSimulation. In the PA method, the
inspiral evolution (until the last few orbits before merger)

is approximated by an adiabatic solution of the (ordinary
differential) equations of motion, with post-adiabatic
corrections added iteratively up to the order needed to
achieve the desired accuracy. In this work we apply this
technique to construct a fast and accurate aligned-spin
dynamics based on the SEOBNRv4 model [43] and imple-
ment it in LALSimulation. The speed-up and accuracy
benchmarks are supported by applications of the PA
waveform model for parameter estimation studies and tests
of GR.
The paper is organized as follows. Section II of this

article reviews the EOB dynamics in the PA approximation
for arbitrary Hamiltonians. Section III presents the imple-
mentation of this method in the LALSimulation wave-
form model library (as approximant SEOBNRv4HM_PA),
and benchmarks the model against other established EOB
models. Section IV presents two parameter estimation (PE)
studies using the SEOBNRv4HM_PA model. In Sec. V the
model is applied to a ringdown test of GR. Section VI
concludes the article with a discussion of the significance of
this work and its possible future directions. We shall work
in natural units G ¼ 1 ¼ c.

II. POST-ADIABATIC APPROXIMATION
TO THE INSPIRAL DYNAMICS

The EOB formalism provides an analytical description
of the GWemission from the process of binary coalescence,
including inspiral, merger, and ringdown [30,31]. The
accuracy of this description can be further improved by
calibrating against NR simulations.
A binary system composed of two BH s moving on a

quasicircular orbit with spins aligned or antialigned
(henceforth, spin-aligned for short) with the orbital angular
momentum is described by four parameters: the component
masses m1 and m2, and the (dimensionless) spins χ1 ¼
S1=m2

1 and χ2 ¼ S2=m2
2. In the EOB approach the (center-

of-mass) two-body dynamics is mapped onto the dynamics
of an effective body of mass μ ¼ m1m2=ðm1 þm2Þ,
which moves in a deformed Kerr spacetime of mass
M ¼ m1 þm2, the deformation parameter being the sym-
metric mass ratio ν ¼ μ=M. The conservative two-body
dynamics is obtained from the EOB Hamiltonian [30,39]:

H ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
−M; ð2:1Þ

where Heff is the Hamiltonian that describe the motion of
the effective body of mass μ and spin S� ¼ ½ðm2=m1ÞS1 þ
ðm1=m2ÞS2�=M2 in the (deformed) Kerr spacetime of mass
M with spin S ¼ S1 þ S2.
For aligned-spin binaries, the motion is constrained

to a fixed plane. Thus, we use polar coordinates
and introduce the phase-space dimensionless variables
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ðr;φ; pr� ; pφÞ related to the physical ones through the
following expressions

r ¼ R
M

; pr� ¼
PR�
μ

; pφ ¼ Pφ

μM
: ð2:2aÞ

The radial momentum pr� is conjugate to the tortoise
coordinate of the deformed spacetime r� [38,96]. The
dissipative effects in the EOB formalism are described
by the radiation-reaction force [31,35–37]

F ¼ Ω
16π

p
jLj

X
l¼2

Xl
m¼−l

m2jdLhlmj2; ð2:3Þ

where Ω is the angular orbital frequency, L is the orbital
angular momentum, dL is the luminosity distance and hlm
are the gravitational modes far from the source. In this
setup, the equations of motion read [38]:

dr
dt

¼ dpr�
dpr

∂H
∂pr�

; ð2:4aÞ

dφ
dt

¼ ∂H
∂pφ

; ð2:4bÞ

dpr�
dt

¼ −
dpr�
dpr

∂H
∂r þ F r; ð2:4cÞ

dpφ

dt
¼ Fφ: ð2:4dÞ

Here, t ¼ T=M is a dimensionless time variable.
The usual procedure employed in EOB waveform

models involves solving the Eqs. (2.4) numerically, using
an ordinary differential equation (ODE) integrator with a
suitable time step and initial conditions. This is often
computationally expensive (especially for longer wave-
forms), and is one of the bottlenecks for efficiently
generating the EOB waveform. The post-adiabatic (PA)
approximation [31,70,90] converts the ODE equations of
motion into a set of nonlinear algebraic equations which
need to be solved numerically, but have a lower computa-
tional cost associated with them.
The adiabatic approximation assumes that the dynamics

is comprised of a sequence of circular orbits. As such, there
is no radiation reaction, hence Fφ ¼ 0 and pr� vanishes.
Hence, the leading-order orbital angular momentum pφ can
be calculated at a given radius from Eq. (2.4c):

∂H
∂r

����
pr�¼0;pφ;r

¼ 0: ð2:5Þ

The post-adiabatic approximation assumes that the
radiation reaction Fφ which can be used to furnish pr�
through a combination of Eqs. (2.4a) and (2.4c):

dpφ

dr
∂H
∂pr�

− Fφ ¼ 0: ð2:6Þ

At the post-post-adiabatic level, one can use the newly
obtained approximation for pr� to additionally correct the
orbital angular momentumpφ, this time utilising Eqs. (2.4b)
and (2.4d):

∂H
∂pr

þ ∂H
∂r

dr
dpr�

−
pr�
pφ

Fφ ¼ 0: ð2:7Þ

This approximation procedure can be iterated further,
and the procedure for obtaining the corrections to the
leading-order solution ðpr� ; pφÞ ¼ ð0; j0ðrÞÞ can be for-
malized in the following way, as described in [70]. For each
value of the radial coordinate r, the radiation reaction can
be written as an expansion in a formal parameter ϵ

FφðrÞ ¼
X∞
n¼0

ϵ2nþ1F 2nþ1ðrÞ ð2:8Þ

Therefore, the solutions of the EOB equations of motion
can also be written as an expansion in powers of this
fictitious parameter:

pφðrÞ ¼ j0ðrÞ
�
1þ

X∞
n¼1

ϵ2nϕ2nðrÞ
�
1=2

; ð2:9aÞ

pr�ðrÞ ¼
X∞
n¼0

ϵ2nþ1ρ2nþ1ðrÞ: ð2:9bÞ

The PA procedure allows for the two momenta to be
calculated with arbitrary precision by adding more terms in
the expansions above. The corrections at ðn; nþ 1Þth PA
order can be found by iteratively solving Eq. (2.6) for pr�
and Eq. (2.7) for pφ. In solving these two equations, one
must remember that all other variables (apart from the
unknown one) must be kept at their most recent PA order.
This procedure can be repeated as many times as necessary,
until the desired accuracy in terms of powers of ϵ is
achieved [70].
In practice, we proceed as follows. As a start, a radial

grid is constructed for the part of the two-body dynamics
where the PA approximation is to be applied, between two
radii rmax and rmin. At each node in this grid, the adiabatic
solution j0ðrÞ is obtained through Eq. (2.5)—it serves as
the leading-order uncorrected values for the orbital angular
momentum (the uncorrected value for pr� is chosen as 0
everywhere on the grid). To obtain the Nth order PA
approximation, the momenta pr� ðrÞ and pφðrÞ are com-
puted through Eqs. (2.6) and (2.7), respectively, at each
point in the grid and this part is repeated up to the chosen
PA order N. Whenever radial derivatives of the corrected
quantities need to be computed [for instance, dpφ=dr in
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Eq. (2.6)], this is performed numerically on the grid.
Finally, the time t and the orbital phase φ are obtained
through numerical integration

tðrÞ ¼
Z

rmax

rmin

dr

� ∂H
∂pr�

�
−1
; ð2:10aÞ

φðrÞ ¼
Z

rmax

rmin

dr

�∂H
∂pφ

�� ∂H
∂pr�

�
−1
: ð2:10bÞ

The waveform is built from the PA dynamics using the
same prescription as the standard EOB waveform model.
The waveform strain hðtÞ ¼ hþðtÞ − ih×ðtÞ can be decom-
posed into multipoles according to

hðtÞ ¼ 1

dL

Xlmax

l¼2

Xl
m¼−l

hlmðtÞ−2Ylmðθ;ϕÞ; ð2:11Þ

where dL is the distance from the detector to the source,
and −2Ylmðθ;ϕÞ are the spin-weighted spherical
harmonics for s ¼ −2. lmax is the highest-order multipole
which is calculated. More detailed accounts of the pro-
cedure for generating EOB waveforms can be found in
Ref. [42,47,48]. A robust implementation of the PA
dynamics for an arbitrary spin-aligned EOB Hamiltonian
is presented in the Sec. III.

III. IMPLEMENTATION IN LIGO
ALGORITHM LIBRARY

We have implemented the post-adiabatic (PA) inspiral
dynamics model described in Sec. II in LALSuite [97]
and it is available through the SEOBNRv4HM_PA wave-
form model approximant.
When this model is used, the dynamics of the binary

system, starting from the initial separation r0 ¼ rmax until
some final separation rmin is approximated with the PA
procedure described in Sec. II. The radius at which the PA
procedure is terminated, rmin, as well as the size of the grid
dr, are empirically chosen to ensure that the faithfulness of
the waveform is maximized while keeping the computa-
tional cost minimal. Around 104 waveforms were gener-
ated, covering the space of binary parameters and exploring
the effects of varying these two parameters. In each case we
compute the unfaithfulness and choose values for these
parameters that ensure the fastest waveform generation
while still being sufficiently accurate. We find that the
following prescription satisfies these requirements:

rmin ¼ 1.6rISCO and dr ¼ 0.3: ð3:1Þ

Furthermore, the PA order is a free parameter of our model,
with the default being 8th order. Our studies show that
lower orders cannot always achieve the desired accuracy,

while higher orders incur computational cost without
further improving the solution, or can be prone to numerical
noise (e.g., above 12th order).
The PA approach is independent of any particular form of

the Hamiltonian, and here we focus on the SEOBNRv4HM
Hamiltonian [39,43].1 Our procedure is set up to use either
analytical or numerical derivatives of the EOB Hamiltonian
(e.g., ∂H=∂r), this giving additional flexibility to the user.
The numerical derivatives in Eqs. (2.5), (2.6), and (2.7) are
computed using an 8th-order finite difference method
[98–100], while numerical integration is performed using
a standard cube-spline quadrature algorithm [101,102].
In order to provide an implementation of the waveform

model that is maximally efficient while preserving the
faithfulness at each point in parameter space, a number of
further changes are introduced to the algorithms for
calculating the binary dynamics and for computing the
waveform modes. These changes are summarized below:
(1) Analytic derivatives are used both during the PA

routine and the final ODE integration (where the
approximant SEOBNRv4_opt is used [43,103,104]).
Analytic derivatives are computationally more effi-
cient than finite-difference methods, and therefore
provide valuable speedup for computing the binary
dynamics.

(2) A larger integration step is used for the final part of
the dynamics calculation (using the SEOBNR-
v4_opt model), which speeds up the ODE inte-
gration significantly.

(3) Following Refs. [43,103], quantities which do not
vary with the mode numbers ðl; mÞ are precomputed
instead of being repeatedly generated during each
iteration. This helps to remove a large portion of the
computational overhead in building the wave-
form modes.

(4) Finally, the waveform is computed over a nonun-
iformly–spaced time grid, which is comprised of the
sparse grid for PA approximation, and the denser
grid for the final part of the dynamics (plunge and
merger). This speeds up the waveform generation
considerably as waveform generation on an equally
spaced grid is expensive. To obtain the final modes
on an equally spaced grid we follow the interpola-
tion approach described in [81].

A. Computational performance of the model

The SEOBNRv4HM_PA model was benchmarked
against other relevant waveform models which are

1We note that in Ref. [71] the authors derived the equations
of motion of the (uncalibrated) Hamiltonian used in the
SEOBNRv4HM model. However, they employed a form of the
Hamiltonian that differs from the one used in the SEOBNRv4HM
waveform model [43,45]. Thus, we could not take advantage of
their findings.

MIHAYLOV, OSSOKINE, BUONANNO, and GHOSH PHYS. REV. D 104, 124087 (2021)

124087-4



available in LALSimulation: against SEOBNRv4HM
[45], SEOBNRv4HM_ROM [81] and SEOBNRv4T_
surrogate [79] in computational efficiency, and against
SEOBNRv4HM in accuracy. Figure 1 shows the time for
generating a waveform for total masses between 2 and
100 M⊙, with starting frequency of 10 Hz, and for

three values of the mass ratio, q ¼ f1; 3; 10g. The
SEOBNRv4HM_PA model performs significantly faster
than the SEOBNRv4HM model across all values of the
total mass M. The speedup is most significant for lower
total mass (∼60×), and drops to its lowest for high total
mass (∼10×). Most importantly, the speedup is substantial
(∼30×) for M ∼ 40–60 M⊙, where many of the events of
current interest lie. For M ≳ 10 M⊙, the time to generate a
waveform using SEOBNRv4HM_PA is less than 1 s.
Comparing to the frequency-domain SEOBNRv4HM_

ROM model, we see that, as expected, the reduced order
model is faster in almost all cases, except for very low total
mass (M ≲ 10 M⊙) where the two models are comparable
in terms of computational cost (see Fig. 1).
As a further test, the SEOBNRv4HM_PA model was

benchmarked against theSEOBNRv4T_surrogatemodel,
which only includes the ðl; jmjÞ ¼ ð2; 2Þ mode. Figure 2
compares the time for generation of a waveform with the
SEOBNRv4HM_PA andSEOBNRv4T_surrogatemodels
where only the quadrupole mode is computed, at different
sampling rates, and with different starting frequencies, for a
1.4 M⊙ þ 1.4 M⊙ BNS with no spins.
Finally, we benchmark the time necessary to generate

each higher-oder multipole of the model. Figure 3 shows
the times to generate waveforms with the SEOBNRv4HM_
PA model for which all ðl; jmjÞ modes with l ≤ lmax (see
the legend) are resolved at initial frequency of f0 ¼ 20 Hz.
As expected, adding higher multipoles increases the
Nyquist frequency and the cost for generating the wave-
form. The figure demonstrates the difference in time that it
takes to compute each of the modes of the model. Another
test demonstrated that generating additional, higher-
order modes at a fixed sampling rate incurs negligible
computational cost to the waveform generation.

FIG. 1. Benchmark of the SEOBNRv4HM_PAwaveform model
against 2 other well known and commonly used models.
Compared to the SEOBNRv4HM model, the post-adiabatic model
is between 10 and 102 times faster depending on the total mass
(for a starting frequency of 10 Hz). The frequency-domain
SEOBNRv4HM_ROM model is faster for high total mass M,
but the two models have near-equal performance in the low-total-
mass regime. In these tests, the compact objects have spins
χ1 ¼ 0.8 and χ2 ¼ 0.3, and the sampling rate has been chosen so
that it is large enough to resolve the (5,5) mode for large total
mass, but also to never exceed 8192 Hz.

FIG. 2. Benchmark of the SEOBNRv4HM_PAwaveform model
against SEOBNRv4HM and the surrogate model SEOBNRv4T_
surrogate for a 1.4 M⊙ þ 1.4 M⊙ binary with no spins for a
range of starting frequencies fmin. Since the SEOBNRv4T_
surrogate model only includes the ðl; jmjÞ ¼ ð2; 2Þ mode,
the other models were modified to only compute this mode. All
waveforms were sampled at 8192 Hz.
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B. Accuracy of the model

To assess the accuracy of our model with respect to
SEOBNRv4HM we use the notion of unfaithfulness as
outlined below.
In general, the GW signal from a non-precessing, quasi-

circular BBH is characterized by a total of 11 parameters:
the binary companion masses m1 and m2, the (dimension-
less) component spins χ1 and χ2, which can be aligned or
antialigned with the orbital angular momentum, the
orientation of the binary in the source frame ðι;φ0Þ, the
sky location of the source in the detector frame ðθ;ϕÞ,
and the luminosity distance dL, the time of arrival tc, and
the polarization angle ψ . The detector response can be
written as

hðtÞ ¼ Fþðθ;ϕ;ψÞhþðλ; tc; tÞ þ F×ðθ;ϕ;ψÞh×ðλ; tc; tÞ;
ð3:2Þ

where λ ¼ ðm1; m2; χ1; χ2; ι;φ0; dLÞ are the binary param-
eters and the functions Ffþ;×gðθ;ϕ;ψÞ are the antenna
patterns (see [105,106]). This can be cast as

hðtÞ ¼ Aðθ;ϕÞðcosðκÞhþðλ; tc; tÞ þ sinðκÞh×ðλ; tc; tÞÞ:
ð3:3Þ

Here κ ≡ κðθ;ϕ;ψÞ is the effective polarization [85],
defined as

expðiκðθ;ϕ;ψÞÞ ¼ Fþðθ;ϕ;ψÞ þ iF×ðθ;ϕ;ψÞ
Aðθ;ϕÞ ; ð3:4Þ

where the overall amplitude function Aðθ;ϕÞ is

Aðθ;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2þðθ;ϕ;ψÞ þ F2

×ðθ;ϕ;ψÞ
q

: ð3:5Þ

We can now define the match between a GW signal hSðtÞ
(which for us is SEOBNRv4HM) and a template waveform
hTðtÞ (which is SEOBNRv4HM_PA) (see [107]):

F ðιS;φ0S;κSÞ¼ max
tc;φ0T;κT

� ðhS;hTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhS;hSÞðhT;hTÞ
p

����
m1;2S

¼m1;2Tχ1;2S
¼χ1;2T

ιS¼ιT

�
; ð3:6Þ

where the parameters denoted with S (T) refer to the signal
(template) waveform. For the purposes of this calculation,
we marginalize over the phase ϕ0T, the effective polariza-
tion κT, and the time of arrival tc, and use the familiar
definition for the inner product between two waveforms
[105,106]:

ðx; yÞ≡ 4ℜ

�Z
fhigh

flow

df
x̃ðfÞỹ�ðfÞ
SnðfÞ

�
; ð3:7Þ

where a ∼ denotes a Fourier transform, a � denotes a
complex conjugate, and finally SnðfÞ is the one-sided
power spectral density (PSD) of the detector noise.
Here, we use flow ¼ 20 Hz, fhigh ¼ 2048 Hz, and the

Advanced LIGO “zero-tuned high-power” design sensitiv-
ity curve [108]. The definition of the faithfulness in Eq. (3.6)
depends on the signal parameters (ιS;φ0S; κS) and therefore
allows us to work with either the maximum or the averaged
unfaithfulness (or mismatch) 1 − F ðιS;φ0S; κSÞ:

Umax ≡ max
fιS;φ0S;κSg

½1 − F �≡ 1 − min
fιS;φ0S;κSg

½F �; ð3:8aÞ

Ū ≡ h1 − F ifιS;φ0S;κSg

≡ 1 −
1

8π2

Z
2π

0

dκS

Z
π

0

dιS sinðιSÞ
Z

2π

0

dφ0SF : ð3:8bÞ

Using these definitions of the unfaithfulness, we exam-
ine the accuracy of the post-adiabatic (PA) model in

FIG. 3. Benchmark of the SEOBNRv4HM_PA waveform with
different highest-order modes allowed. For each mass ratio q and
ðl; mÞmode, the initial frequency was modified so that this mode
is included at f ¼ 20 Hz. The compact objects have spins
χ1 ¼ 0.8 and χ2 ¼ 0.3, and the sampling rate has been chosen
so that it is large enough to resolve the (5, 5) mode for large total
mass, but also to never exceed 8192 Hz.
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comparison with SEOBNRv4HM. Figure 4 shows the
maximum unfaithfulness Umax across the parameter space
of the effective spin χeff and the mass ratio q for 4 separate
values of the total mass M. We find that in all cases that
were presented, the unfaithfulness is below Oð0.01%Þ,
which makes our model comparable in accuracy to
SEOBNRv4HM_ROM [81]. The variations of the unfaithful-
ness for a fixed total mass can be explained in terms
of the length of the waveform and the heuristic condition
which we use to transition from PA inspiral to merger and
ringdown.
The variations across the separate panels of Fig. 4 can be

better expressed in the form of a histogram of the average
unfaithfulness Ū, which is shown in Fig. 5. The distribution
for each value of the total massM peaks at a higher value of
the unfaithfulness, which is consistent with the fact that
lower-mass binaries undergo a longer coalescence inside
the frequency band relevant to LIGO. In all cases, however,
the average unfaithfulness stays below Oð0.01%Þ.

IV. PARAMETER ESTIMATION STUDY

While the previous section deals with the absolute
performance of the SEOBNRv4HM_PA model, it is impor-
tant to demonstrate that these benchmarks translate into a

faster and reliable parameter estimation (PE) analyses. For
this purpose, two PE studies were performed with the
SEOBNRv4HM_PAmodel, aswell as some of the established
waveform models (SEOBNRv4HM or SEOBNRv4HM_
ROM). The first one is an injection study involving a synthetic

FIG. 4. Unfaithfulness Ū (in percent) between the SEOBNRv4HM_PA and SEOBNRv4HM models as a function of mass ratio q and
effective spin χeff for 4 different values of the total mass M.

FIG. 5. Histogram of the unfaithfulness Ū (in percent)
between the SEOBNRv4HM_PA and SEOBNRv4HM models for
4 different values of the total mass M and the case of a
1.4 M⊙ þ 1.4 M⊙ BNS.

FAST POST-ADIABATIC WAVEFORMS IN THE TIME DOMAIN: … PHYS. REV. D 104, 124087 (2021)

124087-7



signal. The data was then analyzed using SEOBNRv4HM_PA
and SEOBNRv4HM models. The second PE study was
performedondata from the eventGW190412. Itwas analyzed
using the SEOBNRv4HM_PA and the SEOBNRv4HM_
ROM models.
In both cases, the parameter estimation was

done using the Markov-chain Monte Carlo code
LALinferenceMCMC [97]. The results of these
studies are presented below in the following subsections.
We also note that PE studies using the TEOBResumS
waveform model with the PA approximation were done in
Refs [92,93,95,109,110].

A. Injection-based study

The choice of parameters for this PE study was
made so that it could emphasise the speedup which the
SEOBNRv4HM_PA model offers, but also to manifest
higher-order modes in the signal. The injected signal has
total mass M ¼ 60 M⊙ with mass ratio 1=q ≈ 0.4, aligned
spins ðχ1; χ2Þ ¼ ð0.8; 0.3Þ, at a distance of approximately
1364 Mpc (corresponding to signal-to-noise ratio (SNR) of
∼22) and at an inclination of π=3. The injection was made
using the SEOBNRv4HM model, while the subsequent
analysis was performed using both the SEOBNRv4HM
and the SEOBNRv4HM_PA models in order to judge the
performance of the post-adiabatic (PA) model.
The results of the parameter estimation analysis can be

summarized in the series of marginalized 2-dimensional
posterior plots in Fig. 6. Figure 6(a) shows the plot for the
component source-frame masses mS

1 and mS
2; Fig. 6(b)

shows the plot for the mass ratio q and the effective

spin χeff . Finally, Fig. 6(c) shows the posterior for the
luminosity distance dL [cf. Eq. (2.11)] and the inclination
angle ι. The plots demonstrate that the distributions
of the posterior samples are in very good agreement
between the two models, which demonstrates the reliability
of SEOBNRv4HM_PA in PE studies. The Jensen-Shannon
(JS) divergence between the 1-dimensional posteriors
which are shown in Fig. 6 is always at Oð10−3Þ or below,
which is consistent with the effects of stochastic sampling
on the recovered quantities [111]. Finally, the PE study
using the SEOBNRv4HM_PA model had an associated
computational cost about 10 times lower than the one
performed using the model; this is a due to the speedup
presented in Sec. III and further computational overhead
associated with the LALinferenceMCMC pipeline.

B. GW190412 parameter estimation

It is more interesting to demonstrate the viability of the
SEOBNRv4HM_PA model on a real GW-event. The
GW190412 from the LIGO O3a catalogue is a good
candidate for such a study due to its parameters—total
mass of ≲40 M⊙ (m1 ≈ 30 M⊙ and m2 ≈ 8 M⊙, asym-
metric mass ratio of about 3, and dimensionless spin of the
massive companion between 0.22 and 0.6 [12,112–114].
The total mass and mass ratio suggest that waveforms for
this event would be computationally much more efficient
using the SEOBNRv4HM_PA model—which means it is
particularly suitable to study this event. The analyses were
performed with both the SEOBNRv4HM_PA and
SEOBNRv4HM_ROM models, since any analysis with the

(a) (b) (c)

FIG. 6. Parameter estimation results for the synthetic injection. The 2-dimensional posterior plots show the 90% confidence regions
for the parameters. The grey vertical lines in the 1-dimensional plots show the projections of these confidence regions. The grey labeled
lines denote the injection values. Note the excellent agreement between SEOBNRv4HM_PA and SEOBNRv4HM waveform models. (a)
Marginalized 2D posterior for the compo- nent source-frame masses m1and m2. (b) Marginalized 2D posterior for the mass ratio q and
the effective spin χeff. (c) Marginalized 2D posterior for the lumi- nosity distance dL and the inclination of the binary θ.
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SEOBNRv4HM model would have been impractical in
terms of the time required to complete it.
The 2-dimensional marginalized posterior plots are

shown in Fig. 7. Figure 7(a) shows the posterior for the
component source-frame masses mS

1 and mS
2 of the binary;

Fig. 7(b) shows the plot for the mass ratio q and the
effective spin χeff ; and finally, Fig. 7(c) shows the plot for
the luminosity distance dL and the inclination angle ι. The
plots demonstrate the incredibly good agreement between
the SEOBNRv4HM_ROM and the SEOBNRv4HM_PA mod-
els, which is further confirmed by the JS divergence
between the samples, which is below the Oð10−3Þ level.
In conclusion for this section, the SEOBNRv4HM_PA

model may be reliably used for parameter estimation
analyses in place of models like SEOBNRv4HM, with no
evident caveats which could hinder the results of such
analyses. Furthermore, the average speedup in the gener-
ation of samples for the MCMC chains was found to be
around 1 order of magnitude. The reason that this is less
compared to the speedup demonstrated in Fig. 1 is the fact
that for the PE studies, the waveforms are generated using
starting frequency f0 ¼ 20 Hz.

V. TESTS OF GENERAL RELATIVITY

In previous sections we have seen that SEOBNRv4HM_PA
is a robust, accurate and fast alternative to SEOBNRv4HM
and can therefore be used as a drop-in replacement. An
interesting further application of this is to use the
SEOBNRv4HM_PA model for tests of general relativity,
where the SEOBNRv4HM model was previously used as a
baseline GR model. In particular, we consider a

parametrized black hole (BH) ringdown test that measures
the deviations of quasinormal mode emission from pre-
dictions of GR. We summarize the test briefly here, see
[29,115] for more details. In GR, the no-hair conjecture
predicts that the physical properties of a (uncharged)
BH are completely determined by its mass and spin.
Consequently, the quasinormal modes (QNM) that describe
the gravitational waves emitted by a perturbed BH are also
uniquely determined by its mass and spin. Thus one can
check the validity of GR by measuring or constraining
any deviations in the complex QNM frequencies. The
pSEOBNR ringdown analysis uses a parametrized version
of a full inspiral-merger-ringdown GW signal model to
measure and constrain the (complex) QNM frequencies.
Consequently, unlike other ringdown studies restricted to
the post-merger signal [116–119], the pSEOBNR analysis
makes use of the entire signal power and does not suffer
from the ambiguity of a ringdown start-time definition.
In pSEOBNR, one starts with the SEOBNRv4HMmodel, but
then introduces deviations δflm0 and δτlm0 (which are
treated as free parameters) to the QNM frequency and
damping time, so that

flm0 ¼ fGRlm0ð1þ δflm0Þ; ð5:1Þ
τlm0 ¼ τGRlm0ð1þ δτlm0Þ; ð5:2Þ

and the ringdown signal is different from the GR predic-
tion. Here, fGRlm0 and τ

GR
lm0 are computed from final mass and

spin as predicted by NR fitting formulas. The goal of the
test is to infer the values of the ðδflm0; δτlm0Þ by doing full
parameter estimation.

(a) (b) (c)

FIG. 7. Parameter estimation results for the event GW190412. The 2-dimensional posterior plots show the 90% confidence regions for
the parameters. The grey vertical lines in the 1-dimensional plots show the projections of these confidence regions. There is an excellent
agreement between the results with the SEOBNRv4HM_PA and the SEOBNRv4HM_ROM models. (a) Marginalized 2D posterior for the
component source-frame masses m1 and m2 (b) Marginalized 2D posterior for the mass ratio q and the effective spin χeff
(c) Marginalized 2D posterior for the luminosity distance dL and the inclination of the binary ι.
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Performing full parameter estimation taking into account
deviations from GR is a challenging problem, since it
involves sampling a higher-dimensional space (two new
parameters for every ðl; mÞ mode considered), which
means any improvements to waveform speed can lead to
even bigger impact on the overall runtime. To check the
speed and accuracy of using SEOBNRv4HM_PA for this
application, we compare it to the results obtained with
SEOBNRv4HM for the first gravitational wave event ever
detected, GW150914. We choose this event as it has
significant signal-to-noise ratio (SNR) in the merger-ring-
down regime. For a high (quasi) equal-mass binary like
GW150914, contributions from higher multipoles of the
GW signal are expected to be negligible. Hence, we restrict
our analysis to just the least-damped dominant QNM, i.e.,
ðf220; τ220Þ, keeping the other QNM s fixed at their nominal
GR values. In Fig. 8 we show the posterior distributions for
the fractional deviations in the damping time and frequency
as recovered by using SEOBNRv4HM and SEOBNRv4HM_
PA. It is evident that the posteriors are in extremely good
agreement with the results showing consistency with GR.
More quantitatively, the Jensen-Shannon (JS) divergence
between the 1-dimensional posteriors is Oð10−3Þ for δf220
and δτ220, which is again within the range of what is
expected due to stochastic sampling. We find a similarly

good level of agreement for the other parameters.
Finally, we find a speed-up of ∼10 times when using
SEOBNRv4HM_PA instead of SEOBNRv4HM as the base
GR model, significantly accelerating inference. With focus
shifting from analyses of individual events to population
studies, demands on computational resources and person-
power are ever-increasing, as demonstrated by large-scale
studies in LVK catalog papers [5,7]. Hence, such increases
in computational efficiency is immensely important for the
future of GW data analysis.

VI. DISCUSSION AND CONCLUSIONS

We developed the SEOBNRv4HM_PA model, which
combines the multipolar EOB NR-informed model
SEOBNRv4HM with the post-adiabatic (PA) approach for
solving the (spin-aligned) binary dynamics (developed
and used in the TEOBResumS models [70,71,90,94]).
The resulting model is computationally cheap (at most
on the order of seconds and less than 1 second for most of
the parameter space) and highly accurate (unfaithfulness
less than Oð10−3Þ when benchmarked against the
SEOBNRv4HM model). Therefore, it can be used as a
drop-in replacement for parameter estimation studies and
tests of GR for many GW events where the use of the
SEOBNRv4HM model would have been impractical.
In Sec. II we presented the EOB formalism and

the derivation of the PA equations, together with a
discussion on the specifics of transitioning from the PA
regime to the merger part of the dynamics. Section III
describes the practical implementation of this model in the
LALSimulation library of waveform models, and pro-
vides the important benchmarks in terms of speed and
accuracy of the SEOBNRv4HM_PA model. In particular,
we demonstrated that the SEOBNRv4HM_PA model pro-
vides a speed-up of 10 to 100 times compared to the
SEOBNRv4HM waveform model. Furthermore, we showed
that the new model is accurate at a level which allows us to
use it for the purposes of LIGO data analysis.
Section IV makes use of the results of the previous

section and illustrates the use of the SEOBNRv4HM_PA
model in 2 separate parameter estimation studies: recov-
ering an injected synthetic signal and applying the model to
analyze the event GW190412. In both cases, we find an
extremely good agreement between the results obtained
with our model and other established models. Compared to
PE with the SEOBNRv4HM model, the study with
SEOBNRv4HM_PA completes around 10 times faster.
Finally, Sec. V depicts the use of the waveform model
to a test of GR and discusses the importance of the
model for this type of analyses. We find that there is an
excellent agreement between the results obtained using the
SEOBNRv4HM_PA and the established SEOBNRv4HM and
SEOBNRv4HM_ROM models.
There are several interesting future directions that

can be pursued to apply the PA approximation to other

FIG. 8. Posterior distributions for the fractional deviations δf220
and δτ220 in the damping time and frequency as recovered by using
SEOBNRv4HM and SEOBNRv4HM_PA. The 2-dimensional pos-
terior plot shows the 90% confidence regions for the parameters.
The grey vertical lines in the 1-dimensional plots show the
projections of these confidence regions. The thick grey lines
denote the values predicted by GR.
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SEOBNRv4HM models, notably models that include tidal
deformabilities for binary neutron stars [120,121], for
which, currently, only the surrogatemethod has been applied
]79 ] (see Refs. [91,109] for PA models with tidal effects

using TEOBResumS). A more important but challenging
extension would involve the precessing SEOBNRv4PHM
Hamiltonian [46], which would allow the model to be used
more efficiently and for a broader range of GW events
when doing parameter-estimation studies. Finally, the PA
approximation could also be extended to binary systems
on eccentric dynamics. The main challenges with spin-
precession and eccentricity is the presence of timescales
beyond the orbital and radiation-reaction ones.
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