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We show that in anisotropic Hořava-Lifshitz gravity there is a well-defined wave zone where the
physical degrees of freedom propagate according to a nonrelativistic linear evolution equation of high order
in spatial derivatives, which reduces to the wave equation at low energy. This is so, provided the coupling
parameters satisfy some restrictions which we study in detail. They are imposed to obtain a finite Arnowitt-
Deser-Misner gravitational energy, which depends manifestly on the terms which break the Lorentz
symmetry of the formulation. The analysis we perform is beyond the linearized approach and includes all
high-order terms of the Hamiltonian potential.
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I. INTRODUCTION

The Hořava-Lifshitz gravity theory [1,2] has been
proposed as a candidate of a renormalizable gravity theory

]3–16 ]. Following Lifshitz, the time and the spatial
coordinates scale differently, in a way that the overall
coupling of the theory becomes dimensionless. In this
sense the theory is anisotropic and nonrelativistic. It
introduces interaction terms with high-order spatial deriv-
atives in the potential that break the relativistic symmetry
in a manifest way, but improve the ultraviolet (UV)
behavior in comparison to general relativity (GR). The
theory is renormalizable by power counting.
There are different versions of Hořava-Lifshitz gravity:

the projectable version has interesting applications to cos-
mology (see Refs. [17,18] and references therein), and in the
nonprojectable version the full number of gravitational
physical degrees of freedom—the transverse-traceless ten-
sorial modes at the linearized level—become dynamical.
Among the nonprojectable Hořava-Lifshitz versions, the
propagating degrees of freedom differ according to the value
of the dimensionless coupling constant λ on the kinetic term
of the Hořava-Lifshitz action (see Ref. [1]). For λ ≠ 1=3 the
theory propagates a scalar degree of freedom, in addition to
the transverse-traceless tensorial ones. Several works have
discussed the problem of strong coupling of this scalar
mode [3,5,19].

Some restrictions on the couplings of the theory have to be
imposed in order to justify the existence of this scalar mode
without violating thewell-established gravitational data [20].
For λ ¼ 1=3, the kinetic term of the Hořava-Lifshitz action
(see Ref. [1]) has an additional conformal symmetry. In this
case, the propagating degrees of freedom exactly coincide
with transverse-traceless tensorial modes of GR. No addi-
tional scalar field is present in the theory. At low energies the
theory depends on two coupling constants, β and α; when
β ¼ 1 and α ¼ 0 the field equations are exactly the GR
equations in a particular gauge. The restrictions on the
coupling constants are in this case less stringent. In both
cases there is a range of values for the coupling constants for
which the theory fits the known gravitational experimental
data satisfied by GR [21].
The linearized theory at low energies coincides with the

corresponding linearizedGR formulation [22].Additionally, it
satisfies the well-known Einstein quadrupole formula [23].
The coupling to the Maxwell theory in four dimensions was
recently studied using a Kaluza-Klein approach in Hořava-
Lifshitz theory in five dimensions [24,25]. The speed of
propagation of the gravitational and electromagnetic physical
modes, at low energies, is in agreement with the recent
experimental data arising from the detection of gravitational
and electromagneticwaves generated by the same source [26].
An analysis of the theory including all higher-order spatial
derivative terms of the potential was performed in Ref. [13].
Although at the linearized level Hořava-Lifshitz theory and

GR coincide, the full theories behave in different ways, as can
be seen from the static spherically symmetric solutions of the
field equations. In this case, in the Hořava-Lifshitz theory
there are solutions with a throat, connecting an asymptoti-
cally flat manifold with a nonasymptotically flat one [27]; see
also Ref. [28] where a charged throat was considered. The
solutions depend on one coupling constant α in a way that in
the limit α → 0 the geometry outside the throat, on the
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asymptotically flat side, tends to the geometry of the
Schwarzchild solutions in GR outside the black hole. The
asymptotic behavior of these solutions defines the asymp-
totically flat behavior in Hořava-Lifshitz gravity.
Nonlinear interaction terms in gravity theories are essen-

tial in the propagation of the physical degrees of freedom.
However, in GR in the wave zone, the propagation of the
physical degrees of freedom, at leading order, is free from
such nonlinear terms. We may wonder if this is the case for
Hořava-Lifshitz gravity, since both theories propagate
exactly the same physical degrees of freedom. In particular,
we are interested in the effect of the terms that break the
relativistic symmetry on the propagation in the wave zone.
In Ref. [29] we analyzed the wave zone in Hořava-

Lifshitz gravity at low energies, that is, when terms in the
potential with high-order spatial derivatives are dismissed.
We found that the propagation of the physical degrees of
freedom is described by the wave equation as in GR, with
the speed of propagation given in terms of the coupling
parameter β.
In this paper we show that there exists a wave zone in the

complete Hořava-Lifshitz theory. We include in our analysis
all high-order derivative terms in the potential. We consider
the theory at the kinetic conformal point, where λ ¼ 1=3. We
notice that the value λ ¼ 1=3 is protected from quantum
corrections by the presence of a second-class constraint
which arises directly from the formulation of the theory [22].
In this zone the constraints of the theory can be solved in

powers of 1=r. In distinction to GR where the Hamiltonian
constraint is of first class, in this theory there are two
second-class constraints which allow to obtain the compo-
nents gT and N in terms of the transverse-traceless (TT)
tensorial modes. The lapseN is not a Lagrange multiplier in
this theory. We analyze the general coordinate transforma-
tions in the wave zone and obtain the field equations for the
physical degrees of freedom described by the TT modes of
the metric. At order 1=r, the field equations become a linear
partial differential equation, which reduces to the wave
equation at low energies. Although this field equation at
order 1=r is the same one that arises from the linearized
theory, the nontrivial solution for the gT and N fields
provides the existence of a Newtonian background that is
absent in the linearized theory and relevant in the asymp-
totic behavior of the theory, in particular in the determi-
nation of the gravitational energy. In the formulation of the
theory in the wave zone, we follow the approach rigorously
established in Ref. [30].
In distinction to the Arnowitt-Deser-Misner (ADM)

analysis of GR, the solution of the constraints and the
dynamical equations involve an elliptic operator of sixth
order, yielding a higher-order dispersion relation. The terms
that break the Lorentz symmetry in the action of the theory
contribute to the Newtonian background and appear explic-
itly in the expression of the gravitational energy. In order to
have a finite gravitational energy, some restrictions have to

be imposed on the coupling parameters of the potential. In
fact, the solution of the constraints involve an evolution
operator with high-order spatial derivatives, which may have
zero modes. They produce inconsistent contributions to the
gravitational energy. In order to avoid them, we impose
restrictions on the coupling parameters.
The relevance of the existence of a wave zone in a theory

describing gravity is directly related to the detection of
gravitational waves (GWs) in the last five years. In 2010,
they were measured indirectly through the relative reduction
of the distance between the members of the binary pulsar
system PSR B1913þ 16 by continuous emission of GWs
[31]. In 2015, the LIGO/Virgo Collaboration directly
detected the first signal of a GW produced from the black
hole–black hole (BHBH) coalescence GW150914 [32–34].
After that, there were multiple detections of GWs due to the
coalescence of compact binary systems, such as BHBH,
neutron star–neutron star, and neutron star–black hole
systems [35–39].
The electromagnetic signal of GW170817 was also

detected—the γ-ray burst GBR170817A [40]—which
has been very important for comparing the speeds of both
electromagnetic and gravitational signals, as it constrains
the difference between the speed of gravity and the speed of
light to be between −3 × 10−15 and 7 × 10−16 times the
speed of light [41,42]. In Hořava-Lifshitz theory at the
kinetic conformal point, both interactions have the same
speed of propagation [24,25].
A main difference between the wave zone in Hořava-

Lifshitz theory and that in GR is the modified dispersion
relation involving a polynomial in the square of the wave
number k, which at low energy and for β ¼ 1 reduces to
the relativistic relation. Modifications of dispersion rela-
tions in theories with Lorentz invariance violations (LIVs)
have been discussed in the literature; for a review of
experimental tests of LIV in astroparticle physics scenar-
ios, see Ref. [43] and references therein. The Large High
Altitude Air Shower Observatory recently detected ultra-
high-energy photons (γ rays) at the PeVenergy scale [44].
These observations suggest the existence of subluminal
LIV beyond special relativity in the photon sector at the
scale of 3.6 × 1017 GeV [45]. In accordance with con-
clusions of Refs. [46–48] in which it was stated that, from
data on γ-ray bursts observed by the Fermi Gamma-ray
Space Telescope, to this same energy scale the speed of
light is energy dependent.

II. FOLIATIONS IN HOŘAVA GRAVITY

We consider a three-dimensional foliation of a four-
dimensional manifold M. It is a decomposition of M into
a union of disjoint three-dimensional submanifolds—the
leaves of the foliation—such that the covering ofM by charts
Ui together with homeomorphisms φi∶Ui ⇔ N i ⊂ R4 for
overlapping pairs Ui, Uj satisfy
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φj ∘ φ−1
i ∶ R4 → R4; ð1Þ

which is a C∞ bijection from φiðUi ∩ UjÞ onto
φjðUi ∩ UjÞ, and

φj ∘ φ−1
i ∶ ðt; xÞ → ðt̃ðtÞ; x̃ðt; xÞÞ; ð2Þ

where x are coordinates on the three-dimensional leaves Σt,
and t is the coordinate on the codimension-1 manifold which
we take to be R. We assume that the leaves are Riemannian
manifolds with metric gij. In the Hořava-Lifshitz formu-
lation, t and xi, i ¼ 1, 2, 3 have different dimensions and
there is no a priori universal constant of dimension ½T�−1½L�.
Although there are couplings with this dimension, it’s
numerical value depend of the energy scale, and hence only
in the infrared limit (or UV one) we can have a fixed
numerical value for such parameter. Although there is not a
metric on the manifold M, there are intrinsic geometrical
objects, which we define as

Nðt; xÞdt ð3Þ

with dimension [T], and

dxi þ Niðt; xÞdt ð4Þ

with dimension [L]. They transform under Eq. (2) as

Ñðt̃; x̃Þdt̃ ¼ Nðx; tÞdt; ð5Þ

dx̃i þ Ñiðt̃; x̃Þdt̃ ¼ ∂x̃i
∂xj ½dx

j þ Njðt; xÞdt� ð6Þ

and allow to have an intrinsic volume element,

Ndt ∧ ðdx1 þ N1dtÞ ∧ ðdx2 þ N2dtÞ ∧ ðdx3 þ N3dtÞ ffiffiffi
g

p

¼ Ndt ∧ dx1 ∧ dx2 ∧ dx3
ffiffiffi
g

p
; ð7Þ

where g is the determinant of the three-dimensional metric
gij on the leaves. The metric is taken to be a dimensionless
tensor under the diffeomorphisms on the leaves.
From Eqs. (5)–(6) we obtain the transformation law of N,

a dimensionless density, and Ni. In the Hořava-Lifshitz
formulation of gravity, t scales as bz, while xi scale as b1;
consequently, the dimension of t is ½t� ¼ ½L�z and that of Ni

is ½Ni� ¼ ½L�1−z. We notice that the above construction does
not depend on the value of z. In the four-dimensional
Hořava-Lifshitz gravitational theories, z ¼ 3 in order to
have a dimensionless overall coupling constant. Hence,
½Ni� ¼ ½L�−2 and, as we have determined, ½N� ¼ ½L�0.
The transformation laws for N and Ni under

t̃ ¼ t̃ðtÞ; x̃i ¼ x̃iðt; xÞ ð8Þ

are then

Ñðt̃; x̃Þ_̃tðtÞ ¼ Nðt; xÞ; ð9Þ

Ñiðt̃; x̃Þ_̃tðtÞ ¼ − _̃xiðt; xÞ þ ∂x̃i
∂xj N

jðt; xÞ; ð10Þ

respectively, where ð _Þ≡ ∂
∂t ðÞ. We notice that N and Ni

transform as densities under time reparametrization; Ni

does not transform as a vector field under diffeomorphisms
on the leaves. The first term on the right-hand side of
Eq. (10) is characteristic of the transformation law of a
Lagrange multiplier. If we rewrite the general finite trans-
formation of coordinates as

t̃ ¼ tþ fðtÞ; x̃i ¼ xi þ ξiðt; xÞ; ð11Þ

where f and ξi are C1 arbitrary functions, we obtain

Ñðt̃; x̃Þð1þ _fðtÞÞ ¼ Nðt; xÞ; ð12Þ

Ñiðt̃; x̃Þð1þ _fðtÞÞ ¼ −_ξiðt; xÞ þ Niðt; xÞ þ ∂ξi
∂xj N

jðt; xÞ;
ð13Þ

and also

gijðt; xÞ ¼
∂x̃l
∂xi

∂x̃m
∂xj g̃lmðt̃; x̃Þ: ð14Þ

A. T+L decomposition

In the following analysis we will use the Tþ L decom-
position of symmetric tensors fields (fij) vanishing at
infinity in terms of linear orthogonal symmetric parts [49],

fij ¼ fTTij þ fTij þ 2fði;jÞ: ð15Þ

The transverse part fTij ≡ 1
2
½δijfT − 1

Δ f
T
;ij� satisfies

fTij;j ¼ 0. The transverse-traceless fTTij satisfies fTTij;j ¼ 0

and fTTii ¼ 0. The remaining term, 2fði;jÞ, is its longitudinal
part. fT ¼ fTii is the trace of the transverse part of fij.

1
Δ is

the inverse of the flat-space Laplacian, defined on the space
of functions that vanish at infinity.
The tensor components are

fi;j ¼
1

Δ

�
fik;kj −

1

2

�
1

Δ
flm;lm

�
;ij

�
; ð16Þ

fTij ¼
1

2

�
fTδij −

1

Δ
fT;ij

�
; ð17Þ

fT ¼ 1

Δ
ðfll;mm − flm;lmÞ; ð18Þ
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fTTij ¼ fij − fTij − 2fði;jÞ: ð19Þ

III. 3 + 1 HOŘAVA-LIFSHITZ GRAVITY AT THE
CONFORMAL KINETIC POINT

The 3þ 1 anisotropic Hořava-Lifshitz Hamiltonian at
the conformal kinetic point is given by

H ¼
Z
Σt

d3x

�
N

ffiffiffi
g

p �
πijπij
g

− Vðgij; NÞ
�

− NjHj − σPN − μπ

�
þ βEADM; ð20Þ

where ðNi; σ; μÞ are Lagrange multipliers, ðHj; PN; πÞ are
primary constraints, and the potential V ¼ Vð1Þ þ Vð2Þ þ
Vð3Þ is the most general scalar constructed from the three-
dimensional spacelike metric and the lapse N function. It
is independent of the conjugate momenta and of the
Ni ≡ gijNj. The potential, where only the interacting
terms that will contribute to the wave zone are explicitly
given, is expressed as follows:

Vð1Þ ¼ βRþ αaiai; ð21Þ

Vð2Þ ¼ α1R∇iai þ α2∇iaj∇iaj þ β1RijRij

þ β2R2 þOð2ÞðaiaiÞ; ð22Þ

Vð3Þ ¼ α3∇2R∇iai þ α4∇2ai∇2ai þ β3∇iRjk∇iRjk

þ β4∇iR∇iRþOð3ÞðRij; akÞ; ð23Þ

where ai ≡ 1
N ∂iN is a 3-vector under the transformations

(8) with dimension ½L�−1 [2], and the α’s and β’s are
coupling constants. We notice that the couplings involved
in Eq. (23) are dimensionless. The terms Oð2Þ and Oð3Þ
contain products of more than two fields. They will not
contribute to the leading-order or next-to-leading-order
terms in the wave zone.
The surface integral,

EADM ≡
I
∂Σt

ð∂jgij − ∂igjjÞdSi; ð24Þ

is added in order to ensure the differentiability of the
Hamiltonian with respect to the metric; see Ref. [50] where
this idea was introduced for GR. EADM is the well-known
ADM energy in general relativity.
The primary constraints,

π ≡ gijπij ¼ 0; ð25Þ

PN ¼ 0; ð26Þ

are second class, while the momentum constraints,

Hj ≡ 2∇iπ
ij ¼ 0; ð27Þ

are first class.
The conservation of the primary constrains (25)–(26)

yields the constraints

HP ≡ 3

2

Nffiffiffi
g

p πijπij þ
1

2
N

ffiffiffi
g

p
βRþ N

ffiffiffi
g

p �
α

2
− 2β

�
aiai

− 2βN
ffiffiffi
g

p ∇iai þ fπ;UgPB ¼ 0; ð28Þ

HN ≡ −
1ffiffiffi
g

p ðπijπij − βgRÞ − α
ffiffiffi
g

p
aiai

− 2α
ffiffiffi
g

p ∇iai þ fPN;UgPB ¼ 0; ð29Þ

where

U ≡ −
Z
Σt

d3xN
ffiffiffi
g

p ðVð2Þ þ Vð3ÞÞ: ð30Þ

These are second-class constraints. The conservation of
Eqs. (28)–(29) determines the Lagrange multipliers. Then,
Eqs. (25)–(29) is the complete set of constraints.
The dynamical field equations are

_gij ¼
2Nffiffiffi
g

p πij þ 2∇ðiNjÞ − μgij; ð31Þ

_πij ¼ N
2

gijffiffiffi
g

p πklπkl −
2Nffiffiffi
g

p πikπjk þ N
ffiffiffi
g

p
β

�
R
2
gij − Rij

�

− αN
ffiffiffi
g

p �
aiaj −

1

2
gijakak

�
−∇k½2πkðiNjÞ − πijNk�

þ β
ffiffiffi
g

p ½∇ði∇jÞN − gij∇2N� þ μπij þ fπij;UgPB;
ð32Þ

where the last term in Eq. (32) will contribute terms with
spatial derivatives higher than second order.
The Hamiltonian (20) can be rewritten in terms of the

constraints of the theory, up to a total divergence. In fact,
Eq. (29) can be written as

HN ≡ ffiffiffi
g

p �
πijπij
g

− V
�
−

ffiffiffi
g

p
N

∇i

�
−N

∂V
∂ai þ∇j

�
N

∂V
∂∇jai

�

−∇k∇j

�
N

∂V
∂∇j∇kai

�
þ � � �

�
¼ 0; ð33Þ

where the first term arises from the variation of the action
with respect to the global factor N, while the second term
comes from the variation of the potential with respect to N.
It follows then that
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N
ffiffiffi
g

p �
πijπij
g

− V
�

¼ NHN þ ffiffiffi
g

p ∇i

�
−N

∂V
∂aiþ∇j

�
N

∂V
∂∇jai

�
−∇k∇j

�
N

∂V
∂∇j∇kai

�
þ � � �

�
: ð34Þ

Under asymptotically flat conditions, gij ¼ δij þOð1rÞ,
N ¼ 1þOð1rÞ, Ni ¼ Oð1rÞ, πij ¼ Oð1rÞ, and all first spatial
derivatives of fields of orderOð 1r2Þ, the total divergence that
contributes at infinity arises from the first term in the
parentheses. It is

−2α
ffiffiffi
g

p ∇iðgij∇jNÞ: ð35Þ

Wemay now evaluate the physical Hamiltonian density in a
particular coordinate system. We proceed as in Ref. [29].
The Lagrangian evaluated on the constraint submanifold is
given by

L ¼
Z

dtd3xðπij _gij −HÞ − EADM; ð36Þ

where H≡ −2α ffiffiffi
g

p ∇i∇iN þ total divergence. The generic
terms “total divergence” do not contribute to the Lagrangian
under the asymptotically flat conditions. The Lagrangian L
can be expressed in terms of the Tþ L components as in
Ref. [29]. We may consider the coordinate condition

gi ¼ xi þ
�

1

4Δ

�
gT;i; Δ≡ δij∂i∂j; ð37Þ

where gi is the longitudinal part of the metric, and (following
Ref. [29]) we end up with

H ¼ −βΔgT − 2α
ffiffiffi
g

p ∇iðgij∂jNÞ ð38Þ

as the Hamiltonian density. ΔgT and ΔN are obtained from
the constraints (28)–(29) in terms of the gTTij and πijTT

physical components.
The gravitational energy is then given by

E ¼
Z

dtd3xH ¼
I
∂Σt

ð−βgT;i − 2αN;iÞdSi; ð39Þ

which is, of course, independent of the coordinate
condition (37).
In order to obtain gT andN from the constraints (28)–(29),

a condition on the invertibility of the higher-order derivative
operator must be imposed. We discuss this point in
Sec. VI C. The invertibility condition, expressed as the
absence of the zero modes, is assured once several con-
ditions on the coupling parameters are imposed.

IV. WAVE ZONE DEFINITION

The “wave zone” is an asymptotic region in space within
which the degrees of freedom of the theory represent free
radiation. That is, the leading order satisfies a wave equation
and represents traveling spherical waves that escape to
infinity without being affected by the source.
In the wave zone the self-interactions do not affect the

dominant order. In the analysis the nonlinearities are not
eliminated a priori; indeed, there can exist nontrivial static
terms of the same order as the leading canonical one, but
nevertheless they do not affect its propagation as free
radiation. This approach is different from the first-order
perturbation analysis where nonlinear effects are eliminated
from the beginning. The existence of a wave zone is a very
important property of nonlinear theories describing long-
range interactions.
In linear theories like classical electrodynamics, non-

linearities may be due to sources and they do not occur if
the wave zone is far enough from sources. Then, in this
case, if radiation has a wave number k, the wave zone
coincides with the “far zone” kr ≫ 1. That is, the distance
from the sources to the wave zone is a very large number
of wavelength and it guarantees that gradients and
temporal derivatives of canonical modes are Oð1=rÞ. In
general, we can apply the time Fourier transformation to
the wave equation; it becomes a Helmholtz equation Δuþ
k2u ¼ 0 and one can write its solution in the form
u ¼ eikr

r

P
n¼0

fnðθ;ϕÞ
rn . Then, it is straightforward to prove

that if the f0 coefficient of the 1=r term is zero, then
u ¼ 0, that is, in the wave zone the only nonzero solution
of the wave equation always contains the Oð1=rÞ con-
tribution. This is different from the solution of the Laplace
equation. In fact, even if the monopole, dipole, etc.,
contributions are zero, the multipolar contributions can
be nonzero.
In nonlinear theories the propagating fields may act as

effective sources of itself. This self-interaction phenomena
breaks up the desired free-radiation behavior. Therefore,
the far zone condition is not sufficient to define the wave
zone. The additional requirements have to guarantee that
the field amplitudes are small such that the nonlinear terms
are negligible. Here “negligible” means that they do not
affect the free-wave propagation.
For GR there exists a well-defined wave zone, in which

the background curvature does not affect the radiation of
canonical modes. The gauge-invariant fields have the fol-
lowing behavior: the oscillatory part of gTTij ∼ πijTT ¼
Oð1=rÞ, the oscillatory part of gTij ∼Oð1=r2Þ, the static
part of gTij ¼ Oð1=rÞ and of πijL ¼ Oð1=r2Þ. The remaining
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parts of gij and πij and ADM variables ðN;NiÞ are gauge
dependent and do not affect the propagation of canonical
modes [30].
The wave zone splits the space into three regions: the

interior, the wave zone, and the exterior. The “interior”
region bounded by the sphere of radius R0 centered at the
origin, BR0

ð0Þ, contains the sources and possibly space-time
singularities; here, the phenomena of self-interaction are not
negligible even at points where sources are not located. Then
there is the wave zone, BR1

ð0Þ=BR0
ð0Þ with R0 < r < R1,

where the curvature does not affect radiation. Finally, there is
the “exterior” region, R3=BR1

ð0Þ, where the propagating
fields decay rapidly. This represents an asymptotically flat
space-time.
In this work we prove that in the 3þ 1 nonprojectable

Hořava-Lifshitz theory at the kinetic conformal point there
exists a wave zone as in GR. That is, the
ðgTTij ; πijTTÞ ∼ fðθ;ϕÞ exp iðkx − ωðkÞtÞ=r, with fðθ;ϕÞ ¼
Oð1Þ, propagate without being affected by the static parts in
the same way as in the linearized theory. Due to the
anisotropic character of this theory the dispersion relation
contains, besides the terms ω2 and k2, k4 and k6 terms
associate to higher-order derivative terms, this represents a
propagating dispersive signal. At low energies, the dispersion
reduces to the usual nondispersive wave and differs from GR
in the speed of propagation. The speed of propagation at low
energies is equal to

ffiffiffi
β

p
and the recent gravitational-wave

observations fix it to 1 the GR value, up to an error of the
order of one part in 1015 [20,21,41,42].
We define the wave zone in Hořava-Lifshitz theory, as in

GR, to be the spacelike domain far away from the sources
satisfying the following conditions:
(1) kr ≫ 1, where k is the wave number and

r ¼ ðxixiÞ1=2.
(2)

jgij − δijj ≲ A=r; ð40Þ
jN − 1j≲ A=r; ð41Þ

jNij≲ A=r; ð42Þ

where Aðt; θ;ϕÞ represents a function of time and
angles such that A and all its derivatives are
bounded.

(3) The conditions

j∂gij=∂ðkrÞj2 ≪ jgij − δijj; ð43Þ
j∂Ni=∂ðkrÞj2 ≪ jNij; ð44Þ
j∂N=∂ðkrÞj2 ≪ jN − 1j ð45Þ

are fulfilled. Here we use the shorthand notation
≲A=r≡OðA=rÞ, and thus “≲A=r” means the left part

decreases at least as A=r, and ðg; δÞ are symbolic repre-
sentations of any component of the metric and the
Euclidean three-dimensional metric tensor.
The three conditions can be satisfied by choosing a region

with a large enough distance from the source. The first
condition is the same as in linear theories and indicates that
the wave zone is quite far from the sources (with distance
measured in units of wavelength) and guarantees that the
gradients of the canonical modes are Oð1=rÞ and exclude
the wave number k → 0 in the wave zone. The second and
third conditions are necessary to ensure that, in the wave
zone, there are no self-interactions and the canonical
variables propagate freely. The second condition is imposed
in order to ensure that both the perturbations of the dynamic
modes and the Newtonian parts are Oð1=rÞ, and guarantees
that the terms of higher order than the leading one in
jgij − δijj remain negligible compared to the leading order.
The third condition is imposed in order to ensure that the
nonlinear terms containing spatial derivatives are small
compared to the leading order. This implies that for a wave
number k > kmin the radiation can be treated as free radiation
if kmin ≫ kmaxðA=rÞ1=2, where jg − δj ∼ A=r and kmax is the
maximum frequency. This ensures that the interference of
two or more subleading Oð1=r2Þ modes do not generate an
effect comparable to the leading order Oð1=rÞ modes.
The conditions (40)–(42) are preserved under the change

of coordinates (8) if and only if

j_ξij≲ Ai

r
≪ 1; jξi;jj≲ Ai

j

r
≪ 1; j _fðtÞj≲ A

r
≪ 1: ð46Þ

In addition to Eqs. (12)–(14), we have

Ñð1þ _fÞ ¼ N; ð47Þ

Ñiðt̃; x̃Þð1þ _fðtÞÞ ¼ Niðt; xÞ − _ξiðt; xÞ þOð1=r2Þ; ð48Þ

g̃ijðt̃; x̃Þ − gijðt; xÞ ¼ −ðξi;jðx; tÞ þ ξj;iðx; tÞÞ þOð1=r2Þ:
ð49Þ

We remark that Oð1=r2Þ
1=r ≪ 1.

We then conclude that the longitudinal part of gij is a
gauge-dependent field. It can be fixed by choosing particular
coordinates on the leaves. We notice that the admissible
coordinate transformations are not necessarily infinitesimal
ones. In fact, one may have a parameter ξ ∼ log r. Also, one
may have parameters with dependence 1=r or eikr=r or
Oð1=r2Þ. Consequently, the continuous transformations in
the wave zone are an extension of the infinitesimal ones.
These have the usual form

Ñðt; xÞ − Nðt; xÞ ¼ −ξk∂kNðt; xÞ − _fðtÞNðt; xÞ
− fðtÞ _Nðt; xÞ; ð50Þ
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Ñiðt; xÞ − Niðt; xÞ ¼ −ξk∂kNiðt; xÞ þ ∂jξ
iNjðt; xÞ − _ξi

− _fðtÞNiðt; xÞ − fðtÞ _Niðt; xÞ; ð51Þ

g̃ijðt; xÞ − gijðt; xÞ ¼ −ξk∂kgijðt; xÞ − gki∂jξ
k

− gkj∂iξ
k − f _gijðt; xÞ; ð52Þ

where in this case fðtÞ and ξiðt; xÞ are infinitesimal
parameters. We notice that these transformations contain
terms that are of order Oð1=r2Þ, and hence in the wave zone
at order Oð1=rÞ they can be eliminated.

V. BEHAVIOR IN THE WAVE ZONE

In the wave zone the metric, lapse, and shift fields have
the behavior

gij − δij ∼ Ni ∼ N − 1≲ Bij

r
þ Aijeikr

r
; ð53Þ

Ni;j ∼ gij;l ∼ Γi
jl ≲ B

r2
þ k

Aeikr

r
; ð54Þ

where A and B are a generic functions of time and angles
with bounded derivatives.

A. Laplacian solutions in the wave zone

Let φ ∈ C2ðΩÞ be a solution of the Poisson equation
Δφ ¼ −4πρ in Ω≡R3=BR0

ð0Þ such that φ → 0 when
r → ∞. Expanding φðr; θ;ϕÞ into spherical harmonics
Ylmðθ;ϕÞ, a standard result gives

φðr; θ;ϕÞ ¼
Xl¼∞

l¼0

Xm¼l

m¼−l
χlmðrÞrlYlmðθ;ϕÞ; ð55Þ

χlmðrÞ≡
Z

∞

r

Mlmðr0Þ
r02lþ2

dr0; ð56Þ

MlmðrÞ≡
Z
Brð0Þ

ρðr0; θ0;ϕ0Þr0lY 0
lmðr0; θ0;ϕ0Þd3r0: ð57Þ

Following Arnowitt, Deser, and Misner [30], in the wave
zone we have the following.
(1) If in the region r > R0 the source ρ has an oscillatory

asymptotic behavior ρ ∼ Ylmeikr=rn, then

φ ∼ ð1=k2ÞYlm
eikr

rn
½1þOð1=krÞ�

þ
Xl¼∞

l¼0

Xm¼l

m¼−l
clmYlm

1

rlþ1
: ð58Þ

Here the clm do not depend on the spatial coor-
dinates and they are determined from the behavior of ρ

in the region r ≤ R0. Hence, an oscillatory source
produced in r > R0 a source-independent oscillatory
solution of the same order of ρ plus a static source-
dependent part ≲1=r. By “static” we mean non-
oscillatory on the spatial dependence.

(2) If in the region r > R0,

ψ ∼ Bmðt; θ;ϕÞ=rm þ Anðt; θ;ϕÞeikr=rn; ð59Þ

with jBmðt; θ;ϕÞj and jAnðt; θ;ϕÞj bounded, then

1

Δ
ψ ;j ∼

hBi
rm−1 þ

1

ik
hAieikr
rn

þ
X∞
l¼1

Xp¼l

p¼−l
clpYlp

1

rlþ1
; ðm ≥ 2Þ: ð60Þ

1

Δ
ψ ;ij ∼

hBi
rm

þ hAieikr
rn

þ
X∞
l¼2

Xp¼l

p¼−l
clpYlp

1

rlþ1
; ðm ≥ 1Þ: ð61Þ

hAi, etc., are generic angular integrals of A and other
angular functions. For m ≥ 3, Eqs. (60) and (61)
may also have contributions of the form r−mþ1 log r
and r−m log r, respectively, which are source inde-
pendent.

VI. WAVE ZONE IN HOŘAVA-LIFSHITZ
GRAVITY AT THE KINETIC CONFORMAL POINT

We now analyze the solution of the field equations
in the wave zone and show that the equations of the
canonical transverse-traceless modes describe freely
propagating fields.

A. Solution of the primary constraints

Taking a derivative with respect to the j coordinate of the
Tþ L decomposition of the momentum constraint in
Eq. (27), we obtain

Δπj;j ¼ −
1

2
ðπlmΓj

lmÞ;j: ð62Þ

If we use the estimation of the previous section, the result
(60), and the same argument of finite momenta used in the
wave zone for RG (see Appendix C of Ref. [30]), then

πj;j ≲ B
r2

þ k
Ãeikr

r2
; ð63Þ

where B is source dependent while Ã is source independent.
Taking now a derivative with respect to the i coordinate of
the Tþ L decomposition of the momentum constraint (27),
we get
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Δπj;i ¼ ðπl;lÞ;ij − ðπlmΓj
lmÞ;i: ð64Þ

Thus, we can use Eqs. (60)–(61) to finally obtain

πj;i ≲ Bj
i

r2
þ k

Âj
ie

ikr

r2
ð65Þ

for new functions Bj
i and Ãj

i .
The constraint (25) expressed in the Tþ L decomposi-

tion becomes πT þ 2πi;i ¼ 0, and then

πT ≲ B
r2

þ k
Âeikr

r2
; πijT ≲ Bij

r2
þ k

Âijeikr

r2
; ð66Þ

where we have used the estimate given by Eq. (61).
We note that the TT term of the Tþ L decomposition

is the dominant one among the terms with oscillatory
behavior,

πijTT ≲ Bij

r
þ k

Âijeikr

r
: ð67Þ

In the following section wewill prove that the static parts of
πij ≲ Bij=r2, where Bij does not depend on time.

B. Solution of the secondary constraints

Now we calculate the constraints HN ¼ 0 and HP ¼ 0.
We include the V-potential terms up to Oð1=rÞ, that is the
relevant terms in the wave zone. We get the estimate
πijπij ≲ B=r2 þ Aeikr=r2, where B ¼ BijBij. Up to order
Oð1=rÞ the second-class constraints HN ¼ 0 and HP ¼ 0
become

− βRþ 2αΔN − α1ΔR − 2α2Δ2N − α3Δ2R

þ 2α4Δ3N ≲ B̃
r2

þ k2P2ðk2Þ
Âeikr

r2
; ð68Þ

β

2
R − 2βΔN − 2α1Δ2N − 2α3Δ3N

− β1R
ij
;ij þ β3ΔR

ij
;ij − ðβ1 þ 4β2ÞΔR

þ ðβ3 þ 4β4ÞΔ2R≲ B̂
r2

þ k2P2ðk2Þ
Âeikr

r2
; ð69Þ

respectively, where B̃ and B̂ are proportional to B. We have
used P2ðk2Þ to denote a generic second-order polynomial in
k2 with real coefficients.
If we use the gauge condition gij;j ¼ 0, we get

Rik þ
1

2
ΔgTTik þ 1

2
ΔgTik þ

1

2
gT;ik ≲ B

r4
þ k2

Aeikr

r2
; ð70Þ

Rþ ΔgT ≲ B
r4

þ k2
Aeikr

r2
; ð71Þ

Rij
;ij þ

1

2
Δ2gT ≲ B

r6
þ k4

Aeikr

r2
; ð72Þ

ΔRij
;ij þ

1

2
Δ3gT ≲ B

r8
þ k6

Aeikr

r2
: ð73Þ

Then, from Eqs. (68) and (69) we obtain the coupled
system of two sixth-order partial differential equations for
N and gT :

ðβΔþ α1Δ2 þ α3Δ3ÞgT þ 2ðαΔ − α2Δ2 þ α4Δ3ÞN

≲ B̃
r2

þ k2P2ðk2Þ
Âeikr

r2
; ð74Þ

�
−
β

2
Δþ 1

2
ð3β1þ 8β2ÞΔ2−

1

2
ð3β3þ 8β4ÞΔ3

�
gT

− 2½βΔþα1Δ2þα3Δ3�N≲ B̂
r2
þ k2P2ðk2Þ

Ãeikr

r2
: ð75Þ

From Eqs. (74) and (75), it follows that the B factor must
vanish, and the nonoscillatory contribution is of order
Oð1=r3Þ. This means that the nonoscillatory part of the
momentum is of order Oð1=r2Þ. The above conclusion is
very important for the discussions in the following sections.
By assumption, the fields decay as in Eq. (53) in the wave

zone. From Eqs. (74)–(75), it then follows that the non-
oscillatory part of the solution for gT and N can contribute to
this order, since on the right-hand side there may be terms of
order 1=r3. On the other side, the oscillatory terms with
dependence eikr=r satisfies the equation

ðΔþ k2Þ e
ikr

r
¼ 0: ð76Þ

Considering gT ∼ gTo eikr
r andN ∼ No

eikr
r in the equations (74)

and (75) we obtain

D1ðk2ÞgTo þD2ðk2ÞNo ¼ 0; ð77Þ

D2ðk2ÞgTo þD3ðk2ÞNo ¼ 0; ð78Þ

where we define polynomials

D1ðk2Þ≡1

8
½−ð3β3þ4β4Þk6−ð3β1þ8β2Þk4−βk2�; ð79Þ

D2ðk2Þ≡ 1

2
½−α3k6 þ α1k4 − βk2�; ð80Þ

D3ðk2Þ≡ −α4k6 − α2k4 − αk2; ð81Þ

equations (77), (78) yield gTo ¼ No ¼ 0 for these zero
modes, except when
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Dðk2Þ≡D1ðk2ÞD3ðk2Þ −D2
2ðk2Þ ¼ 0: ð82Þ

In the case where the zero modes vanish, the behavior of gT

and N in the wave zone, taking into account the asymptotic
flatness condition N − 1 → 0, is

N − 1 ∼ gT ≲ B
r
þ Âeikr

r2
; ð83Þ

and hence

ai ≲ Bi

r2
þ k

Âieikr

r2
; ð84Þ

aiai ≲ B
r4

þ k2
Âeikr

r4
; ð85Þ

∇iai ≲ B
r3

þ k2
Âeikr

r2
: ð86Þ

On the other side, there are a finite number of solutions of
Eq. (82) for which there are nontrivial solutions for gT0 and
N0 and hence contributions of the form eikr

r for gT and N. In
the low-energy case, Eq. (82) reduces to a term proportional

to k2 with the factor − β2

4
ðβ − α

2
Þ, which is different from zero

for the values of β and α determined from experimental data.
At low energies [29], we always have gT0 ¼ N0 ¼ 0. In the
next section we analyze the general solution of Eq. (82).

C. Constraint resolution

The polynomial of Eq. (82) hasDðk2Þ ¼ k4Qðk2Þ, where
we defined the quartic polynomial in k2 as

Qðk2Þ≡ ak8 þ bk6 þ ck4 þ dk2 þ e; ð87Þ

a≡ α4ð3β3 þ 4β4Þ − 2α23; ð88Þ

b≡ α2ð3β3 þ 4β4Þ þ α4ð3β1 þ 8β2Þ
þ 4α1α3; ð89Þ

c≡ αð3β3 þ 4β4Þ þ α2ð3β1 þ 8β2Þ
þ βðα4 − 4α3Þ − 2α21; ð90Þ

d≡ αð3β1 þ 8β2Þ þ βð4α1 þ α2Þ; ð91Þ

e≡ βðα − 2βÞ: ð92Þ

For the theory to be power-counting renormalizable, we
demand a ≠ 0 [13]. Experimental tests at low energies
require that e ≤ 0. Note that k2 ¼ 0 is a root of Eq. (82),
and this root is not considered in the analysis in the wave
zone due to the condition kr ≫ 1.

We are interested in the roots of Qðk2Þ ¼ 0, and so we
use the Descartes’s method. The change of variable k2 ¼
s − b

4a yields the depressed polynomial associated to
Qðk2Þ ¼ 0,

PðsÞ≡ aðs4 þ ps2 þ qsþ rÞ ¼ 0; ð93Þ

p≡ c
a
−
3

8

b2

a2
; ð94Þ

q≡ 1

8

b3

c3
þ d
a
−

bc
2a2

; ð95Þ

r≡ −
3

256

b4

a4
þ 1

16

cb2

a3
−
bd
a3

þ e
a
: ð96Þ

We have factorized

PðsÞ ¼ aðs2 þ fsþ gÞðs2 − fsþ hÞ; ð97Þ

gþ h ¼ f2 þ p; ð98Þ

fðh − gÞ ¼ q; ð99Þ

gh ¼ r; ð100Þ

where f2 satisfies the equation

Rðf2Þ≡ f6 þ 2pf4 þ ðp2 − 4rÞf2 − q2 ¼ 0: ð101Þ

There always exists a real positive solution for Eq. (101). In
fact, if q2 > 0, then Eq. (101) always has a strictly positive
solution. If q ¼ 0 we can chose f2 ¼ 0 as a root, and PðsÞ
is a biquadratic polynomial whose roots can be determined
using the general quadratic formula for s2. If f ≠ 0, from
Eq. (97) we can calculate g and h via

h ¼ 1

2

�
f2 þ pþ q

f

�
; ð102Þ

g ¼ 1

2

�
f2 þ p −

q
f

�
: ð103Þ

Finally, we can express Eq. (87) in a factorized form,

Qðk2Þ ¼ aðk4 þ Ak2 þ BÞðk4 þ Ck2 þDÞ; ð104Þ

where the constants A, B, C, D are related to the coupling
parameters by

A ¼ f þ 1

2

b
a
; B ¼ 1

4

bf
a

þ 1

16

b2

a2
þ g; ð105Þ
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C ¼ −f þ 1

2

b
a
; D ¼ −

1

4

bf
a

þ 1

16

b2

a2
þ h: ð106Þ

If B and D have nonzero imaginary parts, then there are
no zero modes. If they are real, then there are no zero modes
if and only if the coupling parameters satisfy the following
conditions:

a<0; B>0; D>0; −2
ffiffiffiffi
B

p
<A; −2

ffiffiffiffi
D

p
<C: ð107Þ

Generically, the zero modes have a divergent contribution
to the total gravitational energy. In fact, the energy density
obtained from the boundary terms in the Hamiltonian,
evaluated at the zero modes, decays as 1=r.
We have thus shown that the conditions (107) must be

satisfied in order to have a consistent formulation of
Hořava-Lifshitz gravity.

D. Dynamical equations in the wave zone

The Tþ L components of Eq. (31) in the gauge gij;j ¼ 0
become

_gTTij − 2πTTij þ ðμgijÞTT ≲ B
r2

þ k2
Âeikr

r2
; ð108Þ

−2Nði;jÞ þ ðμgijÞL ≲ B
r2

þ k2
Âeikr

r2
; ð109Þ

_gTij þ ðμgijÞT ≲ B
r2

þ k2
Âeikr

r2
; ð110Þ

where μgij ¼ ðμgijÞTT þ ðμgijÞT þ ðμgijÞL, ðμgijÞT ¼ μδij
− 1

Δ μ;ij þOð1=r2Þ, ðμgijÞL ¼ 1
Δ μ;ij þOð1=r2Þ, and

ðμgijÞTT ¼ Oð1=r2Þ. Then, from Eq. (110) we get μ≲ B
r2 þ

k2 Âeikr

r2 and consequently

_gTTij − 2πTTij ≲ B
r2

þ k2
Âeikr

r2
; ð111Þ

Nði;jÞ ≲ B
r2

þ k2
Âeikr

r2
: ð112Þ

We then have Ni ≲ B
r þ k Âeikr

r2 .
Besides, we get the following contributions in Eq. (32):

βN
δR
δgij

¼ β

2
ΔgT þOð1=r2Þ; ð113Þ

β1N
δ

δgij
ðRijRijÞ ¼ β1

2
Δ2gTTij þOð1=r2Þ; ð114Þ

β3N
δ

δgij
ð∇iRjk∇iRjkÞ ¼ −

β3
2
Δ3gTTij þOð1=r2Þ: ð115Þ

Then, we obtain

_πTTij ¼ 1

2
ðβΔþ β1Δ2 − β3Δ3ÞgTTij þOð1=r2Þ: ð116Þ

Equations (111) and (116) show that in the wave zone the
TT part of the fields up to order Oð1=rÞ satisfies the sixth-
order partial differential equation

g̈TTij − ðβΔþ β1Δ2 − β3Δ3ÞgTTij ¼ 0; ð117Þ

π̈TTij − ðβΔþ β1Δ2 − β3Δ3ÞπTTij ¼ 0: ð118Þ

The terms with spatial derivative of order greater than two,
are due to the contributions of the potential terms Vð2Þ

and Vð3Þ.
We can obtain the low-energy limit of Eqs. (117) and

(118) if we assume that kmax ≪ KUV, where KUV is the
ultraviolet cutoff. Then, the Laplacian acting on the TT
modes is the leading term among the spatial-derivative
ones. In this case, Eqs. (117) and (118) reduce to the wave
equation for the TT modes,

g̈ijTT − βΔgijTT ¼ 0; ð119Þ

π̈ijTT − βΔπijTT ¼ 0: ð120Þ

The canonical modes travel with a speed
ffiffiffi
β

p
, and it only

differs from that in the wave zone of general relativity by
the value of the velocity of propagation. Gravitational-wave
experiments restrict this value to be between −3 × 10−15

and 7 × 10−16 times the speed of light [41,42].

VII. SOLUTION OF THE HOŘAVA-LIFSHITZ
WAVE EQUATION AT THE KINETIC

CONFORMAL POINT

The solution to Eq. (117) can be written in terms of the
spherical Hankel functions hð1Þl ðkrÞ and hð2Þl ðkrÞ. In fact,

uðr;kÞ≡X
l;m

½Að1Þ
lm hð1Þl ðkrÞþAð2Þ

lm h
ð2Þ
l ðkrÞ�Ylmðθ;ϕÞ ð121Þ

satisfies

−Δuðr; kÞ ¼ k2uðr; kÞ; ð122Þ

and hence

½βð−ΔÞ − β1ð−ΔÞ2 − β3ð−ΔÞ3�uðr; kÞ
¼ ðβk2 − β1k4 − β3k6Þuðr; kÞ: ð123Þ

Finally,Ψðr; tÞ ¼ eiωtuðr; kÞ satisfies Eq. (117) provided

βk2 − β1k4 − β3k6 ¼ ω2: ð124Þ
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For a given l,

hð1Þl ðkrÞ ¼
�
ð−iÞlþ1

Xl

s¼0

is

s!ð2krÞs
ðlþ sÞ!
ðl − sÞ!

�
eikr

r
; ð125Þ

and hð2Þl ðkrÞ ¼ hð1Þl ðkrÞ, where h̄ denotes complex
conjugation.
In the wave zone

hð1Þl ðkrÞ≈ ð−iÞlþ1
eikr

r
; hð2Þl ðkrÞ≈ ðiÞlþ1

e−ikr

r
; ð126Þ

and hence

uðr; kÞ ¼
X
l;m

½Að1Þ
lm ð−iÞlþ1Ylmðθ;ϕÞ�

eikr

r

þ
X
l;m

½Að2Þ
lm ðiÞlþ1Ylmðθ;ϕÞ�

e−ikr

r
: ð127Þ

Finally, the outgoing solution to Eq. (117) in the wave
zone is

Ψ ¼ e−iωtþikr

r

X
l;m

Að1Þ
lm ð−iÞlþ1Ylmðθ;ϕÞ; ð128Þ

where k is the solution of the dispersion relation (124).
In order to have a positive left-hand side in Eq. (124), the

couplings must satisfy [13]

α≠ 2β; β> 0; β3 < 0; β1 < 2
ffiffiffiffiffiffiffiffiffiffi
βjβ3j

p
: ð129Þ

In this case, for a given ω2 there always exists a unique k2

satisfying the dispersion relation. Consequently, for a given
ω there exists an outgoing solution that depends on the
radial coordinate e−iωtþikr=r. The relation between ω and k
can be rewritten as

ω2

k2
¼ β − β1k2 − β3k4; ð130Þ

which tells us that at low energies the speed of propagation
of the gravitational wave is

ffiffiffi
β

p
, while at high energies the

speed depends on the energy of the wave. Under the above
assumptions about the coupling constants, the right-hand
side of Eq. (130) is always positive.

VIII. DISCUSSION

We showed that in Hořava-Lifshitz theory at the kinetic
conformal point there exists a wave zone in which the
physical degrees of freedom—the transverse-traceless
tensorial modes—propagate as free waves. In that region
of space, provided the set of restrictions on the coupling

parameters (107) is assumed, the other components of the
metric on the spacelike leaves of the foliation as well as
the lapse function are of the same order in powers of 1=r,
with r being the distance to a bounded source. They
constitute a static Newtonian background which does not
interact with the propagation of the wave modes. At larger
distances from the source than the wave zone, the TT
components of the metric decay with higher powers of
1=r, while the T modes vary in such a way that the energy
of the system is finite. The set of restrictions (107) is a
necessary and sufficient condition for the nonexistence of
zero modes to the solutions of the constraints. The zero
modes would have a divergent contribution to the gravi-
tational energy and must be avoided. The wave solution
describing the propagation of the physical degrees of
freedom satisfies a linear partial differential equation
quadratic in time derivatives but cubic in the Laplace
operator. At low energies, that is in the infrared limit of the
renormalization flow of the Hořava-Lifshitz theory,
the equation reduces to the wave equation, with a speed
of propagation characterized by the square root of a
coupling constant, which should take at this limit a value
very near to the speed of light c. At higher energies, the
high spacelike derivative terms in the potential of the
Hamiltonian become relevant and the wave solutions are
characterized by a dispersion relation, which means that
the speed of propagation of the physical modes becomes
energy dependent. The existence of real and positive
solutions of the dispersion relation Eq. (124) requires
additional restrictions on the coupling parameters a, β, β1
and β3. They must satisfy Eq. (129).
The low-energy limit of the Hořava-Lifshitz theory at

the kinetic conformal point has only two coupling
constants, β and α, which may have a bounded range
of values in order that the predictions of the theory
become consistent with the known experimental data, for
β ¼ 1 and α ¼ 0 at low energies the theory is the same as
GR in a particular gauge. For α ≠ 0, the static solution
with spherical symmetry does not describe a black hole,
but rather a throat connecting an asymptotically flat space
and a space with an essential singularity [13]. That is, the
physics of the theory is different from GR, as predicted in
Ref. [1], but in the limit β → 1 and α → 0 the geometry
external to the throat is very similar to the geometry
external to the black hole of the Schwarzschild solution in
GR; however, only in the limit β ¼ 1 and α ¼ 0 is there a
black hole. An analogous relation to GR occurs with the
gravitation radiation. We have also shown that the
gravitational radiation predicted by the theory at low
energies has similar properties as the radiation in GR, but
at higher energies the wave solutions satisfy a dispersion
relation characteristic of Hořava-Lifshitz theory. The
higher-order spacelike derivative terms in the evolution
equation are related to the higher-order derivative terms
in the potential that determine, in the UV regime, the
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power-counting renormalizability of the theory, which is
the main virtue of the Hořava proposal.
An interesting study would be to analyze the radiative

properties of the gravitational-electromagnetic interaction in
thewave zone. It is known that in a perturbative approach the
gravitational and electromagnetic degrees of freedom propa-
gate with the same speed, but their interaction behavior in the
wave zone is unknown [24,25].
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