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Dynamical properties of a generic null surface are known to have a thermodynamic interpretation. Such
an interpretation is completely based on an analogy between the usual law of thermodynamics and structure
of gravitational field equation on the surface. Here we materialize this analogy and show that assigning a
temperature on the null surface for a local observer is indeed physically relevant. We find that for a local
frame, chosen as outgoing massless chargeless particle (or field mode), perceives a “local unstable
Hamiltonian” very near to the surface. Due to this it has finite quantum probability to escape through
acausal null path which is given by Maxwell-Boltzmann like distribution, thereby providing a temperature
on the surface.
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I. INTRODUCTION AND MOTIVATION

The intimate relationship between gravitational dynam-
ics of the black hole horizon and classical thermodynamics
uncovered the fact that black holes possess thermodynamic
attributes like entropy [1,2] and temperature [3–5].
Hawking had shown [3,4] that the radiating photons are
thermal in nature, and the temperature for the correspond-
ing radiating particles was predicted as T ¼ ℏκ=2π, where
κ is the surface gravity of the black hole. Another
phenomenon, parallel to Hawking effect, has been pre-
dicted theoretically, known as the Unruh effect [6]. Such
effect can be observed in any local arbitrary gravitational
background. To make this perception clearer, we start with
the principle of equivalencewhich allows one to construct a
local inertial frame around any event in an arbitrary curved
spacetime. Given the local inertial frame, one can construct
a local Rindler frame, and the observer at rest in the local
Rindler frame will perceive a patch of null surface as
horizon with a temperature. This result allows us to
associate thermodynamical attributions with the null sur-
faces, which the local Rindler observers perceive as
horizons. Such a notable fact leads one to introduce
observer-dependent thermodynamic variables [7–10]
around any event in spacetime and reinterpret the gravita-
tional field equations near any null surface in the language
of thermodynamics [11] or vis versa [12]. The equality
between the field equations on the horizon and the
thermodynamic identity has been exhibited for a wide
class of models like the cases of stationary axisymmetric

horizons and evolving spherically symmetric horizons in
Einstein gravity [13], static spherically symmetric horizons
[14]. In the Lanczos-Lovelock gravity sector, it has been
studied for dynamical apparent horizons [15] and for
generic static horizon [16]. Also, in [17], the thermody-
namic identity, particularly the Clausius relation, has been
established on the local causal horizons using Einstein
equation.
Incidentally, one can provide a thermodynamical inter-

pretation of a gravitational field equation either by suitably
projecting it on a generic null surface [18–21] or using the
diffeomorphism invariance in the near null hypersurface
region [22–24]. For instance, Einstein’s equation, con-
tracted with null generator and corresponding auxiliary
vector, yields a thermodynamical identity of the formR
St
d2xTδλðkÞs ¼ δλðkÞEþ FδλðkÞ [18–21], where symbols

have their usual meanings and the variation can be
interpreted as the change due to virtual displacement of
the null surface along an auxiliary null vector (k), para-
metrized by the parameter λ (generalization to Lanczos-
Lovelock gravity [25] and scalar-tensor theory [26] has
been done as well). Therefore, it has been realized that null
surfaces which act as one-way membranes to a certain class
of observers also possess thermodynamical attributions.
This indispensable relation between gravity and thermo-
dynamics led to the idea that the dynamics of gravity is not
fundamental in nature; rather it has emerged from the
dynamics of a more fundamental theory, just like the laws
of thermodynamics of a system emerges out from the
statistical dynamics of its molecules (see [27] for more
details on the concept and aspects of emergent nature of
gravity).
However, all these thermodynamical attributions asso-

ciated with the generic null hypersurface are standing on
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the platform of complete analogy between the laws of
thermodynamics and the structure of the gravitational field
equation on the surface. Therefore it is mandatory to
provide a clear physical justification in order to call a
geometrical quantity on the null surface as a particular
thermodynamical entity. To make the concern clear, we
point out that Hawking’s calculation [3,4] on the emission
spectrum from the black hole horizon clearly indicates the
concept of the temperature of the horizon. Similarly, Unruh
effect [6] points out the appearance of temperature on the
local Rindler horizon. The lack of such robust justification
in the case of generic null surface does not give us complete
confidence in assigning temperature or entropy on the
surface. In this work, our particular aim is to find out the
appearance of temperature without stating any analogical
point of view.
In this connection, a recent development related to the

thermalization mechanism of the black hole horizon is
worth mentioning. It is known that the thermodynamics of
a system arises from the underlying statistical theory of
microstates. However, in the case of spacetime, which
microscopic degrees of freedom is responsible for the
emergence of temperature into the system in the presence
of the horizon is not known properly. Therefore, the hunt
for finding out a concrete explanation for such a feature is
still under progress. The general consciousness is—to
illuminate the underlying microstructure, it is mandatory
to understand the physical mechanism for thermalization of
the horizon. In pursuit of achieving to find a unified reason
for the origin of horizon thermodynamics, two of the
authors have recently found that the thermal nature of
the horizon has some connection with instability [28–33] in
the near-horizon region. At first glance, these two charac-
teristics may seem to be different to each other, but their
unification may become a strong candidate to answer the
long-standing question about the origination of horizon
thermodynamics. It has been shown through considering a
model that in the presence of static spherically symmetric
(SSS) black hole [30,31] or in case of a Kerr black hole [33],
an outgoing massless and chargeless particle experiences
instability in the near-horizon region. In those works, it was
found that a class of observers see a particle following an
outgoing null path, is driven by a Hamiltonian of xp kind for
its near horizon motion [30,31,33]. It may be noted that such
a Hamiltonian is unstable in nature. Moreover, in the
quantum scale, this unstable Hamiltonian provides the
temperature into the system, which exactly matches with
Hawking’s expression. This noticeable fact leads to a
conjecture—“the local instability in the vicinity region of
the horizon acts as the source of the temperature of the
system” (see also [30,31]). The noticeable feature of the
model is it requires mainly the information of a suitable near
horizon null path of the particle, which does not crucially
consider the underlying symmetry of the spacetime, like the
presence of a timelike Killing vector.

Therefore, keeping the above feature in mind, we want to
extend the spirit of the aforesaid model in the case of any
generic null surface. We will see that it works very well in
this case. Let us now summarize the main outcomes and
features of our present investigation.

(i) First, we start with a massless scalar field and using
Klein-Gordon (KG) equation in the field-theoretic
approach, we obtain that in the semiclassical limit,
the system Hamiltonian for the outgoing mode in the
near null hypersurface region comes out to be of
xp kind.

(ii) Using the conventional idea of tunneling mechanism
[34–38] for this Hamiltonian, we obtain that quan-
tum mechanically, the object can see the null surface
as a thermal system. The importance of this obser-
vation is that it not only shows an application of
tunneling methodology for a more general back-
ground but also verifies the fact that the association
of temperature on a generic null surface is very much
physically acceptable.

(iii) Therefore, our results shed light on the intrinsic
reason why temperature is associated with the null
surface. The local unstable feature can be respon-
sible for such thermalization.

(iv) Finally, in the present work, unlike the previous ones
(SSS and Kerr), we deal with a metric where any
intrinsic symmetry, like time translational invariance
of spacetime, is absent. Therefore it shows a wide
applicability and generality of our developed ap-
proach.

The paper is organized as follows: In Sec. II, we first
introduce the metric adapted to Gaussian null coordinates
(GNC) in the neighborhood region of any generic null
hypersurface and some precursory properties of the line
element. Next, in Sec. III we construct the Hamiltonian of
the real scalar field mode using the Klein-Gordon (KG)
equation in the near null hypersurface region. In Sec. IV we
calculate the transverse coordinate average of the
Hamiltonian of the system for the implementation of
tunneling approach. In the next part in Sec. V, we apply
the tunneling formalism for our system. In the final Sec. VI
we discuss the key features of our work.

II. NULL HYPERSURFACES IN GNC
COORDINATES

This paper intends to investigate the possible thermo-
dynamics properties of an arbitrary null surface. Therefore,
our first objective is to describe the neighborhood region of
that null-hypersurface. A preferable choice of coordinate
system exists to narrate in this context, known as Gaussian
null coordinates (GNC), in analogy with Gaussian normal
coordinates. Usually, the Gaussian normal coordinates are
constructed by extending the coordinates on a non-null
hypersurface to a spacetime neighborhood using geodesics
normal to the surface. However, this construction does not
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apply to a null surface because the normal geodesics lie
itself on it. Therefore, a uniquely defined auxiliary null
geodesics are introduced with some certain conditions in
order to construct the Gaussian null coordinates, which we
shall discuss in the latter part of this section. An elaborate
description and detailed discussion on the construction of
this coordinate system and how metric is constructed in this
coordinate system can be found in [39–42]. Here, in order
to keep the clarity of our work, we shall briefly describe
some precursory construction of this coordinate system in a
more intuitive way.
The primary objective is to construct a coordinate system

around any null surface in any spacetime. Consider a
smooth null surface N in a four-dimensional spacetime
manifoldM, where gab represents the metric onM. We start
with a spacelike 2-surface ζ, on N and the coordinates on ζ
are introduced as ðxAÞ for A ¼ 1, 2, i.e., ðx1; x2Þ. Now, in
order to construct the null surface N using null geodesics,
one cannot have these null geodesics lying on the spacelike
surface as any vector lies on the spacelike surface has to be
spacelike in nature. Therefore, the next coordinate param-
eter should be introduced in such a way that one must move
away from this spacelike surface along any of these null
geodesics. Here, we introduce that particular parameter v,
not necessarily affine, along the null geodesics increasing
in the future direction with the condition v ¼ 0 on ζ.
Therefore, any point on N in the neighborhood of ζ can be
labelled by the coordinates ðv; x1; x2Þ, where ðx1; x2Þ
corresponds to the label given to the null geodesic passing
through that point and v is the chosen parameter at that
point. The “neighborhood” corresponds to that sufficiently
small region where the geodesics do not cross each other or
do not form any caustics. Let us call the future directed
vector field tangent to the null geodesics, ∂=∂v, as l. Now,
our spacetime is four-dimensional, so it is time for us to
introduce the fourth coordinate. With the help of a new set
of null geodesics, we can construct the coordinate chart in
the surroundings of the null hypersurface. Introducing a
unique null vector ka which is situated at each point on the
null surface and satisfying these conditions (i) kaka ¼ 0, as
it is a null vector; (ii) laka ¼ −1 which suggests that ka

sticks out from each point of the null surface instead of
lying on the surface; and (iii) Xa

Aka ¼ 0where XA ¼ ∂=∂xA
are the basis vectors correspond to the coordinates ðx1; x2Þ.
The choice of the third condition shows that our auxiliary
null vector is uniquely defined. As this vector ka points out
off the null surface, it can be used to go off the null surface.
The null geodesics emitted from each point on the null
surface in the direction of ka are labeled by the coordinates
ðv; x1; x2Þ, of that point. We choose a parameter r along this
null geodesic and r ¼ 0 (we choose again) represents the
null surface and k ¼ −∂=∂r. Therefore, the chosen affine
parameter r can be assigned in the coordinate chart
ðv; r; x1; x2Þ in the neighborhood of the null hypersurface

means up to the regions where geodesics do not reach a
caustic.
After introducing this coordinate system, we shall

introduce the metric adapted to this coordinate system in
the neighborhood region of any arbitrary null hypersurface.
The construction of this metric has been detailed in [40,41].
However, we shall recall here some of the essential
properties of this metric. The line element adapted in this
context takes the following form

ds2¼−2rαdv2þ2dvdr−2rβAdvdxAþμABdxAdxB: ð1Þ

Now, one can see from (1) that there are two null surfaces
which are at r ¼ 0 and at v ¼ constant. Additionally, r ¼
constant where the constant is nonzero represents the
timelike surfaces. Besides, the metric components α; βA
and μAB are the smooth functions of all the coordinates and
μAB is the transverse (D − 2)-dimensional Riemannian
metric on the spacelike surface ζ. We have here a set of
null vectors as we mentioned earlier la ¼ ðlv; lr; lxAÞ ¼
ð1; 0; 0Þ and the unique auxiliary one, i.e., ka ¼ ð0;−1; 0Þ.
Among these two we can think of la as the future-outgoing
null vector and ka as the future-ingoing null vector. The
covariant components of these two vectors are la ¼
ð−2rα; 1;−rβAÞ and ka ¼ ð−1; 0; 0Þ. Therefore, the normal
la ¼ ∂ar to the r ¼ 0 surface will be a null vector.
Moreover this generates the r ¼ 0 null surface around
which we will do our all analysis.
In order to strengthen the motivation for choosing our

desired null hypersurface at r ¼ 0, let us first write the
static spherically symmetric (SSS) metric in analogous to
the GNC form [19]

ds2 ¼ −fðrÞdv2 þ 2dvdrþ μABdxAdxB: ð2Þ

One can see βA ¼ 0 in this case comparing it with Eq. (1).
Now, in the near horizon region we have fðrÞ ≃ 2κðr − rHÞ
where κ ¼ f0ðrHÞ=2where the prime denotes the derivative
with respective to r. Therefore, comparing (2) with Eq. (1)
we obtain α≡ κ and the position of the horizon r ¼ rH is
equivalent to the position of the null surface at r ¼ 0 in case
of GNC metric (1). Therefore, in this context the null
surface at r ¼ 0 is reminiscent to the black hole horizon. In
our earlier works [30,31] we studied the particle dynamics
near the horizon and obtained that particle trajectory
becomes unstable near it. Following that essence our
objective in this work is to extend this idea in case of
any generic null hypersurface and thereby we particularly
choose the null surface which is at r ¼ 0. The null normal
la which is at r ¼ 0 is given by la ¼ ð0; 1; 0Þ is the
generator of the null surface providing lala ¼ 0 at r ¼ 0.
Therefore, for our examination in the near null hypersur-
face region we shall consider the limit r → 0 whenever
necessary.
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In the present context, our prime aim is to explain how
temperature is physically associated with any generic null
hypersurface. In order to do so, the first objective is to find
out the emission probability of a particle through the null
hypersurface. So, we adopt one of the familiar techniques
known as the tunneling method [34–38]. This formalism
predicts the probability of escaping the particle through the
null hypersurface. Therefore, to evaluate the tunneling
probability first, we need to find out the paths of the
particle for both ingoing and outgoing cases. Hence, we
acquire the Hamiltonian-Jacobi (HJ) formalism in this case,
just like our earlier works [30,31,33], in order to find out
the Hamiltonian in the near null hypersurface region for
both ingoing and the outgoing cases.

III. HAMILTONIAN: FIELD DESCRIPTION

Considering the massless real scalar field ϕ, from the
Klein-Gordon (KG) equation □ϕ ¼ 0 under the back-
ground of metric (1) yields

∂vð ffiffiffi
μ

p ∂rϕÞ þ ∂rð ffiffiffi
μ

p ∂vϕÞ þ ∂r½ ffiffiffi
μ

p ð2rαþ r2β2Þ∂rϕ�
þ ∂rð ffiffiffi

μ
p

rβA∂AϕÞ þ ∂Að ffiffiffi
μ

p
rβA∂rϕÞ

þ ∂Að ffiffiffi
μ

p
μAB∂BϕÞ ¼ 0; ð3Þ

where μ is the determinant of the induced metric μAB. Now,
we start with the standard ansatz for the scalar field of a
particle as (see also [34])

ϕ ¼ Aðv; r; xAÞe− i
ℏSðv;r;xAÞ; ð4Þ

where Sðv; r; xAÞ is the HJ action and with respect to the HJ
action we define the four-momentum as

∂S
∂xa ¼ pa: ð5Þ

Now, expanding Sðv; r; xAÞ in the powers of ℏ we find,

Sðv; r; xAÞ ¼ S0ðv; r; xAÞ þ ℏS1ðv; r; xAÞ þ ℏ2S2ðv; r; xAÞ
þ � � � :

¼ S0ðv; r; xAÞ þ
X
i

ℏiSiðv; r; xAÞ; ð6Þ

where i ¼ 1; 2; 3;…. The terms from OðℏÞ onward are
treated as the quantum corrections over the semiclassical
value S0. However, our analysis is restricted only up to the
semiclassical limit, i.e., ℏ → 0. Therefore, the higher order
terms of ℏ can be neglected in the semiclassical limit. At
this point, we define −∂S0=∂v ¼ −pv ¼ H, whereH is the
(semiclassical) Hamiltonian of the system.
Now, the main interest lies in the near r → 0 region

because that is where the dynamics of our massless scalar
modes will be studied. The probability of crossing the

mode across the null surface will be our main quantity to
find out. One of the well-known techniques to study such
quantity in this region is tunneling formalism. The principal
way of implementing the tunneling formalism is the HJ
method [34]. To implement this idea, we need to identify
the ingoing and the outgoing modes near the null hyper-
surface region. The outgoing mode is moving from r < 0
region (call as “inside”) to r > 0 region (call as “outside”)
and vice versa for the ingoing one. Now, applying p̂≡
−iℏ∂=∂r on (4) we shall have the momentum eigenvalue as
−∂S0=∂r in the semiclassical limit. For the outgoing case
we have the positive momentum eigenvalue, which means
one must have ∂S0=∂r < 0. Similarly, for the ingoing case,
we have the negative momentum eigenvalue, i.e.,
∂S0=∂r > 0. After this identification, we need to calculate
the HJ actions for both outgoing and the ingoing modes and
implement these expressions to calculate the tunneling
probability to cross the null hypersurface.
In the semiclassical limit (i.e., ℏ → 0), keeping only the

leading order terms, we obtain the following form of the
Eq. (3):

2ð∂vS0Þð∂rS0Þþð2rαþ r2β2Þð∂rS0Þ2þ2rβAð∂AS0Þð∂rS0Þ
þμABð∂BS0Þð∂AS0Þ¼ 0: ð7Þ

Here we see from Eq. (7) that ∂rS0 has two solutions which
are

∂rS0 ¼ −
∂vS0 þ rβAð∂AS0Þ

2rαþ r2β2
�
��∂vS0 þ rβAð∂AS0Þ

2rαþ r2β2

�
2

−
μABð∂AS0Þð∂BS0Þ

2rαþ r2β2

�1
2

: ð8Þ

Among these two solutions, one corresponds to the out-
going mode, and the other one corresponds to the ingoing
one. Let us get going to identify them.
First, we need to find out the leading order solutions of

∂rS0 in the near null hypersurface region. Considering the
negative sign of Eq. (8), we obtain the leading order term in
r → 0 limit as (for details please see the Appendix A)

∂rS0j− ¼ −
∂vS0

αð0Þðv; xAÞr : ð9Þ

According to our definition of the Hamiltonian of the
system [which we have defined earlier below Eq. (6)] we
can write Eq. (9) as

∂rS0j− ¼ H

αð0Þðv; xAÞr : ð10Þ

For the initial position of the mode is at “inside,” we have
∂rS0 < 0 when H > 0. Therefore, as we mentioned earlier,
the momentum direction is in the outward direction. Hence,
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the negative sign corresponds to the outgoing mode. So, we
can write the Hamiltonian for the outgoing mode in the near
null hypersurface region as

H ¼ αð0Þðv; xAÞrprout ð11Þ

where prout is the outgoing momentum in r direction.
Similarly, considering the positive sign of Eq. (8) we

obtain the leading order term that survives at r → 0 limit is

∂rS0jþ ¼ −
1

2

μð0ÞABð∂AS0Þð∂BS0Þ
∂vS0

; ð12Þ

where μð0ÞAB is the first term of the expansion of μAB about
r ¼ 0. Therefore, in terms of the Hamiltonian, we can write
the above equation as

∂rS0jþ ¼ 1

2

μð0ÞABð∂AS0Þð∂BS0Þ
H

: ð13Þ

This implies for H > 0 we have ∂rS0 > 0. Therefore the
momentum direction, in this case, is in the inward direction.
So, it corresponds to the ingoing mode, and the expression
of Hamiltonian in this case is

H ¼ 1

2

μð0ÞABpApB

prin

; ð14Þ

where prin is the ingoing momentum in r direction.
From the expression of the outgoing Hamiltonian (11)

one can see that the outgoing mode suffers a singularity at
r ¼ 0. In contrast, the ingoing mode does not experience
such a thing [see Eq. (14)]. This interesting observation has
significant implications in the calculation of the tunneling
probability, as we shall see in the later parts. Furthermore,
in Appendix B we also verified the form of the outgoing
Hamiltonian [Eq. (11)] in the particle description through
the Lagrangian formalism.

IV. TRANSVERSE COORDINATE AVERAGE OF
THE HAMILTONIAN

Next, we want to explore the consequences of this
classical Hamiltonian in the quantum tunneling picture.
It may be worth to point out here that in earlier calculations
[30,31,33] the spacetime metric was static or stationary and
hence αð0Þ was constant. However, this is not the case here.
However before proceeding for executing the tunneling

formalism, let us prepare the stage for implementing it on
our Hamiltonian. The structure of the Hamiltonian for the
outgoing particle in the near null hypersurface region is
multidimensional in this case due to the presence of
αð0Þðv; xAÞ. Therefore, we have a situation where the case
of a multidimensional tunneling has appeared.
Multidimensional tunneling event has been discussed in

[43] for the usual physical systems. One of the proposals to
calculate tunneling probability is to do calculation on an
average potential by considering averaging over directions
except one. Hence following this idea and since tunneling
occurs radially just across the null surface, we read the
transverse coordinates average of the Hamiltonian:
H̄ ¼ R

H
ffiffiffi
μ

p
d2xA=

R ffiffiffi
μ

p
d2xA. This yields

H̄ ¼ ᾱðvÞrprout ≡ Ē; ð15Þ

where ᾱðvÞ is defined as

ᾱðvÞ ¼
R
αð0Þðv; xAÞ ffiffiffi

μ
p

d2xAR ffiffiffi
μ

p
d2xA

: ð16Þ

Here one thing is to be mentioned that during the consid-
eration of the average of the Hamiltonian H, the integrating
average applied only on αð0Þðv; xAÞ because both r and prout
are independent of xA.We shall use this averageHamiltonian
(15) in the next section in order to investigate the thermal-
ization of our null surface through tunneling formalism.

V. TUNNELING AND THERMALITY

We start by calculating the HJ action for the outgoing
object. Choosing the integration limit from r ¼ −ϵ to r ¼ ϵ
for the outgoing object where ϵ > 0 and is a very small
number suggests that the outgoing object crosses the null
hypersurface from just inside to just outside in the vicinity
of the null hypersurface. Therefore, we obtain the HJ action
for the outgoing species (field mode or the particle) as

Sout ¼
Ē

ᾱðvÞ
Z

ϵ

−ϵ

dr
r
þ
Z

pvoutdvþ
Z

pAout
dxA: ð17Þ

From the above integration it can be seen that the first
integration term will contain the imaginary part as there
exists a singularity at r ¼ 0 and other two integrations will
contribute in the real part of the total integration. Also in the
first integration we have pulled out the term Ē=ᾱðvÞ as it is
constant of motion (please see Appendix C). Hence, after
performing the integration in Eq. (17) we obtain

Sout ¼ −
iπĒ
ᾱðvÞ þ Real part: ð18Þ

In a similar way, we can calculate the HJ action for the
ingoing species also. However, in this case, the action does
not contain any singularity at r ¼ 0 [see Eq. (14) and
Eq. (B5)]; thus, it turns out to be

Sin ¼ Real quantity: ð19Þ

Accordingly, the probability for the outgoing object cross-
ing the null hypersurface turns out to be
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Pout ∼ je− i
ℏSout j2

∝ exp

�
−

2πĒ
ℏᾱðvÞ

�
; ð20Þ

whereas the probability of crossing the null hypersurface
for the ingoing one is Pin ∼ 1. Therefore, the tunneling
probability comes out to be

ΓðvÞ ¼ Pout

Pin
∼ exp

�
−

2πĒ
ℏᾱðvÞ

�
: ð21Þ

This particular expression of the tunneling probability is
similar to Boltzmann factor. Therefore it can be considered
as thermal in nature with the temperature of the system is
identified as

TðvÞ ¼ ℏᾱðvÞ
2π

: ð22Þ

However, this very expression of the temperature is not a
constant; instead, it is a function of v. It means at every
other v ¼ constant null hypersurface near r ¼ 0 region, the
observer will feel different values of temperature of the
system for every different value of v. This is a reflection of
the evolving nature of our null surface which corresponds
to a nonequilibrium situation. We will come back to this
point again in the next section.

VI. DISCUSSION

Let us summarize the results obtained in the present
work. We started this work by addressing the fact that
gravitational field equations near any null surface in an
arbitrary space-time reduce to a thermodynamic identity,
and it generalizes the results previously available in the
context of the horizon. Our prime motive was to find out the
underlying reason for this noticeable fact in order to convey
the cause why thermodynamical attributions are associated
with any arbitrary null hypersurface. We start our calcu-
lations using the KG equation in the field-theoretic
approach, and in the semiclassical limit, we obtain that
the system Hamiltonian for the outgoing mode in the near
null hypersurface region comes out to be of xp kind. In the
Appendix, the same has been explored in the Lagrangian
formalism for a massless outgoing particle as well. In the
context of thermality, we proceed with the conventional
idea of tunneling mechanism, and after implementing the
tunneling formalism in the near null hypersurface region,
we obtain that our system is thermal in nature. However, the
system temperature we found, in this case, is not constant;
rather, it is a function of the timelike coordinate, unlike the
previous results of the black hole horizons (SSS BH and the
Kerr one).

Now, let us discuss the key features of our work in a
more detailed manner. Our results justify the fact how
temperature can be associated with any generic null hyper-
surface. Some earlier works predicted that the emergence of
thermality into the system has a close connection with the
local instability of the system in the context of horizon [29–
31,33]. This connection previously showed that if the
Hamiltonian of the system turns out to be an unstable
one in the classical scale, this instability may lead to the
thermality of the system in the quantum scale [30,31,33].
Here, we came across the Hamiltonian, which consists of a
probed massless and chargeless species near any generic
null hypersurface and the structure of the outgoing
Hamiltonian, in this case, turns out to be of xp kind
[see Eq. (11)].
Note that such specific Hamiltonian turns out to be that

of an inverted harmonic oscillator (IHO) in a new set of
canonical variables ðX;PÞ: x ¼ 1ffiffi

2
p ðP − XÞ and p ¼

1ffiffi
2

p ðPþ XÞ [44] and IHO potential is inherently unstable.

This implies that our present outgoing species locally feel
an instability due to the presence of null surface at r ¼ 0.
This fact can also be realized through the divergence of
radial momentum prout at r ¼ 0 for a given value of Ē (see
Eq. (15). Such peculiar instability provides a noticeable
feature in the quantum regime. To escape through the
potential (∼xp) the outgoing object needs to tunnel through
a complex path as it experiences a singularity exactly at
r ¼ 0. Moreover, as we noticed in the calculation, r ¼ 0
singularity (which is also the key for aforesaid instability)
led to our main expression of tunneling probability (21).
Usually, the time-reversal invariance demands that the
emission probability is equal to that for the absorption
process proceeding backwards in time and vice versa.
Whereas our present result is not consistent with this.
Therefore the present observation shows that the proba-
bility of emission of particles through the null surface at a
certain time is different from the probability of absorption
of particles by the surface at that time. Hence it is more
likely for a particular region to gain particles than lose
them. Moreover, the exponential behavior of our result
portrays the thermal nature of the system. This thermality
comes into the picture only because of this peculiar
singularity at r ¼ 0, which originates due to the specific
structure of the outgoing Hamiltonian in the null surface
regime. Therefore, we feel that the local instability in the
near null hypersurface region may be the reason for making
the system thermal at the quantum scale.
Previously, this connection between instability and

thermality was established only in specific cases containing
horizons. Here we generalize the same for a generic null
hypersurface. Therefore, we feel that the present discussion
may unfold the deeper reason for having the thermody-
namical quantities of not only horizon but also for any
generic null surface at the quantum level. Moreover, this
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work also represents one of the important applications of
the tunneling mechanism for a more general background.
Finally, we make a comment on the conceptual aspect of

defining thermodynamics on a generic null surface which is
an evolving one. Thermodynamics for an equilibrium
system is well established. In contrast, our null surface
can not be considered as an equilibrium one. Therefore the
concept of temperature and corresponding zeroth law etc.,
are not consistent with equilibrium thermodynamics.
Instead, we need to invoke “nonequilibrium” definitions
of these thermodynamic quantities. This subject is not fully
established, but there are a few suggestions and advance-
ments. A point to be noted is that if the system is in
nonequilibrium steady states, different thermometers, sen-
sitive to different degrees of freedom (DOF), will show
different temperature readings, which lead to the difficulty
of defining only one temperature for these systems [45].
Hence, the equilibrium version of the zeroth law does not
work in its full glory. However, a restricted validation of
zeroth law can be considered here, and in that case, the
temperature must be defined with respect to some specified
DOF. For instance, if a system is composed of two
subsystems and they have different DOF, then correspond-
ing to each DOF one can define a temperature.
Consequently, the zeroth law is valid within that particular
DOF. This, in turn, gives rise to different “local” temper-
atures in the system as it consists of different degrees of
freedom. In this local sense, the law of thermodynamics
and the thermodynamics parameters can be defined, but
that will be accompanied by heat flux, temperature gradient

etc., among different DOF (see discussion in Sec. 4.1 of
[45] for details). Of course, for the “global” equilibrium,
this wipeout. Now, comparing with that situation, we see
our system also obeys the characteristics of the nonequili-
brium steady-state situation where our null hypersurface is
evolving with the changing value of v. Therefore, we
expect that the temperature of our system will be defined
following the same concept as it is defined in nonequili-
brium situations. A proposal for defining the effective
temperature was suggested by S. Weinberg in the case of a
nonequilibrium system of photons by relating absorption
rate coefficient Λ and the stimulated emission coefficient Ω
(see discussion in Sec. 6.2 of [45] for details):

Ω
Λ
¼ e−

E
Teff : ð23Þ

In the present discussion, we have adopted the same spirit
in order to identify the temperature of the null surface.
However, the status of the zeroth law for our system is still
an open question as the complete knowledge of the degrees
of freedom for our system is yet to be explored and
therefore needs further investigation. However, we feel
that the lack of a complete theory of nonequilibrium
thermodynamics at present will keep us at bay to get full
justification of thermodynamics of a null surface. On the
other hand, if we consider that the evolution of the null
hypersurface is quasistatic in nature, then our temperature
can be justified through equilibrium thermodynamics by
considering that the surface is at equilibrium at each instant.

APPENDIX A: DERIVATION OF EQ. (9) AND EQ. (12)

In the near null hypersurface region, i.e., r → 0 limit, αðv; r; xAÞ can be expanded (using Taylor series expansion)

αðv; r; xAÞ ¼ αð0Þðv; xAÞ þ αð1Þðv; xAÞrþOðr2Þ: ðA1Þ

Now, looking back to Eq. (8) we can rewrite it as

∂rS ¼ −
∂vSþ rβAð∂ASÞ

2rαþ r2β2
�
�∂vSþ rβAð∂ASÞ

2rαþ r2β2

��
1 −

μABð∂ASÞð∂BSÞ
ð∂vSþ rβAð∂ASÞÞ2

ð2rαþ r2β2Þ
�1

2

: ðA2Þ

Now, at r → 0 the above equation turns into

∂rS ≃ −
∂vSþ rβAð∂ASÞ

2rαþ r2β2
�
�∂vSþ rβAð∂ASÞ

2rαþ r2β2

��
1 −

1

2

μABð∂ASÞð∂BSÞ
ð∂vSþ rβAð∂ASÞÞ2

ð2rαþ r2β2Þ
�

≃ −
∂vSþ rβAð∂ASÞ

2rαþ r2β2
�
��∂vSþ rβAð∂ASÞ

2rαþ r2β2

�
−
1

2

μABð∂ASÞð∂BSÞ
ð∂vSþ rβAð∂ASÞÞ

�
: ðA3Þ

Considering the negative sign solution of ∂rS we obtain from Eq. (A3)

∂rSj− ¼ −2
∂vSþ rβAð∂ASÞ

2rαþ r2β2
þ 1

2

μABð∂ASÞð∂BSÞ
ð∂vSþ rβAð∂ASÞÞ

: ðA4Þ
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The first term of Eq. (A4), using the expansion of
αðv; r; xAÞ, in the near null hypersurface region reduces to

∂vSþ rβAð∂ASÞ
2rαþ r2β2

≃
∂vSþ rβAð∂ASÞ

2rαð0Þð1þ rαð1Þ
αð0Þ þ

rβ2

2αð0ÞÞ

¼ ∂vSþ rβAð∂ASÞ
2rαð0Þ

�
1 −

rαð1Þ

αð0Þ
−

rβ2

2αð0Þ

�
:

ðA5Þ

Similarly, from the second term of Eq. (A4), in the near null
hypersurface region we obtain

μABð∂ASÞð∂BSÞ
ð∂vSþ rβAð∂ASÞÞ

≃
μABð∂ASÞð∂BSÞ

∂vS

�
1 −

rβAð∂ASÞ
∂vS

�
:

ðA6Þ

Hence, putting the approximated values of these two terms
in Eq. (A4) we obtain the only leading order term in the
near null hypersurface region

∂rSj− ¼ −
∂vS

2rαð0Þðv; xAÞ ; ðA7Þ

i.e., Eq. (9) in our main text. In the similar manner we can
also obtain the expression of ∂rSjþ. Taking the positive
sign solution in Eq. (A3) and considering the leading order
term at r → 0 limit we end up getting Eq. (12).

APPENDIX B: HAMILTONIAN: PARTICLE
DESCRIPTION IN LAGRANGIAN FORMALISM

In Sec. III, using HJ formalism we land up to a particular
Hamiltonian structure [Eq. (11)] of the outgoing scalar
mode in the near null hypersurface region. Here we like to
find out whether the same Hamiltonian structure can be
obtained using the Lagrangian of a particle.
Consider the Lagrangian L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gab _xa _xb

p
where

_xa ¼ dxa=dv. Since we are considering a massless particle,
for convenience v has been chosen here as the affine
parameter for the geodesics of the particle. Therefore, under
the background of metric (1) we obtain the form of the
Lagrangian of the system as

L ¼ ½2rα − 2_rþ 2rβA _xA − μAB _xA _xB�12 ðB1Þ

where the expressions of the corresponding momentum
components are

pr ¼ −
1

½2rα − 2_rþ 2rβA _xA − μAB _xA _xB�12
; ðB2Þ

pA ¼ rβA − μAB _xB

½2rα − 2_rþ 2rβA _xA − μAB _xA _xB�12
: ðB3Þ

Therefore, we obtain the Hamiltonian of the system as

H ¼ 1

2pr
½ð2rαþ r2β2Þp2

r þ 2rβApApr þ ð1þ p2
AÞ�: ðB4Þ

The above expression of the Hamiltonian (B4) reveals that
there are two solutions of pr in terms of H and pA. It is
evident that one solution of pr corresponds to the outgoing
particle while the other one corresponds to the ingoing one.
Now, in the near null hypersurface region (r → 0) consid-
ering only the leading order terms in these two solutions of
pr, we obtain

prj− ¼ H

αð0Þðv; xAÞr and prjþ ¼ 1

2

�
1þ p2

A

H

�
ðB5Þ

where (−) and (þ) sign represents the−ve and theþve sign
solutions of pr of the quadratic equation (B4) respectively.
Therefore, we can see that the expression of the -ve sign
solution of pr exactly matches with Eq. (10) which we
identified as the momentum in r direction for the outgoing
mode, i.e., prout . So, it is evident that the -ve sign solution of
pr corresponds to themomentumof the outgoing particle and
we obtain the similar structure of the outgoing Hamiltonian
in the near null hypersurface region [see Eq. (11)].
Therefore, using the particle description in Lagrangian

formalism we obtain the similar expression of the outgoing
Hamiltonian in the near null hypersurface region as we
obtained in the field mode description in Sec. III. Whereas
for the ingoing particle the Hamiltonian structure in the
near null hypersurface region may differ in those two
descriptions [see (14) and Eq. (B5)] but their natures are
same as the ingoing particle does not suffer any singularity
at r ¼ 0.

APPENDIX C: CONSERVED QUANTITY H̄=ᾱðvÞ
Now, we have the near null hypersurface Hamiltonian for

the outgoing particle, i.e.,

H ¼ αð0Þðv; xAÞrprout ðC1Þ

and after averaging out the transverse coordinates we have

H̄ ¼ ᾱðvÞrprout : ðC2Þ

Now, let us check the variation of H̄=ᾱðvÞ with respect to
some affine parameter λ, i.e.,

d
dλ

�
H̄

ᾱðvÞ
�

¼ d
dλ

ðrproutÞ

¼ _rprout þ r _prout ðC3Þ

where :≡ d
dλ. Now, from the Hamilton’s equations of

motion we obtain
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_r ¼ ∂H̄
∂prout

¼ ᾱðvÞr ðC4Þ

and the other one is

_prout ¼
∂H̄
∂r ¼ −ᾱðvÞprout : ðC5Þ

Now, putting the values of _r and _prout in Eq. (C3) we obtain

d
dλ

�
H̄

ᾱðvÞ
�

¼ ᾱðvÞrprout þ ð−ᾱðvÞrproutÞ

¼ 0: ðC6Þ
It tells that the quantity H̄=ᾱðvÞ ¼ Ē=ᾱ is conserved during
the motion of the particle under the average Hamiltonian H̄.
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