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We determine and characterize the full space of master equations describing the dynamics of perturbed
Schwarzschild black holes and show that all of them are connected via Darboux transformations. This
reveals the presence of a hidden symmetry, Darboux covariance, which preserves the spectrum of
quasinormal modes and the continuous spectrum associated with black hole scattering processes. This
picture is shown to share a deep connection with the Korteweg-de Vries equation and inverse scattering
methods which leads to an infinite hierarchy of conserved quantities.
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I. INTRODUCTION

General relativistic perturbation theory of spherically-
symmetric spacetimes is of paramount importance since it
applies to a wide variety of physical phenomena: From
structure formation in the homogeneous and isotropic
standard cosmological models [1–4] to the dynamics of
perturbed Schwarzschild black holes (BHs) and spherical
relativistic stars [5–8] (see [9] for the impact on gravita-
tional wave physics). In the case of BHs [10–13], pertur-
bation theory describes scattering processes [14–16] and
quasinormal modes [5,6,17] (QNMs), which are crucial for
the last stage of the emission of gravitational radiation from
BH binary coalescence.

II. MASTER FUNCTIONS AND EQUATIONS

Spherically-symmetric spacetimes have a warped geo-
metry and as such the metric has the form: gð4Þ ¼ h ×r Ω,
where hab [xa ¼ ðt; rÞ] is a Lorentzian metric, r is the area
radial coordinate, andΩAB [xA ¼ ðθ;φÞ] is the metric of the
unit 2-sphere. For a Schwarzschild BH in Schwarzschild
coordinates: hab ¼ diagð−f; 1=fÞ with f ¼ 1–2M=r and
M is the BH mass. The warped geometry allows us to
decompose the metric perturbations in spherical harmonics
in such a way that modes with different harmonic numbers
ðl; mÞ and different parity (odd/even parity) decouple
from each other. We can find linear combinations of
the metric perturbations and their first-order derivatives,
the master functions Ψeven=odd

lm , so that the perturbative
Einstein equations become wave equations of the form:
ð□2 − Vl=fÞΨeven=odd

lm ¼ 0, where □2Ψ ¼ habΨ∶ab and

VlðrÞ≡ VðrÞ is the l-dependent potential. Considering
the BH exterior, where there is a timelike Killing vector,
ta ¼ ∂=∂t, and using the radial tortoise coordinate,
dx=dr ¼ 1=fðrÞ, the master equations become

ð−∂2
t þ LVÞΨ ¼ ð−∂2

t þ ∂2
x − VÞΨ ¼ 0; ð1Þ

where LV ¼ ∂2
x − V is the well-known Schrödinger

time-independent operator. Physical quantities like the
gravitational-wave fluxes of energy and momenta can be
estimated exclusively from the master functions, which are
gauge-invariant. Other nongauge invariant quantities like
the self-force [18,19] require the reconstruction of all
metric perturbations, which depends on the choice of
perturbative gauge.
We recently determined [20] the space of possible master

equations assuming the master functions are linear combi-
nations (with coefficients depending only on r) of the
metric perturbations and their first-order derivatives. There
are two branches of possible pairs of potentials/master
functions, fðV;ΨÞg: (i) The standard branch. We call it the
standard branch because it contains a single potential for
each parity: The Regge-Wheeler potential VRW for odd-
parity perturbations [10] and the Zerilli potential VZ for
even-parity perturbations [11]. The most general master
function is a linear combination (with constant coefficients)
of two master functions:

SΨeven
odd ¼ C1ΨZM

CPM þ C2ΨNE
RW; ð2Þ

where C1 and C2 are two arbitrary constants. In the
odd-parity case the two master functions turn out to be
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the well-known Regge-Wheeler [10] and Cunningham-
Price-Moncrief master functions [21–23]: ðΨRW;ΨCPMÞ.
In the even-parity case, the two master functions are the
Zerilli-Moncrief master function ΨZM [11,12,24] and
another function that to our knowledge was unknown,
which we called ΨNE (new even-parity master function).
All of these master functions are gauge-invariant. The two
master functions in each parity are related by a time
derivative: taΨZM

CPM;a ¼ 2ΨNE
RW. (ii) The Darboux branch.

In this branch, for each parity, there is an infinite set of
possible potentials and master functions, fðV;ΨÞg. The set
of possible potentials is determined by a nonlinear second-
order ordinary differential equation. Then, for each poten-
tial, the master function can be written as [20]

DΨeven
odd ¼ C1ΨZM

CPM þ C2ðΣeven
odd ΨZM

CPM þΦeven
odd Þ; ð3Þ

where Σeven
odd ¼ Σeven

odd ðxÞ is a function that contains the
integral of the potential; Φeven

odd ¼ Φeven
odd ðt; rÞ are linear

combinations of the metric perturbations and their first-
order derivatives, but only the combination with ΨZM

CPM in
Eq. (3) is a true master function.

III. DARBOUX COVARIANCE

To understand the landscape of master equations, or pairs
fðV;ΨÞg, let us first consider the standard branch, where
we have only the Regge-Wheeler and Zerilli potentials.
It was first noted by Chandrasekhar [25,26] that these
potentials, for both Schwarzschild and Reissner-Nordström
BHs, lead to the same transmission and reflection coef-
ficients (see also [27,28]) as well as the same spectra of
QNMs frequencies. However, it has only been recently
realized [29] (see also [30]) that this is a consequence of the
master equations being related by a Darboux transforma-
tion (DT) [31,32] (see also [33,34]).
Two any master equations, characterized by pairs ðv;φÞ

and ðV;ΨÞ, are related by a DT if the two pairs are related
by a transformation of the form

Ψ ¼ φ;x þ gφ; V ¼ vþ 2g;x ð4Þ

where the DT generating function, gðxÞ, must satisfy the
following Riccati equation

g;x − g2 þ v ¼ C; ð5Þ

where C is an arbitrary constant. We can write the DT
generating function as g ¼ ðV þ vÞ;x=ð2ðV − vÞÞ. Then,
the consistency between the expressions for gðxÞ and g;xðxÞ
is a second-order nonlinear equation

�
δV;x

δV

�
;x
þ 2

�
v;x
δV

�
;x
− δV ¼ 0; ð6Þ

where δV ¼ V − v. This is precisely the equation that any
potential in the Darboux branch should satisfy [20], where
v ¼ VZ

RW. Hence, all master equations in the Darboux
branch are connected via a DT to the standard branch, with
DT generating functions given by:

gevenodd ¼ 1

2

Z
dx ðV − VZ

RWÞ; ð7Þ

while the two parities in the standard branch are connected
by a DT with generating function:

godd→even ¼ 1

2

Z
dx ðVZ − VRWÞ ¼ −geven→odd: ð8Þ

In conclusion, we have an infinite set of master equations
linked by DTs, showing the existence of a hidden sym-
metry in the perturbations of spherically symmetric BHs:
Darboux covariance [33].
In this work we have adopted a view of the DT that is

more general than the original one, as introduced by Crum
[35], based on Sturm-Liouville problems and where the
generating function of the DT is constructed from an
eigenfunction. Instead, we apply the DT to wave-type
equations (1) and consider generating functions that only
have to satisfy Eq. (5). We can make contact with the Crum
approach by working in the frequency domain and study
single-frequency solutions: Ψðt; rÞ ¼ eiωtψðx;ωÞ, which
obey a time-independent Schrödinger equation

LVψðx;ωÞ ¼ −ω2ψðx;ωÞ: ð9Þ

Given a solution ψoðx;ωoÞ with eigenvalue −ω2
o, the

function gðxÞ ¼ −ðlnψoÞ;x generates a DT that transform
Eq. (9) into another equation of the same form with the
same eigenvalue −ω2, therefore showing the isospectral
character of the DT. The Riccati equation (5) is automati-
cally satisfied with C ¼ −ω2

o, and so is Eq. (6). The
new master function from (4), say ϕ, can be written as
ϕ ¼ W½ψ ;ψo�=ψo where W½ψ ;ψo� denotes the Wronskian
of ψ and ψo. It turns out that the DT generating function
between the Regge-Wheeler and Zerilli-Moncrief master
equations, Eq. (8), can be constructed from one of the
algebraically special solutions of the Regge-Wheeler equa-
tion [36,37] (see [29]), namely

ψo ¼
λðrÞ
2

e−iω�x; ω� ¼ −i
nlðnl þ 1Þ

3M
; ð10Þ

where nl ¼ ðlþ 2Þðl − 1Þ=2 and λðrÞ ¼ 2nl þ 6M=r.
The generating function itself is

GðxÞ ¼ 6MfðrÞ
λðrÞr2 : ð11Þ
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Following [27,28], the Regge-Wheeler and Zerilli poten-
tials can be written in terms of GðxÞ as

VZ
RW ¼ �G;x þ αGþ G2; α ¼ 1

6M
ðlþ 2Þ!
ðl − 2Þ! ; ð12Þ

which can be seen as a Riccati equation forGðxÞ. This form
of the potentials is reminiscent of supersymmetric quantum
mechanics (SUSY QM) [38–40] where the quantum
description of systems with double degeneracy of energy
levels is realized. This is related to the fact that the
Schrödinger equation (9), for two DT-related potentials
[Eq. (4)], can be written in the form

ð∂2
x − V�Þψ ¼ −ω̂2ψ ; V� ¼ �g;x þ g2; ð13Þ

where gðxÞ plays the role of the SUSY QM superpotential,
V� are partner potentials, ω̂2 ¼ ω2 − C is the energy
eigenvalue, and we can introduce ladder operators A ¼
∂x − g and A† ¼ −∂x − g that factorize the Hamiltonians
H− ¼ A · A† and Hþ ¼ A† · A (H� ¼ −∂2

x þ V�). In the
standard branch: g ¼ Gþ α=2 and C ¼ −α2=4. This fac-
torization is the key ingredient of the intertwining operator
method used in [41] (see also [42,43]) to look for simpler
potentials yet equivalent to the Regge-Wheeler and
Zerilli ones.

IV. DTs AND THE KORTEWEG-DE VRIES
EQUATION

In the frequency-domain we can establish the connection
with inverse scattering theory following the work by
Gardner, Green, Miura and Kruskal [44] (see also
[45,46]), where they discovered a way to solve the
initial-value problem for the Korteweg-de Vries (KdV)
equation [47]

V;τ ¼ 6VV;x − V;xxx: ð14Þ

by identifying V with the potential of the time-independent
Schrödinger equation (9). We now show how this
connection reveals interesting properties of our Darboux-
covariant master equations in the frequency domain. The
spectrum of LV is twofold [48,49]: It has a continuous part,
the scattering states, and a discrete part made out of a finite
number of discrete negative eigenvalues. In the case of the
Schwarzschild BH, the potentials VZM

RWðxÞ are positive
everywhere and decay to zero at both ends (x → �∞).
Therefore, there are no discrete normalizable states. Let us
now deform the Schrödinger equation by introducing the
KdV time τ in the following way: VðxÞ → Vðτ; xÞ,
ψðxÞ → ψðτ; xÞ, and ω → ωðτÞ. If Vðτ; xÞ follows the
KdV flow we can show that

½∂2
x − ðV − ω2Þ�Ξ ¼ −ðω2Þ;τψ ; ð15Þ

where Ξðτ; xÞ ¼ ψ ;τ þ V;xψ − 2ðV þ 2ω2Þψ ;x. In the
hypothetical case of bound states (not our case), and
assuming that ψ and V decay sufficiently fast at x → �∞,
one can show, by multiplying by ψ and integrating over
x ∈ ð−∞;∞Þ, that ðω2Þ;τ ¼ 0. For non-normalizable states
we can adopt an approach due to Lax [50] consisting in the
introduction of a pair of operators, PV and LV (Lax pair),
defined by

ψ ;τ ¼ PVψ ¼ −4ψ ;xxx þ 6Vψ ;x þ 3V;xψ ; ð16Þ

and Eq. (9) respectively. A remarkable fact about this Lax
pair is that the relation between differential operators,
dLV=dτ ¼ ½PV; LV �, yields the KdV equation [Eq. (14)].
Following [33], one can show that the pair of equations
ðLV þ ω2;−∂τ þ PVÞψ ¼ 0 is invariant under a DT pro-
vided the DT generating function satisfies Eq. (5) and is
KdV-deformed according to

g;τ ¼ −g;xxx þ 6ðV þ g;xÞg;x: ð17Þ

On the other hand, using the KdV-deformation of ψ ,
Eq. (16), we rewrite Eq. (15) in the form

ðV;τ − 6VV;x þ V;xxx − ðω2Þ;τÞψ ¼ 0: ð18Þ

Therefore, if ðV;ψÞ are KdV-deformed according to
Eqs. (14) and (16), we must have ψðω2Þ;τ ¼ 0, which
means that ω is preserved by the KdV flow. This argument
can be applied to the discrete and continuous spectra as
well as to the QNM frequencies.

V. DTs AND THE KdV HIERARCHY

It was shown by Lax [50] that equations that are
equivalent to a relation between a Lax pair of operators,
like the KdVequation, have an infinite set of first integrals.
Gardner showed [51] that these first integrals are associated
with symmetries of the KdV equation that yield higher-
order KdV equations, and all of them can be formulated
as a Hamiltonian system with infinite degrees of freedom.
Zakharov and Fadeev [52] showed that the hierarchy
of KdV equations leads to a completely integrable
Hamiltonian system that admits canonical action-angle
variables constructed from the scattering data of the
Schrödinger equation. Here, we use this point of view to
study the KdV hierarchy of first integrals for the infinite set
of master equations for BH perturbations.
The scattering states of the continuum spectrum coming

either from x → −∞ or from x → þ∞ toward the potential
barrier described by V are part reflected and part trans-
mitted. For plane waves coming from x → ∞, the solution
of the Schrödinger equation has the Jost asymptotic
behavior [53]:
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ψ →

(
eiωx for x → −∞;

aðτ;ωÞeiωx þ bðτ;ωÞe−iωx for x → þ∞;
ð19Þ

where the complex coefficients aðτ;ωÞ and bðτ;ωÞ, which
fully determine the S-matrix, satisfy: jaj2 − jbj2 ¼ 1. The
reflection coefficient is Rðτ;ωÞ ¼ bðτ;ωÞ=aðτ;ωÞ, and in
our case, it completely characterizes the scattering data so
that the mapping Vðτ; xÞ → sðτÞ is uniquely invertible [54].
The transmission coefficient is Tðτ;ωÞ ¼ 1=aðτ;ωÞ so that
jRj2 þ jTj2 ¼ 1. Under the KdV flow they evolve as [44]:
T;τ ¼ 0 and R;τ ¼ 8iω3R, which implies:

a;τ ¼ 0; and b;τ ¼ 8iω3b: ð20Þ

In the inverse scattering method, given the initial value of
the potential Vðτ ¼ 0; xÞ we construct the associated
scattering data, sð0Þ, evolve it according the KdV flow,
thus obtaining sðτÞ, and we recover Vðτ; xÞ from sðτÞ using
the Gelfand-Levitan-Marchenko method [55–57].
Let us look at the consequences of the conservation law

for aðτ;ωÞ [Eq. (20)] under the KdV flow. Following [52],
let us write

ψðτ; x;ωÞ ¼ exp

�
iωxþ

Z
x

−∞
dx0Φðτ; x0;ωÞ

�
; ð21Þ

so that aðτ;ωÞ becomes [see Eq. (19)]

aðτ;ωÞ ¼ lim
x→∞

e−iωxψ ¼ exp

�Z þ∞

−∞
dx0Φðτ; x0;ωÞ

�
: ð22Þ

It turns out [52] that ln aðτ;ωÞ admits an expansion in
inverse powers of ω for jωj → ∞. We can then write

Φðτ; x;ωÞ ¼
X∞
n¼1

fnðτ; xÞ
ð2iωÞn : ð23Þ

Therefore, a;τ ¼ 0 implies that each coefficient fnðτ; xÞ
yields a conserved quantity, the KdV integrals [46]: InðτÞ ¼Rþ∞
−∞ dxfnðτ; xÞ with dIn=dτ ¼ 0. After inserting Eq. (21)
into the Schrödinger equation we get

Φ;x þ 2iωΦþΦ2 ¼ V: ð24Þ

This is a complex Riccati equation. Introducing the
expansion for Φ here we find that f1ðτ; xÞ ¼ Vðτ; xÞ
and a recursion for the rest of coefficients fnðτ; xÞ
(n > 1), which turn out to be differential polynomials in
Vðτ; xÞ:

dfn
dx

þ fnþ1 þ
Xn−1
m¼1

fmfn−m ¼ 0: ð25Þ

It is convenient to split Φ into its real and imaginary parts

Φ ¼
X∞
N¼1

f2N
ð2iωÞ2N þ

X∞
M¼0

f2Mþ1

ð2iωÞ2Mþ1
¼ χR þ iχI: ð26Þ

From Eq. (24), χRðτ; xÞ and χIðτ; xÞ satisfy

χR;x − 2ωχI þ χ2R − χ2I ¼ V; ð27Þ

χI;x þ 2ωχR þ 2χRχI ¼ 0; ð28Þ

and from here we get an expression for χR

χR ¼ −
1

2

d
dx

lnðχI þ ωÞ; ð29Þ

that is, χR is a gradient involving only χI. This, together
with the decaying behavior of the potential V, which
follows from the decaying properties of VRW and VZ
and the Riccati equation (5), implies the known result
[52,54] that all the even KdV integrals, I2N , vanish. To
study the odd KdV integrals, let us integrate Eq. (24) over
the real line x ∈ ð−∞;þ∞Þ and use the decaying proper-
ties of our potentials and derivatives to obtain:

2iω
Z þ∞

−∞
dxΦþ

Z þ∞

−∞
dxΦ2 ¼

Z þ∞

−∞
dxV: ð30Þ

For the standard branch, the potential V ¼ VZ
RW admits the

form in Eq. (12). Therefore, using the behavior of GðxÞ at
x → �∞, the right-hand side of Eq. (30) becomesZ þ∞

−∞
dxV ¼

Z þ∞

−∞
dxðαGþG2Þ; ð31Þ

and hence Eq. (30) is the same for the whole standard
branch. Any potential of the Darboux branch can be
written as V ¼ Veven

odd ¼ VZ
RW þ 2g;x. Then, using again

the decaying properties of the DT generating functions,
we deduce that any potential of the Darboux branch also
satisfies Eq. (31), thus Eq. (30) is universal. We can write it
in terms of ðχR; χIÞ and then use Eq. (29) and

χRχI ¼ −
1

2
∂xðχI − ω lnðχI þ ωÞÞ; ð32Þ

which is a total derivative. Then, we arrive at

−2ω
Z þ∞

−∞
dxχIþ

Z þ∞

−∞
dxðχ2R−χ2I Þ¼

Z þ∞

−∞
dxðαGþG2Þ:

ð33Þ

When we introduce the expansions for χR and χI [Eq. (26)]
this becomes a universal recurrent relation for the odd KdV
integrals. Then, we conclude that all the KdV integrals
associated with the potentials of the infinite set of master
equations are the same. A first hint of this result appears in
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Chandrasekhar’s work [14,28], where some evidence is
given that the KdV integrals should be the same for a pair of
potentials of the form in Eq. (12) (but not necessarily
related to BH perturbations), although a full proof was not
provided.
It is interesting to mention that this infinite set of KdV

integrals, which makes the KdV equation completely
integrable [52], has been connected to a recurrence between
the infinite KdV hierarchy of equations, initially suggested
by Lenard [58], and is rooted in the fact that the KdV
equation admits a bi-Hamiltonian structure [51,59]. On the
other hand, Gelfand and Dickii [60] showed that these
conserved quantities are connected with trace formulas for
half-integer powers of the operator LV.

VI. DTS AND QNMS

We have seen that all the possible potentials associated
with the infinite set of master equations found in [20] have
the same set of KdV integrals when studying the continu-
ous spectrum associated with the Sturm-Liouville problem
that emerges when one considers scattering problems.
QNMs are not associated with a Sturm-Liouville problem,
they rather appear as scattering resonances [61], poles in
the meromorphic continuation of the resolvent/Green
function (related to LV in our case). They can also be
seen as the poles of the S-matrix and the associated residues
[62]. We can use the argument given by Chandrashekar
[14] to show that the frequencies of QNMs are the same for
all possible potentials, provided they have similar decaying
behavior at x → �∞. This is the case for our set of
potentials by virtue the Riccati equation (5) for the DT
generating function. Finally, thanks to Eq. (18) we can state
that QNM frequencies and damping times are preserved by
the KdV flow provided the potential is KdV-deformed and
the radial master function ψ is KdV-deformed according to

Eq. (16). Apart from these results, it would be interesting to
explore the structure of the resolvent associated with our
time-independent master equations and their behavior and
properties under the KdV flow.

VII. CONCLUSIONS

The study of the general structure of the full space of
master functions and equations has revealed a hidden
symmetry in the theory of perturbations of (spherically
symmetric) BHs, Darboux covariance. The implications are
diverse and here we have shown that, given the decaying
properties of the potentials at both infinities (horizon and
spatial infinity), DTs preserve the spectrum of QNMs and
the continuous spectrum associated with scattering proc-
esses around the BH. The DT also preserves the infinite set
of KdV conserved quantities that appear as a consequence
of the invariance of the scattering transmission coefficient
under KdV deformations of the master equations. A large
part of the developments shown in this work can be applied
to other spherically symmetric backgrounds and to other
theories of gravity. The main changes may come from
different boundary conditions and their implications for the
asymptotic behavior of the potentials.
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linéaires, Comptes Rendus Acad. Sci. 94, 1456 (1882).

[32] G. Darboux, Leçons sur la théorie générale des surfaces et
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