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The approach of dynamical systems is a useful tool to investigate the cosmological history that follows
from modified theories of gravity. It provides qualitative information on the typical background solutions in
a parametrized family of models, through the computation of the fixed points and their characters (attractor,
repeller, or saddle), allowing, for instance, the knowledge of which regions on the parameter space of the
models generate the desired radiation-, matter-, and dark energy–dominated eras. However, the traditional
proposal for building dynamical systems for an fðRÞ theory in the Palatini formalism assumes the
invertibility of a function that depends on the specific Lagrangian functional form, which is not true, for
example, for the particular theory of exponential gravity (fðRÞ ¼ R − αR�ð1 − e−R=R� Þ). In this work, we
propose an alternative choice of variables to treat fðRÞ models in their Palatini formulation, which do
include exponential gravity. We derive some general results that can be applied to a given model of interest
and present a complete description of the phase space for exponential gravity. We show that Palatini
exponential gravity theories have a final attractor critical point with an effective equation of state parameter
weff ¼ −1 (for α > 1), weff ¼ −2=3 (for α ¼ 1), and weff ¼ 0 (for α < 1). Finally, our analytical results are
compared with numerical solutions of the field equations.
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I. INTRODUCTION

One of the greatest challenges in modern cosmology is to
identify the physical mechanism responsible for the late-time
cosmic acceleration. The two main theoretical approaches to
explain cosmic acceleration are the following: 1) assume the
existence of an unknown component with sufficiently neg-
ative pressure, generically denominated “dark energy,” and 2)
“modified gravity,” in which general relativity (GR) is
modified at large scales or,more accurately, at lowcurvatures.
The simplest dark energy candidate is Einstein’s cosmologi-
cal constant (Λ). Although in very good accordance with
current cosmological observations, Λ faces some theoretical
difficulties, such as its tiny value when comparing the
theoretical expectation to the vacuum energy density, the
so-called cosmic coincidence and its fine-tuning. This sit-
uation has motivated the search for alternatives like modified
gravity theories. The simplest modified-gravity candidate is
the so-called fðRÞ gravity in which the Lagrangian (density)
is a nonlinear function of the Ricci scalar R.
To obtain the field equations in fðRÞ theories, two main

variational approaches can be adopted, namely, the metric

or the Palatini formalisms. The distinction lies on which
gravitational (geometric) fields are considered as indepen-
dent: only the metric in the former and both the metric and
the connection in the latter. For the standard Einstein-
Hilbert gravitational Lagrangian (with or without a cos-
mological constant), assuming that the matter Lagrangian
does not depend on the connection, both approaches lead to
the same field equations. However, for a nonlinear fðRÞ,
the two methods give rise to different field equations and
distinct cosmical dynamics; in fact, in the general case, the
metric approach yields fourth-order field equations, while
the Palatini approach generates a second-order system and
is, therefore, more easily tractable. An important feature of
a large class of fðRÞ gravity theories is that an accelerated
expansion appears naturally in both methods.
In this work, we perform a careful dynamical system

analysis of fðRÞ under the Palatini formalism [1] and apply
it to the special case of exponential gravity theory [2,3].
Dynamical system analysis has been explored with great
success in the study of several cosmologies [4–7]. Of
special interest here is the work of Ref. [8] (hereafter called
FTT) that analyzed the cosmological viability of fðRÞ
theories under the Palatini approach. They investigated the
possibility of cosmologies having four relevant phases:
early inflation, radiation and (nonrelativistic) matter-
dominated eras, and a late-time accelerated expansion.
To this end, they considered, for instance, the case of power
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laws of the type fðRÞ ¼ Rþ αRm − β=Rn (α, β > 0). If the
term αRm is dominant at relatively large curvatures, in
principle, it could drive early inflation, while if the term
β=Rn is dominant at low curvatures, depending on the
value of n, it could drive late-time acceleration. FTT
showed that for this fðRÞ theory an early inflationary
era is not compatible with a subsequent standard radiation-
dominated era. They remarked that, although a sequence of
four phases is not possible for the above model, three out of
four are possible. Here, we are mainly interested in Palatini
exponential gravity, and in our case, besides matter- and
radiation-dominated eras, only late-time cosmic accelera-
tion is expected to be relevant.
As will become clear later on, Palatini exponential

gravity cannot fully be treated by using the FTT formalism
because of inversion problems. As will be shown, in order
to have a closed autonomous system on the FTT approach,
there is a function of the Ricci scalar, CðRÞ, in the
dynamical system of equations, that needs to be expressed
in terms of the FTToriginal variables ỹ1 and ỹ2. This cannot
be done fully in the Palatini exponential gravity theory. In
order to completely analyze this theory, it is necessary to
introduce new variables y1 and y2. Therefore, in this sense,
the FTT Palatini approach cannot generically be applied to
all fðRÞ. For the Palatini exponential gravity, the formalism
we propose corrects this limitation. Similar inversion
problems as the one that will be responsible for the failure
of the FTT approach on the Palatini exponential gravity are
discussed and solved in the metric formalism for a given
fðRÞ in Ref. [9].
This paper is organized as follows. Section II presents

the traditional FTT approach and its main results and
limitations, motivating the need of new variables for the
study of the exponential gravity theory. In Sec. III, the new
variables are introduced together with the dynamical
system equations written in terms of them. In Sec. IV,
the main results are obtained for a general fðRÞ regarding
the critical points of the system and their nature, and a more
detailed analysis is made for the exponential gravity theory
at the end. Finally, Sec. V discusses the results obtained,
comparing it with what one would obtain in the FTT
approach in the parameter regime where it is valid.
Numerical particular solutions are presented as well to
exemplify qualitative behaviors foreseen by the dynamical
system analysis.
Our sign conventions are those of Ref. [10], and we use

units such that the vacuum speed of light is c ¼ 1 and thus
the Einstein gravitational constant is κ ≔ 8πGN .

II. TRADITIONAL APPROACH TO PALATINI f ðRÞ
DYNAMICAL SYSTEMS

A. Palatini f ðRÞ theories
In the usual first-order Palatini variational approach to

fðRÞ modified theories of gravity [1,11–13], three sets of

independent fields are considered: (i) the matter fields ψA
(where A is a collective index taking into account all kinds
of nongravitational fields), (ii) the metric tensor gαβ, and
(iii) the (affine) connection Γα

μν, where the last two stand for
the gravitational fields (in contrast to the Einstein-Hilbert
approach). The total action is given by

S ≔ SG þ SM; ð1Þ

where

SG½gαβ;Γα
μν;Γα

μν;β� ≔ −
1

2κ

Z
M

fðRÞ ffiffiffiffiffiffi
−g

p
d4x ð2Þ

and

SM½gαβ;ψA;ψA;α� ≔
Z
M

LM
ffiffiffiffiffiffi
−g

p
d4x: ð3Þ

Here, the Ricci scalar is defined by

R ≔ gμνRμν; ð4Þ

whereas the (symmetric) Ricci tensor is the usual function
of the connection only,

Rμν ≔ Γα
μν;α − Γα

μα;ν þ Γα
σαΓσ

μν − Γα
σνΓσ

μα; ð5Þ

and LMðgαβ;ψ ;ψA;αÞ is the matter Lagrangian.
When extremizing S with respect to gμν, we get

f0Rμν −
1

2
fgμν ¼ κTμν; ð6Þ

where, as usual (since the LM does not depend on Γα
μνÞ, the

energy-momentum tensor (EMT) is given by

Tμν ≔
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LMÞ
δgμν

: ð7Þ

Here, of course, f0 ≔ df=dR.
When extremizing S with respect to Γα

μν, the correspond-
ing equations are equivalent to

∇αðf0
ffiffiffiffiffiffi
−g

p
gμνÞ ¼ 0; ð8Þ

where ∇α is the covariant derivative operator associated to
Γα
μν. This equation may be used in order to express the

connection in terms of f0 and gμν, and it turns out that Γα
μν

are the Christoffel symbols associated to the nondegenerate
symmetric tensor hμν ≔ f0gμν or, equivalently,
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Γα
μν ¼ fαμνg þ

1

2f0
½2δαðμ∂νÞf0 − gασgμν∂σf0�; ð9Þ

where fαμνg are the Christoffel symbols of the metric gμν.
Finally, for our specific total action, one can also show

[14] that the EMT obeys the usual conservation law,

Tμν
;ν ¼ 0; ð10Þ

where the subscript; denotes the covariant derivative with
respect to the metric connection.
Considering from now on a spatially flat Friedmann-

Lemaître-Robertson-Walker metric,

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ; ð11Þ

we assume the EMT to be composed of regular radiation
and nonrelativistic matter, that is,

Tμν ¼
�
ρm þ 4

3
ρr
�
uμuν þ

1

3
ρrgμν; ð12Þ

whereρm andρr are thematter and radiation energydensities,
respectively, and uμ is the Hubble flow 4-velocity. We will
assume these components do not interact and thus Eq. (10)
leads, separately, to the familiar expressions

ρm ¼ ρm0e−3N; ð13Þ

ρr ¼ ρr0e−4N; ð14Þ

wherewe assume ρm0 and ρr0 as positive quantities through-
out this work and anticipate the convenience of using as an
independent variable the e-fold parameter (instead of the
scale factor or redshift)

N ≔ lna: ð15Þ
One difference between the metric and Palatini formal-

isms regards their equivalent representation as a scalar-
tensor theory. Both can be treated as a Brans-Dicke theory
with a potential [1], but the former has a Brans-Dicke
parameter equal to 0, while the latter has the same
parameter equal to −3=2. The main physical consequence
of that difference is that on the metric formalism the scalar
field introduces an additional dynamical degree of freedom
when compared with general relativity, while in the Palatini
case, it can be shown that the scalar field satisfies an
algebraic relation, not having the same dynamical behavior.
Another fundamental difference between both approaches

that is worth stressing again is regarding the order of the field
equations. In the metric formalism, a set of fourth-order
differential equations on the metric is found, whereas in the
Palatini case, the equations are of second order. This differ-
ence simplifies the trace of the generalized Einstein’s
equations, Eq. (6), which becomes a purely algebraic relation
between ρm and R:

κρm ¼ 2f − f0R: ð16Þ

Writing the Ricci scalar with the help of Eq. (9) and
substituting it in Eq. (6) together with Eq. (12), one obtains
[1] the generalized Friedmann equation,

6f0H2

�
1þ f00

2f0
dR
dN

�
2

− f ¼ κðρm þ 2ρrÞ; ð17Þ

where, of course, H ¼ _a=a. By differentiating Eq. (16),
then using Eqs. (13) and (16), we find

dR
dN

¼ −3
f0R − 2f
f00R − f0

; ð18Þ

from which we can rewrite Eq. (17) as

H2 ¼ 2κðρm þ ρrÞ þ f0R − f
6f0ξ

; ð19Þ

with

ξ ≔
�
1 −

3f00ðf0R − 2fÞ
2f0ðf00R − f0Þ

�
2

: ð20Þ

Finally, differentiating Eq. (19) and using Eqs. (13), (14),
and (19), we obtain

dH2

dN
¼ −3H2 þ 3

f0R − f
6f0ξ

−
κρr
3f0ξ

−
_f0H
f0

−
_ξH
ξ

þ
_f0R

6f0ξH
; ð21Þ

where · ≔ d=dt ¼ Hd=dN.
We point out that one can write ρr only in terms ofH and

R by replacing Eq. (16) in Eq. (19) and then rewrite the
evolution of the Hubble parameter as

dH2

dN
¼ −4H2 þ R

3ξ

þ 3H2ðf0R − 2fÞ
2ðf00R − f0Þ

�
f00

f0
þ ξ0

ξ
−

f00R
6f0ξH2

�
: ð22Þ

Then, Eqs. (18) and (22) constitute an autonomous system
of differential equations for the variablesH2 and R, with the
independent parameter given by N. All the formalism of
dynamical systems can then be employed when analyzing
the qualitative behavior of the solutions near the critical
points of the theory. However, this is not suitable for two
reasons: in these variables, we expect the existence of
critical points in the infinity (R → ∞ or H → ∞), and as
we will see later, a pair of values of R and H does not
completely specify a physical cosmological solution.
Therefore, it is often convenient to introduce new variables
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in order to simplify the analysis and avoid these subtleties,
especially when the intention is to describe several fðRÞ
models at once, as we shall see next.

B. FTT approach

The traditional way of addressing the dynamical system
in the Palatini formalism for fðRÞ gravity theories is found
in Ref. [8]. Here, we summarize the procedure. First, we
express the dynamical system in terms of the variables:

ȳ1 ≔
f0R − f
6f0ξH2

; ȳ2 ≔
κρr

3f0ξH2
: ð23Þ

Applying the derivative to both of these expressions and
using Eqs. (14), (18), and (22), we arrive at an equivalent
dynamical system given by

dȳ1
dN

¼ ȳ1½3 − 3ȳ1 þ ȳ2 þ CðRÞð1 − ȳ1Þ�; ð24Þ

dȳ2
dN

¼ ȳ2½−1 − 3ȳ1 þ ȳ2 − CðRÞȳ1�; ð25Þ

where

CðRÞ ≔ −3
ðf0R − 2fÞf00R

ðf0R − fÞðf00R − f0Þ : ð26Þ

The solutions of the system are the curves ðȳ1ðNÞ; ȳ2ðNÞÞ
on the phase space of the points ðȳ1; ȳ2Þ. The critical points
of the dynamical system are obtained by setting dȳ1=dN ¼
dȳ2=dN ¼ 0 and solving for ȳ1 and ȳ2. Any solution that
starts at a critical point remains on it. Depending on the
critical point nature, solutions nearby can be attracted or
repelled by it. To study which behavior occurs, one
linearizes the right-hand side of the two differential
equations of the system and find the eigenvalues of the
corresponding Jacobian matrix evaluated at each invariant
point. If both eigenvalues are negative, the critical point is
an attractor, and all neighboring solutions tend to evolve
into it. If both are positive, all solutions on its vicinity are
repelled. Finally, if one eigenvalue is positive and the other
is negative, one has a saddle point that attracts solutions in
some directions and repels in others.
Assuming CðRÞ ≠ −3;−4, one concludes that the criti-

cal points of the Palatini fðRÞ theories of gravity are given
in the ðȳ1; ȳ2Þ plane by:

(i) Pr ≔ ð0; 1Þ with eigenvalues f4þ CðRÞ; 1g,
(ii) Pm ≔ ð0; 0Þ with eigenvalues f3þ CðRÞ;−1g,
(iii) Pd≔ð1;0Þwith eigenvalues {−3−CðRÞ,−4−CðRÞ}.
Although this procedure can be applied for a variety of

fðRÞ theories in the Palatini formalism, it is not well
defined in some cases, since Eqs. (24) and (25) are not
always entirely expressible in terms of ȳ1 and ȳ2. For this to
be possible, and the system to be recognized as a true

closed dynamical one, it is necessary to express CðRÞ as a
function of these variables. This can be achieved by
additionally imposing Eq. (19), which is now a constraint
equation that can be written, considering Eq. (16), as

f0R − 2f
f0R − f

¼ ȳ1 þ ȳ2 − 1

2ȳ1
: ð27Þ

For a given fðRÞ, the above equation can, in principle, be
inverted to provide R as a function of the variables ȳ1 and
ȳ2. The function Rðȳ1; ȳ2Þ can then be replaced in CðRÞ,
assuring the closed character of the system. An exception to
this procedure is when the lhs of the above equation is a
noninvertible function of R. When this occurs, the same
values of ðȳ1; ȳ2Þ may correspond to multiple values of R
and H, leading to the overlap of different critical points in
the phase space of these variables and precluding a clear
description of the behavior of the solutions near them. Such
an inversion problem happens, for instance, in exponential
gravity, defined by

fðRÞ ¼ R − αR�ð1 − e−R=R� Þ; ð28Þ

where R� and α are free positive parameters. In this case,
when α < 1, the system cannot be closed, and a new set of
variables is needed.
The explicit inversion of Eq. (27) is particularly impor-

tant when CðRÞ assumes the values −3 or −4. This is
because there can be extra critical points, as long as they
satisfy:

(i) ðȳ1; ȳ2Þ ¼ ð0; 1Þ or ðconst; 0Þ andCðRðȳ1;ȳ2ÞÞ¼−3,
(ii) ðȳ1; ȳ2Þ ¼ ð0; 0Þ or (1,0) or (const; 1 − constÞ and

CðRðȳ1; ȳ2ÞÞ ¼ −4.
Therefore, despite obtaining quite general results, it is

not clear from this approach whether a generic fðRÞ indeed
contains the three desired radiation-/matter-/dark energy–
dominated phases. Besides, when ȳ1 ¼ 0, the inversion of
the constraint is also not possible.

III. NEW VARIABLES

To deal with some theories in which the traditional
approach is problematic, we propose a new set of variables:

y1 ≔
f

2H2f0ξ
; y2 ≔ y1 þ

f
R
: ð29Þ

Whenever f=R is an invertible function of R, the second
definition can be used to obtain the Ricci scalar as a
function of the variables y1 and y2. It is instructive to notice
that, in the ðy1; y2Þ plane, the collection of points with the
same value of R is a straight line inclined by 45 deg and
intercepting the y2 axis in the point ð0; f=RÞ, as indicated
in Fig. 1.
In terms of the new variables, the constraining Eq. (19)

can be expressed as
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κρr
3H2f0ξ

¼ 1 − y1 þ
y1f0

3ðy2 − y1Þ
: ð30Þ

Differentiating Eq. (29) and using Eqs. (18), (22), and (30),
one arrives at the system

dy1
dN

¼ f0 − 2ðy2 − y1Þ
f0 − f00R

y1
y2 − y1

ð3f0 − y1f00RÞ

−
2y21f

0

3ðy2 − y1Þ
þ 4y1; ð31Þ

dy2
dN

¼ f0 − 2ðy2 − y1Þ
f0 − f00R

�
3f0y2 − y21f

00R
y2 − y1

− 3ðy2 − y1Þ
�
−

2y21f
0

3ðy2 − y1Þ
þ 4y1; ð32Þ

where all functions of R are to be understood as functions
of y1 and y2, since we assume that Rðy1; y2Þ can be
obtained by the second definition in Eq. (29). Under this
condition, then, the system is closed.
It is important to notice that our procedure is comple-

mentary to the traditional FTT one, since it also relies upon
an invertibility assumption. Depending on which theory
one wishes to study, one needs to choose the approach that
suits better. It is, of course, also possible that neither of the
approaches is viable, if both the lhs of Eq. (27) and f=R are
not invertible for R. Then, one will need to construct
another set of variables to describe the system of interest,
which can be made by simply exchanging f=R for a chosen
invertible function of R in our definition of y2.
Furthermore, we can write the fractional energy densities

of matter, radiation, and a geometric component, respec-
tively, in terms of the new variables as

Ωm ≔
κρm
3H2

¼
�
4y1
3

−
2y1f0

3ðy2 − y1Þ
�
f0ξ; ð33Þ

Ωr ≔
κρr
3H2

¼
�
1 − y1 þ

f0

3ðy2 − y1Þ
y1

�
f0ξ; ð34Þ

Ωgeo ≔ 1 −Ωm −Ωr: ð35Þ

The component related with the parameter Ωgeo, as we will
see, can be responsible for providing an accelerated
expansion phase of the Universe, being then called a dark
energy parameter, but it may as well behave effectively as
dust or radiation in some cases. This will depend on the
equation of state that the combined cosmic fluid will
satisfy. The effective equation of state parameter account-
ing for all components, defined by

_H
H2

≔ −
3

2
ð1þ weffÞ; ð36Þ

can be written in terms of the new variables as

weff ¼ −
2y1f0

9ðy2 − y1Þ
þ 1

3

þ f0 − 2ðy2 − y1Þ
f0 − f00R

�
f00R
f0

þ ξ0R
ξ

−
y1f00R

3ðy2 − y1Þ
�
: ð37Þ

It gives the equation of state of the total fluid, establishing
when it behaves effectively as dust, radiation, or dark
energy and determining the period of acceleration of the
Universe in a given solution of the system. In terms of
the equation of state parameter of each component, the
effective parameter is

weff ¼
Ωr

3
þ wgeoΩgeo: ð38Þ

FIG. 1. Phase-space diagram for exponential gravity illustrating the physically acceptable (filled blue) and unacceptable (empty red)
critical points and the associated eigenvectors. Light gray regions do not correspond to physically admissible solutions of the original
background equations since they have either ρm < 0 and/or H2 < 0 and/or Ωr < 0. The dark gray region is outside of the domain of the
variables y1 and y2.
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IV. CRITICAL POINTS AND PHASE-SPACE
RECONSTRUCTION

We start by analyzing the case of a generic fðRÞ. We will
only be interested in critical points where y1 and y2 are
nondivergent. At a critical point, a necessary condition that
comes from the derivative of the second definition in
Eq. (29) is

d
dN

�
f
R

�
¼ −

3ðf0R − 2fÞðf0R − fÞ
ðf00R − f0ÞR2

¼ 0: ð39Þ

This implies that every critical point in which f00R − f0 ≠
�∞ satisfies either

f0 ¼ 2f
R

¼ 2ðy2 − y1Þ ð40Þ

or

f0 ¼ f
R
¼ y2 − y1: ð41Þ

By Eq. (16), the first of these conditions is equivalent to
ρm ¼ 0. It is important to emphasize that some solutions of
the above equations may still not correspond to a critical
point and one has to verify if that is the case afterward (i.e.,
if dy1=dN ¼ 0 and dy2=dN ¼ 0).
If R is a solution of Eq. (40), we find the corresponding

value of y1 by replacing this relation in the rhs of Eq. (32)
and imposing a vanishing lhs. Assuming f0 − f00R ≠ 0 and
f00R2=f ≠ �∞ in Eq. (32), this leads to

y1 ¼ 3 or y1 ¼ 0: ð42Þ

On the other hand, if R satisfies Eq. (41), we replace this
relation in the rhs of Eq. (31) together with dy1=dN ¼ 0,
and assuming f0 − f00R ≠ 0 and f00R ≠ �∞ on it, we
obtain

y1 ¼
3f0 − 12f00R
2f0 − 5f00R

or y1 ¼ 0: ð43Þ

The corresponding values of y2 are found by replacing the
values of y1 and R into the second part of Eq. (29). Note
that each of Eqs. (40) and (41) can have multiple solutions.
Even though the Ricci scalar is assumed to be a function of
y1 and y2, it might be the case that multiple solutions of R
are associated with a single value of y1, but then they need
to have distinct values of y2. The R-dependent y1 in
Eq. (43) may, as well, have a different value for each of
the solutions of Eq. (41). If some value of R that solves one
of Eqs. (40) and (41) does not satisfy the appropriate above-
mentioned conditions (e.g., if f0 − f00R ¼ 0), a more care-
ful limiting process must be done in Eqs. (31) and (32) so

that the critical points can be found. The result of this limit
will depend, of course, on the functional form of fðRÞ.
We can already assess some aspects of the matter content

and the acceleration character of the possible critical points.
Assuming no divergence occurs and replacing Eqs. (40)
and (42) in Eqs. (33)–(35) and (37),

For y1 ¼ 3∶
	Ωm ¼ Ωr ¼ 0;Ωgeo ¼ 1;

weff ¼ −1:
ð44Þ

For y1 ¼ 0∶
	Ωm ¼ 0;Ωr ¼ 2y2;Ωgeo ¼ 1 − 2y2;

weff ¼ 1
3
:

ð45Þ

When using Eq. (41) in Eqs. (33)–(35) and (37), one finds

Ωm ¼ 2y1ðy2 − y1Þξ
3

;

Ωr ¼
�
1 −

2y1
3

�
ðy2 − y1Þξ;

Ωgeo ¼ 1 − ðy2 − y1Þξ; ð46Þ

and

weff ¼ −
2y1
9

þ 1

3
−

1

1 − f00R
f0

�ð3 − y1Þf00R
3f0

þ ξ0

ξ

�
: ð47Þ

Equations (46) and (47) are valid for both values
in Eq. (43).
As discussed previously, Ωgeo can behave differently on

different epochs. The critical points satisfying Eq. (44) will
haveΩgeo standing for a dark energy [wgeo ¼ weff ¼ −1, by
Eq. (38)], which will be the unique constituent of the
Universe and, by Eq. (36), will describe an accelerated
period of expansion of a de Sitter kind, since the scale
factor will be an exponential function of time. But on the
critical points satisfying Eq. (45), Ωgeo behaves effectively
as a radiation fluid because, by Eq. (38) again, wgeo ¼ 1=3.
In this case, the Universe is in a decelerated expansion
stage. One must note, however, that, in principle, some
fðRÞ theories may not have critical points of these kinds,
since this conclusion depends, at least, on Eq. (40) having a
real solution.
We can obtain further information from the critical points

of Eq. (44) by calculating the matrix of partial derivatives of
the rhs of Eqs. (31) and (32) with respect to y1 and y2. The
matrix expression for a general fðRÞ is given in Appendix,
together with its value in the critical points. From these
results, and assuming no divergent term is present, it is
straightforward to conclude that the eigenvalues of the
critical points of the form ð3; y2Þ are negative (the same
values encountered for P5 in Table I) for a wide variety of
Palatini fðRÞ theories. They are, then, attractors.
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The following subsections are focused on exponential
gravity [cf. Eq. (28)]. The study of the phase space of this
particular theory has two main objectives: explore the
qualitative behavior of its solutions, since for the Palatini
formalism this has not yet been done in the literature, and
exemplify the application of the new approach presented in
this paper to an fðRÞ theory for which the FTT method
cannot be fully employed, highlighting possible subtleties
that may emerge throughout the analysis. We will discuss
the case α ¼ 1 separately because it needs a little more
caution.

A. Exponential gravity with α ≠ 1

In the case of exponential gravity, given by Eq. (28), the
function f=R is a strictly increasing function of R. Because
of this, the second definition in Eq. (29) can always be
solved for R as a function of y2 − y1. This implies that our
approach can be used to obtain a closed and autonomous
dynamical system.
We begin by describing the domain and physically

forbidden zones in the phase space ðy1; y2Þ. As discussed
previously, the locus of points where R has a fixed value are
the straight lines with inclination of 45 deg and passing
through the point ð0; f=RÞ. By making the limits R → �∞
in Eq. (28), we find

−∞ <
f
R
< 1: ð48Þ

The straight line R ¼ ∞ contains, then, the point (0, 1).
Since f=R is an increasing function of R, all the points
above this line would belong to a line with a greater value
of R, but there cannot be a greater value than ∞, from
which we conclude that these points are out of the domain.
The line R ¼ 0 has the point ð0; 1 − αÞ. Below it, R < 0,
and above it, R > 0.
Since ξ > 0 and H2 > 0, the first definition of Eq. (29)

implies that the sign of y1 must be the same as the ratio
f=f0. This imposes further restrictions on y1. It can be
shown that, for α > 1, the solution R0 of the equation
fðRÞ ¼ 0 is positive and that f=f0 is nonpositive in the
intervals of xðRÞ ≔ R=R⋆ given by ð−∞; 0Þ and
ðln α; xðR0ÞÞ. For α < 1, fðRÞ vanishes in a negative value
R̄0, and f=f0 is nonpositive on the intervals ð−∞; xðR̄0ÞÞ

and ðln α; 0Þ. After restricting y1, the second definition of
Eq. (29) imposes no additional constraint on y2.
Finally, we assume, for physical reasons, that ρm is never

negative, turning Eq. (16) into a restriction on the values of
R which, in Lambda Cold Dark Matter (ΛCDM), gives
R ≥ 4Λ. In contrast, for exponential gravity, if α < 1, the
rhs of Eq. (16) is non-negative for any R. On the other hand,
for α > 1, this constraint eliminates the region between the
lines x ¼ 0 and x ¼ xdS, where xdS, as we will see next, is
the positive root of Eq. (40), while the lines themselves
remain to be physically acceptable (ρm ¼ 0 on them). The
physically acceptable domain is presented in Fig. 1 as the
white regions.
The next step is to obtain the roots of Eq. (40). They are

two, xdS > 0 and x� < 0, but exist only for α > 1 and can
be found numerically (point P5 on the first panel of Fig. 1
corresponds to x ¼ xdS). We have already concluded that,
in principle, for xdS and x�, the possible values of y1 are
given by Eq. (42). If y1 ¼ 0, the first of Eq. (29) implies
that either f ¼ 0 or H2f0ξ → �∞. However, the former is
not true for both solutions, and the latter would lead to
ρr → ∞, from Eq. (34), which implies a → 0 and, then,
ρm → ∞ in view of Eqs. (13) and (14). But from Eq. (16),
we find ρm ¼ 0 at xdS and x�. Therefore, the critical points
that are solutions to Eq. (40) can only have y1 ¼ 3, for
exponential gravity. This implies that the critical point with
x� < 0 has a positive y1. This is, for α > 1, as previously
discussed, a forbidden region of the phase space and,
thus, does not correspond to a real solution of the original
differential system, so wewill neglect it. The corresponding
value y2;dS for the root xdS can be found numerically by the
second definition of Eq. (29). Lastly, as pointed out before,
we note that the value of xdS together with Eq. (44) in fact
allows us to interpret this fixed solution as a de Sitter
universe.
The remaining critical points are the solutions of

Eq. (41), which implies either R ¼ 0 or R → ∞. For both
values, the first of Eq. (43) gives y1 ¼ 3=2. Putting this into
Eq. (41), again, we find

y2 ¼
8<
:

5
2
; for R → ∞

5
2
− α; for R ¼ 0:

ð49Þ

Lastly, when y1 ¼ 0,

TABLE I. Critical points for α ≠ 1.

Model ðy1; y2Þ weff Ωm Ωr Ωgeo x H2 Eigenvalues Type

α > 1 or α < 1 P1∶ð0; 1Þ 1=3 0 1 0 ∞ ∞ 1, 3 Repeller
P2∶ð0; 1 − αÞ 1=3 0 1 − α α 0 0 1, −3 Saddle
P3∶ð3=2; 5=2Þ 0 1 0 0 ∞ ∞ −1, 3 Saddle

P4∶ð3=2; 5=2 − αÞ 0 1 − α 0 α 0 0 −1, −3 Attractor
Only α > 1 P5∶ð3; y2;dSðαÞÞ −1 0 0 1 xdSðαÞ > 0 R�xdS=12 −3, −4 Attractor
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y2 ¼
	
1; for R → ∞
1 − α; for R ¼ 0:

ð50Þ

By replacing the coordinates of these four critical points,
together with the corresponding values of R, into Eqs. (46)
and (47), we find the values for weff and the Ω0s that are
shown in Table I. Overall, we obtained one regular and one
effective radiation-dominated phase (points P1 and P2,
respectively); one regular and one effective dust-dominated
phase (points P3 and P4, respectively); and, for α > 1, one
physically admissible dark energy–dominated epoch
(points P5). As can be verified using Eq. (38), the
geometrical component behaves effectively as radiation
inP2, as dust inP4 and as dark energy in P5. It is important
to emphasize that for α < 1 there is no de Sitter critical
point.
Furthermore, H2 can be determined as well. For critical

points P1 and P2, we note by Eq. (16) that ρm ¼ ∞ and
ρm ¼ 0, respectively. Because of Eqs. (13) and (14), one
finds ρr ¼ ρm in these points. Replacing these values in
Eq. (19) and making the appropriate limit in R for both
critical points, one finds H2 ¼ ∞ for P1 and H2 ¼ 0 for
P2. For points P3 and P4, one can use the definition for y1
in Eq. (29), obtaining H2 ¼ ∞ and H2 ¼ 0, respectively.
Finally, for point P5, a similar procedure is done, but
Eq. (40) is used as well. This results on the numerical
values for H2 found in Table I.
Additionally, it is possible to obtain, by the results

presented in Appendix, the eigenvalues of the Jacobian
matrix in each critical point, which are shown in Table I
together with the critical point character (attractor, repeller,
or saddle).

B. Exponential gravity with α= 1

The domain in this case is still restrained, by the same
reasons as before, to the area below the line where R
diverges. The sign of y1 continues to be given by the sign of
f=f0, but now we simply find that it must be positive for
R > 0 and negative for R < 0. Furthermore, the region
where ρm < 0 corresponds to R < 0, and it must be
discarded for physical reasons.
The α ¼ 1 case has to be analyzed separately because of

apparent divergences. First, Eq. (40) is only satisfied when
R ¼ 0, but then the denominator appearing in the dynami-
cal equations, f0 − f00R, also vanishes, and so some results
previously obtained for a generic fðRÞ must be reassessed.

Equation (39) is still satisfied in the limit R → 0, which
implies, by the second of Eqs. (29), that if a pair ðy1; y2Þ
makes the rhs of any of Eqs. (31) or (32) vanish, it is a
critical point. Replacing y1 − y2 by f=R in Eq. (32), taking
the limit of R → 0 on it, noting that

lim
R→0

f0 − 2f=R
f0 − f00R

¼ −
1

3
; ð51Þ

while, in the same limit, f=R → 0, f0R=f → 2, and
f00R2=f → 2 and imposing dy2=dN ¼ 0, we find

y1 ¼ y2 ¼ 0 or 3: ð52Þ

Furthermore, Eq. (41) has two roots: R ¼ 0 and R → ∞.
By making a limiting procedure analogous to the previous
one, but now on Eq. (31) and imposing dy1=dN ¼ 0,
we get

y1 ¼
	
0 or 3; for R ¼ 0;

0 or 3
2
; for R → ∞:

ð53Þ

Table II summarizes the critical points for the α ¼ 1 model
and also shows the values of the Ω’s and weff at each of
them. As in the α > 1 case, here there is a dark energy point
(point P5), but it has weff ¼ −2=3. Almost all values of H2

can be obtained by the same methods used on the α ≠ 1
case, with the exception of point P2. In this point, one has
to make the limit R → 0 in Eq. (22) and impose that the
derivative ofH2 vanishes (since this must be a critical point
of the original dynamical system), finding that H must
vanish as well. The α ¼ 1 model clearly defines a dis-
continuity on the parameter space of exponential gravity,
since, for example, the dust-dominated attractor (point P4)
disappears. Again, in Appendix, we make explicit the
Jacobian matrices at the fixed points, and their correspond-
ing eigenvalues are shown in Table II.

V. CONCLUSIONS

Following Fig. 1, we are able to understand the viable
behavior of solutions qualitatively. The arrows in the figure
indicate the direction of the eigenvectors in each criti-
cal point.
For α > 1,P4 is an isolated point; it can only be achieved

by a solution which has R ¼ 0 throughout its evolution,
which is not physically admissible, since, by Eq. (16), it

TABLE II. Critical points for α ¼ 1.

ðy1; y2Þ weff Ωm Ωr Ωgeo x H2 Eigenvalues Type

P1∶ð0; 1Þ 1=3 0 1 0 ∞ ∞ 1, 3 Repeller
P2∶ð0; 0Þ 0 0 0 1 0 0 −1, 2 Saddle
P3∶ð3=2; 5=2Þ 0 1 0 0 ∞ ∞ −1, 3 Saddle
P5∶ð3; 3Þ −2=3 0 0 1 0 0 −1, −2 Attractor
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would have ρm ¼ 0 and, consequently by Eq. (13) and the
fact that ρm0 ≠ 0 in our analysis, the scale factor would be
divergent. Point P2 is also not physically admissible for
α > 1. This is because, by Eq. (34), Ωr is negative when
approaching this point by negative values of R with y1 < 0
and, by approaching in any other way, either ρm < 0 or
H2 < 0. The other three points, P1, P3, and P5 are,
respectively, radiation, matter, and dark energy dominated
and provide the expected qualitative evolution of our
observed Universe. Giving an initial condition near the
radiation-dominated critical point, the solution will be
repelled until it reaches the matter-dominated era, which
is a saddle point. Then, it will continue to evolve until it
reaches the final attractor of a dark energy–dominated era,
tending to it asymptotically. Almost all solutions tend to the
attractor through the direction of the eigenvector that is not
parallel to the x ¼ xdS line, since this direction is relatedwith
the eigenvalue of lowest absolute value, so that the Ricci
scalar reaches RdS only asymptotically. The α-dependent
eigenvectors are only those of pointP4 that are not parallel to
the R ¼ 0 line and of pointP5, which is not aligned with the
x ¼ xdS line.
It is important to emphasize that our approach is

complementary to the traditional FTT one, since both
assume invertibility of certain functions of the Ricci scalar,
which may fail depending on the theory of interest. In the
case where both approaches fail, we suggest that a new
approach suitable for the specific fðRÞ may be found by
constructing an invertible function of R, call it gðRÞ, and
redefining the variable y2 in Eq. (29) by exchanging f=R
for gðRÞ, without changing the definition of y1.
Still, for α > 1, one could argue that the FTTapproach is

valid, since the lhs of Eq. (27) is an invertible function of R.
But if this approach were used to investigate this case, one
would find points P1 and P2 corresponding to the same
pair ðȳ1; ȳ2Þ. This would occur for P3 and P4 as well. This
coincidence in the FTT approach would indicate ambiguity
when analysing the behavior of solutions near these critical
points, since a repeller would coincide with a saddle point
and an attractor would coincide with another saddle point.
Additionally, the nonphysical nature of P2 and P4 because
of the ρm < 0 region that separates them from the physical
points would not be evident, as it is with our new approach.
This points coincide in the FTT variables because ȳ1 ¼ 0
on them and so the rhs of Eq. (27) is not well defined,
making it impossible to obtain R as a function of such
variables in this points by this relation.
The usefulness of introducing new variables becomes

clear for the same reasons. If we were to analyze the
dynamical system in the ðR;H2Þ plane, multiple critical
points would be represented as the same point on this phase
space, as Tables I and II show. Also, there would be
important critical points existing on infinity, which would
require a more careful asymptotic analysis. By using the
new variables y1 and y2, we solve both of these problems.

In Ref. [15], a numerical analysis was made for the
exponential gravity in the metric formalism, for values of
α > 1. The cosmological evolution of the density param-
eters Ωm, Ωr, and Ωgeo are very similar to what we have
found in our work for this case, as well as the behavior of
wgeo as a function of redshift. The redshift where the
equality between dust and the geometrical component takes
place is, in both cases, of order unity.
For α ¼ 1, there are no isolated points. Points P1, P3,

and P5 play the same role as before, but there are
solutions that can pass near point P2, an intermediate
stage of effective dust domination with low R, where the
geometrical component dominates and behaves as dust.
One can show that the rhs of Eq. (18) is always negative
for exponential gravity, which implies that Rmust always
decrease with N in a given solution. As a consequence,
no solution can go from P2 to P3. The two possible
behaviors for the solutions when giving an initial con-
dition near P1 are as follows: it passes by either P2 or P3,
always ending in P5. Both intermediate stages are
regularly or effectively dust dominated and with a saddle-
like nature, differing only by the value of R andH2 and by
how relevant the geometrical component is. The dark
energy epoch on P5 is different from the one in the case
α > 1, since the fluid satisfies wgeo ¼ −2=3 instead of
wgeo ¼ −1, and thus the accelerated expansion is not of a
de Sitter kind.
Finally, for α < 1, some nonphysical points of the phase

space for α > 1 become physical. The big difference in this
case is that the final attractor, point P4, is dominated by an
effective dust coming from the mixture of regular dust and
geometrical component and there is no dark energy–
dominated era, with a steady accelerated expansion, only
a possible transient period of this kind, as Fig. 5 suggests.
Because of the always decreasing value of the Ricci scalar
along a given solution, one can have, in principle, for a
solution starting near P1, an intermediate state of radiation-
dominated kind and low R (point P2), where the fluid is a
mixture of regular radiation and geometrical component, or
it can have a regular dust-dominated intermediate stage
(point P3), both always ending on the attractor P4. Almost
all solutions in this case tend to P4 through the direction of
the R ¼ 0 line, and the direction of the other pair of
eigenvectors is α dependent.
We now show typical numerical solutions of the back-

ground equations in exponential gravity. Figures 2, 3, 4, 5,
and 6 show the evolution of the density parameters, the
effective equation of state parameter, and the geometric
equation of state parameter for solutions starting in the
radiation-dominated era. For α > 1, Fig. 2, we see that
the solution begins near the repeller P1, evolves toward the
saddle matter-dominated point P3, and ends at the de Sitter
attractor P5. For α < 1 and Ω̃m0 ¼ 0.3, Fig. 5, the main
difference is that the final attractor era, P4, behaves effec-
tively like a dust-dominated fluid with both matter and the
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FIG. 2. In the left panel, we show the evolution of the energy density parameters [Ωr (green dashed), Ωm (blue), and Ωgeo(red dot-
dashed)], and in the right panel, we show the effective equation of state parameter (blue) and the equation of state parameter of the
geometric component (red dashed), for a typical solution in exponential gravity with α ¼ 2 which starts in the radiation-dominated era,
with Ω̃m0 ¼ 0.3. In this case, there is a regular matter-dominated phase, and the system follows the points P1, P3, and the final de Sitter
attractor P5 with weff ¼ −1.

FIG. 3. In the left panel, we show the evolution of the energy density parameters [Ωr (green dashed), Ωm (blue), and Ωgeo(red dot-
dashed)], and in the right panel, we show the effective equation of state parameter (blue) and the equation of state parameter of the
geometric component (red dashed), for a typical solution in exponential gravity with α ¼ 1 which starts in the radiation-dominated era,
with Ω̃m0 ¼ 0.3. In this case, there is a regular matter-dominated phase, and the system follows the points P1, P3, and the final attractor
P5 with weff ¼ −2=3.

FIG. 4. In the left panel, we show the evolution of the energy density parameters [Ωr (green dashed), Ωm (blue), and Ωgeo(red dot-
dashed)], and in the right panel, we show the effective equation of state parameter (blue) and the equation of state parameter of the
geometric component (red dashed), for a typical solution in exponential gravity with α ¼ 1, which starts in the radiation-dominated era,
with Ω̃m0 ¼ 10−5. In this case, there is not a regular matter-dominated phase, and the system follows the points P1, P2 (with weff ¼ 0),
and the final attractor P5 with weff ¼ −2=3.
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geometrical component. For α < 1 and Ω̃m0 ¼ 10−5, Fig. 6,
there is no regular matter-dominated phase, and the system
follows the points P1, P2, and again the final attractor P4

withweff ¼ 0. For α ¼ 1 and Ω̃m0 ¼ 10−5, Fig. 4, the system
begins near the repeller P1, evolves toward the saddle point
P2 (with weff ¼ 0), and ends at the final attractor P5

with weff ¼ −2=3. Finally, for α ¼ 1 and Ω̃m0 ¼ 0.3,
Fig. 3, there is a matter-dominated era, and the final phase
is again dominated by the geometrical component alonewith
weff ¼ −2=3; this particular solution never crosses the
neighborhood of the saddle point P2. The numerical sol-
utions for all cases are, then, compatiblewith the results from
the qualitative analysis. We remark that the above Ω̃m0

denotes the present value of thematter density parameter that
aΛCDMmodelwould have, if it had the same presentmatter
density as the exponential gravity fðRÞ model [16].

As discussed above in Palatini exponential gravity, it is
possible to have the following consecutive three phases: a
radiation-dominated era, a matter-dominated era, and a late-
time acceleration phase. It is clear that the occurrence of
these phases per se does not guarantee the viability of the
model. It is also necessary that, at least for some values of
the model parameters, it is in accordance with observations.
In exponential gravity, as we increase α, the background
behavior of the model approaches that of ΛCDM with the
equation of state parameter of the geometric component
(wgeo) becoming closer and closer to the value wgeo ¼ −1
for all values of the redshift. Therefore, since ΛCDM is in
good agreement with observations, we expect that back-
ground tests, those that essentially depend only on dis-
tances, like SNeIa and BAO, for instance, should impose
relatively large values for the parameter α. In fact, more
restrictive than the background tests are those that depend

FIG. 5. In the left panel, we show the evolution of the energy density parameters [Ωr (green dashed), Ωm (blue), and Ωgeo(red dot-
dashed)], and in the right panel, we show the effective equation of state parameter (blue) and the equation of state parameter of the
geometric component (red dashed), for a typical solution in exponential gravity with α ¼ 0.7, which starts in the radiation-dominated
era, with Ω̃m0 ¼ 0.3. In this case, there is a regular matter-dominated phase, and the system follows the points P1, P3, and the final
attractor P4 with weff ¼ 0.

FIG. 6. In the left panel, we show the evolution of the energy density parameters [Ωr (green dashed), Ωm (blue), and Ωgeo(red dot-
dashed)], and in the right panel, we show the effective equation of state parameter (blue) and the equation of state parameter of the
geometric component (red dashed), for a typical solution in exponential gravity with α ¼ 0.7, which starts in the radiation-dominated
era, with Ω̃m0 ¼ 10−5. In this case, there is not a regular matter-dominated phase, and the system follows the points P1, P2 (with
weff ¼ 1=3), and the final attractor P4 with weff ¼ 0.
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on the matter density perturbations. It can be shown that, in
Palatini fðRÞ, the linear matter perturbations satisfy the
approximate equation [17,18]

δ̈m þ 2H_δm −
κρm
2f0

�
1þmk2=ða2RÞ

1 −m

�
δm ≃ 0; ð54Þ

where m ≔ Rf00=f0. In GR, m ¼ 0, and there is no scale
dependence for the density contrast in the linear regime.
For ΛCDM, the growing mode can be expressed in terms of
hypergeometric functions 2F1 as [19]

δ̃m ∝
1

1þ z 2F1

�
1

3
; 1;

11

6
;−

1 − Ω̃m0

ð1þ zÞ3Ω̃m0

�
: ð55Þ

We solved Eq. (54) numerically and obtained the growing
mode for exponential gravity. By using Eq. (55), we then
obtained the fractional change in the linear matter power
spectrum PðkÞ relative to ΛCDM, ΔPk=Pk, at z ¼ 0. By
assuming Ω̃m0 ¼ 0.3 and imposing that the fractional
change in the matter power spectrum at z ¼ 0 cannot be
higher than 0.2 at k ¼ 0.1 ðh Mpc−1Þ, we obtain the
constraint α > 5.26. A complete analysis taking into

account data at all scales of the linear mass power spectrum
should be even more restrictive, possibly requiring larger
values of the parameter α. For such high values of α, the
background evolution of exponential gravity cannot be
discriminated from ΛCDM.
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APPENDIX: JACOBIAN MATRIX

The Jacobian matrix is defined by

Jab ≔
∂
∂yb

�
dya
dN

�
; a ¼ 1; 2: ðA1Þ

By differentiating the rhs of Eqs. (31) and (32), one finds,
for an arbitrary fðRÞ,

J11 ¼
f0 − 2f=R
f0 − f00R

ð3f0 − y1f00RÞ
R2

f2
y2 − y1

f00R2

f
f0 − 2f=R
f0 − f00R

þ 4 −
2f0R2

3f2
ð2y2 − y1Þy1

þ y1
R
f
∂R
∂y1

	
−
2y1f00

3
þ f000Rðf0 − 2f=RÞð3f0 − y1f00RÞ

ðf0 − f00RÞ2

þ ðf00 − 2f0=Rþ 2f=R2Þð3f0 − y1f00RÞ þ ðf0 − 2f=RÞ½3f00 − y1ðf000Rþ f00Þ�
f0 − f00R



ðA2Þ

J12 ¼ −
f0 − 2f=R
f0 − f00R

ð3f0 − y1f00RÞ
R2

f2
y1 þ

2f0R2

3f2
y21 þ y1

R
f
∂R
∂y2

	
−
2y1f00

3
þ f000Rðf0 − 2f=RÞð3f0 − y1f00RÞ

ðf0 − f00RÞ2

þ ðf00 − 2f0=Rþ 2f=R2Þð3f0 − y1f00RÞ þ ðf0 − 2f=RÞ½3f00 − y1ðf000Rþ f00Þ�
f0 − f00R



ðA3Þ

J21 ¼ −2
f0 − 2f=R
f0 − f00R

f00
R2

f
y1 −

4f0R
3f

y1 þ 4þ ∂R
∂y1

	
1

f0 − f00R

�
f00 −

2f0

R
þ 2f
R2

þ f000R
�
f0 −

2f
R

���
ð3f0y2 − y21f

00RÞR
f
−
3f
R

�

þ f0 − 2f=R
f0 − f00R

�
ð3f00y2 − y21f

000R− y21f
00ÞR
f
þ ð3f0y2 − y21f

00RÞf − f0R
f2

− 3
f0R− f
R2

�
−
2y21
3f

�
f00Rþ f0 −

f02R
f

�

ðA4Þ

J22 ¼ 3
f0R
f

f0 − 2f=R
f0 − f00R

þ ∂R
∂y2

	
1

f0 − f00R

�
f00 −

2f0

R
þ 2f
R2

þ f000R
�
f0 −

2f
R

���
ð3f0y2 − y21f

00RÞR
f
−
3f
R

�

þ f0 − 2f=R
f0 − f00R

�
ð3f00y2 − y21f

000R− y21f
00ÞR
f
þ ð3f0y2 − y21f

00RÞf − f0R
f2

− 3
f0R− f
R2

�
−
2y21
3f

�
f00Rþ f0 −

f02R
f

�

: ðA5Þ

The derivatives of R can be obtained implicitly by partially differentiating the second of Eqs. (29) with respect to y1 and
y2, which results in
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∂R
∂y1 ¼

R2

f0R − f
¼ −

∂R
∂y2 : ðA6Þ

Substituting the above equation in Eqs. (A2)–(A5), we
find the Jacobian matrix on the critical points that satisfy
Eq. (40) and y1 ¼ 3 by imposing these conditions addi-
tionally and assuming no divergent terms are present,

J ¼ Aþ
�
6R
f

−
3f00R3

f2

�
B; ðA7Þ

where

A ¼
�−4 0

−1 −3

�
ðA8Þ

and

B ¼
�
1 −1
1 −1

�
: ðA9Þ

By this expression, one is able to conclude that the
eigenvalues at these critical points are −3 and −4, for
any fðRÞ having them.
From now on, we develop the necessary results for

obtaining the eigenvalues in the case of exponential gravity.
The Jacobian of Eq. (A7), together with its eigenvalues, is
valid for the point P5. All the remaining critical points of
this theory have R ¼ 0 or R ¼ ∞.
Replacing Eq. (A6) on Eqs. (A2)–(A5), taking the

limit of R → ∞ and using that, by the second of
Eqs. (29), y2 ¼ y1 þ 1 for this value R, we find, for any α,

JexpðR → ∞Þ ¼ Cþ y1
3
D; ðA10Þ

where

C ¼
�

1 0

−2 3

�
ðA11Þ

and

D ¼
�
5 − 2y1 2y1 − 9

5 − 2y1 2y1 − 9

�
: ðA12Þ

For α ≠ 1, making the same procedure, but with R → 0
and y2 ¼ y1 þ 1 − α, the Jacobian matrix becomes

Jexp;α≠1ðR ¼ 0Þ ¼ Eþ y1
3
F; ðA13Þ

where

E ¼
�
1 0

4 −3

�
ðA14Þ

and

F ¼
�−4þ 9−4y1

1−α
4y1−9
1−α

−4þ 9−4y1
1−α

4y1−9
1−α

�
: ðA15Þ

It is clear that such a result is not valid for α ¼ 1 because of
the matrix F. This occurs since, for exponential gravity,
f0 − f00R vanishes in R ¼ 0 for α ¼ 1, which makes the
denominator of several terms of the Jacobian become 0.
The limits of the ratios in which such divergence occurs
must be done without separating it in the limits of each part.
After performing the limits correctly, one finds

Jexp;α¼1ðR ¼ 0Þ ¼ Gþ 2y1
9

H; ðA16Þ

where

G ¼
�
2 0

3 −1

�
ðA17Þ

and

H ¼
�
y1 − 6 −y1
y1 − 6 −y1

�
: ðA18Þ

By the values of the Jacobian obtained here, it is trivial
to compute the eigenvalues of all the critical points in
Tables I and II.
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