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In the present paper we consider the Einstein-multiple-scalar field theory. When the target space of the
scalar fields is a complete, simply connected Riemannian manifold with nonpositive sectional curvature we
prove that the static and asymptotically flat solutions which possess a photon sphere are uniquely specified
by their asymptotic data, i.e., by their mass, scalar charges and asymptotic values of the scalar fields. The
unique solution with a photon sphere and prescribed asymptotic data is explicitly constructed.
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I. INTRODUCTION

The geometrical photon structures like the photon rings,
the photon spheres and the photon domains play a crucial
role in the strong gravitational lensing and the formation of
the shadow of the compact objects [1–4]. That is why the
geometrical photon structures and their properties have been
intensively studied from both physical and mathematical
points of view [5–34]. The photon spheres are of particular
interest due to their special properties. In some sense the
photon spheres resemble the black hole horizons. As the
presence of a horizon allows us to classify the spacetimes in
terms of their conserved asymptotic quantities, so the
presence of a photon sphere also allows us to classify some
static spacetimes only in terms of their asymptotic charges
[8–18].
The present paper aims to prove a classification theorem

for the static and asymptotically flat solutions of the
Einstein-multiple-scalar field equations, containing a pho-
ton sphere. This comes as a logical continuation of our
previous work [9] which proved similar theorem in the case
of a single scalar field. The Einstein-multiple-scalar field
equations naturally arise in the context of the higher-
dimensional theories under dimensional reduction; as well
they can be considered as the vacuum sector of the tensor-
multiscalar theories of gravity. Also, the Einstein-Maxwell
and the Einstein-Maxwell-dilaton (-axion) gravity with a
static symmetry effectively reduce to the Einstein-multiple-
scalar field equations and therefore our consideration here
covers our previous theorems proven in [12,13] as par-
ticular cases.

We prove that when the target space of the scalar fields is a
complete, simply connected Riemannian manifold with a
nonpositive sectional curvature, the static and asymptotically
flat solutions to the Einstein-multiple-scalar field equations
possessing a photon sphere are uniquely specified by their
mass M, scalar charges qa and the asymptotic values of the
scalar fields φa

∞.

II. GENERAL DEFINITIONS AND EQUATIONS

In the present paper we consider the Einstein-multiple-
scalar field theory. More precisely, ðM; gð4ÞÞ is the four-
dimensional spacetime and ðEN; γÞ is an N-dimensional
Riemannian manifold with metric γ (the so-called target
space). We consider a map φ∶ðM; gÞ → ðEN; γÞ and its
differential dφ induces a map between the tangent spaces
of M and EN , dφ∶TM → TEN . The norm of the differ-
ential will be denoted by hdφ; dφi. In local coordinate
patches on M and EN we have

hdφ; dφi ¼ gð4ÞμνðxÞγabðφðxÞÞ∂μφ
aðxÞ∂νφ

bðxÞ: ð1Þ

The Einstein-multiple-scalar field theory is given by the
action

S ¼ 1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p ½Rð4Þ − 2hdφ; dφi�; ð2Þ

where Rð4Þ is the Ricci scalar curvature. The field equations
corresponding to the action (2) and written in local
coordinate patches of M and EN are the following:

Rð4Þ
μν ¼ 2γabðφÞ∇ð4Þ

μ φa∇ð4Þ
ν φb; ð3Þ*yazad@phys.uni-sofia.bg

PHYSICAL REVIEW D 104, 124070 (2021)

2470-0010=2021=104(12)=124070(6) 124070-1 © 2021 American Physical Society

https://orcid.org/0000-0002-1280-9013
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.124070&domain=pdf&date_stamp=2021-12-23
https://doi.org/10.1103/PhysRevD.104.124070
https://doi.org/10.1103/PhysRevD.104.124070
https://doi.org/10.1103/PhysRevD.104.124070
https://doi.org/10.1103/PhysRevD.104.124070


∇ð4Þ
μ ∇ð4Þμφa ¼ −γacdðφÞ∇ð4Þ

μ φc∇ð4Þμφd; ð4Þ

where ∇ð4Þ
μ is the covariant derivative with respect to the

spacetime; metrics gð4Þμν and γacdðφÞ are the Christoffel
symbols with respect to the target space metric γabðφÞ.
In the present work we are interested in static and

asymptotically flat spacetimes. A spacetime is called static
if there exists a smooth Riemannian manifold ðMð3Þ; gð3Þij Þ
and a smooth lapse function N∶Mð3Þ → Rþ such that

Mð4Þ ¼R×Mð3Þ; gð4Þμν dxμdxν¼−N2dt2þgð3Þij dx
idxj: ð5Þ

The scalar fields are called static if Lξφ
a ¼ 0 where Lξ is

the Lie derivative along the Killing field ξ ¼ ∂
∂t. Both

notions of staticity are consistent since the Ricci 1-form

Ricð4Þ½ξ� ¼ ξμRicð4Þμν dxν is zero due to the field equations

and the fact that ξμ∇ð4Þ
μ φa ¼ Lξφ

a ¼ 0.
We adopt the following notion of asymptotic flatness. A

spacetime is called asymptotically flat if there exists a
compact set K ⊂ Mð3Þ such that Mð3Þ − K is diffeomorphic
to R3nB̄ where B̄ is the closed unit ball centered at the
origin in R3, and such that

gð3Þij ¼ δij þOðr−1Þ; N ¼ 1 −
M
r
þOðr−2Þ;

φa ¼ φa
∞ −

qa

r
þOðr−2Þ; ð6Þ

with respect to the standard radial coordinate r of R3. Here
M, φa

∞ and qa are constants with M and qa being the mass
and the scalar charges, respectively. We will consider
spacetimes with M > 0. It is also convenient to introduce
the generalized scalar charge Q defined by

Q2 ¼ γabðφ∞Þqaqb: ð7Þ

The dimensionally reduced static Einstein-multiple-
scalar field equations are the following:

Ricð3Þij ¼ N−1∇ð3Þ
i ∇ð3Þ

j N þ 2γabðφÞ∇ð3Þ
i φa∇ð3Þ

j φb;

∇ð3Þ
i ∇ð3ÞiN ¼ Δð3ÞN ¼ 0;

∇ð3Þ
i ðN∇ð3ÞiφaÞ ¼ −Nγabc∇ð3Þiφa∇ð3Þ

i φb; ð8Þ

where ∇ð3Þ
i and Ricð3Þij are the Levi-Civita connection and

the Ricci tensor with respect to the metric gð3Þij .
Now we can define the notion of a photon sphere. First

we give the definition of a photon surface [5,8].
Definition An embedded timelike hypersurface P ↪

Mð4Þ is called a photon surface if and only if any null geodesic
initially tangent to P remains tangent to P as long as it exists.

For the photon sphere we adopt the following definition
which is an extension of the definition in the case with a
single scalar field, namely:
Definition LetP ↪ Mð4Þ be a photon surface. ThenP is

called a photon sphere if the lapse function N and the scalar
fields φa are constant along P.
As a further technical assumption we shall assume that

the lapse function regularly foliates the region of spacetime

Mð3Þ
ext exterior to the photon sphere which means that

gð3Þð∇ð3ÞN;∇ð3ÞNÞ ≠ 0 everywhere on Mð3Þ
ext. We also

define the function ρ∶Mð3Þ
ext → Rþ by

ρ ¼ ½gð3Þð∇ð3ÞN;∇ð3ÞNÞ�−1=2: ð9Þ

The two-dimensional intersection of the photon sphere
P and the time sliceMð3Þ will be denoted by Σ. By the very
definition of the photon sphere, Σ which is the inner

boundary of Mð3Þ
ext, is given by N ¼ N0 for some N0 ∈ Rþ.

The metric induced on Σ will be denoted by σ. We also
note that our assumptions restrict our considerations to the
case of a connected photon sphere. All the level sets
N ¼ const, including Σ, are topological spheres which is a
direct consequence from our assumptions.
By the maximum principle for harmonic functions and

by the asymptotic behavior of N for r → ∞ we obtain that

the values of N on Mð3Þ
ext satisfy N0 ≤ N < 1.

III. SCALAR MAP AS A GEODESIC MAP FOR
TARGET SPACES WITH NONPOSITIVE

CURVATURE

Here we will focus on target spaces which are complete,
simply connected Riemannian manifolds with a nonpos-
itive sectional curvature. The last condition means that the
curvature tensor of the target space Rabcd satisfies

RabcdWabWcd ≤ 0 ð10Þ

for any Wab.
In this section it is more convenient to work with the 3-

metric hij ¼ N2gð3Þij . In terms of hij the dimensionally
reduced field equations take the form

RðhÞij ¼ 2DiuDjuþ 2γabðφÞDiφ
aDjφ

a;

DiDiu ¼ 0;

DiDiφa ¼ −γabcðφÞDiφ
bDiφc; ð11Þ

where u ¼ lnðNÞ and Di and RðhÞij are the Levi-Chivita
connection and the Ricci tensor with respect to hij,
respectively.
Now we formulate the key result on which the classi-

fication is based.

STOYTCHO YAZADJIEV PHYS. REV. D 104, 124070 (2021)

124070-2



Theorem Let the target space ðEN; γabÞ be a complete,
simply connected Riemannian manifold with nonpositive
sectional curvature. Then, for fixed ðM;φa

∞; qaÞ, the scalar
map φ is a geodesic map. In other words, the scalar fields
φa and the lapse function N are subject to the functional
dependence φa ¼ ψaðuÞ, where ψaðuÞ is the unique
affinely parametrized geodesic on EN determined by the
conditions ψað0Þ ¼ φa

∞ and dψa

du ð0Þ ¼ qa

M.
Proof: By the very definition of the photon sphere we

have that the restrictions of u and φa on Σ are constants

and these constants will be denoted by u0 and φa
0 ,

respectively. Since ðEN; γabÞ is complete, simply con-
nected with nonpositive sectional curvature there exists a
unique geodesic ψ∶I → EN connecting the points φ0 ¼
fφa

0g and φ∞ ¼ fφa
∞g. Without loss of generality we can

chose the affine parameter of the geodesic ψ to vary in the
interval I ¼ ½u0; 0� with ψðu0Þ ¼ φ0 and ψð0Þ ¼ φ∞. As a

next step we construct the map φ̃ defined by φ̃ ¼
ψ∘u∶Mð3Þ

ext → EN (φ̃a ¼ ψaðuÞ). This map satisfies the
equations for the scalar fields. Indeed we have

DiDiφ̃a þ γabcðφ̃ÞDiφ̃
bDiφ̃c ¼

�
d2ψa

du2
þ γabcðψðuÞÞ

dψb

du
dψc

du

�
DiuDiuþ dψa

du
DiDiu ¼ 0 ð12Þ

since ψ is affinely parametrized geodesic on EN and
DiDiu ¼ 0. We will call the maps φ̃ geodesic maps.
Now we shall show that φ is a geodesic map. This can
be done in the following way. Consider the unique geodesic
T on EN connecting φ and φ̃ with an affine parameter
0 ≤ τ ≤ 1. Then the geodesic distance Sðφ; φ̃Þ between the
φ and φ̃ satisfies the Bunting identity [35,36]:

DiDiS2¼
Z

1

0

dτð∇̂isa∇̂isa−Rabcdsa∇̂iT bsc∇̂iT dÞ; ð13Þ

where sa ¼ dT a

dτ and ∇̂isa ¼ ∂iT b∇bsa ¼ ∂isaþ
∂iT cγacbs

b. Taking into account that the sectional curvature
of EN is nonpositive we obtain that DiDiS2 ≥ 0, i.e.,

Sðφ; φ̃Þ is a subharmonic function on Mð3Þ
ext. Since

Sðφ; φ̃Þ ¼ 0 on ∂Mð3Þ
ext ¼ Σ (i.e., φjΣ ¼ φ̃jΣ ¼ φ0) we con-

clude that Sðφ; φ̃Þ ¼ 0 everywhere onMð3Þ
ext according to the

maximum principle for subharmonic functions. In other
words φ is a geodesic map.
Having once established that φ is a geodesic map we can

relate the scalar charges to the ”initial velocity” of the
geodesic ψ . Indeed we get

qa ¼ 1

4π

Z
S2∞

Diφ
adΣiðhÞ

¼ dψa

du
ð0Þ 1

4π

Z
S2∞

DiudΣiðhÞ

¼ dψa

du
ð0ÞM; ð14Þ

or equivalently dψa

du ð0Þ ¼ qa

M. The geodesic ψ , and as a
consequence also the geodesic map φ̃, is uniquely specified
by the asymptotic data ðφa

∞; qa=MÞ, which in turn means
that for fixed ðφa

∞; qa;MÞ there is only one possible
solution to the scalar field equations, namely the geodesic

map φ̃ with the asymptotic data ðφa
∞; qa=MÞ. This com-

pletes the proof of the theorem.

IV. SOME RELATIONS FOR THE PHOTON
SPHERE GEOMETRIC CHARACTERISTICS AND

THE ASYMPTOTIC CHARGES

In this section we shall derive some key relations among
the geometrical characteristics of the photon sphere and the
asymptotic charges.
Let us denote by p the metric induced on the photon

surface P and by KP its second fundamental form. A key
result in the theory of the photon surfaces is that P is totally
umbilic [5,7], i.e.,

KP ¼ HP

3
p; ð15Þ

whereHP is the mean curvature of P. It is easy to show that
HP is constant on P. Making use of the contracted Codazzi
equation for ðP; pÞ ↪ ðMð4Þ; gð4ÞÞ we get

2

3
XðHPÞ¼Ricð4ÞðX;nÞ¼2γabðφ0ÞXðφaÞnðφbÞ¼0; ð16Þ

where n is the unit normal to P and X is a vector field
tangent to P, i.e., X ∈ ΓðTPÞ. In the last step we have
taken into account that φ is constant on P. The equality
(16) shows that HP is indeed constant.
For the second fundamental form KΣ of ðΣ; σÞ ↪

ðMð3Þ; gð3ÞÞ (with a unit normal n) we have

KΣðX; YÞ ¼ gð3Þð∇ð3Þ
X n; YÞ ¼ gð4Þð∇Xn; YÞ ¼ KPðX; YÞ

¼ HP

3
pðX; YÞ ¼ HP

3
σðX; YÞ; ð17Þ

where X; Y ∈ ΓðTΣÞ. Therefore, we find that KΣ ¼ HP

3
σ,

which also gives a simple relation between the mean
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curvatures HP and HΣ, namely HΣ ¼ 2
3
HP. Using this

information in the contracted Codazzi equation we easily
find that Ricð3ÞðX; nÞ ¼ 0.
Now let us consider nðNÞ and show that it is a constant

on Σ. For an arbitrary X ∈ ΓðTΣÞ we have

XðnðNÞÞ ¼ XðnðNÞÞ − ð∇ð3Þ
X nÞðNÞ ¼ ð∇ð3Þ∇ð3ÞNÞðX; nÞ

¼ N½Ricð3ÞðX; nÞ − 2γabðφ0ÞXðφaÞnðφbÞ�
¼ 0; ð18Þ

where we have taken into account the dimensionally reduced
field equations (8) and the fact that N and φ are constant
on Σ. Therefore nðNÞ is indeed constant on Σ. As an
immediate consequence we have that γabðφ0ÞnðφaÞnðφbÞ is
also a constant on Σ since φ is a geodesic map.
From the Gauss equation for ðΣ; σÞ ↪ ðP; pÞ, and taking

into account that the spacetime is static, it is easy to show
that the Ricci scalar curvature RΣ of Σ is given by

RΣ ¼ RP ¼ 2

3
ðHPÞ2 − 2γabðφ0ÞnðφaÞnðφbÞ

¼ 3

2
ðHΣÞ2 − 2γabðφ0ÞnðφaÞnðφbÞ: ð19Þ

Further, the Gauss equation

Rð3Þ − 2Ricð3Þðn; nÞ ¼ RΣ − ðTrKΣÞ2 þ TrðKΣÞ2 ð20Þ

for ðΣ; σÞ ↪ ðMð3Þ; gð3ÞÞ gives

Rð3Þ − 2Ricð3Þðn; nÞ ¼ RΣ −
1

2
ðHΣÞ2: ð21Þ

In order to calculate Ricð3Þðn; nÞ we can use the dimen-
sionally reduced field equations (8) and

Δð3ÞN ¼ Δð2ÞN þ∇ð3Þ∇ð3ÞNðn; nÞ þHΣnðNÞ; ð22Þ

which leads to

N0Ricð3Þðn; nÞ ¼ −HΣnðNÞ þ 2N0γabðφ0ÞnðφaÞnðφbÞ:
ð23Þ

Using again the dimensionally reduced field equations it
is not difficult to show that Rð3Þ ¼ 2γabðφ0ÞnðφaÞnðφbÞ,
which combined with (21) and (23) gives

N0RΣ ¼ 2HΣnðNÞ þ 1

2
N0ðHΣÞ2 − 2N0γabðφ0ÞnðφaÞnðφbÞ:

ð24Þ

Integrating (19) and (24) over Σ and taking into account
the Gauss-Bonnet theorem

R
Σ R

Σ ffiffiffi
σ

p
d2x ¼ 8π for the

topological sphere Σ we get the following relations:

1 ¼ 3

16π
ðHΣÞ2AΣ −

1

4π
γabðφ0ÞnðφaÞnðφbÞAΣ;

N0 ¼
1

4π
HΣnðNÞAΣ þ

1

16π
N0ðHΣÞ2AΣ

−
1

4π
N0γabðφ0ÞnðφaÞnðφbÞAΣ: ð25Þ

These relations can be further simplified by taking into
account that φ is a geodesic map, namely

1 ¼ 3

16π
ðHΣÞ2AΣ −

N−2
0

4π

Q2

M2
ðnðNÞÞ2AΣ;

N0 ¼
1

4π
HΣnðNÞAΣ þ

1

16π
N0ðHΣÞ2AΣ

−
N−1

0

4π

Q2

M2
ðnðNÞÞ2AΣ; ð26Þ

whereQ is the generalized scalar charge. Multiplying these
equations by AΣ and using that nðNÞAΣ ¼ 4πM one finds

M ¼ 1

8π
N0HΣAΣ; ð27Þ

N2
0

4π
AΣ ¼ 3M2 −Q2: ð28Þ

From the second relation we see that the presence of a
photon sphere imposes a restriction on the generalized
scalar charge, namely Q2 < 3M2.

V. CLASSIFICATION THEOREM

The main result of the present paper is the following:
Theorem Let us consider the Einstein-multiple-scalar

field equations with a target space which is a complete,
simply connected Riemannian manifold with a nonpositive
sectional curvature. Then there can be only one static and
asymptotically flat spacetime ðMð4Þ

ext; gð4Þ;φÞ, satisfying the
static Einstein-multiple-scalar field equations, possessing a

photon sphere P ↪ Mð4Þ
ext as an inner boundary ofM

ð4Þ
ext, with

a lapse function N regularly foliating Mð4Þ
ext and given

asymptotic data ðM; qa;φa
∞Þ with a generalized scalar

charge Q satisfying Q2 < 3M2. The spacetime is isometric

to the Janis-Newman-Winicour solution with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

M2

q
.

Proof: The fact that φ is a geodesic map [i.e.,
φa ¼ φaðuÞ] reduces the problem to the case with a single
scalar field. Then the proof of our classification theorem
follows directly from the theorem proven in [9]. As a
consequence we have that the spacetime and the scalar
fields are spherically symmetric.
In order to explicitly construct the unique solution with a

photon sphere and asymptotic data ðM; qa;φa
∞Þ we shall

use the dimensionally reduced equations (11). Using the
fact that φ is a geodesic map Eqs. (11) reduce further to
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RðhÞij ¼ 2DiûDjû; ð29Þ

DiDiû ¼ 0; ð30Þ

where û ¼ u=ν with ν−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

M2

q
. We notice that these

equations are in fact the static vacuum Einstein equations
written in terms of the metric hij with an effective gravi-
tational potential û having the asymptotic û ≈ M

νr þOðr−2Þ.
Knowing that the Schwarzschild solution is the only static
and spherically symmetric solution of the vacuum Einstein
equations we find

e2û ¼ 1 −
2M
νr

;

hijdxidxj ¼
�
1 −

2M
νr

��
dr2

1 − 2M
νr

þ r2dΩ2
S2

�
; ð31Þ

where dΩ2
S2 is the standard metric on the unit two-dimen-

sional sphere. For the original lapse function N ¼ eu ¼ eνû

and the 3-metric gð3Þij we get

N2 ¼
�
1 −

2M
νr

�
ν

; ð32Þ

gð3Þij dx
idxj ¼ N−2hijdxidxj

¼
�
1 −

2M
νr

�
−ν
dr2

þ
�
1 −

2M
νr

�
1−ν

r2dΩ2
S2 : ð33Þ

Having the explicit expressions for the lapse function
and the 3-metric we can write the desired four-dimensional
metric:

ds2 ¼ gð4Þμν dxμdxν ¼ −
�
1 −

2M
νr

�
ν

dt2

þ
�
1 −

2M
νr

�
−ν
dr2 þ

�
1 −

2M
νr

�
1−ν

r2dΩ2
S2 ; ð34Þ

which is just the Janis-Newman-Winicour solution speci-
fied only by the mass M and the generalized scalar charge

Q with Q2 < 3M2. The explicit form of the scalar fields is
given by the explicit form of the geodesics with asymptotic
data ðqa=M;φa

∞Þ with an affine parameter u ¼ ν
2
ð1 − 2M

νr Þ.
This completes the proof of the theorem.

VI. DISCUSSION

In the present paper we have proven that the static and
asymptotically flat solutions to the Einstein-multiple-scalar
field theory possessing a photon sphere are uniquely
specified by their asymptotic data, i.e., by their mass, scalar
charges and asymptotic values of the scalar fields. The proof
is under certain assumptions. The first assumption is that the
lapse function N regularly foliates the exterior spacetime.
This assumption can be easily relaxed—in fact, the proof in
[9] does not need this assumption. However, the relaxation
of this assumption leads to nothing essential from a physical
point of view. The second assumption is that the target space
is a complete, simply connected Riemannian manifold with a
nonpositive sectional curvature. The natural question is
whether the proof can be extended to the case of target
spaces with positive curvature. Our preliminary studies show
that the proof can be extended when the positive curvature is
bounded from above, however, with some restrictive con-
ditions on the scalar map φ or the lapse function N itself. At
this stage it is not clear how one can encode these restrictive
conditions on φ or N in the asymptotic data only. For
completeness let us present our conjecture. Let us assume
that the target space sectional curvature K satisfies K ≤ Kþ
where Kþ ≥ 0. Then we conjecture that our uniqueness
result holds when, in addition to some other mild assump-
tions, the lapse function on the photon sphere obeys the
inequality

N2
0 < e

πM
Q
ffiffiffiffi
Kþ

p
:? ð35Þ

We hope to return to this problem in a future publication.
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