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In [U. H. Danielsson et al., J. High Energy Phys. 10 (2017) 171.] a string theory inspired alternative to
gravitational collapse was proposed, consisting of a bubble of AdS space made up of ingredients from
string theory. These ultra compact objects are 9=8 times the size of the corresponding Schwarzschild black
hole, but being within the photosphere are almost indistinguishable from them. Slowly rotating
counterparts of these black shells were constructed in [U. Danielsson and S. Giri, J. High Energy Phys.
07 (2018) 070.] which closely mimic a Kerr black hole, but have a quadrupole moment that differs from
Kerr. Recently, [U. Danielsson et al., Phys. Rev. D 104, 124011 (2021).] studied the dynamical stability of
the stationary black shells against radial perturbations and accretion of matter, and examined a two
parameter family of fluxes required for stability. In this paper, we reexamine the rotating black shells with
particular attention to the constraints imposed by this dynamical analysis for nonrotating shells.
Extrapolating these results to rotating shells, we find that they can indeed support themselves at a critical
point in the gravitational potential. Additionally, requiring that they settle back to their new Buchdahl
radius after accreting matter, uniquely fixes the fluxes required for dynamical stability. The flux parameters
turn out to have an extremely simple form, and fulfill one of the constraints for perturbative radial stability
while exactly saturating the other. The preferred quadrupole moment that we find, given some physical
assumptions, is 7% less than Kerr.

DOI: 10.1103/PhysRevD.104.124086

I. INTRODUCTION

Black holes continue to challenge our UV understanding
of physics. On one hand, the existence of an event horizon
gives rise to the information paradox [1] (see [2] for a
review), while on the other hand, the spacetime singularity
at the center of the black hole has evaded a satisfactory
understanding in our best developed theories of UV physics.
The enormous entropy of black holes seems to have an
origin at the horizon [3], but being featureless à la the no-
hair theorem [4], we do not have a complete understanding
of its thermodynamic origin. While string theory has had
success in accounting for the microscopic entropy of
supersymmetric black holes [5], it is less clear what

happens in the case of the nonsupersymmetric black holes
of the real world.
Attempts to understand how information can be

preserved even in the presence of a genuine horizon,
such as the idea of black hole complementarity pro-
posed in [6], has run into problems. In fact, in [7], it was
argued that full compatibility with quantum mechanics
requires the horizon to be replaced by a firewall. For
other discussions about possible new physics see e.g.,
[8–11] and the review in [12]. This is the motivation
behind proposals replacing black holes with other objects
that lack a horizon, and in this way evade the information
paradox.
Usually, the surface of such an object hides very close to

where the horizon would have been, making it very difficult
to distinguish them from ordinary black holes. In [13],
however, we proposed a model where the space time is
unstable against the formation of bubbles of AdS, which
then replace Schwarzschild black holes. These bubbles
have a radius equal to 9Rs=8, commonly known as the
Buchdahl radius, which is macroscopically larger than
the Schwarzschild radius. In our paper we showed how
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the necessary matter components to build such bubbles arise
in a natural way from string theory.
In [14] we generalized our model to include slow

rotation, and proposed that Kerr black holes are replaced
by rotating black shells. Since the black shells lack
horizons the exterior metric need not be the one of Kerr.
In fact, by considering metrics more general than Kerr we
found a quadrupole moment that differed from the one
of Kerr.1

An important part of our model is a source term that
transfers energy between the different components, pre-
serving the total energy. Without such a term the black shell
cannot be stable. In [13] we argued for the existence of a
suitable source term in the quasistatic case. In [15] this
analysis was reconsidered in the case of physical accretion
of matter on to the black shell. Analytical constraints on the
source term were obtained, and checked against numerical
calculations. It was shown that the source term can indeed
be tuned so that the black shell grows in radius and
stabilizes at the new Buchdahl radius when matter is falling
on to it.
In this paper we revisit our analysis of the rotating black

shell confronting the constraints on the dynamics obtained
in [15]. It turns out that the combined analysis uniquely
fixes the parameters determining the source. Furthermore,
despite the complexity of the expressions involved in
describing the rotating case, the final result is remarkably
simple. The preferred value for the quadrupole moment that
we find in our analysis is, given some physical assump-
tions, given by −0.926a2M, and thus about 7% less in
magnitude than the one of Kerr.
The outline of the paper is as follows. In Sec. II we

review the nonrotating black shell as well as revisit the
rotating one. In Sec. III we discuss the role of the source
term making use of the results in [15]. Finally, we conclude
in Sec. IV with an outlook toward future work.

II. BLACK HOLES AS BLACK SHELLS

A. General principles and the nonrotating case

The starting point is a metastable Minkowski spacetime
that can decay nonperturbatively through tunneling, into a
stable AdS vacuum. This takes place through the nucleation
of a bubble containing the true vacuum, via a Coleman-de
Luccia gravitational instanton [16]. In the vacuum, the
probability of such a nucleation event is exponentially
suppressed. However, when matter collapses, threatening to
form a black hole, such a phase transition can be triggered
so that a bubble forms and captures the in-falling matter,
which can attach itself to the bubble wall and turn into a gas

of open strings. This increase in entropy can make the
process inevitable rather than unlikely.
In [13] we showed how all required matter components

can be obtained from string theory. The bubble wall itself
is in the form of a brane, for instance a 5-brane wrapping
an internal 3-cycle, which carries magnetic flux. Alter-
natively, this flux can be thought of in terms of dissolved
branes of a lower dimensionality, for instance 3-branes
wrapping internal 3-cycles. Massless vibrations in the flux
fields within the brane give rise to radiation on top of the
shell. It is into this radiation that the in-falling matter con-
verts when the bubble nucleates. The number of massless
degrees of freedom is furthermore governed by the rank of
the magnetic fluxes, i.e., number of dissolved branes. An
important part of our model is that the radiation gas will be
heated to the local Unruh temperature when the system is in
equilibrium.
With these components, we were able to solve the Israel-

Lanczos-Sen junction conditions [17–19] and show that the
black shell has a critical point at a radius equal to 9Rs=8,
commonly known as the Buchdahl radius (where Rs ≔ 2M
is the Schwarzschild radius). The junction conditions relate
the energy density on the shell with the geometry in the
bulk. The first of these ensures that the induced metric ðhijÞ
is well defined, while the second gives the energy momen-
tum tensor on the shell ðSijÞ in terms of its extrinsic
curvature of the shell ðKijÞ embedded in the bulk2

Δhij ¼ 0; Sij ¼ −
1

8π
ðΔKij − ΔKhijÞ; ð1Þ

where Δ denotes the difference in the corresponding
quantities across the shell, and K ≔ Kijhij is the trace of
the extrinsic curvature. These ensure that the composite
spacetime which includes the inside, the outside and the
surface of the bubble together solves Einstein’s equations.
For a bubble of radius r ¼ R with AdS space (with radius
1=k) in its interior, and Schwarschild metric (with massM)
outside, the junction conditions give

Stt ¼−ρ¼ 1

4πR

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

2M
R

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2R2

p �
;

Sθθ ¼ Sϕϕ ¼ p¼ 1

8πR

�
1−M=Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 2M=R

p −
1þ 2k2R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2R2

p
�
; ð2Þ

where ρ and p denote the density and pressure respectively,
of the perfect fluid constituting the shell. The metric
induced on the shell is

ds2ind ¼ −
�
1 −

2M
R

�
dt2 þ R2d2 þ R2 sin2 θdϕ2: ð3Þ

1The improved analysis of the present paper picks a physically
better motivated case, and gives a different prediction than the
one of [14].

2Throughout this paper Greek indices μ, ν refer to bulk co-
ordinates, while Latin indices i, j refer to those on the shell.
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Based on physical arguments presented in [13], we demand
that the stress tensor can be split into the constituents
above, namely a brane, gas and stiff matter with equations
of state pτ ¼ −ρτ, pg ¼ ρg=2, and ps ¼ ρs respectively.
For the shell at the critical radius R ¼ 9Rs=8, this gives the
individual components as:

ðSbraneÞij ¼
�
−

k
4π

þ 2

27Mπ
−

1

81kM2π

�
δij;

ðSgasÞij ¼
1

18Mπ
uiuj þ

1

54Mπ
δij;

ðSstiffÞij ¼
2

81kM2π
uiuj þ

1

81kM2π
δij; ð4Þ

where ui is the normalized velocity vector of the stationary
shell ui ¼ 3ð1; 0; 0Þ. Note that the metric used is the
induced metric of Eq. (3) evaluated at R ¼ 9Rs=8.
However, without any other ingredients in the model, this
critical point turns out to be unstable and with the slightest
perturbation, the shell will either start expanding or
collapse into a black hole. We proposed in our paper a
coupling between the brane tension and the gas such that
energy can be transferred between the two, changing
the tension and the density of the gas in response to a
perturbation.
This is accomplished through a source term in the

continuity equation for the components that preserves
the total energy. It was argued that a natural quantity that
could govern such a source is the local Unruh temperature.
Any deviation in the temperature of the system away from
the Unruh temperature should initiate an energy transfer
aimed at equilibrating the temperature. It was furthermore
shown how such a process achieved stability in the case of
quasistatic perturbations. In [13] we studied the quasistatic
case and argued that one can find such a source term.
In [15], the stability of a nonrotating black shell was

carefully studied, and it was shown that the quasistatic
approach in [13] was not sufficient. The reason is correc-
tions to the Unruh temperature due to the motion and
acceleration of the shell. Any physical perturbation, such as
the impact of matter, will induce motion that is not
quasistatic in any limit. In [15] [Eq. (86)], the source term
was therefore generalized to

j≡ 3ρgðα _aR=aR þ βF=2Þ; ð5Þ

where aR is the Unruh temperature, and the dot denotes the
time derivative. We have defined F ¼ _A=A, where A is the
area of the shell. α and β are constants that parametrize
respectively, the response of the shell to a change in its
Unruh temperature, and the response to a change in its area
under compression or relaxation. The quasistatic case
corresponds to α ¼ β ¼ 1. An analysis of linear perturba-
tions proportional to eiωτ with this source, led to a
frequency given by [15] [Eq. (B.18)]

ω≈
128πζ0

27ð4− 9αÞm
·
�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 9ð4− 9αÞð6α− β− 2Þ=ð16πζ0Þ2

q �
; ð6Þ

where we have introduced a nonzero viscosity given by ζ0,
and m is the mass of the bubble. We have taken the limit
m ≫ 1=k. From this one finds that stability with damping
requires α < 4=9 and 6α − β > 2. This is not all that is
needed. Studying an impulsive accretion event, it was
found that one must impose (in the large m limit)

α ¼ β þ 2=3: ð7Þ
This is to make sure that the shell, after accreting the in-
falling matter, settles at the new Buchdahl radius. These
constraints will play an important role for the rotating black
shell. We will come back to this after reviewing the
rotating case.

B. Revisiting the rotating black shell

In [14] we studied a slowly rotating black shell. To do
this we considered solutions to the Einstein equations
generalizing the Kerr-metric outside of the rotating shell,
and generalizing the AdS-metric inside of the rotating shell.
On the outside we add to the Kerr metric a superposition of
a metric similar to the one of Novikov and Manko [20]
(parametrized by q) and the one of Hartle and Thorne [21]
(parametrized by p), given by:

ds2 ¼ −gttð1þ a2ðqλþ pχÞÞdt2
þ grrð1þ a2ðqν − pχÞÞdr2
þ gθθð1þ a2ðqνþ pψÞÞdθ2
þ gϕϕð1 − a2ðqλ − pψÞÞdϕ2

þ 2gtϕdtdϕþ Δgμνdxμdxν; ð8Þ

where gμν is the Kerr metric with massM and spin a, while
the perturbing functions λ, ν, χ and ψ are given by:

λ ¼ ½ð4M2 − 4Mrþ 2r2ÞL− 4Mðr−MÞð3cos2θ − 1Þ

−2Lð2M2 − 6Mrþ 3r2Þcos2θ� 1

M2
;

ν ¼ ½2Lcos2θð6M2 − 10Mrþ 3r2Þ þ 4Mð5M − rÞ

−2Lð6M2 − 6Mrþ r2Þ þ 4Mcos2θð3r− 7MÞ� 1

M2
;

χ ¼ −
5

8M2

ð3cos2θ − 1Þ
rðr− 2MÞ

× ½2Mðr−MÞð2M2 þ 6Mr− 3r2Þ − 3r2ðr− 2MÞ2L�;

ψ ¼ 5

8M2

ð3cos2θ − 1Þ
r

× ½2Mð2M2 − 3Mr− 3r2Þ− 3rðr2 − 2M2ÞL�: ð9Þ
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where L ≔ log ð1 − 2M=rÞ. Here we have also added an
extra contribution, which solves Einstein’s equations, to
make sure that the mass of the system remainsM, given by

Δgμνdxμdxν ¼ −
16

3
a2Mq ·

�
r −M
r2

dt2 þ r −M
ðr − 2MÞ2 dr

2

þ rdθ2 þ rsin2θdϕ2

�
: ð10Þ

To have full control over the metric that we use, we have
calculated its Geroch-Hansen multiple moments [22,23].
The above metric has3

M0 ¼ M; J 0 ¼ 0;

M1 ¼ 0; J 1 ¼ aM;

M2 ¼ −a2M −
2

15
a2M3ð16q − 15pÞ; J 2 ¼ 0; ð11Þ

with higher moments being of the formM2k ¼ ð−1ÞkMa2k,
and J 2kþ1 ¼ ð−1ÞkMa2kþ1 (which come from the Kerr
metric) plus terms containing p and q that appear with an

where n > 2. Thus we see how q and p give rise to a
deviation in the quadrupole moment from the one of Kerr.
Our goal is to determine these parameters.
Inside the bubble, we construct a generalization of the

AdS metric of the following form

ds2 ¼ −ð1þ k2r2Þð1þ a2ðc1μ1 þ c2σ1ÞÞdt2
þ ð1þ k2r2Þ−1ð1þ a2ðc1μ2 þ c2σ2ÞÞdr2
þ r2ð1þ a2ðc1μ3 þ c2σ3ÞÞdθ2
þ r2sin2θð1þ a2ðc1μ4 þ c2σ4ÞÞdϕ2; ð12Þ

where the functions μi, σi are given by

μ1 ¼ f1P2ðcos θÞ; μ2 ¼ −f2P2ðcos θÞ;
μ3 ¼ f3P2ðcos θÞ; μ4 ¼ f4P2ðcos θÞ;
σ1 ¼ g1ð3 cos2 θ − 1Þ; σ2 ¼

r
6
g03ð3 cos2 θ − 1Þ;

σ3 ¼ g3 cos2 θ; σ4 ¼ g4ð2 cos2 θ − 1Þ; ð13Þ
with f1, f3, g1 and g3 further given by

f1 ¼
5k2r2 þ 3

4k6r4 þ 4k4r2
−
3ðk2r2 þ 1Þ arctanðkrÞ

4k5r3
;

f3 ¼
4k2r2 − 3

4k4r2
−
3ðk2r2 − 1Þ arctanðkrÞ

4k5r3
;

g1 ¼ −
2k4r4 − 2k2r2 − 3

6k6r4 þ 6k4r2
−
arctanðkrÞ
2k5r3

;

g3 ¼
k2r2 − 3

3k4r2
þ arctanðkrÞ

k5r3
: ð14Þ

We then move on to solve the first junction condition to
order a2 in the spin for a shell that is located at coordinate
radius rout from the outside, and rin from the inside

rout ¼ Rþ Ra2ðm1 þm2 cos 2θÞ;
rin ¼ Rþ Ra2ðn1 þ n2 cos 2θÞ: ð15Þ

This relates parameters of the metric inside the bubble to
those on the outside, in terms of those on the shell. In
particular, it gives c1 and c2 in terms of p, q and the
difference ðm1 − n1Þ:

c1 ¼
k5=2M

96½9kMð27kM2 − 4Þ − ð81kM2 − 16Þ arctanð9kM
4
Þ� ·

× ½256ð729M2ðm1 − n1Þ þ 104Þ
þ 405M2pð1323 ln 3 − 1276Þ
þ 432M2qð28þ 621 ln 3Þ�;

c2 ¼
4k5=2Mð−68þ 729M2ð4 − 5 ln 3ÞqÞ
9kMð−16þ 27kM2Þ þ 64 arctanð9kM

4
Þ : ð16Þ

At this point, there is a large amount ofmathematical freedom
in the system, and to proceed we need to impose physical
constraints.Our goal is to uniquely fix the exterior spacetime,
parametrized by p and q, and thus predict the value of, e.g.,
the quadrupole moment of the rotating shell. To do this we
need to find a way to fix c1 and c2. There is a simple
possibility that singles itself out: to simply setc1 ¼ c2 ¼ 0 so
that the interior metric is pure undeformed AdS. The argu-
ment for such a choice would be that the piece of fresh space
time that is nucleated inside of the bubble, should not depend
on what sits outside of it. The junction conditions are then
fully taken care of by the matter components on top of the
shell togetherwith themetric on the outside. One should note
that from the point of view of the inside AdS metric, the
outside asymptotic universe will be viewed as rotating, with
the AdS glued to the frame dragged spacetime just outside of
the shell.We find that c2 ¼ 0 fixesq, while c1 ¼ 0 then gives
a relation between p and m1 − n1.

4

To get further constraints, we then use the second
junction condition to compute the energy momentum
tensor Sij on the shell. Following the physical motivation
behind the construction of the black shells, this stress tensor
should be made of various components. As long as each
component is a perfect fluid (with corresponding equations
of state), and they share the same velocity vector ui, the
total stress tensor will also be of the form of a perfect fluid:

Sij ¼ ðρtotal þ ptotalÞuiuj þ ptotalgij: ð17Þ

3Without the added piece, M0 would have had an extra
contribution ð8=3Þa2Mq.

4In [14] only c1 was, implicitly, put to zero while the freedom
in c2 was not observed. The case studied there had a c2 different
from zero.
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This places a further restriction on the constants and
determines p; q; ðm1 − n1Þ uniquely. The results obtained
are exact to all orders in k, but too large to write down. So
we present only the leading order result in 1=ðkMÞ for some
of the quantities below.

p¼ 64ð1557 ln3−1028Þ
10935ð5 ln3−4ÞD

1

M2

þ32768ð135 ln3−172Þ
32805D2

1

kM3
þ 1

M2
Oðk−2M−2Þ;

q¼−
68

729ð5 ln3−4Þ
1

M2
;

ðm1−n1Þ¼
2ð316144−726744 ln3þ410103ðln3Þ2Þ

6561ð5 ln3−4ÞD
1

M2

−
128ð135 ln3−172Þð1323 ln3−1276Þ

59049D2

1

kM3

þ 1

M2
Oðk−2M−2Þ; ð18Þ

where we have defined D ¼ 196–261 ln 3, which will
reappear throughout. The normalized velocity vector
ui ¼ ð3þ γa2; 0; aβÞ is

γ ¼ −
4Dð729M2n1 þ 64Þ þ 128ð135 ln 3 − 172Þsin2θ

243M2D
1

M2

þ 256ð19344 − 76136 ln 3þ 63153ðln 3Þ2Þ
729D2

1

kM3

þ 1

M2
Oðk−2M−2Þ;

β ¼ −
64ð8þ 27MkÞ

243M2ð4þ 9MkÞ : ð19Þ

The values of p and q numerically evaluate to

p¼−
0.295
M2

−
0.00287
kM3

þ 1

M2
Oðk−2M−2Þ; q¼−

0.625
M2

;

ð20Þ

which determines the quadrupole moment, via Eq. (11),
to be

M2 ¼ −a2M −
2

15
a2M3ð16q − 15pÞ

¼ −0.926a2M −
0.00575a2

k
þ a2MOðk−2M−2Þ ð21Þ

Thus, for this physically natural scenario, the expected
quadrupole moment of the black shell is about 7% less than
the one of a Kerr black hole.5

So far, all results are exact, and we have not made any
expansion in k. To verify that the shell is made of three
components with equations of state of tension, gas, and stiff
matter we need to expand in large k. This allows us to split
the total Sij into its constituents:

ðSbraneÞij ¼
�
−

k
4π

þ 2

27Mπ
−

1

81kM2π
− a2Z1

�
δij;

ðSgasÞij ¼
�

1

18Mπ
þ a2Z2

�
uiuj

þ
�

1

54Mπ
þ a2

3
Z2

�
δij;

ðSstiffÞij ¼
�

2

81kM2π
þ a2Z3

�
uiuj

þ
�

1

81kM2π
þ a2

2
Z3

�
δij; ð22Þ

where the factors Zi are

Z1 ¼ −
A1 þ 16A2 cos 2θ

6561πD
1

M3
þ A3 þ 96A4 cos 2θ

177147πD
1

kM4

þ 1

M3
Oðk−2M−2Þ;

Z2 ¼
B1Dþ 32B2 cos 2θ

4374πD
1

M3
;

Z3 ¼ −
4C1Dþ 192C2 cos 2θ

59049πD2

1

kM4
þ 1

M3
Oðk−2M−2Þ;

ð23Þ

with

A1 ¼ 36032 − 54000 ln 3þ 1458n1DM2;

A2 ¼ 292 − 765 ln 3;

A3 ¼ 4374n1D2M2

þ 256ð133648þ 9 ln 3ð17361 ln 3 − 31336ÞÞ;
A4 ¼ 879536 − 2046648 ln 3þ 1248291ðln 3Þ2;
B1 ¼ 352þ 2187n1M2;

B2 ¼ 52þ 495 ln 3;

C1 ¼ 256ð99 ln 3 − 92Þ þ 729n1DM2;

C2 ¼ 299440 − 625080 ln 3þ 336771ðln 3Þ2: ð24Þ

In the next section we will examine the energy momentum
tensor and its properties more closely.

III. HOW THE ROTATING SHELL
SUPPORTS ITSELF

One can verify that the induced energy momentum
tensor is covariantly conserved with respect to the induced

5This is different from the result in [14], which corresponded to
another possible solution.
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metric, i.e., ∇iSij ¼ 0. This is not automatically guaran-
teed. In general, the covariant derivative of the extrinsic
curvature is given by a projection of the bulk Einstein
tensor on the shell, using the Gauss-Codazzi equations [24]
[Eq. (3.42)]

∇iKi
j − ∂jK ¼ Gμνeμjnν; ð25Þ

whereGμν is the four dimensional Einstein tensor in the bulk,
eμj is the tangent vector, and nν is the vector normal to the
shell. In our case this vanishes trivially on the outside since
Gμν ¼ 0. It also vanishes on the inside due to the projection.
Vanishing of the covariant derivative implies that the
combined system can sustain itself such that the total
pressure balances the gravitational (and centrifugal) forces
without the need for any external force acting from the bulk.
However, the covariant derivative of each component of the
stress tensor is nonvanishing and they cancel against each
other nontrivially. Up to Oðk−2M−2Þ, they read:

∇iðSbraneÞiθ
¼ 32ð292 − 765 ln 3Þa2 sin 2θ

6561πDM3

−
64ð879536þ 3 ln 3ð416097 ln 3 − 682216ÞÞa2 sin 2θ

59049πD2kM4
;

∇iðSgasÞiθ
¼ −

32ð292 − 765 ln 3Þa2 sin 2θ
6561πDM3

þ 128ð19344þ ln 3ð63153 ln 3 − 76136ÞÞa2 sin 2θ
19683πD2kM4

;

∇iðSstiffÞiθ
¼ 64ð763472þ 9 ln 3ð96597 ln 3 − 176648ÞÞa2 sin 2θ

59049πD2kM4
;

ð26Þ

whereD ¼ 196–261 ln 3, as defined below Eq. (18), and all
other components vanish. As promised, one can note how the
nonzero terms add up to zero when summed. The physical
interpretation of this is that the individual terms exert mutual
forces on each other such that the system is stable. From
wheredo these source terms come? It is natural to assume that
they have the same origin as the source terms needed to
achieve stability in the case of the nonrotating black shell.
More precisely,we argue thatEq. (5) shouldbegeneralized to

ji ≔ 3ρg

�
α
∇iaR
aR

þ β
Fi

2

�
: ð27Þ

In [15], F was determined in terms of the area. A convenient
alternative would be to express it in terms of the three
dimensional Ricci scalar. In the nonrotating case this is
simply given by

Rð3Þ ¼ 2þ 2 _R2 þ 4RR̈
R2

≈
2

R2
: ð28Þ

Hence, we can, to lowest order in any perturbation, use

Fi ¼ −
∇iRð3Þ

Rð3Þ : ð29Þ

We can now evaluate the source term, as given above in
Eq. (27) and demand that it equals the flux from the nonzero
covariant derivative of the brane/gas in Eq. (26). At leading
order in ð1=kMÞ this gives,

jθ ¼ −
1

9Mπ

a2 sin 2θ
M2

·
�
α
40ð100þ 243 ln 3Þ

243D
þ β

2560ð21 ln 3 − 4Þ
243D

�

¼ 40αð100þ 243 ln 3Þ þ 1280βð21 ln 3 − 4Þ
2187πD

a2 sin 2θ
M3

¼! 32A2

6561πD
a2 sin 2θ

M3
; ð30Þ

where A2 ¼ 292–765 ln 3, and D ¼ 196–261 ln 3, as
defined in Sec. II. This gives the following constraint on α
and β:

4ð292 − 375αþ 480βÞ − 45ð68þ 81αþ 224βÞ ln 3¼! 0:
ð31Þ

If this relation is satisfied, then the shell can support itself at a
critical point. If we now use the Buchdahl constraint α ¼
β þ 2=3 obtained in [15], we can uniquely solve for α and β.
The result is remarkably simple:

α ¼ 4

15
;

β ¼ −
2

5
: ð32Þ

What is even more remarkable is that this satisfies the
constraint α < 4=9 and exactly saturates the constraint
6α − β > 2. So a rotating bubble at a critical point is just
barely compatible with the stability of a nonrotating bubble
that accretes such that it always sits at the Buchdahl radius.
This is a highly nontrivial result. It is worth noting that this
solution for α, β does not depend on the value of ðm1 − n1Þ
that was chosen in order to pick the physically most
interesting solution with c1 ¼ c2 ¼ 0. It appears to be a
universal feature of rotating black shells that are made of the
same ingredients allowing the total energymomentum tensor
to be split in same way as in Eq. (22).
To summarize, the source term compatible with stability

of the nonrotating case, as well as the existence of a critical
point in the case of a rotating black shell is given by
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ji ≡ ρg
5

�
4
∇iaR
aR

þ 3
∇iRð3Þ

Rð3Þ

�
: ð33Þ

IV. CONCLUSIONS

In summary, we have reexamined the rotating black shell
alternatives for black holes proposed in [14]. A black shell
is made of a higher dimensional brane from string theory,
wrapping internal cycles and yielding a spherical mem-
brane in four dimensional space time. The membrane
carries magnetic fluxes, whose massless vibrations within
the world volume of the membrane give rise to a gas of
radiation. This is heated up to the local Unruh temperature
of the shell, thus equilibrating the system and making it lie
at a critical point of the gravitational potential. Recently,
[15] analyzed the stability of the nonrotating black shells
of [13] and examined a two parameter family of fluxes to
ensure that this critical point is stable. It was concluded
that stability against radial perturbations, with damping,
requires α < 4=9 and 6α − β > 2. Furthermore, under an
impulsive accretion event, for the shell to settle back to its
new Buchdahl radius, it is necessary to have α ¼ β þ 2=3.
In this paper, we have extrapolated the stability criteria of

[15] to slowly rotating black shells, and re-examined the
flux exchanged between the brane and gas in this case. We
found that the flux indeed supports the shell at a critical
point in the gravitational potential. Additionally, requiring
that the parameters are such that a nonrotating shell relaxes
back to its new Buchdahl radius under accretion, fixes the
flux parameters to unique values. Remarkably, despite the
complicated numerical factors involved, this yields an
extremely simple result: α ¼ 4=15, β ¼ −2=5. These
satisfy one of the constraints: α < 4=9, and exactly saturate

the other: 6α − β > 2. So the existence of rotating black
shells forces the parameters to saturate the stability criteria
obtained in [15] for nonrotating shells.
This opens up several interesting avenues for further

study. First, one needs to make sure that rotating black
shells accrete matter in a way consistent with that proposed
in [15] for the nonrotating black shells. Saturating the
constraint 6α − β ¼ 2 in Eq. (6) implies that there is a zero
mode of the perturbation. However, since Eq. (6) is valid in
the large mass limitm ≫ 1=k, a careful analysis of the sub-
leading terms is needed. This, along with extending the
analysis of [15] to rotating black shells, will require care
and careful consideration when approaching this margin of
stability. Second, given these remarkably simple and
promising values, it is of fundamental importance to find
an argument based on first principles, for the source term as
given in Eq. (33).
Third, the analysis, including the suggested reduction of

the quadrupole moment by 7% compared to Kerr, is only
valid for slowly spinning black shells. It is of great
phenomenological interest to extend this analysis to black
shells where the rotation is not slow. Given that most
supermassive black holes, for example the one at the center
of the Milky way in Sagittarius A*, are expected to be
spinning close to maximal [25], such an analysis would be
important for astrophysical tests that could become avail-
able in the near future.
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