
General covariant symmetric teleparallel cosmology

Manuel Hohmann*

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,
W. Ostwaldi 1, 50411 Tartu, Estonia

(Received 13 September 2021; accepted 2 December 2021; published 27 December 2021)

Symmetric teleparallel gravity theories, in which the gravitational interaction is attributed to the
nonmetricity of a flat, symmetric, but not metric-compatible affine connection, have been a topic of
growing interest in recent studies. Numerous works study the cosmology of symmetric teleparallel gravity
assuming a flat Friedmann-Lemaître-Robertson-Walker metric, while working in the so-called “coincident
gauge,” further assuming that the connection coefficients vanish. However, little attention has been paid to
the fact that both of these assumptions rely on the freedom to choose a particular coordinate system in order
to simplify the metric or the connection, and that they may, in general, not be achieved simultaneously.
Here we construct the most general symmetric teleparallel geometry obeying the conditions of
homogeneity and isotropy, without making any assumptions on the properties of the coordinates, and
present our results in both the usual cosmological coordinates and in the coincident gauge. We find that in
general these coordinates do not agree, and that assuming both to hold simultaneously allows only for a
very restricted class of geometries. For the general case, we derive the energy-momentum-hypermomentum
conservation relations and the cosmological dynamics of selected symmetric teleparallel gravity theories.
Our results show that the symmetric teleparallel connection in general contributes another scalar quantity
into the cosmological dynamics, which decouples only for a specific class of theories from the dynamics of
the metric, and only if the simplest geometry is chosen, in which both assumed coordinate systems agree.
Most notably, the fðQÞ class of theories falls into this class.
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I. INTRODUCTION

Recent observations in cosmology, such as the tension
between different measurements of the Hubble parameter
[1], hint toward physics beyond the cosmological standard
model, which describes the dynamics of the universe
through general relativity, a cosmological constant Λ,
and cold dark matter (CDM), hence being known as a
ΛCDM model. A plethora of modified theories of gravity
have been developed, which offer potential explanations for
these observations [2,3]. While the most traditional class of
modifications departs from the common formulation of
general relativity using the metric and its Levi-Civita
connection, thereby attributing gravity to the curvature
of the latter, a large number of so-called teleparallel theories
exists, which attribute gravity to the torsion or nonmetricity
of a flat connection [4], or both of them [5,6]. In this article
we focus on the latter class of theories, more precisely
known as symmetric teleparallel gravity theories, in which
the employed connection is free of torsion and curvature.
Starting from the symmetric teleparallel equivalent of
general relativity (STEGR) [7], numerous theories of this
class have been developed and studied [8–21].

Since a major motivation for the study of modified
gravity theories comes from cosmology, also the cosmo-
logical dynamics of teleparallel gravity theories has been
the subject of numerous studies. While the cosmology
of metric teleparallel theories has been thoroughly dis-
cussed in the literature [22,23], symmetric teleparallel
cosmology has only recently received growing attention.
Particular attention has been devoted to cosmology in the
fðQÞ class of theories [24–38], or theories which couple
(pseudo)scalar fields to the nonmetricity [39,40]. An addi-
tional coupling to energy momentum has been considered
[41–59]. These studies make use of the fact that around any
point in spacetime there exist local coordinates in which the
coefficients of the symmetric teleparallel connection vanish
identically. This choice of coordinates, which is known as
the coincident gauge, allows replacing the symmetric
teleparallel covariant derivative with the usual partial
derivatives, hence leading to a simplification of various
terms appearing in the field equations. In addition, the
metric is assumed to exhibit cosmological symmetry, hence
being homogeneous and isotropic, and thus chosen to be of
the (in particular spatially flat) Friedmann-Lemaître-
Robertson-Walker (FLRW) type.
Although the aforementioned choice of the coincident
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consistent dynamics for the theories whose cosmological
dynamics has been studied, it attempts to employ the
freedom to choose a coordinate system in order to achieve
two goals at the same time, by imposing a particular form
for both the metric and the symmetric teleparallel con-
nection, each of which relies on the freedom to choose
coordinates. However tempting, there is no reason to
assume a priori that there exists a common coordinate
system in which both quantities simultaneously take the
desired forms. Demanding that the metric takes the FLRW
form determines the space and time coordinates to be
adapted to the foliation of the spacetime with spatial
hypersurfaces, while the coincident gauge is unique up
to an affine transformation of the coordinates. Hence, fixing
the coordinates by asserting one of the aforementioned
goals does not leave in general sufficient coordinate free-
dom in order to also achieve the other one. In particular, it
obstructs considering FLRW cosmologies beyond the
spatially flat case, which have been shown to require a
covariant treatment instead [60].
The aim of this article is to use the covariant approach to

symmetric teleparallel gravity [60] and to study the most
general class of homogeneous and isotropic symmetric
teleparallel geometries, without any a priori assumptions
on the compatibility of the coincident gauge and the
cosmological coordinates imposed by the FLRW metric.
The starting point of this analysis is given by the vector
fields which generate rotations and translations on the
spatial hypersurfaces, and under which we impose the
metric and the connection to be invariant, hence following a
similar approach as in metric teleparallel geometry [61–63].
Imposing this condition as the basis for the definition of
cosmological symmetry is motivated both mathematically,
as it agrees with the notion of symmetry derived from the
underlying Cartan geometry [64], and physically: retaining
a homogeneous and isotropic metric throughout the cosmic
evolution requires that the terms appearing in the field
equation governing its evolution obey the same symmetry.
Since the metric and the connection are, in general, coupled
in the field equations, imposing the cosmological symmetry
also on the connection guarantees that its contribution to
the field equations preserves this symmetry. We then use
these homogeneous and isotropic geometries in order to
derive the cosmological dynamics for a number of sym-
metric teleparallel gravity theories.
The outline of this article is as follows. In Sec. II, we give

a brief review of the essential ingredients of symmetric
teleparallel gravity theories. We then determine the most
general class of homogeneous and isotropic symmetric
teleparallel geometries in Sec. III by using the usual
cosmological coordinates, in which the metric has the
well-known FLRW form. In Sec. IV we then perform a
coordinate transformation to the coincident gauge, in which
the connection coefficients vanish. The conservation of
energy-momentum-hypermomentum in these cosmological

backgrounds is discussed in Sec. V. For the geometries and
matter discussed in the aforementioned sections, we derive
the cosmological field equations of a number of symmetric
teleparallel gravity theories in Sec. VI, and display them in
a form which is independent of the original choice of
coordinates. We end with a conclusion in Sec. VII.

II. SYMMETRIC TELEPARALLEL GRAVITY

We begin with a brief review of the key ingredients of
symmetric teleparallel gravity. The dynamical fields are a
metric gμν of Lorentzian signature and an independent
affine connection with coefficients Γρ

μν, defining a covar-
iant derivative∇μ, which is constrained by the conditions of
vanishing curvature

Rρ
σμν ¼ ∂μΓρ

σν − ∂νΓρ
σμ þ Γρ

λμΓλ
σν − Γρ

λνΓλ
σμ ¼ 0; ð1Þ

and vanishing torsion

Tρ
μν ¼ Γρ

νμ − Γρ
μν ¼ 0; ð2Þ

but in general nonvanishing nonmetricity

Qρμν ¼ ∇ρgμν: ð3Þ

There are different, equivalent possibilities to implement
these conditions, either by imposing them a priori and
correspondingly restricting the variation of the action to
obtain the field equations, or by including Lagrange
multipliers [65]. Following the former approach, we con-
sider a general symmetric teleparallel action of the form

S ¼ Sg½g;Γ� þ Sm½χ; g;Γ�; ð4Þ

where χ denotes a generic set of matter fields. Note that we
have included the independent connection also in the matter
action, thus allowing also for matter which couples directly
to this connection [66,67]. It then follows that the variation
of the action is generically of the form

δSg ¼ −
Z
M

�
1

2
Wμν ffiffiffiffiffiffi

−g
p

δgμν þ Ỹμ
νρδΓμ

νρ

�
d4x ð5Þ

for the gravitational part, as well as

δSm¼
Z
M

�
1

2
Θμν ffiffiffiffiffiffi

−g
p

δgμνþ H̃μ
νρδΓμ

νρþ Ω̃Iδχ
I

�
d4x ð6Þ

for the matter part, where a tilde over a symbol indicates
that the corresponding quantity is a tensor density. Keeping
in mind that the variation of the connection must be of the
form δΓμ

νρ ¼ ∇ρ∇νζ
μ with a vector field ζμ in order to

preserve the vanishing torsion and curvature, it follows that
the field equations are given by [65]
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Wμν ¼Θμν; ∇ν∇ρỸμ
νρ ¼∇ν∇ρH̃μ

νρ; Ω̃I ¼ 0: ð7Þ

Further, we demand that each of the terms Sg and Sm is
separately invariant under diffeomorphisms. For the gravi-
tational side, this implies the Bianchi identity

ffiffiffiffiffiffi
−g

p ∇∘ νWμ
ν ¼ ∇ν∇ρỸμ

νρ; ð8Þ

which is a geometric identity, i.e., it holds irrespective
of the field equations for any symmetric teleparallel

geometry. Here and in the remainder of this article ∇∘ μ

denotes the Levi-Civita covariant derivative defined by
the metric, and we use a circle also to denote related
quantities. In contrast, for the matter side we must impose
the matter field equations Ω̃I ¼ 0 to be satisfied, in order to
arrive at the energy-momentum-hypermomentum conser-
vation law

ffiffiffiffiffiffi
−g

p ∇∘ νΘμ
ν ¼ ∇ν∇ρH̃μ

νρ: ð9Þ

Note that this relation is independent of the gravitational
part Sg of the action and depends only on the matter part
Sm. Further, we see that imposing the metric field equation
Wμν ¼ Θμν, the connection field equation is automatically
satisfied as a consequence of the Bianchi identities and the
energy-momentum-hypermomentum conservation. We will
make use of this fact throughout this article and display
only the metric field equations for any theory we consider,
while omitting the connection field equations, as they
follow from the former.

III. HOMOGENEOUS AND ISOTROPIC
SYMMETRIC TELEPARALLEL GEOMETRY

In order to derive the cosmological dynamics of
symmetric teleparallel gravity theories outlined in the
preceding section, we start by constructing the most
general metric-affine geometry which obeys the cosmo-
logical symmetry, i.e., which is both homogeneous and
isotropic. Hence, we start with a metric gμν and an affine
connection with coefficients Γμ

νρ, and demand that their
Lie derivatives [68]

ðLXgÞμν ¼ Xρ∂ρgμν þ ∂μXρgρν þ ∂νXρgμρ ð10Þ

and

ðLXΓÞμνρ ¼ Xσ∂σΓμ
νρ − ∂σXμΓσ

νρ þ ∂νXσΓμ
σρ

þ ∂ρXσΓμ
νσ þ ∂ν∂ρXμ ð11Þ

vanish, where Xμ is any of the three rotation generators

ϱ1 ¼ sinφ∂ϑ þ
cos φ
tan ϑ

∂φ; ð12aÞ

ϱ2 ¼ − cosφ∂ϑ þ
sin φ

tan ϑ
∂φ; ð12bÞ

ϱ3 ¼ −∂φ; ð12cÞ

or translation generators

τ1¼ χ sin ϑ cos φ∂rþ
χ

r
cos ϑ cosφ∂ϑ−

χ sin φ
rsin ϑ

∂φ; ð13aÞ

τ2¼ χ sin ϑ sinφ∂rþ
χ

r
cos ϑ sin φ∂ϑþ

χ cos φ
r sin ϑ

∂φ; ð13bÞ

τ3 ¼ χ cos ϑ∂r −
χ

r
sin ϑ∂ϑ: ð13cÞ

Here we used the abbreviation χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
, where k ∈ R

indicates the spatial curvature, and we work in spherical
coordinates ðxμÞ ¼ ðt; r; ϑ;φÞ. The most general metric
which satisfies these conditions is the well-known
Robertson-Walker metric, whose nonvanishing compo-
nents are given by

gtt¼−N2; grr¼
A2

χ2
; gϑϑ¼A2r2; gφφ¼gϑϑsin2ϑ; ð14Þ

where N ¼ NðtÞ is the lapse function and A ¼ AðtÞ is the
scale factor. We include the former, as it will turn out useful
to consider different choices for the time coordinate. Also
for later use we decompose the metric in the form

gμν ¼ −nμnν þ hμν ð15Þ

into the hypersurface conormal nμ and spatial metric hμν,
whose nonvanishing components are given by

nt ¼ −N; hrr ¼
A2

χ2
;

hϑϑ ¼ A2r2; hφφ ¼ hϑϑ sin2ϑ: ð16Þ

For the affine connection, the most general case which
satisfies the conditions of cosmological symmetry is given
by [69]
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Γt
tt ¼ K1; Γϑ

rϑ ¼ Γϑ
ϑr ¼ Γφ

rφ ¼ Γφ
φr ¼

1

r
;

Γφ
ϑφ ¼ Γφ

φϑ ¼ cot ϑ; Γϑ
φφ ¼ − sin ϑ cos ϑ;

Γt
rr ¼

K2

χ2
; Γr

ϑϑ ¼ −rχ2; Γr
φφ ¼ −rχ2sin2ϑ;

Γr
φϑ ¼ −Γr

ϑφ ¼ K5r2χ sin ϑ; Γt
ϑϑ ¼ K2r2;

Γr
tr ¼ Γϑ

tϑ ¼ Γφ
tφ ¼ K3; Γr

rt ¼ Γϑ
ϑt ¼ Γφ

φt ¼ K4;

Γr
rr ¼

kr
χ2

; Γt
φφ ¼ K2r2 sin2 ϑ;

Γϑ
rφ ¼ −Γϑ

φr ¼
K5 sin ϑ

χ
;

Γφ
rϑ ¼ −Γφ

ϑr ¼ −
K5

χ sin ϑ
; ð17Þ

where K1ðtÞ;…; K5ðtÞ are functions of time. In order to
obtain a symmetric teleparallel geometry, we must further
restrict this general cosmologically symmetric connection
by imposing vanishing torsion and curvature. For the
former we find that it can be written as

Tμ
νρ ¼ 2

K4 − K3

N
hμ½νnρ� þ 2

K5

A
εμνρ; ð18Þ

where εμνρ ¼ nσϵσμνρ is the spatial part of the Levi-Civita
tensor ϵσμνρ of the metric gμν. We thus find that the torsion
vanishes if and only if K3 ¼ K4 and K5 ¼ 0 are satisfied.
Using these conditions to eliminate K4 and K5, we find that
we can write the curvature as

Rμ
νρσ ¼ 2

K3ðK3 − K1Þ þ ∂tK3

N2
nνn½ρh

μ
σ�

þ 2
K2ðK3 − K1Þ − ∂tK2

A2
nμn½ρhσ�ν

þ 2
kþ K2K3

A2
hμ½ρhσ�ν: ð19Þ

The conditions on the remaining functions K1;2;3 for
vanishing curvature thus take the simple form

kþ K2K3 ¼ K2ðK3 − K1Þ − ∂tK2

¼ K3ðK1 − K3Þ − ∂tK3 ¼ 0: ð20Þ

In order to determine the most general solution to these
conditions, it is useful to distinguish two cases:
(1) k ¼ 0: In this case K2K3 ¼ 0, so that at least one of

these two functions must vanish. Depending on
which of them vanishes, we can distinguish further
the following subcases:
(a) K2 ¼ K3 ¼ 0: In this case the equations involv-

ing K1 are solved identically, so that K1 remains
arbitrary.

(b) K2 ≠ 0: The equation involving ∂tK3 is solved
identically by K3 ¼ 0, but now K1 is fixed to

K1 ¼ −
∂tK2

K2

; ð21Þ

and K2 is the only remaining free function.
(c) K3 ≠ 0: In this case, one similarly finds K2 ¼ 0,

while K1 is determined by

K1 ¼ K3 þ
∂tK3

K3

; ð22Þ

so that only K3 remains arbitrary.
(2) k ≠ 0: One has K2K3 ¼ −k ≠ 0, fixing one of the

two functions in terms of the other. Finally, K1 is
fixed by

K1 ¼ K3 þ
∂tK3

K3

¼ K3 −
∂tK2

K2

; ð23Þ

where the last equality follows from ∂tðK2K3Þ ¼ 0.
Hence, also in this case only one function remains
arbitrary. Note that a special case with ∂tK2 ¼∂tK3 ¼ 0 has also been discussed in [60].

We see that in all of the aforementioned cases one of the
functions in the connection coefficients remains arbitrary,
while the remaining functions are fully determined.
Simultaneously with our work, these branches have also
been found and reported in [63]. For the study in the
remainder of this article, it is helpful to choose a para-
metrization of this single function which will help to
simplify the gravitational field equations of the various
symmetric teleparallel gravity theories we discuss. The
latter are constituted by the nonmetricity tensor, which
takes the form

Qρμν ¼ 2Q1nρnμnν þ 2Q2nρhμν þ 2Q3hρðμnνÞ ð24Þ

for the torsion-free, but not necessarily flat connection
parametrized by K1;2;3. Here the three expressions

Q1 ¼
∂tN
N2

−
K1

N
; Q2 ¼

1

N

�
K4 −

∂tA
A

�
;

Q3 ¼
K3

N
−
K2N
A2

ð25Þ

are scalar functions of the time coordinate t; i.e., under a
change t ↦ t̃ðtÞ of the time coordinate they transform
trivially as

QiðtÞ ¼ Q̃iðt̃ðtÞÞ; ð26Þ

as does the scale factor A. This stands in contrast to the
original functionsK1;2;3, as well as the lapse functionN, for
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which a nontrivial transformation law applies. It is therefore
convenient to use the scalar functions Q1;2;3 in order to
introduce a parametrization for the different branches of
flat, symmetric connections we have found above. We start
with the simpler case k ¼ 0:
(1) K2 ¼ K3 ¼ 0: Choosing the remaining parameter

function as

K1 ¼
∂tN
N

− KN ð27Þ

in terms of a scalar function K ¼ KðtÞ results in

Q1 ¼ K; Q2 ¼ −H; Q3 ¼ 0; ð28Þ

where we introduced the Hubble parameter

H ¼ ∂tA
NA

¼ LnA
A

¼
_A
A
: ð29Þ

We use the Lie derivative here to emphasize again
that this is a scalar function, and will henceforth
denote it with a dot.

(2) K2 ≠ 0: In this case choosing K2 also determines
K1. It is convenient to choose

K2 ¼ −
KA2

N
; K1 ¼

∂tN
N

− 2
∂tA
A

−
∂tK
K

; ð30Þ

from which follows

Q1 ¼ 2H þ
_K
K
; Q2 ¼ −H; Q3 ¼ K: ð31Þ

(3) K3 ≠ 0: In this case K1 is determined by K3, and we
choose

K3 ¼ KN; K1 ¼ KN þ ∂tN
N

þ ∂tK
K

; ð32Þ

so that we obtain

Q1¼−K−
_K
K
; Q2¼K−H; Q3 ¼K: ð33Þ

It is a remarkable fact that each of the three spatially flat
branches given above can be obtained as a limit for k → 0
from the unique spatially curved branch k ≠ 0 by choosing
different, but equivalent parametrizations for the latter.
These can be chosen as follows:
(1) The most simple parametrization is given by

K1 ¼ KN þ ∂tN
N

þ ∂tK
K

;

K2 ¼ −
k

KN
; K3 ¼ KN; ð34Þ

and results in

Q1 ¼ −K −
_K
K
; Q2 ¼ K −H;

Q3 ¼ K þ k
KA2

: ð35Þ

In the limiting case k → 0, it reduces to the
branch K3 ≠ 0.

(2) Choosing instead the parametrization

K1 ¼
∂tN
N

− 2
∂tA
A

−
∂tK
K

þ kN
KA2

;

K2 ¼ −
KA2

N
; K3 ¼

kN
KA2

; ð36Þ

and thus

Q1 ¼ 2H þ
_K
K
−

k
KA2

; Q2 ¼
k

KA2
−H;

Q3 ¼ K þ k
KA2

; ð37Þ

one obtains the branch K2 ≠ 0 in the limit k → 0.
(3) The third parametrization we present here is rather

cumbersome, and we include it for completeness
only. Setting

K1 ¼
∂tN
N

−
∂tA
A

þ∂tK̃þ
ffiffiffiffiffi
jkj

p
eK̃

N
A
;

K2 ¼−sgnk
ffiffiffiffiffi
jkj

p
e−K̃

A
N
; K3¼

ffiffiffiffiffi
jkj

p
eK̃

N
A
; ð38Þ

one obtains

Q1 ¼ H − _̃K −
ffiffiffiffiffijkjp
A

eK̃; Q2 ¼
ffiffiffiffiffijkjp
A

eK̃ −H;

Q3 ¼
ffiffiffiffiffijkjp
A

ðeK̃ þ sgn k e−K̃Þ: ð39Þ

In the limit k → 0, this yields the branchK2¼K3¼0
with

K ¼ H − _̃K: ð40Þ

As can be seen from the form of K2 and K3 in the different
parametrizations shown above, one can transform each of
them into each other by a suitable redefinition of the
parameter function K, provided that k ≠ 0. For the remain-
ing calculations in this article, we will therefore only use
one of these parametrizations, and choose the first one
given by the definition (34), as it is the simplest. In the limit
k → 0, however, the transformation of K becomes singular,

GENERAL COVARIANT SYMMETRIC TELEPARALLEL … PHYS. REV. D 104, 124077 (2021)

124077-5



so that the three spatially flat branches we presented are
inequivalent and must be studied separately.

IV. COORDINATE TRANSFORMATION AND
COINCIDENT GAUGE

It follows from the conditions (1) and (2) of vanishing
curvature and torsion that one can always find a local
coordinate system in which the coefficients of the sym-
metric teleparallel connection vanish identically. This
choice of coordinates, which is most often assumed in
the literature on symmetric teleparallel gravity, is known as
the coincident gauge. In this section we derive the coor-
dinate transformation from the cosmological coordinates
ðxμÞ ¼ ðt; r; ϑ;φÞ to the coincident gauge ðx̃μÞ for the
cosmologically symmetric connection branches we have
derived in the previous section. The starting point of this
calculation is an ansatz of the form

x̃0 ¼ t̃ðt; rÞ; x̃1 ¼ r̃ðt; rÞ sin ϑ cosφ;
x̃2 ¼ r̃ðt; rÞ sin ϑ sinφ; x̃3 ¼ r̃ðt; rÞ cosϑ; ð41Þ

with two functions t̃ and r̃ of the coordinates t and r which
are to be determined. From the condition that in the
coincident gauge the connection coefficients vanish,
Γ̃μ

νρ ≡ 0, follows that in the cosmological coordinates
they take the form

Γμ
νρ ¼

∂xμ
∂x̃σ

∂2x̃σ

∂xν∂xρ : ð42Þ

Hence, we find a system of differential equations, from
which t̃ and r̃ can be determined. From the coordinate
transformation (41) we find the component equation

1

r
¼ Γϑ

rϑ ¼ ∂rr̃
r̃

; ð43Þ

which is solved by the general ansatz

r̃ðt; rÞ ¼ RðtÞr: ð44Þ

We then use this solution and continue with the component
equation

−rð1 − kr2Þ ¼ Γr
ϑϑ ¼

rR∂tt̃
r∂tR∂rt̃ − R∂tt̃

: ð45Þ

In order to solve this equation, we now distinguish between
the different branches we have found in Sec. III:
(1) We start with the case k ≠ 0. Then Eq. (45) can be

solved by making a separation ansatz of the form

t̃ðt; rÞ ¼ TðtÞZðrÞ⇒ ∂tt̃¼ Z∂tT; ∂rt̃¼ T∂rZ:

ð46Þ

With this ansatz we can separate the equation to
obtain

�
kr −

1

r

� ∂rZ
Z

¼ k
R∂tT
T∂tR

: ð47Þ

Since the left-hand side depends only on r, while the
right-hand side depends only on t, both must be
constant. Denoting this constant by kc we find the
solution

Z ¼ a1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p �

c
; T ¼ a2Rc; ð48Þ

with integration constants a1 and a2, which can be
merged into a ¼ a1a2 in the product t̃. We further
use this solution and find the component equation

kr
1 − kr2

¼ Γr
rr ¼

kr
1 − kr2

½1þ ð1 − cÞkr2�; ð49Þ

which is solved by setting c ¼ 1. We have thus
determined the coordinate transformation up to the
free function RðtÞ. Note that so far we have used
only components of the general homogeneous and
isotropic connection (17) which are common to all
branches, and we have not made use of the con-
ditions of vanishing curvature and torsion yet. We
now make use of the latter by replacing the free
functions K4 and K5, so that we are left with only
K1;2;3. This leads to the remaining equations

K3 ¼
∂tR
R

; K2 ¼ −k
R
∂tR

; K1 ¼
∂2
t R

∂tR
; ð50Þ

which are consistent with the conditions (20) of
vanishing curvature. With the parametrization (34),
we have

K ¼ ∂tR
RN

¼
_R
R
; ð51Þ

which can be integrated to obtain RðtÞ for any given
function KðtÞ. Absorbing the integration constant a
found in the solution for t̃ into a redefinition of R we
thus have the coordinate transformation

t̃ ¼ RðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
; r̃ ¼ RðtÞr: ð52Þ

(2) In the case k ¼ 0, we find that ∂tt̃ cancels from the
component equation (45), and we are left with the
equation

∂tR∂rt̃ ¼ 0; ð53Þ
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which can be solved by either ∂tR ¼ 0 or ∂rt̃ ¼ 0, or
both. Wewill find that these choices can be related to
the three branches of spatially flat geometries as
follows:
(a) Choosing ∂rt̃ ¼ 0 by setting t̃ðt; rÞ ¼ TðtÞ leads

to the restriction K2 ¼ 0 on the connection
coefficients. Further, we find that T and R are
related by

∂tR∂2
t T ¼ ∂2

t R∂tT; ð54Þ

which is solved by

TðtÞ ¼ T0 þ T1RðtÞ: ð55Þ

The remaining equations then read

K3 ¼
∂tR
R

; K1 ¼
∂2
t R

∂tR
; ð56Þ

and finally lead to the same equation (51) for R
as in the spatially curved case when inserting the
parametrization (32) of the spatially flat branch
K3 ≠ 0. Finally, the integration constants T0 and
T1 may be absorbed by a linear transformation of
the time coordinate t̃, which does not affect the
coincident gauge, leading to the coordinate
transformation

t̃ ¼ RðtÞ; r̃ ¼ RðtÞr: ð57Þ

(b) Similarly, choosing ∂tR ¼ 0, and thus
RðtÞ ¼ R ¼ const, we obtain the restriction
K3 ¼ 0. Further, we find the condition
∂r∂tt̃ ¼ 0, from which follows that t̃ can be
written as a sum

t̃ðt; rÞ ¼ TðtÞ þ ZðrÞ: ð58Þ

These unknown functions can be solved for
using the remaining equation

K2r ¼
∂rt̃
∂tt̃

¼ ∂rR
∂tT

: ð59Þ

Separating this equation into parts depending on
t and r only yields

K2∂tT ¼ ∂rZ
r

: ð60Þ

Both sides must now be equal to the same
constant, which we denote by c. The right-hand
side is then solved by

ZðrÞ ¼ c
2
r2 þ Z0; ð61Þ

and the left-hand side determines T from K2.
With the parametrization (30) it becomes

K ¼ −
cN

A2∂tT
¼ −

c

A2 _T
; ð62Þ

so that finally TðtÞ is determined from the scalar
function KðtÞ. We can again fix the constants
c ¼ 1 and Z0 ¼ 0 by a linear transformation of t̃,
as well as R by a transformation of r̃, and obtain

t̃ ¼ TðtÞ þ 1

2
r2; r̃ ¼ r: ð63Þ

(c) Finally, combining both choices above to set
∂tR ¼ ∂rt̃ ¼ 0 leads to the condition K2 ¼
K3 ¼ 0, corresponding to the last remaining
branch. In this case the equation to determine
TðtÞ is given by

∂2
t T

∂tT
¼ K1 ¼

∂tN
N

− KN; ð64Þ

which can more succinctly be written as

T̈ þ K _T ¼ 0; ð65Þ

and can be integrated to obtain TðtÞ from KðtÞ.
Absorbing all integration constants using linear
transformations as in the previous cases, the
coordinate transformation finally takes the form

t̃ ¼ TðtÞ; r̃ ¼ r: ð66Þ

We have thus found the coordinate transformation to the
coincident gauge for all branches of flat, symmetric
connections. We see that only for the spatially flat branch
K2 ¼ K3 ¼ 0 the coordinate transformation reduces to a
reparametrization of the time coordinate, and so it is the
only branch in which the metric retains the form (14), with
the transformation changing N and A only. Hence, choos-
ing this form of the metric and assuming the coincident
gauge a priori inevitably fixes the branch K2 ¼ K3 ¼ 0,
and neglects the remaining branches.
It is instructive to calculate the symmetry generators (12)

and (13) in the coincident gauge. From the form (11) it
follows ∂̃μ∂̃νX̃ρ ¼ 0, and so their components must
become affine functions of the coordinates. This is most
obvious for the rotation generators, which read

ϱ1¼ x̃3∂̃2− x̃2∂̃3; ϱ2¼ x̃1∂̃3− x̃3∂̃1; ϱ3¼ x̃2∂̃1− x̃1∂̃2

ð67Þ
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in all branches, and thus reduce to the well-known
Cartesian form. For the translation generators, the simplest
Cartesian form

τ1 ¼ ∂̃1; τ2 ¼ ∂̃2; τ3 ¼ ∂̃3 ð68Þ

is obtained only in the spatially flat branch K2 ¼ K3 ¼ 0.
We further find the spatially flat cases

τ1 ¼ x̃0∂̃1; τ2 ¼ x̃0∂̃2; τ3 ¼ x̃0∂̃3 ð69Þ

in the branch K3 ≠ 0 and

τ1¼ x̃1∂̃0þ ∂̃1; τ2¼ x̃2∂̃0þ ∂̃2; τ3 ¼ x̃3∂̃0þ ∂̃3 ð70Þ

for K2 ≠ 0. Finally, in the spatially curved case k ≠ 0 we
have

τ1 ¼ −kx̃1∂̃0 þ x̃0∂̃1; τ2 ¼ −kx̃2∂̃0 þ x̃0∂̃2;

τ3 ¼ −kx̃3∂̃0 þ x̃0∂̃3: ð71Þ

One easily checks that they satisfy the same commutation
relations as in their usual form.
While it is possible to work in the coincident gauge, it

turns out to be simpler to use the cosmological coordinates,
since it allows for a simpler form of the metric and its
associated field equations, which will be the equations we
study in the remainder of this article. Further, they allow for
a simpler description of the energy-momentum-hypermo-
mentum conservation, which we will derive in the follow-
ing section.

V. COSMOLOGICALLY SYMMETRIC ENERGY-
MOMENTUM-HYPERMOMENTUM

In order to model the cosmological dynamics of sym-
metric teleparallel gravity theories, one must impose the
conditions of isotropy and homogeneity not only on the
geometry as shown in the previous sections, but also on
the matter variables defined from variation (6). For the
energy-momentum tensor this leads to the well-known
perfect fluid form

Θμν ¼ ρnμnν þ phμν ð72Þ

defining the density ρ and pressure p, while the hyper-
momentum is most generally given by a hyperfluid [70]

Hρμν¼ϕhμρnνþχhνρnμþψhμνnρþωnμnνnρ−ζερμν; ð73Þ

where we introduced the density factor H̃ρ
μν ¼ Hρ

μν ffiffiffiffiffiffi−gp
.

It is instructive to calculate the explicit form of the energy-
momentum-hypermomentum conservation law (9) for the
hyperfluid. For the left-hand side we find the usual form

∇∘ νΘμ
ν ¼ ½_ρþ 3Hðρþ pÞ�nμ; ð74Þ

which vanishes in the case of a perfect fluid, in which
hypermomentum is absent. For the latter, we obtain the
expression

∇ν∇ρðHμ
νρ ffiffiffiffiffiffi−gp Þffiffiffiffiffiffi−gp ¼ fω̈þ ð6H þQ1Þ _ωþ 3½ _H þHð3H þQ1Þ�ω

þ 3ðH þQ2 −Q3Þ½ _ψ þ ð3H þ 2Q1 þ 2Q2Þψ � þ 3ðH þQ2Þ½ _ϕþ _χ þ 3Hðϕþ χÞ�gnμ ð75Þ

for the general cosmologically symmetric nonmetricity
(24), where we have made use of the conditions (20) of
vanishing curvature in order to eliminate time derivatives
_Q2 and _Q3, after replacing them with K1;2;3. To proceed
further, one must consider the different branches of

cosmologically symmetric geometries we found in Sec. III
separately in order to substitute the parameter functions
Q1;2;3. The simplest case is given by K2 ¼ K3 ¼ 0, which
leads to Q3 ¼ 0 and Q2 ¼ −H, so that numerous terms
cancel and we are left with

∇ν∇ρðHμ
νρ ffiffiffiffiffiffi−gp Þffiffiffiffiffiffi−gp ¼ fω̈þ ð6H þ KÞ _ωþ 3½ _H þHð3H þ KÞ�ωgnμ; ð76Þ

depending on ω only. Similarly, for K2 ≠ 0 we find

∇ν∇ρðHμ
νρ ffiffiffiffiffiffi−gp Þffiffiffiffiffiffi−gp ¼

�
ω̈þ

�
8H þ

_K
K

�
_ωþ 3

�
_H þH

�
5H þ

_K
K

�	
ω − 3K

�
_ψ þ

�
5H þ 2

_K
K

�
ψ

	

nμ; ð77Þ

MANUEL HOHMANN PHYS. REV. D 104, 124077 (2021)

124077-8



while the branch K3 ≠ 0 leads to

∇ν∇ρðHμ
νρ ffiffiffiffiffiffi−gp Þffiffiffiffiffiffi−gp ¼

�
ω̈þ

�
6H − K −

_K
K

�
_ωþ 3

�
_H þH

�
3H − K −

_K
K

�	
ωþ 3K½ _ϕþ _χ þ 3Hðϕþ χÞ�



nμ: ð78Þ

Hence, we find that depending on the choice of the branch, either the hypermomentum component ψ or ϕþ χ contributes.
Finally, in the curved case k ≠ 0 we have

∇ν∇ρðHμ
νρ ffiffiffiffiffiffi−gp Þffiffiffiffiffiffi−gp ¼

�
ω̈þ

�
6H − K −

_K
K

�
_ωþ 3

�
_H þH

�
3H − K −

_K
K

�	
ω

− 3
k

A2K

�
_ψ þ

�
H − 2

_K
K

�
ψ

	
þ 3K½ _ϕþ _χ þ 3Hðϕþ χÞ�



nμ; ð79Þ

and so both of the aforementioned hypermomentum com-
ponents contribute.
We emphasize again that the relations we derived in this

section hold independently of the choice of the gravity
theory, and that they can be used, together with the metric
field equation, in order to replace the field equation derived
by variation of the total action with respect to the
symmetric teleparallel connection. Hence, in the following
section, in which we derive the cosmological field equa-
tions for a number of symmetric teleparallel gravity
theories, we will restrict ourselves to displaying only the
metric field equations. Even though the hypermomentum
does not appear in these field equations, it contributes to the
dynamics through the energy-momentum-hypermomentum
conservation (9), or equivalently, the connection field
equations.

VI. APPLICATION AND COSMOLOGICAL
FIELD EQUATIONS

We will now use the most general homogeneous and
isotropic symmetric teleparallel geometry derived in
Sec. III and apply it to the field equations of a number
of gravity theories. Here we make use of the fact that the
field equation derived by variation with respect to the flat,
symmetric connection is related to the metric field equa-
tions through the diffeomorphism invariance of the action,
and thus not independent of the latter [65]. We will
therefore display only the metric field equations. In
particular, we discuss fðQÞ gravity in Sec. VI A, newer
general relativity in Sec. VI B and scalar-nonmetricity
gravity in Sec. VI C.

A. f ðQÞ gravity
As a first example we study the fðQÞ class of gravity

theories, which is defined by the action [11]

Sg ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðQÞ: ð80Þ

Here f is a free function, which determines a particular
theory within the general class, while Q is the nonmetricity
scalar defined by

Q ¼ −QμνρPμνρ

¼ 1

4
QμνρQμνρ −

1

2
QμνρQμνρ −

1

4
Qρμ

μQρν
ν

þ 1

2
Qμ

μρQρν
ν; ð81Þ

where we introduced the nonmetricity conjugate

Pρμν ¼ −
1

4
Qρμν þ 1

2
QðμνÞρ þ 1

4
gμνðQρσ

σ −Qσ
σρÞ

−
1

4
gρðμQνÞσ

σ: ð82Þ

The nonmetricity scalar is related to the Ricci scalar of the
Levi-Civita connection via the relation

R
∘ ¼ −Q −∇∘ μðQμν

ν −Qν
νμÞ: ð83Þ

Hence, in the case fðQÞ ¼ Q, the gravitational action
reduces to the action of STEGR [7], which equals the
Einstein-Hilbert action up to a boundary term. The metric
field equations can most compactly be written as

κ2Θμ
ν¼

2ffiffiffiffiffiffi−gp ∇ρð
ffiffiffiffiffiffi
−g

p
Pρμ

νf0ÞþPμρσQνρσf0 þ
1

2
δμνf; ð84Þ

where we denote derivatives of f with respect to Q by
primes. To derive the cosmological dynamics of this class
of theories, we insert the expressions we derived for the
four branches of homogeneous and isotropic symmetric
teleparallel geometries in Sec. III into these field equations.
The simplest case is given by the spatially flat branch
K2 ¼ K3 ¼ 0, for which we obtain
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12H2f0 − f ¼ 2κ2ρ; ð85aÞ

−48H2 _Hf00 − 4ð _H þ 3H2Þf0 þ f ¼ 2κ2p: ð85bÞ

It is remarkable that in this case the scalar K which
determines the symmetric teleparallel connection fully
decouples from the metric field equations, so that the latter
reduce to the equations derived by using the coincident
gauge [11]; however, it still enters the dynamics through
the energy-momentum-hypermomentum conservation dis-
cussed in Sec. V, unless the hypermomentum component ω
vanishes. Moreover, we see that the first equation turns into
a constraint equation, generalizing the well-known
Friedmann constraint equation. However, to see that this
is only a particular property of the chosen geometry branch,
and not a generic feature of symmetric teleparallel gravity
theories, we also derive the dynamics for the other spatially
flat branches. In the case K2 ≠ 0 we have

9K½K̈ þ 3H _K þ ð3K þ 4HÞ _H�f00 þ 3ð _K þ 3HK þ 4H2Þf0
− f ¼ 2κ2ρ; ð86aÞ

− 3ðK þ 4HÞ½K̈ þ 3H _K þ ð3K þ 4HÞ _H�f00
− ½3 _K þ 4 _H þ 3Hð3K þ 4HÞ�f0 þ f ¼ 2κ2p; ð86bÞ

while for the branch K3 ≠ 0 we find

− 9K½K̈ þ 3H _K þ ð3K − 4HÞ _H�f00
− 3ð _K þ 3HK − 4H2Þf0 − f ¼ 2κ2ρ; ð87aÞ

− 3ð3K − 4HÞ½K̈ þ 3H _K þ ð3K − 4HÞ _H�f00
þ ½3 _K − 4 _H þ 3Hð3K − 4HÞ�f0 þ f ¼ 2κ2p: ð87bÞ

We see that now K enters as a new dynamical field. Finally,
for the spatially curved (k ≠ 0) branch we obtain the rather
lengthy equations

− 9

�
2k
A2

�
K̈
K
−

_K2

K2
þH _K

K
− 2

H _H
K

þ _H − 2HK þH2

	
þ k2

A4K2

�
K̈
K
− 2

_K2

K2
−
H _K
K

− _H − 4HK þ 2H2

	

þ K½K̈ þ 3H _K þ ð3K − 4HÞ _H�


f00 − 3

�
k

A2K2
ð _K −HKÞ þ _K þ 3HK − 4H2

	
f0 − f ¼ 2κ2ρ; ð88aÞ

�
6k
A2

��
2
H
K
− 1

�
K̈
K
þ
�
3 − 4

H
K

��
_K2

K2
þ _H þ 2HK −H2

�
þ
�
3 − 2

H
K

�
H _K
K

	

þ 3k2

A4K2

�
K̈
K
− 2

_K2

K2
−
H _K
K

− _H − 4HK þ 2H2

	
− 3ð3K − 4HÞ½K̈ þ 3H _K þ ð3K − 4HÞ _H�



f00

þ
�
k
A2

�
4 − 3

H
K
þ 3

_K
K2

�
þ 3 _K − 4 _H þ 3Hð3K − 4HÞ

	
f0 þ f ¼ 2κ2p; ð88bÞ

where we have used the parametrization (34), so that they
reduce to the case K3 ≠ 0 in the limit k → 0. In order to
show that all cosmological field equations shown above
indeed reduce to the case of general relativity for the
parameter function fðQÞ ¼ Q, it is helpful to display the
value of Q for all branches, which follow from the general
expression

Q ¼ 3ð2Q2
2 þQ1Q3 −Q2Q3Þ: ð89Þ

In the case K2 ¼ K3 ¼ 0 we find the known result

Q ¼ 6H2; ð90Þ

while for K2 ≠ 0 we have

Q ¼ 3ð2H2 þ 3HK þ _KÞ; ð91Þ

and K3 ≠ 0 yields

Q ¼ 3ð2H2 − 3HK- _KÞ; ð92Þ

finally, the spatially curved branch yields

Q ¼ 3

�
2H2 − 3HK- _K þ k

HK − 2K2 − _K
A2K2

�
: ð93Þ

Inserting these values for f ¼ Q in the cosmological field
equations, together with f0 ¼ 1 and f00 ¼ 0, we find that
the terms involving K indeed cancel, and we are left with
the cosmological dynamics of general relativity.
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We finally remark that the cosmological field equations
shown in this section have simultaneously been derived in
[63], where also an exact solution for a power law model
fðQÞ ∼Qα has been studied.

B. Newer general relativity

The second theory whose cosmological dynamics we
derive is newer general relativity, whose action we write in
the form [11]

Sg ¼ −
1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ðc1QμνρQμνρ þ c2QμνρQρμν þ c3Qρμ
μQρν

ν þ c4Qμ
μρQν

νρ þ c5Qμ
μρQρν

νÞ; ð94Þ

where c1;…; c5 are constants. If these constants are chosen to take the values

c1 ¼ −
1

4
; c2 ¼

1

2
; c3 ¼

1

4
; c4 ¼ 0; c5 ¼ −

1

2
; ð95Þ

we find that the theory reduces to STEGR. The field equations obtained by variation with respect to the metric are given by

κ2Θμν ¼ −2∇∘ ρ

�
c1Qρ

μν þ c2QðμνÞρ þ c3Qρσ
σgμν þ c4Qσ

σðμδ
ρ
νÞ þ

1

2
c5ðQσ

σρgμν þ δρðμQνÞσσÞ
	

þ 1

2
ðc1QρστQρστ þ c2QρστQτρσ þ c3Qτρ

ρQτσ
σ þ c4Qρ

ρτQσ
στ þ c5Qρ

ρτQτσ
σÞgμν − c3Qμρ

ρQνσ
σ

þ c1ð2Qρσ
μQσρν −Qμ

ρσQνρσ − 2QρσðμQνÞρσÞ þ c2ðQρσ
μQρσν −Qμ

ρσQνρσ −QρσðμQνÞρσÞ

þ c4½Qρ
ρσðQσμν − 2QðμνÞσÞ þQρ

ρμQσ
σν −Qρ

ρðμQνÞσσ� þ
1

2
c5½Qρσ

σðQρμν − 2QðμνÞρÞ −Qμρ
ρQνσ

σ�: ð96Þ

In order to display the cosmological field equations for the
homogeneous and isotropic geometries listed in Sec. III, it
is helpful to replace the original constants in the gravita-
tional action by the linear combinations

a1 ¼ 2ðc1 þ 3c3Þ; a2 ¼ 2ð2c3 þ c5Þ;
a3 ¼ 2ðc1 þ c2 þ c3 þ c4 þ c5Þ;
a4 ¼ 2ðc2 − c4 þ c5Þ; ð97Þ

which turn out to be the only linear combinations which
enter into the resulting equations; i.e., the cosmological
dynamics turn out to be unchanged if we change the theory
by the replacement

c1 ↦ c1 − 3ϵ; c2 ↦ c2 þ 3ϵ; c3 ↦ c3 þ ϵ;

c4 ↦ c4 þ ϵ; c5 ↦ c5 − 2ϵ ð98Þ

of the parameters with a free constant ϵ. The new linear
combinations are chosen such that in the STEGR case (95)
they take the values a1 ¼ 1 and a2 ¼ a3 ¼ a4 ¼ 0. Using
these constants, we find that the cosmological field equa-
tions for the branch K2 ¼ K3 ¼ 0 read

2a3 _K þ 3a2 _H þ a3K2 þ 3ða2 þ 2a3ÞHK

þ 3ða1 þ 3a2ÞH2 ¼ κ2ρ; ð99aÞ

−a2 _K − 2a1 _H þ a3K2 − 3a1H2 ¼ κ2p: ð99bÞ

Taking a closer look at these equations, we see that they
depend only on the three constants a1;2;3 and that the scalar
K related to the symmetric teleparallel connection decou-
ples for a2 ¼ a3 ¼ 0. In the latter case, we find that the
cosmological dynamics become identical to those of
general relativity, if one further chooses the normalization
a1 ¼ 1. Since these are three linearly independent con-
ditions on the five initial parameters c1;…; c5, it follows
that there exists a two-parameter family of theories which
exhibits this property. This observation is different for the
remaining branches. With the branch K2 ≠ 0 we obtain the
equations

2a3
K̈
K
− a3

_K2

K2
þ ð3a2 þ 10a3Þ

H _K
K

þ ð3a2 þ 4a3Þ _H

þ 9

4
ða2 − 2a3 þ a4ÞK2 þ 3a4HK

þ ð3a1 þ 15a2 þ 16a3ÞH2 ¼ κ2ρ; ð100aÞ

− a2
K̈
K
þ ða2 þ a3Þ

_K2

K2
þ 4a3

H _K
K

þ a4 _K − 2ða1 þ a2Þ _H

þ a2 − 2a3 þ a4
4

K2 þ 2a4HK þ ð4a3 − 3a1ÞH2 ¼ κ2p;

ð100bÞ

while for K3 ≠ 0 we find
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− 2a3
K̈
K
þ 3a3

_K2

K2
− 3ða2 þ 2a3Þ

H _K
K

þ 3a2 _H

þ 21a2 þ 22a3 − 3a4
4

K2 − 3ð6a2 þ 4a3 − a4ÞHK

þ 3ða1 þ 3a2ÞH2 ¼ κ2ρ; ð101aÞ

a2
K̈
K
þ ða3 − a2Þ

_K2

K2
þ ð6a2 þ 4a3 − a4Þ _K − 2a1 _H

þ 21a2 þ 22a3 − 3a4
4

K2 − 3a1H2 ¼ κ2p: ð101bÞ

We see that in this case also a4 appears in the dynamical
equations. For theories satisfying a2 ¼ a3 ¼ a4 we find
that K decouples, after which the cosmological field
equations reduce to those of general relativity. Together
with the normalization condition a1 ¼ 1 this leaves a one-
parameter family of theories whose cosmological dynamics
agrees with general relativity for these two branches, with
the single free parameter given by the transformation (98).
Finally, coming to the spatially curved case k ≠ 0 we find
the cosmological field equations

− 2a3
K̈
K
þ 3a3

_K2

K2
− 3ða2 þ 2a3Þ

H _K
K

þ 3a2 _H þ 21a2 þ 22a3 − 3a4
4

K2 − 3ð6a2 þ 4a3 − a4ÞHK

þ 3ða1 þ 3a2ÞH2 þ 3a4k
H
A2K

þ 3

2
k
2a1 − a2 − 4a3 þ a4

A2
þ 9

4
k2

a2 − 2a3 þ a4
A4K2

¼ κ2ρ; ð102aÞ

a2
K̈
K
þ ða3 − a2Þ

_K2

K2
þ ð6a2 þ 4a3 − a4Þ _K − 2a1 _H þ 21a2 þ 22a3 − 3a4

4
K2 − 3a1H2

− a4k
_K

A2K2
−
1

2
k
2a1 − a2 − 4a3 þ a4

A2
þ 1

4
k2

a2 − 2a3 þ a4
A4K2

¼ κ2p: ð102bÞ

We find that the behavior qualitatively agrees with
the previous two branches and that K decouples if
a2 ¼ a3 ¼ a4 ¼ 0, leading to cosmological dynamics iden-
tical to general relativity for a spatially curved FLRW
metric.

C. Scalar-nonmetricity gravity

As a last example, we consider a class of scalar-non-
metricity theories given by the gravitational action

Sg ¼
1

2κ2

Z
½−AðϕÞQþ 2BðϕÞX þ 2CðϕÞY

þ 2DðϕÞZ − 2VðϕÞ�; ð103Þ

which generalizes the class of theories presented in [13,14].
HereQ denotes the nonmetricity scalar (81), and we further
introduced the terms

X¼−
1

2
gμν∂μϕ∂νϕ; Y¼Qμν

ν∂μϕ; Z¼Qν
νμ∂μϕ: ð104Þ

The general form of the action contains the free functions
A, B, C, D, V of the scalar field ϕ, whose choice selects a
particular theory from the general class. The field equations
can most conveniently be expressed using the nonmetricity
conjugate (82) and read

κ2Θμν¼
2ffiffiffiffiffiffi−gp ∇ρð

ffiffiffiffiffiffi
−g

p
APρσ

νÞgμσþAPμ
ρσQνρσþ

A
2
gμνQþ

�
B
2
þ2C0

�
∇∘ ρ

ϕ∇∘ ρϕgμν−ðB−2D0Þ∇∘ μϕ∇
∘
νϕ

þ2C□
∘
ϕgμνþ2D∇∘ μ∇

∘
νϕþð2CþDÞ∇∘ ðμϕQνÞρρ−C∇∘ ρϕQρσ

σgμνþD∇∘ ρ
ϕð2QðμνÞρ−Qρμν−Qσ

σρgμνÞþVgμν ð105Þ

for the metric, as well as

A0Qþ 2B□
∘
ϕþ B0∇∘ μϕ∇

∘ μ
ϕ − 2C∇∘ μQμν

ν − 2D∇∘ μQν
νμ − 2V 0 ¼ 0 ð106Þ

for the scalar field. We then insert the geometries we determined in Sec. III. For the branch K2 ¼ K3 ¼ 0 we obtain the
cosmological field equations
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3AH2 þ 2ðC þDÞK _ϕþ 6ð2C þDÞH _ϕ −
B − 4ðC0 þD0Þ

2
_ϕ2 þ 2ðC þDÞϕ̈ − V ¼ κ2ρ; ð107aÞ

−Að2 _H þ 3H2Þ þ 2ðC þDÞK _ϕ − 2A0H _ϕ −
B þ 4C0

2
_ϕ2 − 2Cϕ̈þ V ¼ κ2p; ð107bÞ

12C _H þ 4ðC þDÞ _K þ 6ð6C −A0ÞH2 þ 12ðC þDÞKH − 6BH _ϕ − B0 _ϕ2 − 2Bϕ̈ − 2V 0 ¼ 0: ð107cÞ

Again it is remarkable that there exists a special class of theories, now given by C þD ¼ 0, in which the scalar K from
the symmetric teleparallel connection decouples. In this case the first equation becomes the usual Friedmann
constraint equation. This class of theories also stands out in the remaining branches. For K2 ≠ 0 we find the dynamical
equations

3AH2 þ 2ðC þDÞ
_K _ϕ

K
þ 3

2
ðA0 þ 2DÞK _ϕþ 2ð8C þ 5DÞH _ϕ −

B − 4ðC0 þD0Þ
2

_ϕ2 þ 2ðC þDÞϕ̈ − V ¼ κ2ρ; ð108aÞ

−Að2 _H þ 3H2Þ þ 2ðC þDÞ
_K _ϕ

K
−
1

2
ðA0 þ 2DÞK _ϕþ ð4C þ 4D − 2A0ÞH _ϕ −

B þ 4C0

2
_ϕ2 − 2Cϕ̈þ V ¼ κ2p; ð108bÞ

4ðC þDÞKK̈ − _K2 þ 3HK _K
K2

− 3ðA0 þ 2DÞð _K þ 3HKÞ þ 4ð5C þ 2DÞ _H þ 6ð10C þ 4D −A0ÞH2

− 6BH _ϕ − B0 _ϕ2 − 2Bϕ̈ − 2V 0 ¼ 0; ð108cÞ

while in the case K3 ≠ 0 we have

3AH2 − 2ðC þDÞ
_K _ϕ

K
þ 3A0 − 16C − 10D

2
K _ϕþ 6ð2C þDÞH _ϕ −

B − 4ðC0 þD0Þ
2

_ϕ2 þ 2ðC þDÞϕ̈ − V ¼ κ2ρ; ð109aÞ

−Að2 _H þ 3H2Þ − 2ðC þDÞ
_K _ϕ

K
þ 1

2
ð3A0 − 16C − 10DÞK _ϕ − 2A0H _ϕ −

B þ 4C0

2
_ϕ2 − 2Cϕ̈þ V ¼ κ2p; ð109bÞ

4ðC þDÞ
_K2 − KK̈ − 3HK _K

K2
þ ð3A0 − 16C − 10DÞð _K þ 3HKÞ þ 12C _H þ 6ð6C −A0ÞH2

− 6BH _ϕ − B0 _ϕ2 − 2Bϕ̈ − 2V 0 ¼ 0: ð109cÞ

Note that the second derivative K̈ enters the field equations only for theories with C þD ≠ 0. This behavior can also be
observed in the spatially curved branch k ≠ 0, which leads to the cosmological field equations

3AH2 − 2ðC þDÞ
_K _ϕ

K
þ 3A0 − 16C − 10D

2
K _ϕþ 6ð2C þDÞH _ϕ

−
B − 4ðC0 þD0Þ

2
_ϕ2 þ 2ðC þDÞϕ̈ − V þ 3k

2A2K
½2AK þ ðA0 þ 2DÞ _ϕ� ¼ κ2ρ; ð110aÞ

−Að2 _H þ 3H2Þ − 2ðC þDÞ
_K _ϕ

K
þ 1

2
ð3A0 − 16C − 10DÞK _ϕ − 2A0H _ϕ

−
B þ 4C0

2
_ϕ2 − 2Cϕ̈þ V −

k
2A2K

½2AK þ ðA0 þ 2DÞ _ϕ� ¼ κ2p; ð110bÞ

4ðC þDÞ
_K2 − KK̈ − 3HK _K

K2
þ ð3A0 − 16C − 10DÞð _K þ 3HKÞ þ 12C _H þ 6ð6C −A0ÞH2

− 6BH _ϕ − B0 _ϕ2 − 2Bϕ̈ − 2V 0 þ 3k
A2K2

½2A0K2 þ ðA0 þ 2DÞð _K −HKÞ� ¼ 0; ð110cÞ
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which differ from the previous case only by the additional
terms linear in k. For all branches, we find that for
the particular class of theories defined by the relation
A0 ¼ 2C ¼ −2D the scalar K decouples from the field
equations. This does not come as a surprise, since in this
case the theory reduces to the symmetric teleparallel
equivalent of scalar-curvature gravity [13]. Finally, setting
AðϕÞ ¼ f0ðϕÞ and VðϕÞ ¼ ðfðϕÞ − ϕf0ðϕÞÞ=2, together
with B ¼ C ¼ D ¼ 0, one finds that the scalar field
equation imposes the condition ϕ ¼ Q, while the metric
equations reduce to those of fðQÞ gravity discussed in
Sec. VI A for all branches. Again this result is expected,
as the theory is the scalar-nonmetricity representation of
fðQÞ gravity [13]. This concludes our discussion of
symmetric teleparallel gravity theories and their cosmo-
logical dynamics.

VII. CONCLUSION

We have determined the most general homogeneous and
isotropic symmetric teleparallel geometries. We have found
a single spatially curved (k ≠ 0) solution to the symmetry
conditions, as well as three distinct branches of spatially
flat (k ¼ 0) geometries, each of which arises as a particular
limit with k → 0 from the common spatially curved case.
Each of these branches is parametrized by two scalar
functions of time, the cosmological scale factor A in the
metric and another scalar K parametrizing the symmetric
teleparallel connection, while a third function, the lapse N,
can be absorbed by a choice of the time coordinate. For
each branch, we determined the coincident gauge, in which
the coefficients of the symmetric teleparallel connection
vanish. We found that only for one branch the metric
retains the FLRW form in the coincident gauge. Our results
show that the common assumption in symmetric tele-
parallel cosmology, which simultaneously imposes the
coincident gauge and the FLRW metric, restricts the
geometry to this particular branch, and does not allow
for studying the remaining branches. This is due to the fact
that both the coincident gauge condition of vanishing
connection coefficients and the FLRW form of the metric
single out particular classes of coordinate systems, and
these two classes may, in general, not have a common
member.
Further, we derived the cosmological field equations of a

number of classes of symmetric teleparallel gravity theories
for all aforementioned branches allowed by the cosmo-
logical symmetry. We found several subclasses of theories,
including general fðQÞ gravity as well as subclasses of
newer general relativity and scalar-nonmetricity gravity, in
which the scalar K in the connection decouples from the
metric field equations in the aforementioned coincident/
FLRW branch. For these theories, our result reproduces the
previously obtained results on symmetric teleparallel cos-
mology. Moreover, our results also show that this decou-
pling from the metric field equations constitutes only a

particular sector of symmetric teleparallel cosmology, and
that K in general enters also into the metric field equations
if a different branch is chosen, or a more general gravity
theory is considered, which does not fall into the afore-
mentioned classes. This shows that symmetric teleparallel
gravity theories allow for a significantly richer spectrum of
cosmological dynamics than has been considered so far in
the literature. The physical implications from these modi-
fied dynamics depend, of course, on the particular theory
under consideration. Due to the plethora of theories
discussed in the literature, studying these implications
would by far exceed the scope of this article, in which
we discuss only general classes of theories. We therefore
leave these physical implications for future studies.
We also studied the conservation of energy-momentum-

hypermomentum in the aforementioned symmetric tele-
parallel cosmological backgrounds. The most general
matter model compatible with the assumed homogeneity
and isotropy is a hyperfluid, and we found that its
dynamics, in general, depends on the choice of the
particular background geometry and involves the scalar
K, unless the hypermomentum vanishes, i.e., in the case of
vanishing matter coupling to the symmetric teleparallel
connection. This result is independent of the gravity
theory under consideration, and this in particular also
applies to the class of theories in which K decouples from
the metric field equations, and its evolution remains
undetermined by the remaining equations. Further inves-
tigations are necessary to determine whether this hints
toward a possible pathological dynamics, or a strong
coupling issue as it is eminent also in fðTÞ metric tele-
parallel gravity theories [71–74].
We finally remark that both the gravitational and matter

dynamics we presented are independent of any choice of
coordinates, as they involve only scalar quantities and their
Lie derivatives with respect to the unique future unit vector
field obeying the cosmological symmetry, which is canoni-
cally defined by the FLRW geometry. In particular, they are
independent of the lapse function N, so that the latter may
be chosen arbitrarily, irrespective of the theory under
consideration; there is no breaking of diffeomorphism
invariance which would obstruct this freedom. For the
specific branch in which the metric retains its FLRW form
also in the coincident gauge, one may also use the
coincident gauge condition of vanishing connection coef-
ficients in order to fix the time coordinate, and hence also
the lapse function N. Making this peculiar choice, and thus
fixing N through the scalar K involved in the trans-
formation to the coincident gauge, it appears that diffeo-
morphism invariance is broken in theories whose dynamics
involveK, and thus ascribe dynamics toN when this choice
is made. However, this apparent breaking of diffeomor-
phism invariance is simply an artifact of the gauge
(coordinate) choice, which is in no way singled out from
other common coordinate choices.
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[11] J. Beltrán Jiménez, L. Heisenberg, and T. Koivisto, Coinci-
dent general relativity, Phys. Rev. D 98, 044048 (2018).
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