
Stationary generalizations for the Bronnikov-Ellis wormhole
and for the vacuum ring wormhole

Mikhail S. Volkov *

Institut Denis Poisson, UMR—CNRS 7013, Université de Tours,
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We analyze possibilities to obtain a globally regular stationary generalization for the ultrastatic
wormhole with a repulsive scalar field found by Bronnikov and by Ellis in 1973. The extreme simplicity of
this static solution suggests that its spinning version could be obtainable analytically and should be globally
regular, but no such generalization has been found. We analyze the problem and find that the difficulty
originates in the vacuum theory, since the scalar field can be eliminated within the Eris-Gurses procedure.
The problem then reduces to constructing the spinning generalization for the vacuum wormhole sourced by
a thin ring of negative tension. Solving the vacuum Ernst equations determines the g00, g0φ metric
components and hence the AMD mass M and angular momentum J, all of these being specified by the ring
source. The scalar field can be included into consideration afterwards, but this only affects grr and gϑϑ
without changing the rest. Within this approach, we analyze a number of exact stationary generalizations
for the wormhole, but none of them are satisfactory. However, the perturbative expansion around the static
vacuum background contains only bounded functions and presumably converges to an exact solution.
Including the scalar field screens the singularity at the ring source and renders the geometry regular. This
solution describes a globally regular spinning wormhole with two asymptotically flat regions. Even though
the source itself is screened and not visible, the memory of it remains in g00 and g0φ and accounts for the

M ∝ J2 relation typical for a rotating extended source. Describing stationary spacetimes with an extended
source is a complicated problem, which presumably explains the difficulty in finding the solution.
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I. INTRODUCTION

Wormholes are bridges or tunnels between different
universes or different parts of the same universe. They
were first introduced by Einstein and Rosen (ER) [1], who
noticed that the Schwarzschild black hole actually has two
exterior regions connected by a spacelike bridge. One can
also discuss traversable wormholes accessible for ordinary
classical particles or light (see [2] for a review), but their
existence requires [3,4] that the null energy condition
(NEC) must be violated. Therefore, traversable wormholes
are possible if only the energy density becomes negative,
for example due to vacuum polarization [5] or due to exotic
matter [6,7].
Since the energy is normally supposed to be positive, the

traversable wormholes were for a longtime considered as
something odd. The situation changed after the discovery
of the cosmic acceleration [8,9], which invoked a large
number of alternative gravity models in which the energy is
not necessarily positive definite. Wormholes have been

found in many such theories, as for example in the Gauss-
Bonnet theory [10,11], in the braneworld models [12], in
theories with nonminimally coupled fields [13], in massive
(bi)gravity [14], etc. As a result, wormholes have become
quite popular nowadays.
We do not intend to argue that wormholes actually exist,

neither shall we advocate the opposite viewpoint. We are
merely interested in the problem of constructing solutions
describing spinning wormholes in the theory with a
gravity-coupled phantom scalar field Φ. This theory
presents extremely simple wormhole solutions found in
1973 independently by Bronnikov and by Ellis (BE) [6,7].
Their simplest version is

ds2 ¼ −dt2 þ dr2 þ ðr2 þ μ2Þðdϑ2 þ sin2ϑdφ2Þ ð1:1Þ

with the scalar field Φ ¼ arctanðr=μÞ. The parameter μ
determines the size of the wormhole throat, the radial
coordinate r ∈ ð−∞;∞Þ, and the limits r → �∞ corre-
spond to two asymptotically flat regions connected through
the wormhole throat.*volkov@lmpt.univ-tours.fr
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The theory also admits exact axially symmetric solutions
describing superpositions of several wormholes [15–18], as
well as solutions describing axially symmetric deformations
of a single wormhole [18,19]. The latter are all singular, and
one can prove that the BE solutions do not admit globally
regular generalizations in the static sector [20].
At the same time, nothing forbids the existence of

globally regular stationary generalizations for the BE
solutions which would describe spinning wormholes.
The extreme simplicity of the solution (1.1) suggests that
its stationary version could be easily obtainable analyti-
cally, and it is natural to expect this spinning solution to be
globally regular. However, even now, almost 50 years later,
this solution is still unknown.
Spinning wormholes are in fact often discussed in the

literature (see, e.g., [21]), but what is usually meant are not
exact solutions but some model geometries [22]. Exact
stationary solutions are also known, but they show singu-
larities, for example of the NUT type [23] or present other
problems [24]. At the same time, there exist perturbative
(up to the second order terms) [25,26] and numerical
[27,28] indications in favor of existence of globally regular
spinning generalizations for the BE wormholes. However,
their analytical form is unknown.
Exact stationary solutions may sometimes be obtained

by applying the generating methods like dualities [29–31]
or by using some other tricks [32], but none of these
methods help to construct regular spinning wormholes.
Therefore, in what follows we are trying to analyze the
situation to understand why the problem is so difficult and
what can be done. It seems that the problem originates
already in the vacuum theory and can be summarized as
follows.
Already before the BE discovery, it was known that the

vacuum general relativity admits the ring wormholes
described by the oblate metrics of Zipoy and Vorhees
[33,34], whose simplest version is

ds2 ¼ −dt2 þ r2 þ μ2cos2ϑ
r2 þ μ2

½dr2 þ ðr2 þ μ2Þdϑ2�

þ ðr2 þ μ2Þsin2ϑdφ2 ð1:2Þ

with r ∈ ð−∞;∞Þ. Although looks complicated, this
would be just the Minkowski metric expressed in spheroi-
dal coordinates, if the radial coordinate was restricted to
r ∈ ½0;∞Þ. For r ∈ ð−∞;∞Þ this metric is only locally flat
and describes a wormhole made of two copies of
Minkowski space glued to each other through the disk
bounded by the circle r ¼ 0, ϑ ¼ π=2 in the equatorial
plane. The circle carries a distributional singularity of the
Ricci tensor that can be viewed as a singular matters source:
a ring (loop) made of a cosmic string of negative tension
with the negative angle deficit of −2π [18,19]. As was
noticed in [35], the metric (1.2) is a special limit of the Kerr
geometry. All of this will be explained below.

Now, the BE solution (1.1) can be obtained from the ring
metric (1.2). Assuming that Φ ¼ ΦðrÞ, the scalar field
equation admits the same solution Φ ¼ arctanðr=μÞ for
both metrics. Adding this as the source to the Einstein
equations only modifies (removes) the conformal factor in
front of the r, ϑ part of the metric (1.2), after which the
metric reduces to (1.1). We shall call this procedure
“dressing,” hence the BE wormhole is the ring wormhole
“with scalar dressing”. A similar procedure works also in
the stationary case [36], hence finding a stationary gener-
alization for the BE solution (1.1) reduces to solving the
same problem for the vacuum ring metric (1.2). The
vacuum Ernst equations determine the g00, g0φ, gφφ metric
components yielding the ADM mass and angular momen-
tum, all of these being insensitive to the scalar field. The
latter only modifies grr, gϑϑ not affecting the rest. As a
result, all the essential features of the system are encoded
already in the vacuum theory.
Therefore, all we need to do is to solve the vacuum Ernst

equations. This is not always easy but still simpler than to
directly attack the full system of coupled Einstein and
scalar field equations as was done in [25,26] and in [27,28].
Following this logic, we apply in what follows the
procedure based on vacuum Ernst equations to construct
stationary solutions with the scalar field. Our ultimate goal
is to try and possibly obtain the globally regular rotating
wormholes exactly. We do obtain indeed new exact
solutions, but these are not globally regular. At the same
time, we construct the perturbative expansion for the
globally regular solution of the Ernst equations which
determine the asymptotically flat stationary generalizations
for both the ring wormhole (1.2) and for the BE wormhole
(1.1). However, promoting this perturbative solution to an
exact one does not seem to be obvious.
Intuitively, the explanation of the difficulty is that the

ring metric (1.2) has en extended source—the cosmic string
loop. This source is hidden also in the spinning version of
the regular BE solution (1.1), although not directly visible
there, being screened by the scalar. However, since its g00
and g0φ metric components are the same as for the ring
wormhole, the BE wormhole shows the same relation
between the mass and angular momentum which is typical
for a rotating extended source—the ring. The spinning BE
wormhole “knows” about this source. However, finding a
stationary solution with an extended source is a more
difficult problem than finding it for a pointlike source, say
(the Kerr metric). Therefore, although the spinning version
of the BE wormhole can be constructed perturbatively or
numerically, it may be not expressible in a compact
analytical form. This presumably explains why this sol-
ution has never been obtained, despite the apparent
simplicity of its static limit described by (1.1).
In what follows we describe the approach based on

solving the vacuum Ernst equations first and including the
scalar field afterwords. We consider a number of stationary
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generalizations for the wormhole. The most obvious one is
the Kerr metric, however, adding to it the scalar dressing
yields a singular result. We then analyze a special ansatz
reducing the Ernst equations to a harmonic equation. This
yields exact solutions which are “almost” perfect but
unfortunately are not globally regular. We then consider
the perturbative expansion around the static ring metric
(1.2) and find that it contains unbounded functions and
hence is ill-defined. However, reformulating the Ernst
equations in terms of the axial Killing vector instead of
the timelike one yields a better result, and we explicitly
construct the globally regular perturbative expansion up to
the fourth order terms. This expansion presumably con-
verges to an exact solution describing the correct stationary
generalization for the ring wormhole and for the BE
wormhole. We finish by discussing chances to get this
solution exactly.

II. THE THEORY

We consider the theory with a minimally coupled to
gravity scalar field with a “wrong” sign in front of the
kinetic term. It is convenient to introduce from the very
beginning the length scale μ and represent the line
element as

ds2 ¼ μ2gμνdxμdxν ≡ μ2ds2; ð2:1Þ

where the metric gμν and coordinates xμ are dimensionless;
their dimensionful analogues will be denoted by roman
symbols. The action of the theory is

S ¼ 1

2
μ2M2

Pl

Z
ðRþ 2∂μΦ∂μΦÞ ffiffiffiffiffiffi

−g
p

d4x

≡ 1

2
μ2M2

Pl

Z
L4

ffiffiffiffiffiffi
−g

p
d4x; ð2:2Þ

which yields upon varying the equations

Rμν ¼ −2∂μΦ∂νΦ; ∇μ∇μΦ ¼ 0: ð2:3Þ

Assuming the system to be stationary, the metric is chosen
in the Papapetrou form,

ds2 ¼ −e2Uðdt − wkdxkÞ2 þ e−2Uhikdxidxk; ð2:4Þ

where the Newtonian potential U, the rotation field wk, and
the 3-metric hik depend on the spatial coordinates xk.
Inserting this to (2.2) yields

L4

ffiffiffiffiffiffi
−g

p ¼ L3

ffiffiffi
h

p
þ total derivative ð2:5Þ

with

L3 ¼ R
ð3Þ
ðhÞ − 2ð∂UÞ2 þ 1

4
e4UFikFik þ 2ð∂ΦÞ2; ð2:6Þ

were Fik ¼ ∂iwk − ∂kwi and ð∂UÞ2 ¼ ∂kU∂kU with the
indices moved by hik. Varying this Lagrangian yields the
equations

∇k∇kU þ 1

4
e4UFikFik ¼ 0; ð2:7aÞ

∇iðe4UFikÞ ¼ 0; ð2:7bÞ

∇k∇kΦ ¼ 0; ð2:7cÞ

R
ð3Þ

ik − 2∂iU∂kU þ 1

2
e4UFisFk

s þ 2∂iΦ∂kΦ ¼ 0; ð2:7dÞ

where ∇k is the covariant derivative with respect to hik.

A. Static case

In the static case, when Fik ¼ 0, the Lagrangian (2.6)
and equations (2.7) are invariant under global rotations,

U → U cosh αþΦ sinh α;

Φ → Φ cosh αþ U sinh α;

hik → hik: ð2:8Þ

This allows one to generate nontrivial solutions from a
vacuum seed metric. Let us see how this works. The
Schwarzschild metric of unit mass can be described by

e2U ¼ x − 1

xþ 1
;

hikdxidxk ¼ dx2 þ ðx2 − 1Þðdϑ2 þ sin2ϑdφ2Þ;
Φ ¼ 0: ð2:9Þ

Applying to this the transformation (2.8) with cosh α ¼ δ
yields the solution with a nontrivial scalar,

ds2 ¼ −
�
x − 1

xþ 1

�
δ

dt2

þ
�
xþ 1

x − 1

�
δ

½dx2 þ ðx2 − 1Þðdϑ2 þ sin2ϑdφ2Þ�;

Φ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

p
ln

�
x − 1

xþ 1

�
; ð2:10Þ

which reduces back to (2.9) if δ ¼ 1. Performing the
analytic continuation,

t → it; x → ix; δ → iδ; ð2:11Þ
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and also replacing μ → iμ in (2.1), the line element ds2 ¼
ds2=μ2 and the scalar become

ds2 ¼ −e2δΨdt2 þ e−2δΨ½dx2 þ ðx2 þ 1Þðdϑ2 þ sin2ϑdφ2Þ�;
Φ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
Ψ; ð2:12Þ

with Ψ ¼ arctanðxÞ. Setting t ¼ t=μ and x ¼ r=μ, this
describes the static BE wormholes [6,7], whose ultrastatic
version (1.1) is obtained when δ → 0.
We are looking for the stationary generalization of these

solutions. Unfortunately, the global symmetry (2.8) is lost
in the stationary case and one cannot play the same game
again and generate solutions with a nontrivial scalar field
starting from the Kerr metric, say.

B. Stationary case

In this case there exist other global symmetries. Defining
the twist potential χ via

∂iχ ¼ e4Uffiffiffi
h

p ϵijk∂jwk; ð2:13Þ

whose integrability is insured by (2.7b), the Lagrangian
assumes the form

L3 ¼ R
ð3Þ
ðhÞ − 2ð∂UÞ2 − 1

2
e−4Uð∂χÞ2 þ 2ð∂ΦÞ2

≡ R
ð3Þ
ðhÞ − 2GAB∂iYA∂iYB; ð2:14Þ

where the target space coordinates are YA ¼ ðU; χ;ΦÞ and
the target space metric is

GABdYAdYB ¼ ð∂UÞ2 þ 1

4
e−4Uð∂χÞ2 − ð∂ΦÞ2: ð2:15Þ

Introducing the complex Ernst potential

E ¼ e2U þ iχ ≡� 1 − ξ

1þ ξ
ð2:16Þ

(we shall be choosing either plus or minus sign in this
formula, depending on the context, because E → −E is a
symmetry), one has

dU2 þ 1

4
e−4Udχ2 ¼ dEd̄E

E þ Ē
¼ dξd̄ξ

ðξξ̄ − 1Þ2 ; ð2:17Þ

which is the metric on the hyperbolic space H2

(Lobachevsky plane). Therefore, the target space (2.15)
is the pseudo-Euclidean direct product H2 ⊗ R1 with the
same geometry as the one induced on the hyperboloid

X2
0 − X2

1 − X2
2 ¼

1

4
ð2:18Þ

in the 4-dimensional space with the metric

dS2 ¼ −dΦ2 − dX2
0 þ dX2

1 þ dX2
2: ð2:19Þ

Isometries of this space are the shifts

Φ → ΦþΦ0 ð2:20Þ

and theH2 isometries, which can be represented in the form

E → E þ iα;
1

E
→

1

E
þ iβ; ξ → eiγξ: ð2:21Þ

These isometries can be used to produce solutions with a
NUT charge, which however does not help to construct
globally regular spinning wormholes.

C. Stationary and axially symmetric case

Let us choose the spatial coordinates as xk ¼ ðρ; z;φÞ
and assume that nothing depends on φ. The 3-metric can be
represented in the form

dl2 ¼ hikdxidxk ¼ e2kðdρ2 þ dz2Þ þ ρ2dφ2; ð2:22Þ

while wkdxk ¼ wdφ where w, k, as well as U, Φ depend
only on ρ, z. This form of the metric is possible only in the
vacuum theory, otherwise one should replace ρ2 in front of
dφ2 by a function of ρ, z (an introduction into the theory of
stationary gravitational fields can be found, e.g., in [37]).
However, since the Ernst equations considered below
correspond to the vacuum theory, the choice (2.22) of
the 3-metric is legitimate.
The function k drops out from the first three equations in

(2.7), since one has, for example,

∇k∇kU ¼ 1ffiffiffi
h

p ∂ið
ffiffiffi
h

p
hik∂kUÞ

¼ e−2k
�
∂ρρU þ 1

ρ
∂ρU þ ∂zzU

�

≡ e−2kΔU; ð2:23Þ

where Δ is the standard flat space Laplace operator
expressed in cylindrical coordinates. As a result, the first
two equations in (2.7) decouple from the rest and comprise
a closed system

ΔU þ e4U

2ρ2
½ð∂ρwÞ2 þ ð∂zwÞ2� ¼ 0;

ρ∂ρ

�
e4U

ρ
∂ρw

�
þ ∂zðe4U∂zwÞ ¼ 0; ð2:24Þ
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which can be written compactly as

ΔU þ e4U

2ρ2
ð∇⃗wÞ2 ¼ 0; ∇⃗

�
e4U

ρ2
∇⃗w

�
¼ 0: ð2:25Þ

Using the definition of the twist potential (2.13),

∂ρχ ¼ 1

ρ
e4U∂zw; ∂zχ ¼ −

1

ρ
e4U∂ρw; ð2:26Þ

these two equations can be represented in the form

ΔU þ 1

2
e−4U½ð∂ρχÞ2 þ ð∂zχÞ2� ¼ 0;

1

ρ
∂ρðρe−4U∂ρχÞ þ ∂zðe−4U∂zχÞ ¼ 0; ð2:27Þ

or, using the compact notation, as

ΔU þ 1

2
e−4Uð∇⃗χÞ2 ¼ 0; ∇⃗ðe−4U∇⃗χÞ ¼ 0: ð2:28Þ

Using the Ernst potential (2.16), these two equations can be
combined to one complex-valued equation

ðξξ̄ − 1ÞΔξ ¼ 2ξ̄ð∇⃗ξÞ2 ð2:29Þ

usually called in the literature Ernst equation [38].
However, in what follows we shall for simplicity call
“Ernst” also equations in the form (2.28) or (2.25). When
these equations are solved and the equation ΔΦ ¼ 0 is
solved as well, the metric function k is obtained from
(2.7d). The latter contains two first order equations for k
and one second order equation. The first order equations
read

1

ρ
∂ρk ¼ ð∂ρUÞ2 − ð∂zUÞ2 þ 1

4ρ2
e4U½ð∂zwÞ2 − ð∂ρwÞ2�

− ð∂ρΦÞ2 þ ð∂zΦÞ2;
1

2ρ
∂zk ¼ ∂ρU∂zU −

1

4ρ2
e4U∂ρw∂zw − ∂ρΦ∂zΦ; ð2:30Þ

which can equivalently be rewritten in terms of the twist χ
instead of rotation w. The integrability conditions for these
equations are insured by the Ernst equations and by the
equation for the scalar field. The second order equation can
be represented in the form

Δkþ 2ð∂zUÞ2 − 2ð∂zΦÞ2 þ e4U

2ρ2
ð∂ρwÞ2 ¼ 0: ð2:31Þ

One can check that this is a differential consequence of the
other equations.

III. THE DRESSING PROCEDURE OF ERIS AND
GURSES—SUPERPOSING THE SOLUTIONS

The above equations split into two independent groups,
since the Ernst equation and the scalar field equation are
independent from each other. As a result, the solution can
be constructed in two steps. The first step is to consider the
purely vacuum problem described by the Ernst equation,
whose solution determines U, χ and w,

Step I∶ Ernst ⇒ U; χ; w: ð3:1Þ

This solution is used to compute the amplitude kI defined
by (2.30), where one sets Φ ¼ 0. This yields explicitly

1

ρ
∂ρkI ¼ ð∂ρUÞ2 − ð∂zUÞ2 þ 1

4ρ2
e4U½ð∂zwÞ2 − ð∂ρwÞ2�;

1

2ρ
∂zkI ¼ ∂ρU∂zU −

1

4ρ2
e4U∂ρw∂zw: ð3:2Þ

The second step is to solve the scalar field equation,

Step II∶ ΔΦ ¼ 0; ð3:3Þ

and compute the amplitude kII from equations obtained
from (2.30) by keeping there only terms with Φ,

1

ρ
∂ρkII ¼ −ð∂ρΦÞ2 þ ð∂zΦÞ2;

1

2ρ
∂zkII ¼ −∂ρΦ∂zΦ: ð3:4Þ

Taking the sum,

k ¼ kI þ kII; ð3:5Þ

finally yields the solution U, χ, k, Φ of the equations. One
can say that the solution is obtained by superposing
(“dressing”) a vacuum metric with the scalar field. This
was first noticed by Eris and Gurses [36]. Notice that the
dressing only affects the grr and gϑϑ metric components
while g00, g0φ, gφφ are determined by the vacuum equa-
tions. If one wants the solution to be asymptotically flat,
then the scalar field should be bounded, but there is only
one bounded harmonic function, as we shall see. Therefore,
the scalar field is already known up to a constant factor and
the problem reduces to finding a suitable Ernst potential
in the vacuum sector.

IV. SPHEROIDAL COORDINATES

Let us pass from ρ, z to the spheroidal coordinates x; y ¼
cosϑ via
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ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ν

p
sinϑ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 þ νÞð1 − y2Þ

q
;

z ¼ x cosϑ ¼ xy; ð4:1Þ

where ν ¼ 0;�1. One has

ρ2

x2 þ ν
þ z2

x2
¼ 1; ð4:2Þ

hence the spheroidal coordinates are oblate if ν ¼ 1, prolate
if ν ¼ −1, and spherical if ν ¼ 0. The 3-metric (2.22)
becomes

dl2¼ e2kðdρ2þdz2Þþρ2dφ2

¼ e2K
�
dx2þx2þν

1−y2
dy2

�
þðx2þνÞð1−y2Þdφ2 ð4:3Þ

with

e2K ¼ x2 þ νy2

x2 þ ν
e2k; ð4:4Þ

and the 4-metric is

ds2 ¼ −e2Uðdt − wdφÞ2 þ e−2Udl2: ð4:5Þ

Equations (2.25) assume the form

½ðx2 þ νÞU;x�;x þ ½ð1 − y2ÞU;y�;y
þ e4U

2ρ2
½ðx2 þ νÞw2

;x þ ð1 − y2Þw2
;y� ¼ 0;

ðx2 þ νÞw;xx þ ð1 − y2Þw;yy

þ 4½ðx2 þ νÞw;xU;x þ ð1 − y2Þw;yU;y� ¼ 0: ð4:6Þ

The relations (2.26) between the rotation field and the twist
now read

w;x ¼ ðy2 − 1Þe−4Uχ;y; w;y ¼ ðx2 þ νÞe−4Uχ;x; ð4:7Þ

the integrability condition ∂yχ;x ¼ ∂xχ;y being insured by
the second equation in (4.6). Using the twist potential χ
instead of w, Eqs. (4.6) assume the form (2.28),

½ðx2 þ νÞU;x�;x þ ½ð1 − y2ÞU;y�;y
þ 1

2
e−4U½ðx2 þ νÞχ2;x þ ð1 − y2Þχ2;y� ¼ 0;

½ðx2 þ νÞχ;x�;x þ ½ð1 − y2Þχ;y�;y
− 4½ðx2 þ νÞχ;xU;x þ ð1 − y2Þχ;yU;y� ¼ 0; ð4:8Þ

while the complex Ernst equation (2.29) becomes

ðξξ̄ − 1Þf½ðx2 þ νÞξ;x�;x þ ½ð1 − y2Þξ;y�;yg
¼ 2ξ̄½ðx2 þ νÞξ2;x þ ð1 − y2Þξ2;y�: ð4:9Þ

The scalar field equation reads

½ðx2 þ νÞΦ;x�;x þ ½ð1 − y2ÞΦ;y�;y ¼ 0: ð4:10Þ

Finally, the metric function K defined by (4.4) can be
represented as

K ¼ KI þ KII ð4:11Þ

where, using (3.2), KI is defined by

∂xKI ¼
1−y2

x2þνy2

�
ΓðUÞþ1

4
e−4UΓðχÞþ νx

x2þν

�
;

∂yKI ¼
x2þν

x2þνy2

�
ΛðUÞþ1

4
e−4UΛðχÞþ νy

x2þν

�
; ð4:12Þ

or equivalently

∂xKI ¼
1 − y2

x2 þ νy2

�
ΓðUÞ − e4U

4ρ2
ΓðwÞ þ νx

x2 þ ν

�
;

∂yKI ¼
x2 þ ν

x2 þ νy2

�
ΛðUÞ − e4U

4ρ2
ΛðwÞ þ νy

x2 þ ν

�
; ð4:13Þ

with the following definitions

ΓðfÞ≡ xðx2 þ νÞf2;x − 2yðx2 þ νÞf;xf;y þ xðy2 − 1Þf2;y;
ΛðfÞ≡ yðx2 þ νÞf2;x þ 2xð1 − y2Þf;xf;y þ yðy2 − 1Þf2;y:

ð4:14Þ

The second part of the amplitude, KII, is defined by
Eq. (3.4),

∂xKII ¼ −
1 − y2

x2 þ νy2
ΓðΦÞ;

∂yKII ¼ −
x2 þ ν

x2 þ νy2
ΛðΦÞ: ð4:15Þ

A straightforward verification confirms that the condition
∂x∂yKI ¼ ∂y∂xKI is guaranteed by the Ernst equa-
tions (4.6), (4.8), while the similar condition for KII follows
from the scalar field equation (4.10). The second order
equation (2.31) can be represented in the form [after
combining it with (2.30)]
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ððx2þνÞ∂2
xxþx∂xþð1−y2Þ∂2

yy−y∂yÞKþ ν

x2þν

þðx2þνÞ
�
ð∂xUÞ2− ð∂xΦÞ2þe4U

4ρ2
ð∂xwÞ2

�

þð1−y2Þ
�
ð∂yUÞ2− ð∂yΦÞ2þe4U

4ρ2
ð∂ywÞ2

�
¼ 0: ð4:16Þ

As a result, to solve the problem, the first step is to
integrate (4.6) or (4.8) to find U and w, χ and then compute
KI from (4.12) or from (4.13). This determines the vacuum
metric (4.5) with K ¼ KI. The second step is to solve the
scalar field equation (4.10) and compute the dressing
amplitude KII from (4.15). Finally one promotes the
vacuum metric to the “dressed” one via replacing K ¼
KI → KI þ KII while U, w do not change. The second step
of this procedure is essentially trivial, as we shall now see.

V. HARMONIC FUNCTIONS

Solutions of the scalar field equation (4.10) are harmonic
functions

Φðx; yÞ ¼
X∞
l¼0

XlðxÞPlðyÞ; ð5:1Þ

where

½ðx2 þ νÞXlðxÞ0�0 ¼ lðlþ 1ÞXlðxÞ;
½ð1 − y2ÞPlðyÞ0�0 ¼ −lðlþ 1ÞPlðyÞ: ð5:2Þ

Solutions of the latter equation are the Legendre poly-
nomials, P0ðyÞ ¼ 1, P1ðyÞ ¼ y, P2ðyÞ ¼ 3y2 − 1, etc.
Harmonic functions are generically unbounded, but there
is one exceptional solution obtained in oblate coordinates,
where ν ¼ 1, in which case one has

X0ðxÞ¼AþC arctanðxÞ;
X1ðxÞ¼AxþC½x arctanðxÞþ1�;
X2ðxÞ¼Að3x2þ1ÞþC½ð3x2þ1ÞarctanðxÞþ3x�;… ð5:3Þ

The mode X0ðxÞ is bounded while all the others are
unbounded. For example, one can choose the integration
constants A, C such that

X1ðxÞ ¼ AþXþ
1 ðxÞ þ A−X−

1 ðxÞ with

X�
1 ðxÞ ¼

x
2
� 1

π
ðx arctanðxÞ þ 1Þ; ð5:4Þ

and when −∞ ← x → ∞ one has, respectively,

1

3πx2
þ… ← Xþ

1 ðxÞ → xþ 1

3πx2
þ…

x −
1

3πx2
þ… ← X−

1 ðxÞ → −
1

3πx2
þ… ð5:5Þ

so that each X�
1 stays finite either for x → ∞ or for x → ∞

but not in both limits.
If one is interested in globally regular solutions, then the

scalar field should be bounded. Therefore, the only
acceptable solution for the scalar field and the correspond-
ing dressing amplitude defined by (4.15) are

ν¼ 1∶ Φ¼ C arctanðxÞ⇒ KII ¼ −
C2

2
ln
x2 þ y2

x2 þ 1
: ð5:6Þ

VI. STATIC WORMHOLES

Let us see how the dressing procedure works for static
wormholes. As a first step, we choose the simplest solution
of the Ernst equations (4.6),

U ¼ χ ¼ 0; ð6:1Þ

in which case Eqs. (4.12) yield

KI ¼
1

2
ln
x2 þ νy2

x2 þ ν
: ð6:2Þ

Setting ν ¼ 1 and K ¼ KI yields the vacuum metric

ds2 ¼ −dt2 þ x2 þ y2

x2 þ 1

�
dx2 þ x2 þ 1

1 − y2
dy2

�

þ ðx2 þ 1Þð1 − y2Þdφ2: ð6:3Þ

Assuming that x ∈ ð−∞;∞Þ and t ¼ t=μ, x ¼ r=μ, this is
precisely the ring wormhole (1.2). This metric is locally flat
and the curvature is zero everywhere apart from the conical
singularity at the ring x ¼ y ¼ 0. The singularity is
detected by noting that the x, y part of the metric reduces
in the vicinity of x ¼ y ¼ 0 to

ðx2 þ y2Þðdx2 þ dy2Þ ¼ r2ðdr2 þ r2dϕ2Þ
¼ dR2 þ R2dψ2; ð6:4Þ

where x ¼ r cosϕ, y ¼ r sinϕ, R ¼ r2=2, ψ ¼ 2ϕ. This is
the flat 2D metric in polar coordinates R, ψ , however, since
ϕ ∈ ½0; 2π�, the angular variable ψ ∈ ½0; 4π�. Therefore,
one revolution around x ¼ y ¼ 0 in the x, y space corre-
sponds to two revolutions in the R, ψ space, hence (6.4)
describes the geometry of a cone with a negative angle
deficit of −2π. This conical singularity can be interpreted as
a result of the presence of a distributional matter source: a
cosmic string of negative tension extending along the
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azimuthal φ-direction [18,19]. In other words, this is a loop
or ring made of an infinitely thin cosmic string.
Notice that if the range of x was x ≥ 0, then x ¼ y ¼ 0

would be at the boundary of the x, y space and then one
would have ϕ ∈ ½0; π� and ψ ∈ ½0; 2π� in (6.4) so that the
conical singularity would be absent. Then (6.3) would be
just the Minkowski metric in spheroidal coordinates.
The presence of a distributional source can also be

detected by the equations. The second order equation for K
in (4.16) reduces for U ¼ w ¼ Φ ¼ 0 to

ððx2 þ 1Þ∂2
xx þ x∂x þ ð1 − y2Þ∂2

yy − y∂yÞK

þ 1

x2 þ 1
¼ 0: ð6:5Þ

If K is given by (6.2) then this equation is apparently
fulfilled. However, there is a subtlety due to the fact that

ð∂2
xx þ ∂2

yyÞ
1

2
lnðx2 þ y2Þ ¼ 2πδðxÞδðyÞ: ð6:6Þ

This implies that injecting K given (6.2) to (6.5) does not
actually give zero on the right but the delta function instead.
This corresponds to a distributional source that should be
added to the Einstein equations in order that (6.3) be the
solution. As a result, the metric (6.3) indeed has a singular
source. A more detailed analysis reveals that the distribu-
tional singularity is contained only in the G00 and Gφφ

components of the Einstein tensor, hence one needs to
introduce a source Tμν with the only nonvanishing T00 and
Tφφ components. This corresponds to a cosmic string along
the azimuthal direction.
Let us now add the scalar field. Choosing the solution

(5.6) for the scalar, one has

K ¼ KI þ KII ¼
1 − C2

2
ln
x2 þ y2

x2 þ 1
: ð6:7Þ

Therefore, the lnðx2 þ y2Þ term rendering the metric
singular can be removed by setting C2 ¼ 1, in which case

K ¼ 0; Φ ¼ � arctanðxÞ; ð6:8Þ

and the metric becomes

ds2 ¼ −dt2 þ dx2 þ x2 þ 1

1 − y2
dy2

þ ðx2 þ 1Þð1 − y2Þdφ2: ð6:9Þ

This is precisely the ultrastatic BE wormhole (1.1). We
obtain it via adding the scalar field to the vacuum ring
wormhole and the scalar screens the singular ring source.
The scalar itself is regular and the screening simply means
that the resulting geometry with the scalar is globally

regular and the curvature is everywhere bounded, so that no
extra sources in the equations are needed.
Two remarks are in order. First, the phantom scalar does

not create the wormhole as one might think but only makes
it regular, while the wormhole itself exists already in the
vacuum theory. Second, although the ring source in
the static solution seems to be completely screened by
the scalar, the situation is different in the stationary case, as
we shall see below. For stationary solutions the scalar field
also removes the singularity and makes the geometry
regular, but the memory of the ring source remains visible
in the metric. Therefore, the regular solutions “remember”
their descendance from the singular vacuum ring.
The other static BE solutions can be obtained similarly.

Choosing the complex Ernst potential ξ to be real and
setting

ξ ¼ tanhðψÞ ⇒ E ¼ 1 − ξ

1þ ξ
¼ e−2ψ ¼ e2U; ð6:10Þ

the Ernst equation (2.29) reduces to [38]

Δψ ¼ 0 ¼ ΔU; ð6:11Þ

hence the solution is the bounded harmonic function. In the
oblate coordinates, with ν ¼ 1, one has, with δ being an
integration constant,

U ¼ δ arctanðxÞ; ⇒ KI ¼
δ2 þ 1

2
ln
x2 þ y2

x2 þ 1
; ð6:12Þ

which determines the vacuum metric with K ¼ KI,

ds2 ¼ −e2δΨdt2 þ e−2δΨdl2;

dl2 ¼
�
x2 þ y2

x2 þ 1

�
1þδ2

�
dx2 þ x2 þ 1

1 − y2
dy2

�

þ ðx2 þ 1Þð1 − y2Þdφ2: ð6:13Þ

This is the oblate ZV metric describing a singular vacuum
ring [33,34]. It reduces to the locally flat metric (6.3) if
δ ¼ 0. The metric singularity at the ring can be removed by
adding the scalar dressing (5.6) with C2 ¼ 1þ δ2, which
yields K ¼ KI þ KII ¼ 0. Therefore, setting

U ¼ δΨ; Φ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
Ψ; K ¼ 0; ð6:14Þ

transforms (6.13) to

ds2¼−e2δΨdt2

þe−2δΨ
��

dx2þx2þ1

1−y2
dy2

�
þðx2þ1Þð1−y2Þdφ2

�
;

ð6:15Þ
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which coincides with the regular BE metric (2.12). Finding
its stationary version requires to find a spinning generali-
zation for the vacuum ZV metric (6.13) with a subsequent
dressing.

VII. SPINNING WORMHOLES—THE
RELATION TO THE KERR METRIC

Let us now start considering stationary generalizations
for the wormholes. As discussed above, to obtain a
spinning version of the ultrastatic BE solution (1.1) one
has to solve the same problem for the vacuum ring
wormhole (1.2) and then add the scalar field.
What is the stationary version for the ring wormhole?

The answer seems to be obvious because, as has already
been said and will be shown below, the static ring worm-
hole (1.2) is the special limit of the Kerr metric [35]. Hence
its stationary generalization is the Kerr metric itself.
Therefore, there remains just to add the scalar field to
the Kerr metric to obtain a spinning version of the ultra-
static BE wormhole. Let us see, however, what this gives.
The Kerr metric is obtained from the following solution

of the Ernst equation (4.9) [38],

ξ¼pxþ iqy where q2−νp2 ¼ 1 with ν¼�1: ð7:1Þ

Reading off U, χ from

E ¼ e2U þ iχ ¼ ξ − 1

ξþ 1
ð7:2Þ

and computing w and KI from (4.7), (4.12), one obtains

e2U ¼ 1 −
2ðpxþ 1Þ

ðpxþ 1Þ2 þ q2y2
; χ ¼ 2qy

ðpxþ 1Þ2 þ q2y2
;

w ¼ 2q
p

×
ðpxþ 1Þð1 − y2Þ
p2x2 þ q2y2 − 1

;

KI ¼
1

2
ln
p2x2 þ q2y2 − 1

x2 þ ν
þ K0: ð7:3Þ

Injecting this to (4.5) and then to (2.1), setting K ¼ KI and
choosing

μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νða2 −M2Þ

q
; p¼ μ

M
; q¼ a

M
; K0 ¼ − lnp;

x¼ r−M
μ

; t¼ t
μ
; y¼ cosϑ; ð7:4Þ

yields the Kerr metric in the standard dimensionful form,

ds2 ¼ −dt2 þ Σ
Δ
dr2 þ Σdϑ2 þ ðr2 þ a2Þsin2ϑdφ2

þ 2Mr
Σ

ðdt − asin2ϑdφÞ2; ð7:5Þ

where Σ ¼ r2 þ a2cos2ϑ and Δ ¼ r2 − 2Mr þ a2.
It is clear from (7.4) that ν ¼ −1 corresponds to the

a < M case when the black hole angular momentum is not
very high, while ν ¼ 1 corresponds to the supercritical case
when a > M and the even horizon is absent so that the
singularity is naked.
As known [39], the Kerr metric describes a wormhole

geometry with two asymptotic regions corresponding to the
limits r → ∞ and r → −∞. Geodesics can interpolate
between these two regions, unless they hit the curvature
singularity located at the ring in the equatorial plane, r ¼ 0,
θ ¼ π=2, where one has Σ ¼ 0.
Taking the M → 0 limit with a fixed a, which corre-

sponds to the oblate ν ¼ 1 regime and to μ ¼ a, the last
term in (7.5) disappears while the remaining three terms
reduce exactly to the ring metric (1.2). The range of the
radial coordinate remains the same as for the original Kerr
metric, hence the geometry still describes a wormhole but
becomes locally flat (and not flat as often stated in the
literature). As a result, the M → 0 limit of the Kerr metric is
the static ring wormhole (1.2) [35]. Therefore, the natural
stationary generalization for the latter is the Kerr metric
itself.
It follows that a spinning generalization for the BE

wormhole will be obtained if we add the scalar dressing to
the supercritical Kerr metric. Assuming that M < a in (7.5),
the original Papapetrou form of the Kerr metric corresponds
to the oblate coordinates, ν ¼ 1, and then the dressing
procedure is prescribed by (5.6),

Φ ¼ C arctanðxÞ;

K ¼ KI → K ¼ KI −
C2

2
ln
x2 þ y2

x2 þ 1
: ð7:6Þ

The agreement with the M → 0 limit requires that C2 ¼ 1
and the resulting metric is obtained by giving to the r, ϑ part
of the geometry (7.5) the conformal factor e2KII ¼
ðx2 þ 1Þ=ðx2 þ y2Þ. This amounts to the replacing in (7.5)

Σ
Δ
dr2þΣdϑ2

→
Δ

ðr−MÞ2þða2−M2Þcos2ϑ
�
Σ
Δ
dr2þΣdϑ2

�
: ð7:7Þ

For M ¼ 0 the denominator of the conformal factor cancels
against Σ and there remains dr2 þ ðr2 þ a2Þdϑ2 hence the
4-metric reduces to that for the ultrastatic BE wormhole in
(1.1). However, for M ≠ 0 the denominator introduces a
curvature singularity at r ¼ M, ϑ ¼ π=2, in addition to the
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original singularity at r ¼ 0, ϑ ¼ π=2. As a result, we do
get an exact stationary generalization of the BE solution,
but it is doubly singular. Therefore, one has to study other
stationary generalizations.

VIII. THE RELATION TO THE
TOMIMATSU-SATO METRICS

This relation is suggested by the following observation.
The oblate vacuum ZV metric (6.13) can be obtained by the
analytic continuation

x → ix; t → it; δ → iδ; ð8:1Þ

assuming also μ → iμ in (2.1), from the prolate ZP metric,

ds2 ¼ −
�
x − 1

xþ 1

�
δ

dt2 þ
�
x − 1

xþ 1

�
−δ
dl2;

dl2 ¼
�
x2 − y2

x2 − 1

�
1−δ2�

dx2 þ x2 − 1

1 − y2
dy2

�

þ ðx2 − 1Þð1 − y2Þdφ2: ð8:2Þ

This reduces to the Schwarzschild metric for δ ¼ 1. Its
stationary generalizations are explicitly known for δ ¼ 1
(Kerr metric) and for δ ¼ 2; 3…. These are the Tomimatsu-
Sato (TS) metrics [40,41] obtained from solutions of the
vacuum Ernst equation (4.9) in the prolate (ν ¼ −1) case
with the complex Ernst potential of the form

ξTSðp; q; δ; x; yÞ ¼
Pðx; yÞ
Qðx; yÞ : ð8:3Þ

Here P, Q are polynomials in x, y with coefficients
depending on two real parameters p, q subject to
p2 þ q2 ¼ 1. The powers of the polynomials depend on
δ, originally assumed to be integer, but the analysis can be
extended to arbitrary real δ [42]. In the static limit, q → 0,
one has

ETS ¼
ξTS − 1

ξTS þ 1
→

�
x − 1

xþ 1

�
δ

as q → 0; ð8:4Þ

which corresponds to the prolate ZV solution (8.2).
This suggests the following procedure: take the sta-

tionary TS solution for an arbitrary real δ, then perform
the analytic continuation (8.1), and finally add the scalar
dressing. This will give a spinning version of the BE
wormhole. The problem, however, is that the TS solution
for an arbitrary real δ is known only in a very implicit form
[42–50] which does not allow us to perform the analytic
continuation.
Any TS solution for ν ¼ −1 can also be analytically

continued via [51]

p → −ip; x → ix; ð8:5Þ

which yields a solution of the Ernst equation (4.9) for
ν ¼ þ1. However, this continuation is different from (8.1)
and does not give what we need. For the TS solution with
δ ¼ 0 the rule (8.1) would reduce just to x → ix, and this
would give a stationary extension for the ultrastatic vacuum
ring (1.2). However, the δ ¼ 0 TS solution is not known
explicitly either.
Last but not least, the “correct” stationary solution that

will be obtained below perturbatively does not have the TS
form of the Ernst potential. Therefore, the TS metrics are
not useful for us, although they do provide some stationary
solutions for our problem.

IX. SOLUTIONS OBTAINED WITH THE
HARMONIC ANSATZ

Exact stationary solutions can be obtained within the
special ansatz which reduces the nonlinear Ernst equations
to a single harmonic equation. Choosing the Ernst potential
in the form

ξ ¼ eiα tanhðψÞ; ð9:1Þ

one has

E ¼ 1 − ξ

1þ ξ
¼ e2U þ iχ; ð9:2Þ

where

e−2U ¼ coshð2ψÞ þ cosðαÞ sinhð2ψÞ;

χ ¼ −
sinðαÞ

cothð2ψÞ þ cosðαÞ : ð9:3Þ

The Ernst equations (2.29) assume the form

Δψ −
1

4
ð∇⃗αÞ2 sinhð4ψÞ ¼ 0;

Δαþ 4ð∇⃗α∇⃗ψÞ cothð2ψÞ ¼ 0: ð9:4Þ

If α ¼ const, these reduce simply to

Δψ ¼ 0: ð9:5Þ

A. NUT wormholes

The simplest stationary wormhole, first found in [23],
can be obtained by assuming that α ¼ const, setting ν ¼ 1,
and choosing

ψ ¼ −δ arctanðxÞ; Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ 1

p
arctanðxÞ: ð9:6Þ

Injecting this to (9.3) and computing the rotation amplitude
via (4.7) and the K-amplitude from (4.12), (4.15) yields
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w ¼ 2δ sinðαÞðy − y0Þ; K ¼ KI þ KII ¼ 0: ð9:7Þ

Choosing the integration constant y0 ¼ 1, the metric is

ds2 ¼ −e2U
�
dtþ 4δ sinðαÞsin2 ϑ

2
dφ

�
2

þ e−2U½dx2 þ ðx2 þ 1Þðdϑ2 þ sin2ϑdφ2Þ�; ð9:8Þ

with U defined by (9.3), (9.6). This stationary solution
reduces to the static BE solution (2.12) when α → 0, but for
α ≠ 0 it contains the Misner string—the conical singularity
along the θ ¼ π axis where sin2ðϑ=2Þ does not vanish. The
singularity appears because U and χ do not depend on y, in
which case the rotation field w obtained from (4.7) is linear
in y ¼ cosϑ and so cannot vanish both for y ¼ 1 and for
y ¼ −1. Although this singularity is actually quite harmless
[52,53], still its appearance is unpleasant.

B. Removing the NUT singularity

Still keeping α ¼ const, one can avoid the Misner string
by letting ψ depend both on x and y. In this case the rotation
field w is no longer a liner function of y and one can adjust
it to vanish both for y ¼ 1 and for y ¼ −1. However, since
y-depending harmonic functions are unbounded, the sol-
ution will no longer be asymptotically flat in both limits.
As the simplest choice, we consider the dipole mode

ψ ¼ AX−
1 ðxÞy ð9:9Þ

with X−
1 ðxÞ defined by (5.4). Using (5.5), we see that

A
�
x −

1

3πx2
þ…

�
y ← ψ → −

Ay
3πx2

þ…; ð9:10Þ

and injecting this to (9.3) it follows that U ranges in the
limits

jAyjxþ…←U→
Acosα
3πx2

yþ… as −∞←x→∞: ð9:11Þ

As U tends to minus infinity for x → −∞, the geometry is
not asymptotically flat in this limit. The rotation field is
determined from (4.7),

w ¼ A sinðαÞfðxÞð1 − y2Þ ð9:12Þ

with

fðxÞ ¼ ðx2 þ 1Þ
�
1

2
−
1

π
arctanðxÞ

�
−
x
π
; ð9:13Þ

which ranges within the limits

x2þ1þ 2

3πx
←fðxÞ→ 2

3πx
þ… as −∞←x→∞: ð9:14Þ

We see that the rotation field approaches zero for x → ∞
but diverges in the opposite limit. At the same time, the K-
amplitude will be everywhere regular if the scalar field is
chosen to be the superposition of the dipole and monopole
modes,

Φ ¼ arctanðxÞ þAX−
1 ðxÞy: ð9:15Þ

Equations (4.12), (4.15) then yield

K ¼ KI þ KII

¼ A
π

�
πð1 − yÞ þ 2 arctanðxÞy − 2 arctan

�
x
y

��
: ð9:16Þ

This function is bounded and ranges in the following limits

2Að1−yÞþ…←K→
2Ayð1−y2Þ

3πx3
þ… as −∞←x→∞:

ð9:17Þ

The resulting stationary geometry

ds2 ¼−e2Uðdt−A sinðαÞfðxÞsin2ϑdφÞ2
þ e−2Ufe2K½dx2þðx2þ 1Þdϑ2�þ ðx2þ 1Þsin2ϑdφ2g

ð9:18Þ

is free from the Misner string. It seems this solution has not
been described before. The geometry is asymptotically flat
for x → ∞, with the angular momentum

J ¼ Aμ

3π
sinðαÞ: ð9:19Þ

Curiously, the ADM mass vanishes because U ¼ Oð1=x2Þ
for x → ∞. This solution reduces to the ultrastatic BE
wormhole when A → 0 pointwise for x > −∞. Therefore,
at least when restricted to the x > −∞ region, it can be
viewed as a rotating generalization for the BE wormhole.
However, U and w diverge as x → −∞ hence the second
flat asymptotic is lost.

C. α ≠ const

Let us assume that α ¼ αðψÞ. Equations (9.4) then
reduce to

Δψ ¼ 1

4
α02 sinhð4ψÞð∇⃗ψÞ2;

tanhð2ψÞα00 þ 1

2
sinh2ð2ψÞα03 þ 4α0 ¼ 0; ð9:20Þ

which can be solved in the parametric form,
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coshð2ψÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
coshðYÞ;

tanðα − α0Þ ¼ η cothðYÞ; ð9:21Þ

where η, α0 are integration constants and Y is a harmonic
function, ΔY ¼ 0. This yields a family of new exact
stationary solutions. The case of constant α ¼ α0 consid-
ered above is recovered when η → 0. Injecting to (4.7) and
defining S ¼ η −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p
sinðα0Þ gives

w;x ¼ Sðy2 − 1ÞY;y; w;y ¼ Sðx2 þ νÞY;x: ð9:22Þ

Therefore, in order to avoid the Misner string, the harmonic
function Y should be y-dependent and hence unbounded.
The ψ-amplitude is then also unbounded and U in (9.3) is
unbounded too. Hence the solution cannot be asymptoti-
cally flat in both limits.
Other exactly solvable cases which similarly reduce to

the Laplace equation are U ¼ UðχÞ and S ¼ SðwÞ with
S ¼ ρ2e−2U. They always show the same problem—
solutions are not asymptotically flat.

X. SLOWLY ROTATING WORMHOLES—
EXPANSION AROUND THE

TRIVIAL VACUUM

One can try and approach the problem differently by
assuming the deviation from the static limit to be small,
without restricting the form of the fields. Let us start form
the static ring (1.2) described by the Ernst potential

ξ ¼ 0 ð10:1Þ

and try constructing its slowly rotating version. A slowly
rotating solution is expected to be a small deformation of
the static one, hence the Ernst potential ξ should be small.
Therefore, in the first order of the perturbation theory, it
should fulfill the linearized Ernst equation (2.29), hence

Δξ ¼ 0: ð10:2Þ

As discussed above, the solution must depend both on x
and y to avoid the NUT singularity. Therefore, it should be
unbounded, which means that the perturbative approach
breaks down. This may look like the no-go proof
forbidding the existence of slowly rotating wormholes.
Nevertheless, slowly rotating wormholes can be con-
structed since, in fact, ξ ¼ 0 is a “wrong vacuum” to
expand around. As we shall see below, the same static ring
wormhole can also be described by a different solution of
the Ernst equation,

ξ ¼ tanh ðlnðρÞÞ; ð10:3Þ

and the perturbation theory around this vacuum is well
defined. We shall see this in the next sections, while at the

time being let us see what happens if we expand around the
trivial vacuum ξ ¼ 0.
Let us choose the U, w variables and consider the

ultrastatic background (1.2) for which ν ¼ 1 and

U ¼ w ¼ 0: ð10:4Þ

Small deformations of this solutions are described by

U ¼ U
ð1Þ

þ U
ð2Þ

þ…; w ¼ w
ð1Þ þ w

ð2Þ þ… ð10:5Þ

Inserting this to (2.25) yields in the first order of perturba-
tion theory

ΔU
ð1Þ

¼ 0; ∇⃗
�
1

ρ2
∇⃗ w

ð1Þ
�

¼ 0; ð10:6Þ

where one can set U
ð1Þ

¼ 0, while the w-equation explicitly
reads

ðx2 þ 1Þwð1Þ;xx þ ð1 − y2Þwð1Þ;yy ¼ 0: ð10:7Þ

Its solution that vanishes at y2 ¼ 1 and is free from the
Misner string is

w
ð1Þ ¼ AfðxÞð1 − y2Þ; ð10:8Þ

where fðxÞ is the same is in (9.13). This solution coincides
with that in (9.12) up to redefining the integration constant,
hence it shows the same asymptotics which can be
written as

Aρ2þ…← w
ð1Þ

→
2Aρ2

3πx3
þ… as −∞← x→∞; ð10:9Þ

where ρ2 ¼ ðx2 þ 1Þ sin2 ϑ. The solution diverges for
x → −∞.
In the second order of perturbation theory one has

ΔU
ð2Þ

þ 1

2ρ2
ð∇⃗ w

ð1ÞÞ2 ¼ 0; ∇⃗
�
1

ρ2
∇⃗ w

ð2Þ
�

¼ 0: ð10:10Þ

This is solved by setting w
ð2Þ ¼ 0 and choosing

U
ð2Þ

¼ F0ðxÞ þ F2ðxÞy2; ð10:11Þ

which yields two ordinary differential equations (ODE) for
F0ðxÞ and F2ðxÞ. Integrating these equations, the integra-
tion constants can be adjusted such that F0ðxÞ → 0 and
F2ðxÞ → 0 for x → þ∞, but in the opposite limit these
function inevitably diverge, which yields
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−
A2

4
x2ð1þ y2Þ þ… ← U

ð2Þ
→

A2

45πx3
ðy2 − 1Þ

as −∞ ← x → ∞: ð10:12Þ

Therefore, the rotating excitations cannot be small and
diverge for x → −∞. However, there is a different way to
carry out the perturbation theory that allows one to keep
everything finite.

XI. DUALIZATION

Let ðU;wÞ fulfill the Ernst equations

ΔU þ e4U

2ρ2
ð∇⃗wÞ2 ¼ 0; ∇⃗

�
e4U

ρ2
∇⃗w

�
¼ 0: ð11:1Þ

The corresponding spacetime metric can be expressed in
two different forms, which we shall call the dual t and φ
forms:

t∶ ds2 ¼ −e2Uðdt − wdφÞ2
þ e−2Ufe2kðdρ2 þ dz2Þ þ ρ2dφ2g

φ∶ ¼ −ρ2e−2Udt2 þ e−2Ue2kðdρ2 þ dz2Þ
þ e2Uðdφ − wdtÞ2; ð11:2Þ

where

e2U¼ ρ2e−2U−w2e2U; we2U¼−we2U; k−U¼ k−U:

ð11:3Þ

Notice that e2U is the norm of the timelike Killing vector
∂=∂t while e2U is the norm of the azimuthal Killing vector
∂=∂φ. In addition, ðU;wÞ fulfill exactly the same Ernst
equations as ðU;wÞ in (12.10),

ΔUþ e4U

2ρ2
ð∇⃗wÞ2 ¼ 0; ∇⃗

�
e4U

ρ2
∇⃗w

�
¼ 0; ð11:4Þ

while k fulfills the same equation as in (2.30), up to
replacing U → U, w → w, k → k. As a result, the ampli-
tudes ðU;w;kÞ determine not only the φ-form of the same
solution (11.2), but also a new solution with the metric

t∶ ds2 ¼ −e2Uðdt − wdφÞ2
þ e−2Ufe2kðdρ2 þ dz2Þ þ ρ2dφ2g

φ∶ ¼ −ρ2e−2Udt2 þ e−2Ue2kðdρ2 þ dz2Þ
þ e2Uðdφ − wdtÞ2: ð11:5Þ

This solution can formally be obtained from (11.2) by the
complex change of coordinates

t → iφ; φ → it: ð11:6Þ

The inverse transformation ðU;wÞ → ðU;wÞ has exactly
the same structure as (11.3),

e2U ¼ρ2e−2U−w2e2U; we2U ¼−we2U; k−U¼k−U:

ð11:7Þ

Summarizing, solutions of the Ernst equations come in
pairs ðU;wÞ and ðU;wÞ related to each other via (11.3),
(11.7). Each pair determines two different geometries
(11.2) and (11.5). Equivalently, each solution ðU;wÞ of
the Ernst equations determines two different geometries:
either the t-geometry defined in (11.2) or the φ-geometry
defined in (11.5).
Asymptotically flat geometries correspond to solutions

ðU;wÞ of the Ernst equations for which e2U → 1 at infinity,
but also to solutions ðU;wÞ of the Ernst equations for which
ρ2e−2U → 1 at infinity. We have considered above the first
option by choosing U ¼ w ¼ 0 as the background vacuum
configuration corresponding to the ultrastatic wormhole.
However, the same background can be described in the dual
way by e2U ¼ ρ2, w ¼ 0.

A. Exact solutions

Let us first see if the dual description allows one to
obtain new exact solutions. Introducing the twist potential χ
related to U, w in the same way as in (2.26), one can use for
U, χ the same harmonic ansatz as in (9.3). This ansatz
expresses the solution in terms of ψ , α and finally in terms
of a harmonic function Y via (9.21). To preserve the
asymptotic condition e2U → ρ2, one may choose, for
example,

Y ¼ B lnðρÞ þ A arctanðxÞ; ð11:8Þ

with a suitably adjusted coefficient B. This yields a family
of new exact stationary solutions. However, injecting into
(9.22) determines the rotation field

w ¼
�
η −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

q
sinðα0Þ

�
ðAþ 2BxÞyþ w0; ð11:9Þ

and this is an unbounded function of x that spoils the
asymptotic flatness. This function becomes bounded if
B ¼ 0 but then the condition e2U → ρ2 is not fulfilled.
Therefore, the φ-version of the solution is not asymptoti-
cally flat, while its t-version is similar to (9.8) and contains
the Misner string. If one modifies (11.8) by adding extra
terms similar to (9.9), this destroys the asymptotic flatness
in both settings. Therefore, one might conclude that the
dual formulation does not give anything interesting, at least
within the harmonic ansatz. However, the situation changes
if one abandons the ansatz.
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XII. PERTURBATIVE ANALYSIS IN THE
DUAL SETTING

Let us start from the metric (11.2) in the φ-form.
Defining

e2V ¼ ρ2e−2U; e2γ ¼ ρ2e2k−4U; ð12:1Þ

the metric becomes

ds2 ¼ −e2Vdt2 þ e−2Vðe2γðdρ2 þ dz2Þ þ ρ2ðdφ − wdtÞ2Þ:
ð12:2Þ

The Ernst equations (11.4) assume the form

ΔV ¼ ρ2

2
e−4Vð∇⃗wÞ2; ∇⃗ðρ2e−4V∇⃗wÞ ¼ 0; ð12:3Þ

while Eq. (2.30) reduces to

1

ρ
∂ργ ¼ ð∂ρVÞ2 − ð∂zVÞ2 þ

ρ2

4
e−4V ½ð∂zwÞ2 − ð∂ρwÞ2�

− ð∂ρΦÞ2 þ ð∂zΦÞ2;
1

2ρ
∂zγ ¼ ∂ρV∂zV −

ρ2

4
e−4V∂ρw∂zw − ∂ρΦ∂zΦ: ð12:4Þ

Passing to the spheroidal coordinates (4.1) yields

ds2 ¼ −e2Vdt2 þ e−2V
�
e2K

�
dx2 þ x2 þ ν

1 − y2
dy2

�

þ ðx2 þ νÞð1 − y2Þðdφ − wdtÞ2
�

ð12:5Þ

with

e2K ¼ x2 þ νy2

x2 þ ν
e2γ: ð12:6Þ

The Ernst equations (12.3) read

½ðx2 þ νÞV;x�;x þ ½ð1 − y2ÞV;y�;y ¼
1

2
e−4Vðx2 þ νÞð1 − y2Þ½ðx2 þ νÞw2

;x þ ð1 − y2Þw2
;y�;

½ðx2 þ νÞ2w;x�;x
x2 þ ν

þ ½ð1 − y2Þ2w;y�;y
1 − y2

¼ 4½ðx2 þ νÞw;xV;x þ ð1 − y2Þw;yV;y�: ð12:7Þ

Setting K ¼ KI þKII one obtains from Eq. (12.4)

∂xKI ¼
1 − y2

x2 þ νy2

�
ΓðVÞ − 1

4
ðx2 þ νÞð1 − y2Þe−4VΓðwÞ þ νx

x2 þ ν

�
;

∂yKI ¼
x2 þ ν

x2 þ νy2

�
ΛðVÞ − 1

4
ðx2 þ νÞð1 − y2Þe−4VΛðwÞ þ νy

x2 þ ν

�
; ð12:8Þ

with the same notation as in (4.14), whereasKII fulfills the
same equation as KII in (4.15),

∂xKII ¼ −
1 − y2

x2 þ νy2
ΓðΦÞ;

∂yKII ¼ −
x2 þ ν

x2 þ νy2
ΛðΦÞ: ð12:9Þ

A. Expansion around the dual vacuum

Let us start from the static solution of (12.7),

ν ¼ 1; V ¼ w ¼ 0: ð12:10Þ

This corresponds not the trivial Ernst potential e2Uþ iχ¼1

but rather to e2U þ iχ ¼ ρ2, which still describes the
ultrastatic BE wormhole or the vacuum ring wormhole,
depending on whether the scalar field is added or not.
Consider small deformations of (12.10),

V ¼ V
ð1Þ

þ V
ð2Þ

þ…; w ¼ w
ð1Þ þ w

ð2Þ þ… ð12:11Þ

Inserting this to (12.3) yields ΔV
ð1Þ

¼ 0, whose solution can

be chosen to be V
ð1Þ

¼ 0, while w
ð1Þ

satisfies the equation

∇⃗ðρ2∇⃗ w
ð1ÞÞ ¼ 0; ð12:12Þ

which reads explicitly

½ðx2 þ 1Þ2wð1Þ;x�;x
x2 þ 1

þ ½ð1 − y2Þ2wð1Þ;y�;y
1 − y2

¼ 0: ð12:13Þ

We remember that the rotation field w in the t-form of the
metric should be proportional to sin2 ϑ to avoid the NUT
singularity. However, the same condition is not needed for
the rotation field w in the φ-form, since the ðdφ − wdtÞ2
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element of the metric (12.5) is multiplied by 1 − y2 ¼
sin2 ϑ. Therefore, we can assume w

ð1Þ
to depend only on x

(otherwise solutions of (12.13) are unbounded), which
yields

w
ð1Þ ¼ A

fðxÞ
x2 þ 1

≡AWðxÞ; ð12:14Þ

with fðxÞ defined in (9.13). When compared with the
previously studied cases (9.12), (10.8), the rotation field
now contains an additional factor of 1=ðx2 þ 1Þ, hence
one has

A
�
1þ 2

3πx3
þ…

�
← w

ð1Þ
→ A

2

3πx3
þ…

as −∞ ← x → ∞; ð12:15Þ

so that w
ð1Þ

is everywhere bounded and approaches a constant
value as x → −∞. This may seem surprising, since the
previously obtained perturbative solution (10.8) for the

rotation field w
ð1Þ

was unbounded for x → −∞, where

w
ð1Þ

∼ ρ2. However, the two results actually agree, because
the duality transformation (11.3) reduces in the first order
of perturbation theory to

e2U ¼ ρ2e−2U ¼ e2V ¼ 1; w
ð1Þ ¼ −

w
ð1Þ

ρ2
: ð12:16Þ

Dividing w
ð1Þ

in (10.8) by ρ2 yields precisely w
ð1Þ

in (12.14),
hence calculations in the t-setting and in the φ-setting

agree. Since the rotation field w
ð1Þ

is unbounded whereas w
ð1Þ

is bounded, the perturbation theory applies in the φ-setting
but not in the t-setting.
Now, in the φ-setting there is an important “twisting”

symmetry of the line element (12.2),

w → w ¼ w − ω; φ → φ ¼ φ − ωt; ð12:17Þ

with a constant ω, which amounts to passing to a rotating

frame. Applying this with ω ¼ w
ð1Þð−∞Þ ¼ A yields the

rotation field in the new frame,

A
2

3πx3
þ… ← w

ð1Þ
→ A

�
−1þ 2

3πx3
þ…

�
: ð12:18Þ

Comparing with (12.15), we see that

w
ð1Þð−xÞ ¼ −w

ð1ÞðxÞ ð12:19Þ

so that the rotation field is antisymmetric under the
combined action of the reflection in the wormhole throat,
x → −x, and the twisting (12.17). This suggests using two
frames: the frame where the rotation fulfills (12.15) should
be used in the x > 0 region, while the frame where the
rotation fulfills (12.18) should be used in the x < 0 region.
Using these two frames, the rotation field approaches zero
in both limits, for x → ∞ and for x → −∞.
Let us now continue to the second order of perturbation

theory, where one can set w
ð2Þ ¼ 0, while the amplitude V

ð2Þ

fulfills the equation

ΔV
ð2Þ

¼ ρ2

2
ð∇⃗ w

ð1ÞÞ
2

; ð12:20Þ

or explicitly

½ðx2þ1ÞV
ð2Þ

;x�;xþ½ð1−y2ÞV
ð2Þ

;y�;y ¼
2A2

π2
1−y2

ðx2þ1Þ2 : ð12:21Þ

The variables here can be separated by setting

V
ð2Þ
ðx; yÞ ¼ A2½V

ð2Þ
0ðxÞ þ V

ð2Þ
2ðxÞy2�: ð12:22Þ

This yields ordinary differential equations for V
ð2Þ

0ðxÞ and

V
ð2Þ

2ðxÞ which admit an everywhere bounded solution. The
procedure can than be continued to higher orders of the
perturbation theory. In every order the variables can be
separated similarly, and the integration constants of the
ordinary differential equations which appear are uniquely
fixed by the requirement that the solution should be
bounded. As a result, A is the only integration constant
which remains.

B. Fourth order perturbative solution

Skipping the details, here is the solution up to the fourth
order terms

w ¼ Aw
ð1Þ

0ðxÞ þA3½wð3Þ0ðxÞ þ w
ð3Þ

2ðxÞy2� þOðA5Þ;

V ¼ A2½V
ð2Þ

0ðxÞ þ V
ð2Þ

2ðxÞy2�

þA4½V
ð4Þ

0ðxÞ þ V
ð4Þ

2ðxÞy2 þ V
ð4Þ

4ðxÞy4�
þOðA6Þ; ð12:23Þ

where the coefficient functions can be represented as
follows,
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w
ð1Þ

0ðxÞ ¼
1

2
ð1 −WÞ;

w
ð3Þ

0ðxÞ ¼ −
1

8
ðx2 þ 1ÞðW2 − 1ÞW −

x
3X

;

w
ð3Þ

2ðxÞ ¼
1

8
ð5x2 þ 1ÞðW2 − 1ÞW þ xð6W2 − 1Þ

3X
þ 2W

X2
;

V
ð2Þ

0ðxÞ ¼
1

8
ðx2 þ 1ÞðW2 − 1Þ;

V
ð2Þ

2ðxÞ ¼ −
1

8
ð3x2 þ 1ÞðW2 − 1Þ − xW

X
−

1

X2
;

V
ð4Þ

0ðxÞ ¼
1

64
ðx2 þ 1Þ2ðW2 þ 3ÞðW2 − 1Þ þ xW

6π
;

V
ð4Þ

2ðxÞ ¼ −
1

32
ðx2 þ 1Þð5x2 þ 1ÞðW2 þ 3ÞðW2 − 1Þ

−
xWð3W2 þ 7Þ

6π
−
3W2 þ 5

6πX
;

V
ð4Þ

4ðxÞ ¼
1

192
ð35x4 þ 30x2 þ 3ÞðW2 þ 3ÞðW2 − 1Þ

þ xW
18X

½3ð5x2 þ 3ÞW2 þ 20x2 þ 14�

þ 1

18X2
½9ð3x2 þ 1ÞW2 þ 13x2 þ 7�

þ 4xW
3X3

þ 2

3X4
; ð12:24Þ

with the abbreviations X ¼ πðx2 þ 1Þ and

W ¼ 2

π

�
arctanðxÞ þ x

x2 þ 1

�
¼ 2

π
½x arctanðxÞ�0: ð12:25Þ

This function is antisymmetric, WðxÞ ¼ −Wð−xÞ, and one
has for −∞ ← x → ∞

−1 −
4

3πx3
þ… ← WðxÞ → þ1 −

4

3πx3
þ… ð12:26Þ

As a result, wð−x; yÞ ¼ A − wðx; yÞ and Vð−x; yÞ ¼
Vðx; yÞ. This yields the lowest terms of the perturbative
expansion of the solution of the Ernst equations, and higher
orders can be included similarly. All terms in (12.23) are
bounded. One has for x → �∞

V ¼ −A2

�
1þ 2

5
A2 þ…

�
×

1

3πjxj þO
�
1

x3

�
;

w ¼ wð�∞Þ þ 2A
�
1þ 2

5
A2 þ…

�
×

1

3πx3
þO

�
1

x4

�
;

ð12:27Þ

where wð∞Þ ¼ 0 and wð−∞Þ ¼ A. Computing e2U ¼
ρ2e−2V and injecting together with w to (4.7) yields the
twist potential

χ ¼ 2A
3π

yð3 − y2Þ þA3y

�
4

15π
ð2y4 − 5y2 þ 5Þ

þ ð1 − y2Þ2
�
X
4π2

ðW2 − 1ÞðxXW þ 2Þ þ 2x2

3π

��

þOðA5Þ; ð12:28Þ

from where one can see that the complex Ernst potential
e2U þ iχ ¼ ρ2e−2V þ iχ is not of the Tomimatsu-Sato type
since it contains powers of x, y and also of arctanðxÞ.
To complete the line element, there remains to determine

the K-amplitude. Integrating (12.8) yields

KI ¼ Kreg þKsing; ð12:29Þ

where the regular part is

Kreg ¼
�
A2 þA4

�
1

3
ð2 − y2Þ þ y2W2 þ y2xXWðW2 − 1Þ

þ X2

32
½y2 − 1þ x2ð9y2 − 1Þ�ðW2 − 1Þ2

�
þOðA6Þ

�

×
1

2π2
y2 − 1

x2 þ 1
; ð12:30Þ

and the singular part

Ksing¼
�
1−

A2

π2
þ A4

3π2
þOðA6Þ

�
×
1

2
ln
x2þy2

x2þ1
: ð12:31Þ

If we assume that Φ ¼ 0 then K ¼ KI and the above
solution describes the spinning generalization of the
vacuum ring wormhole. If A ¼ 0, then the 4-metric
(12.5) becomes flat everywhere away from the circle x ¼
y ¼ 0 where the singularity of the Ricci tensor is located.
As explained above, this singularity can be interpreted as a
result of the distributional ring source. For A ≠ 0 the ring
rotates in the equatorial plane, the geometry is then no
longer flat and in addition to the distributional part the
curvature develops a volume part containing components of
the Riemann tensor which diverge as one approaches the
ring. However, the solution remains a wormhole with
two asymptotically flat regions and the geodesics can
interpolate between these regions, unless they hit the ring
singularity.
Let us finally add the scalar field according to (5.6),

Φ ¼ C arctanðxÞ ⇒ KII ¼ −
C2

2
ln
x2 þ y2

x2 þ 1
: ð12:32Þ

Comparing with (12.31), we see that KII þKsing ¼ 0 and
hence the metric singularity contained in Ksing is cancelled
if the integration constant is chosen as
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C2 ¼ 1 −
A2

π2
þ A4

3π2
þOðA6Þ: ð12:33Þ

One has then K ¼ Kreg and the spacetime geometry
becomes everywhere regular because all three metric
functions V, w, K in the lime element (12.5) are bounded.
One has for x → �∞

K ¼ Kreg ¼
�
A2 þ 4

9
A4 þOðA6Þ

�
×
y2 − 1

2πx2
þO

�
1

x3

�
:

ð12:34Þ

One can say that the singular ring source is screened by the
scalar, which yields the globally regular spinning gener-
alization for the ultrastatic BE wormhole. Its curvature is
everywhere bounded and approaches zero in the two
asymptotic regions.

C. The ADM mass and angular momentum

If one uses just one coordinate frame, than the metric
components

g00 ¼ −e2U ¼ −e2V þ ρ2w2e−2V;

g0φ ¼ −ρ2we−2V ð12:35Þ

are unbounded since for −∞ ← x → ∞ one has

w2ð−∞Þ × ρ2 ← g00 → −1;

−wð−∞Þ × ρ2 ← g0φ → 0: ð12:36Þ

The spacetime contains an ergoregion where g00 ¼ −e2U
becomes positive and the timelike Killing vector becomes
spacelike. Therefore, the Newtonian potential U is not
globally defined. However, there exists a linear combina-
tion of the two Killing vectors which remains timelike in
the ergoregion, while the metric components can be made
finite for x < 0 by the twisting transformation (12.17),
(12.18).
This suggests using two rotation fields wþ ¼ w and

w− ¼ w − wð−∞Þ related to each other via (12.17),
(12.18) with ω ¼ wð−∞Þ such that for −∞ ← x → ∞
one has

A ← wþ → 0; 0 ← w− → −A: ð12:37Þ

One useswþ to compute the metric components g00 and g0φ
in the x > 0 region and one uses w− to compute them in the
x < 0 region. The metric components are then finite
everywhere and one can compute the ADM mass M and
angular momentum J. These are the same for the ring
wormhole and for the BE wormhole, since g00 and g0φ are
the same. One has for x → �∞

−g00 ¼ e2V − ρ2w2
�e

−2V ¼ 1 −
2M�
jxj þ…;

−g0φ ¼ ρ2w�e−2V ¼ 2J�sin2ϑ
jxj þ… ð12:38Þ

This determines the mass M� and angular momentum J�
measured, respectively, at x → �∞. Notice that the denom-
inators in (12.38) should contain jxj and not x since the
mass and angular momentum should be invariant under the
coordinate transformation x → −x.
It is important to emphasize that g00 and g0φ and hence

M� and J� are determined by the vacuum equations and
are insensitive to the scalar field. Including the latter only
modifies the K-amplitude without affecting g00 and g0φ.
Using (12.27) in (12.38) and restoring the length scale

gives the dimensionful values,

M≡M� ¼ μ

3π
A2

�
1þ 2

5
A2 þ…

�
;

J� ¼ � μ

3π
A
�
1þ 2

5
A2 þ…

�
; ð12:39Þ

so that the mass is the same and positive in each asymptotic
region, while the angular momentum changes sign when
one passes from one region to the other one. The latter
property is clear, since if the hole rotates in the clockwise
direction, say, when viewed from one asymptotic region,
then it rotates in the opposite direction when viewed from
the other region.
One can establish an exact Smarr-type relation between

M and J [27]. The two Ernst equations (12.3) can be
combined to yield

ΔV ¼ ∇⃗
�
ρ2

2
e−4Vw∇⃗w

�
: ð12:40Þ

Integrating this over x from x1 to x2 and over y from −1 to 1
one obtains

Z
1

−1
dyðx2 þ 1Þ∂xV

				
x2

x1

¼ 1

2

Z
1

−1
dyð1 − y2Þðx2 þ 1Þ2e−4Vw∂xw

				
x2

x1

: ð12:41Þ

Choosing first x1 ¼ 0, x2 ¼ ∞ and next x1 ¼ −∞, x2 ¼ 0,
using (12.27) and the fact that V is a symmetric function of
x, it is not difficult to see that

M ¼ AJþ: ð12:42Þ

Since wð−x; yÞ ¼ A − wðx; yÞ, it follows that wð0; yÞ ¼
A=2≡ w0 hence the rotation field assumes a constant
value in the wormhole throat—the throat angular velocity.
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This depends on the frame. For the two rotation fields
wþ ¼ w and w− one has w0

� ¼ �A=2, which allows one to
represent (12.42) as

M ¼ 2w0
�J�: ð12:43Þ

This, however, does not mean that M is a linear function of
J, since the proportionality coefficient is J-dependent. As
seen from (12.39), one has for small J

M ¼ 3π

μ
J2 þOðJ4Þ: ð12:44Þ

This is worth comparing with the expression for the
rotational energy of a nonrelativistic rigid body,

Erot ¼
J2

2I
; ð12:45Þ

where I is the moment of inertia. Such a relation is expected
for the ring wormhole, since it contains the extended matter
source—the cosmic string loop. For a slow rotation, this
spinning string should exhibit the standard nonrelativistic
relation. It is however quite remarkable that the spinning
BE wormhole also shows exactly the same relation (12.44),
because it has the same M and J as the ring wormhole.
Although it is globally regular, it “remembers” its descend-
ance from the ring wormhole.
This observation is important. Although the BE worm-

hole contains the scalar field, the latter is spherically
symmetric and does not carry rotational degrees of free-
dom. The rotation is supported by the ring source and is
encoded in the g00 and g0φ metric components which are
insensitive to the scalar. The scalar only modifies the grr
and gϑϑ components to hide the source and make the
geometry regular. However, the source is still visible in g00,
g0φ and the BE wormhole “knows” about it. Therefore, the
essential features, such as the wormhole structure itself and
the rotation, originate in the vacuum theory and exist due to
the ring source and not due to the phantom scalar field as
one might have thought. The only role of the scalar is to
render the geometry regular.

XIII. CONCLUDING REMARKS—TOWARD
THE EXACT SOLUTION?

Summarizing, we have described a number of possible
ways to construct the stationary generalization for the static
BE wormholes supported by the phantom scalar field.
Perhaps not immediately interesting physically, since the
BE wormhole is unstable [54], this problem is important
conceptually. Indeed, it is important to understand why it is
so difficult to construct the stationary version of the
solution whose static limit (1.1) looks much simpler than
the Schwarzschild geometry.

We find that the difficulty is actually not related to the
scalar field, which can be eliminated within the Eris-Gurses
procedure. The problem reduces to constructing the sta-
tionary generalization for the vacuum ring wormhole via
solving the vacuum Ernst equations, and it is the latter step
which is difficult. Even though the static wormhole
geometry (1.2) is locally flat, its stationary generalization
is difficult to obtain and it is of a previously unknown type.
Using the special ansatz to solve the Ernst equations, we

have constructed exact solutions, but they are not globally
regular. The perturbative expansion around the trivial
solution of the Ernst equation which describes the static
limit, E ¼ e2U þ iχ ¼ 1, contains unbounded functions
and is ill defined. However, the static limit is also described
by e2U þ iχ ¼ ρ2 where e2U and χ are the norm and twist of
the axial Killing vector. The perturbative expansion around
this vacuum is described by (12.23) and contains only
bounded functions. Although not a proof, this gives a good
indication for the existence of a fully nonperturbative
solution. An additional indication is provided by the
numerical analysis in [27,28], which shows a numerical
solution whose properties seem to correspond to our
solution. This gives an extra evidence in favor of its
existence.
The solution describes the spinning generalization for

the locally flat vacuum ring wormhole and that for the
ultrastatic BE wormhole, depending on whether the scalar
field is included or not. The spinning wormhole interpo-
lates between two asymptotically flat regions and is
characterized by a nonzero ADM mass proportional to
the square of the angular momentum, which is typical for a
rotating extended source. The ring wormhole shows the
ring singularity but the spinning BE wormhole is globally
regular. Apart from this difference, the singular and regular
solutions have identically the same g00 and g0φ metric
components and the same ADM mass and angular momen-
tum determined by the ring source and not by the phantom
scalar field as one might have expected. The only role of the
scalar is to screen the metric singularity at the ring source
and make the geometry globally regular, but the memory of
the source remains in g00 and g0φ.
Let us finally remember that our initial intension was to

obtain the solution exactly. Therefore, there remains the
question of weather the perturbative solution (12.23) could
be promoted to an exact one. However, since the expansion
contains powers of x and y and also of arctanðxÞ, there is
little hope to guess the exact form of the solution, while the
other known methods to get the solution do not seem to
work. For example, it is known that the Ernst equations are
equivalent to one fourth order PDE for the metric function k
[44]. For the Tomimatsu-Sato solutions, as for example for
the Kerr metric in (7.3), one always has kðx; yÞ ¼ kðηÞ with

η ¼ x2 þ νy2

x2 þ ν
:
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This implies that the fourth order equation for k actually
becomes an ODE, which allows one to obtain exact
solutions [42–45]. However, neither the function K in
(12.30), (12.31) nor the amplitude k or its φ-counterpart k
defined by (11.2) expressed by

k ¼ Kþ lnð1 − ρ2w2e−4VÞ − 1

2
lnðηÞ;

k ¼ K − 2V þ 1

2
ln
ρ2

η

depend exclusively on η. Therefore, neither k not k satisfy
an ODE, hence this approach does not allow to get the
solution exactly.
The static ring wormholes described by the oblate ZV

metrics can be promoted to the stationary sector by
applying the solution generating methods, but this yields
nonasymptotically flat solutions with an electric field
[29,30]. It is also not obvious if the inverse scattering

method [55] could be helpful, although this possibility
deserves a separate study.
The reason for the difficulties in finding the exact

solution is clear. The analytically known stationary metrics
like Kerr describe spinning states of zero-dimensional
objects—massive points. However, the static vacuum
geometry (1.2) has an extended one-dimensional source:
the ring. Therefore, constructing its stationary version
should be a more complex problem that may not have
an analytical solution.
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