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Plane fronted limit of spherical electromagnetic and gravitational waves
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We demonstrate how plane fronted waves with colliding wave fronts are the asymptotic limit of spherical
electromagnetic and gravitational waves. In the case of the electromagnetic waves we utilize Bateman’s
representation of radiative solutions of Maxwell’s vacuum field equations. The gravitational case involves a
novel form of the radiative Robinson-Trautman solutions of Einstein’s vacuum field equations.
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I. INTRODUCTION

The Robinson-Trautman [1,2] spherical, noncolliding,
gravitational waves propagating in a vacuum have been
shown to have an asymptotic limit of p p-waves [1] (plane
fronted waves with noncolliding wave fronts). The
Robinson-Trautman waves have an isolated source, and
so one expects the waves to collide in general depending
upon how the source is moving. Consequently one expects
the asymptotic limit to be plane fronted waves with colliding
wave fronts (the so-called Kundt [3] waves) in the most
general case. We use the term “spherical waves” here to
denote waves possessing compact and expanding wave
fronts. The asymptotic limit we will display here is a
consequence of our recent geometrical construction of plane
and spherical gravitational waves [4] providing a scheme to
determine whether the waves collide. We begin by utilizing it
to describe spherical electromagnetic waves propagating in a
vacuum and their asymptotic plane fronted limit. This is
followed by constructing the asymptotic limit of Robinson-
Trautman waves. The resulting limit is plane fronted waves
which may or may not be colliding. We make use of a novel
form of the Robinson-Trautman wave line element to
achieve this result. The paper ends with a brief summary
and an interesting observation. In Appendix we provide
details on the derivation of the novel form of the Robinson-
Trautman wave line element.

II. SPHERICAL ELECTROMAGNETIC WAVES

We consider spherical electromagnetic waves in the
context of Minkowskian spacetime in which the histories
of the wave fronts are null cones with vertices on an
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arbitrary world line. A novel form of the Minkowskian line
element tailor-made for our purposes is given by [4]

2 vqz
ds? = 2(1 —@) ‘dﬁj——gdu
0 2 (1—22)

with m(u) an arbitrary real-valued function of u, ¢ a
complex coordinate with complex conjugate £, and

2
+ 2qdudv, (1)

9(6.2u) = Bl + A)Z + 5 alu)e +37()

0
g: = a—g (2)

where f(u) is an arbitrary complex-valued function of u,
a(u) = dm(u)/du, and y(u) is an arbitrary real-valued
function of u. Note that it was shown in [4] that Kundt and
pp-waves can be described in a unified way, in which the
function f controls the branch of the solution of these
formerly distinct line elements. In coordinates x” =
(¢.Z.u,v) the hypersurfaces u = const are null cones
whose generators are labeled with the complex coordinate
¢ and the real coordinate » is an affine parameter along
them with v = 2/m(u) corresponding to the vertex of each
null cone. The vector field 9/0v is null, geodesic, shear-
free, and twist-free, and has expansion —2% (1 —22)~",
A convenient distance from the world line of the vertices
of the null cones is the parallax distance [5] r given by

r=—-—u. (3)

Since r — +o0 corresponds to m — 0, the asymptotic limit
which interests us below will be achieved by taking the
limit m — 0.
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The relationship between the coordinates x” and rec-
tangular Cartesians and time X’ = (X, Y, Z, T) resulting in

ds§ = (dX)* + (dY)* + (dZ)* = (dT)* = n;;dX'dX’ (4)

is given by

I <1—%(Z—T)>_l{%(XnLiY)H(u)(Z—T)}, (5)

v=27-T, (6)

and u(X,Y,Z,T) is given implicitly by

ZJrT:%(l—%(Z—T)>_l

X |X 4+ iY + V2I(u)(Z = T) ] + V2I(u)(X — iY)
+ V2I(u)(X 4 iY) + 20(u)1(u)(Z = T) + n(u).
(7)

The geometrical origin of these equations can be found in
[4]. A similar geometrical construction in the presence of a
cosmological constant has been described in [6]. The
partial derivatives of {, v, u with respect to the rectangular
Cartesians and time X' are indicated by a comma and given
via the 1-forms:

d¢ =¢;dX'

du = u,dX' = _mz(Z) (1 - m;”) (z T)) £.dX
()
X< X+ m\/z (I(u) + 1(u)) |dX
(1)
+ (v + Y2 Gy + 1)) ) ay
m(u)
N <Z B n(zu) N ZI(u’)n?EZ; - 1>dZ
- <T—n(2”) +2I(MZEZ§+ 1>dT}. (10)

The final 1-form defines the 4-vector & with & = n;;&/,
and since u; is a null vector field, we have #;;£'¢é/ = 0.
Also q(¢.C.u) is given by (2) with B(u) = di(u)/du
and y(u) = dn(u)/du.

To describe spherical fronted electromagnetic waves
propagating in a vacuum we use a potential 1-form

A= f(.¢ u)du, (11)

with (¢, C, u) a real valued function of its argument. The
Maxwell field is given by the 2-form

of of -

which satisfies Maxwell’s vacuum field equations provided

orf
oLoC

(13)

Hence Of/0¢ = g({,u) is an arbitrary complex-valued
analytic function. It is convenient to work with the complex
2-form
F=F—-i"F=29({,u)dl Andu with *F=iF, (14)
and the star denotes the Hodge dual. Before taking the
asymptotic limit we express this Maxwell field in terms of
the coordinates X' = (X,Y,Z,T), using (8) and (10), and
read off the electric 3-vector E and the magnetic 3-vector B.
In this way we arrive at the vectors E, B given in Bateman
form [7] in terms of Jacobian determinants by

B! +iE' = —2¢(¢, u) g((g’ ?) : (15)
B? +iE? = —2¢(¢, u) g((g’ ;‘()) : (16)
B3 +iE3 = =2g(¢,u) g((;’;’ ';)) , (17)
with the second of (14) requiring
o u) ; A(¢, u)
o(Z,.X) " O(Y.T)
_VAE S+ (E -8
gm(& - &) ’
o¢.u) i (¢, u)
oY.z) OX.T)
__VAE 2P IE -8
gm(& = &)’ ’
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o) _ WA+
“ozn) gme-gp 2

A, u)
d(X.Y)

with ¢ given by (2) and & = n&; (with #'/n;; = &}) given
by (10). We can write (15)—(17) neatly in the form

4ig(C u)&!
gm(& — &4)?

with the complex 3-vector M = (M, M?, M?) given by

B+ iE = - (21)

N GRRS Se G 15

V2EH(E - & ’ 2
—i§1+i§2§1—i§3—§4§3
== ﬁ;“(é —(z;“> =@
1 i 2
M = (5%;) (24)

Furthermore defining the complex variable

1 i 2
L =5 (555 ) = 100+ gmiwe. @9

we can write M in the form

_( 1-2L? i(1+42L?) 2L >
V2QLL +1)"V2(2LL +1) 2LL + 1)

and (21) can now be written as
, . _1 mu\~' -
B+ iE =—ig(C,u)g ' 1 - -5 QLL+1)M. (27)

The histories in Minkowskian spacetime of the spherical
wave fronts are the null cones u(X') = const and so the
wave velocity has components [8]

{04
N LELY JS SN (28)

upug &

with Greek indices taking values 1, 2, 3. In terms of L in (25)
we have

e V2(L+L) iv2(L-L) 2LL -1 (29)
-\ 2LL+1 " 2LL+1 "2LL+1)"

Denoting the complex conjugate of M by M we find that
M, M, v satisfy the algebraic conditions:
M-M =0,

M-M=1, and MxM =iv. (30)

It thus follows from (27) that (a) |[E| = |B| and E- B =0
(the algebraic conditions for pure electromagnetic radiation),
(b) E, B, v constitute a right-handed triad, and (c) the
Poynting vector E x B = |E|?v (so that the energy of the
waves is propagated with velocity v). The question of
whether the wave fronts collide depends crucially on the
behavior of the world line of the vertices of the histories of
the wave fronts (which follows from the detailed discussion
in [4]). This world line is the history in Minkowskian
spacetime of the pointlike source of the electromagnetic
waves. The asymptotic limit of (1) and (27) is obtained
taking the limit m — O resulting in

lin})ds% = 2|d — vgzdul* + 2qdudv (31)
and
lim (B + iE) = —ig(¢, u)g ' 2U(u)l(u) + 1)m, (32)

with now

1

g = BT + Bt +57(w) (33

and

o 1=22 i(1+2) 21
"= (ﬁ(2ﬂ+1)’\5(2H+1)’217+1>' (34)

Here [ = lim,,_, L following from (25). These are plane
fronted electromagnetic waves with histories u# = const
which are null hyperplanes which intersect so long as

B(u) # 0 (see [4]).

III. SPHERICAL GRAVITATIONAL WAVES

The spherical gravitational waves of interest to us are
described by the Robinson-Trautman [1,2] purely radiative
solutions of Einstein’s vacuum field equations. In the
coordinates x = (¢, Cou, v) we are using we have a novel
form of the Robinson-Trautman solutions of this type given

by the line element
2 _
ds? =21 ="V \ae + (6 - 2L ) au
2 1 -7
mv

+2qdu{dv+% <1 -5 )(Gg—i—Gg)du}. (35)

2

Here G({,u) is an arbitrary analytic function with G, =
0G/0¢ and the bar, as always, denotes complex conjuga-
tion. Also g and g, are as in (2). This form of line element is
derived in Appendix from the standard Robinson-Trautman
form using the equations given in Sec. III of [4]. Einstein’s
vacuum field equations are satisfied by the metric given by
this line element. The Newman-Penrose [9] components
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Y, with A =0, 1, 2, 3, 4, of the Riemann curvature tensor
vanish with the exception of

-1 83G
¥, = (mg)~! <1 - %) ek (36)

which corresponds to a purely radiative curvature tensor in
the Petrov classification with degenerate principal null
direction, and propagation direction of the history of the
radiation in spacetime, given by the vector field 9/0v.
Putting

G u) = m(u)G(¢, u), (37)

and taking the asymptotic limit of (35) and (36), which
corresponds to the limit m — 0, we clearly arrive at

lir%dsz = 2[d¢ — vgzdul* + 2qdu{dv + (G; + Gz)du},
(38)

with now

_ _ -1
468 u) = B¢ + P + 57w (39)
In addition, we have from (36)

06

el (40)

lim® =&
In (38)—(40) we have arrived at plane fronted waves with
colliding wave fronts (Kundt [3] waves) if #(u) # 0 or plane
fronted waves with noncolliding wave fronts (pp-waves
[10]) if #(u) = 0. This limiting form of the line element and
curvature tensor incorporating both of these special cases has
been derived geometrically in [4].

We have demonstrated explicitly in [4] that f(u) # 0
means that the normals to the null hyperplane histories of
the wave fronts are not covariantly constant and that f(u) #
0 corresponds to intersecting null hyperplanes and there-
fore to colliding wave fronts.

IV. DISCUSSION

We have demonstrated explicitly that plane fronted
electromagnetic or gravitational waves undergo collisions
in general since they are the asymptotic limit of spherical
fronted waves which have isolated sources moving arbitrarily.
The role of the function ¢ on the right-hand side of (32) in the
case of the electromagnetic field of plane fronted electro-
magnetic waves and on the right-hand side of (40) in the case
of the gravitational field of plane fronted gravitational waves
is interesting. If the waves are simple plane waves, then the
right-hand sides of (32) and (40) must be functions of u only.
This can occur only if ¢ is independent of ¢ and ¢ so that

p(u) = 0. It follows therefore from [4] that simple plane
waves of this kind cannot collide.
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APPENDIX: NOVEL FORM OF THE ROBINSON-
TRAUTMAN WAVE LINE ELEMENT

The classical form of the Robinson-Trautman line
element in the special case of a vacuum field containing
pure gravitational waves is given by [4]

ds>=2r*p~?|d¢+ Qdu|* = 2dudr— (K —2Hr)du?, (Al)
with
2q 2q; K
=, = G ) ) K:__v A2
p m 0 m +G(¢,u) 2 (A2)
and
H=qd- " qeas — 4.6 — ' 4:G + 2 (G, + G
=q'q=—q7"4:9; =47 9:G = 47 4;G + 5 (G + Gy).
(A3)

Here (¢, £, u) and m(u) are as they appear in Egs. (1) and
(2), G(¢,u) is an arbitrary analytic function, and

1
K= 2P S ar. (a4)

with a(u), f(u), and y(u) as they appear in Eq. (2). Now
introduce a coordinate v by writing

2
rzf(l—%). (AS)
It thus follows that
dr = —qdv + 2 (1 _ @> (qd¢ + qzdl)
m 2
+2{% <1 —%> —%}du, (A6)

with the dot indicating partial differentiation with respect to
u and remembering that @ = m. With this we can write
(A1) in the form
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2 mv\? 2
ds= =2 1—7 d¢d¢ + 2qdudv + Cdu

o2 oo
2

mo\ 2 vqz _
2( 1 —— G———— 7 dudf, A7
+2(1-5) {o- gl jad.
with
2 _ 2 _
C—q<1—@)(G¢+GC)+2<1——> GG
m
ZUqg(l——)G—quC(l—ﬂ)G
dga 4k 8qcqz m2v?
tax | K 1 A
m>  m>  m? 4 (A8)

But

1
44z = 5 (k +aq), (A9)
and so we can write
2q mo -
muv\ 2 vge |?
+2<1——> G——s (A10)
2 (1-29)

When this is substituted into (A7), the line element (35)
results.
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