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The tidal response of a compact object is a key gravitational-wave observable encoding information
about its interior. This link is subtle due to the nonlinearities of general relativity. We show that considering
a scattering process bypasses challenges with potential ambiguities, as the tidal response is determined by
the asymptotic in- and outgoing waves at null infinity. As an application of the general method, we analyze
scalar waves scattering off a nonspinning black hole and demonstrate that the low-frequency expansion of
the tidal response reproduces known results for the Love number and absorption. In addition, we discuss
the definition of the response based on gauge-invariant observables obtained from an effective action
description, and clarify the role of analytic continuation for robustly (i) extracting the response and the
physical information it contains, and (ii) distinguishing high-order post-Newtonian corrections from finite-
size effects in a binary system. Our work is important for interpreting upcoming gravitational-wave data for
subatomic physics of ultradense matter in neutron stars, probing black holes and gravity, and looking for
beyond-standard-model fields.
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I. INTRODUCTION

The ever-increasing number of gravitational-wave detec-
tions of merging binary systems [1–4] has revealed a wealth
of new insights and provided an unprecedented tool for
fundamental physics, astrophysics, and cosmology [5–8]. In
particular, gravitational waves encode unique information
about the nature and interiors of compact objects. During the
clean, cumulative binary inspiral epoch, these imprints arise
from spin-induced deformations and a variety of tidal
interactions. Tidal effects are especially interesting because
they correspond to the excitation of isolated quasinormal
modes of the compact objects driven by the companion’s
time-varying tidal field due to the orbital motion. The
dominant tidal signatures in gravitational waves depend
on the objects’ internal structure through a characteristic
tidal deformability parameter, first measured for the binary
neutron star event GW170817 [7]. Determining tidal
parameters such as deformability is of major interest for
understanding the long-sought properties of matter at supra-
nuclear densities in neutron stars [9,10], probing the nature
of black holes and constraining quantum corrections to their
horizons [11], tests of gravity [12,13], and looking for
beyond-standard-model fields in the cosmos [14,15].
In the next years, the gravitational-wave detectors

will continue to increase in sensitivity [16], discovering

more diverse populations of compact objects and perform-
ing higher accuracy studies of nearby events. Envisioned
next-generation detectors [17–19] will improve upon the
sensitivity of current instruments by an order of magnitude
and enable precision physics with gravitational waves. To
realize this science potential requires accurate theoretical
models, which play a crucial role since the data analysis
cross-correlates templates with the data [20,21]. For the
events analyzed to date, systematic uncertainties in the
modeling and interpretation of the signals have been
subdominant compared to the statistical errors, as far as
could be quantified [2]. As the statistical errors decrease in
the near future, however, shortcomings in the modeling will
become more prominent. There is thus an urgent need to
address lingering theoretical challenges that impact our
interpretation of the gravitational wave signals, especially
with regard to finite-size effects.
The relativistic tidal deformability characterizing the

dominant finite-size effects in the gravitational waves is
defined as the ratio of the induced multipolar deforma-
tion of a compact object’s exterior spacetime to the
perturbing tidal field of the companion [22]. In the static
limit, when the perturbing frequency is far below a mode
resonance [23], it reduces to the relativistic tidal Love
numbers [22,24]. Its computation is based on perturba-
tion theory for compact objects [23,25–27], with many
different examples of compact objects studied to date,
e.g., [14,15,25,28–34]. Recent work [35–45] has revealed a
number of intricacies in addressing questions such as: How*g.f.crecikeinbaum@uu.nl
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are the measurable tidal signatures in gravitational waves
related to the response of a compact object obtained from
perturbation theory? Is the tidal deformability identically
zero for all black holes in general relativity and four
spacetime dimensions?
Despite recent progress, several concerns remain, for

instance, about degeneracies of tidal effects with high post-
Newtonian (PN) order terms describing relativistic correc-
tions to the dynamics of point masses. The problem is the
following, as described in detail in [35]. The tidally induced
multipole moments can be defined from the exterior
spacetime of the perturbed compact object in asymptoti-
cally cartesian mass-centered coordinates [46], which is
equivalent to other definitions of spacetime multipole
moments [47]. For instance, the metric component gtt
(the analog of the Newtonian gravitational potential) has
an asymptotic expansion at large distances r → ∞ from
a nonspinning compact object of the form ð1 − gttÞ ¼
−2M=r − 3Q=r3 þ � � � þ Er2 þ � � �, where the omissions
denote higher orders in 1=r and r. The quantity Q is the
quadrupole moment contracted with two copies of a unit
vector, and E is the similarly contracted quadrupolar tidal
field. The multipole moments of the object are associated
with the asymptotically decaying series in 1=r, while the
external field corresponds to the growing terms in r.
However, ambiguities arise when the two series overlap.
For instance, this occurs when the tidal field is only known
to some order in its PN expansion having the schematic
form E ¼ EN½1þ � � � þ δ5=r5 þOðr−6Þ�, where EN is the
Newtonian tidal field, and schematically, an nth order PN
correction contributes a power of 1=rn. For a binary system,
the coefficient δ5 remains unknown at present. A fractional
change in E at Oðr−5Þ introduces a net 1=r3 contribution to
the expansion of gtt, thus changing the multipole moment
Q by an amount proportional to δ5. This degeneracy
between PN and multipole effects is discussed in more
detail in [23,25,35,37,48–50].
In this paper, we clarify that an unambiguous distinction

between finite-size effects and high order PN corrections
is achieved by using analytic continuation. We show that
working in generic spacetime dimensions and/or multi-
pole moments avoids degeneracies and manifestly sepa-
rates these two kinds of physical effects. In addition, we
emphasize that potential ambiguities arising from inspect-
ing the metric in specific coordinates, as explained above,
are avoided by defining the response based on gauge-
invariant quantities such as the binding energy as a function
of frequency or the waveform [35]. In related contexts,
though at fixed spacetime dimension and multipole orders,
the binding energy has long proved useful for identifying
multipole moments [48,51].
The binding energy can be derived from an effective

action, which is a highly useful tool in physics [52,53], and
in particular for calculating finite-size effects at the orbital
scale [37,53–58]; for broader review articles see, e.g.,
[59,60]. The effective action describes the compact objects

by skeletonized center-of-mass worldlines [61] augmented
with multipole moments. Couplings of the multipole
moments to the ambient spacetime curvature and possible
internal dynamics encapsulate the finite size effects. An
important feature of this approach is that the information
about the object encoded, for instance, in the values of
the coupling coefficients must be matched to a detailed
microphysical description, often based on calculations in
perturbation theory. In this paper, we demonstrate the
advantages of establishing this connection by recasting
the problem into a scattering calculation and matching the
frequency-dependent response, instead of working with
stationary perturbations and specializing to the static limit
as in many previous studies [25–27,36–40]. The matching
of scattering states enables us to identify the black hole’s
tidal response from in- and outgoing waves at null infinity
using double-null Bondi coordinates [62]. These coordi-
nates are defined from light-cone congruences, whose
intrinsic geometric meaning is further reviewed in [63].
As a first step toward the more complicated gravitational

case we consider here a scalar field model, which never-
theless captures a number of important features of potential
ambiguities. This scenario has also been studied in [37,38],
with the differences being that we consider wave scattering
and keep the frequency-dependence in the response. For
black holes, this response also includes dissipative effects
due to absorption, which can also be described in effective
field theory [57,64–71]. We verify that the low-frequency
expansion of the black hole’s frequency-dependent scalar
tidal response obtained from scattering recovers the
expected results of a vanishing tidal deformability [37]
and the known absorption cross section [72] at zeroth and
linear order in the frequency respectively.
The frequency-dependent response based on scattering

was also analyzed in the context of neutron stars in [23].
The new aspects of this paper are that we substantially
expound on the methodology, introduce more rigorous
identifications at null infinity between the microphysical
results and the effective action description, and elaborate on
a number of insights. Complementary aspects of wave
scattering and absorption by compact objects have been
studied in, e.g., [73–81].
Recent efforts have also highlighted the convenience of

using analytic continuation to complex angular momentum
for efficiently extracting physical properties of perturbed
black hole spacetimes [82–85]. In this paper, we further
examine the role of analytic continuation both in the
spacetime dimension and the angular momentum number
for the different stages in the calculation of the tidal
response. Notably, we demonstrate that in contrast to the
crucial role of analytic continuation for obtaining the
response in stationary scenarios [36–40], using scattering
states might eliminate the need for analytic continuation to
match the coefficients in the effective action and the need
for high-PN order calculation of observables. This is
advantageous, for instance, for future numerical calcula-
tions of the microscopic response that capture the full
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frequency dependence and are applicable to any compact
object.
This paper is organized as follows. We discuss the

gauge-invariant binding energy as a function of frequency
of a binary system in Sec. II, highlighting the crucial role
of analytic continuation in the spacetime dimension and
multipole order to simplify the separation between finite-
size effects and PN corrections to the point-mass dynam-
ics. In Sec. III we calculate the tidal response function
based on the asymptotic scalar wave scattering states
extracted at null infinity. We first set up an effective
action description, which defines the tidal response that is
imprinted in observables, and derive its relation to the in-
and outgoing complex wave amplitudes. Next, we con-
nect these wave amplitudes with the detailed properties
of a perturbed nonspinning black hole computed from
perturbation theory. We elucidate the matching proce-
dures, the role of analytic continuation in the process, and
discuss the advantages of scattering over considering
stationary scenarios for bypassing several subtleties and
giving access to dynamical tides. Section IV summarizes
our results and insights gained from the calculations, and
Sec. V contains the conclusions. The Appendices contain
additional technical details and mathematical identities
used in this work.
The notation and conventions are the following. Greek

letters α; β;… denote spacetime quantities, Latin indices
i; j;… denote spatial components. The notation for the
covariant derivative is ∇μ and for the partial derivative it is
∂μ. Capital-letter superscripts denote a string of indices on a
symmetric and trace-free (STF) tensor, e.g., for a unit
vector nL¼2 ¼ nij ¼ ninj − 1

3
δij, see [46]. We use the

Einstein summation convention on all types of indices,
i.e., repeated indices are summed over. We work in generic
spacetime dimensions d, and use the shorthand d̂ ¼
D − 2 ¼ d − 3, where D is the number of spatial dimen-
sions, such that four-dimensional spacetime corresponds
to d̂ ¼ 1. We also define l̂ ¼ l=d̂, with l the multipolar
order. Throughout the paper, we work in units where the
speed of light is unity but we explicitly keep the gravita-
tional constant GN .

II. GAUGE-INVARIANT BINDING ENERGY
OF A BINARY SYSTEM

In this section, we discuss how potential ambiguities—or
rather, technical difficulties—in the identification of
tidal deformabilities can arise [25,26,35,37,49] and be
overcome by using gauge-invariant quantities [35] and
analytic continuation, e.g., in dimension or multipolar
order [23,36–40,86]. Specifically, we demonstrate that
the circular-orbit binding energy connects the tidal deform-
abilities to an observable, while analytic continuation en-
ables discriminating tidal from nontidal PN contributions.

For clarity and conciseness of the expressions, we focus on
the static tides and nonspinning objects.
We first consider tidal effects in Newtonian gravity to

derive an explicit effective action for the orbital dynamics
in arbitrary spacetime dimensions. As in four dimensions,
the action derived in this way depends on the compact
object’s microphysics only through the tidal deformabil-
ity. It also describes fully relativistic compact objects at
large separation, provided that one interprets the tidal
deformability as the relativistic parameter [22,56,58]. We
then discuss tidal effects in the binding energy in relation
to nontidal PN contributions.

A. Expansions of the potential: Multipole
and tidal moments

We consider an extended object (labeled A) and a point-
mass companion (labeled B). The gravitational potential
U is a solution to the D-(spatial)dimensional Poisson
equation:

∇2ðDÞU ¼ −ΩDGD
NρD; ð2:1Þ

where ΩD ¼ 2πD=2=ΓðD=2Þ is the volume of the (D − 1)-
hypersphere, GD

N and ρD are the D-dimensional gravita-
tional constant and mass density respectively, and ∇2ðDÞ is
the D-dimensional Laplacian. In D-dimensions, the gravi-

tational constant GðDÞ
N has dimensions ½s�−2 ½kg�−1 ½m�D.

From now on, we will omit the label D and use the nota-
tion d̂ ¼ D − 2, such that d̂ ¼ 1 corresponds to 3 spatial
dimensions. In the exterior of a single body, the solution of
(2.1) reads

UA ¼ GNMA

jxi − ziAjd̂þ2
þ
X∞
l¼2

1

l!
ð2lþ d̂ − 2Þ!!

d̂!!

QLnL

jxi − ziAjlþd ;

ð2:2Þ

with ziA the center of mass position of the body A, and we
have separated out the point-mass result in the first term.
The moments QL are the D-dimensional Newtonian source
multipole moments defined as integrals over the mass
density

QL ¼
Z

dd̂þ2x0ρAðt; x0iÞðx0 − zAÞL: ð2:3Þ

In a binary system, the total potential near the extended
body A also has a contribution from the fact that the
potential due to the companion varies over A’s mass
distribution. The potential felt by A due to the companion
can be expressed as
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Uext
A ¼ −

X∞
l¼0

1

l!
ðx − zAÞLEL; ð2:4Þ

where “ext” indicates that the source is external to the
object. We have also introduced the tidal tensor

EL ¼ GNð−1Þlþ1
ð2lþ d̂ − 2Þ!!

d̂!!

MB

rlþd̂
AB

nLAB; ð2:5Þ

where MB is the mass of the companion, rAB denotes the
distance between the bodies, and niAB ¼ ðxiA − xiBÞ=rAB is a
unit vector.

B. Effective action for extended objects
in Newtonian gravity

1. Lagrangian for the binary dynamics

Next, we compute the Lagrangian, L ¼ T − V, with
T ¼ TA þ TB and V ¼ VA þ VB the kinetic and potential
energy obtained by generalizing the results of [87] to
arbitrary dimensions

TA ¼ 1

2

Z
A
dd̂þ2xρA _z2A þ T int

A ; ð2:6aÞ

VA ¼ −
1

2

Z
A
dd̂þ2xρAUext

A þ V int
A : ð2:6bÞ

Here, T int
A and V int

A are the internal kinetic and potential
energy, which we will specify below. The contributions
from object B are similar to (2.6) but only the point-mass
terms are nonvanishing. Substituting the expansion of the
potential (2.4) into (2.6b) and using the definition (2.3)
leads to the d̂-dimensional Newtonian action with tidal
effects

SNewt ¼ SNewtpm þ
Z

dt

�
−
X∞
l¼2

1

l!
QLEL þ Lint

A

�
; ð2:7Þ

with SNewtpm the Newtonian action for point mass dynamics

SNewtpm ¼
Z

dt
�
1

2
μv2 þ 1

d̂

GNμM

rd̂þ1

�
: ð2:8Þ

Here, μ ¼ MAMB=M and M ¼ MA þMB are the reduced
and total mass of the binary system, and Lint

A is the
Lagrangian for the internal dynamics of the extended body.

2. Specializing to the dominant tidal effects

In Newtonian gravity, the internal dynamics of the
multipole moments are directly related to the density
perturbations of the matter, and hence the normal modes
of oscillation of the object. The fundamental (f)-modes

have the strongest tidal couplings, and are described by the
internal Lagrangian1

Lint
A ¼ 1

2l!λlω2
0l

�
_QL

_QL − ω2
0lQLQL

�
: ð2:9Þ

The quantities ω0l are the f-mode frequencies, with the
subscript 0 indicating that the mode function has no radial
nodes, and λl are the tidal deformability coefficients. In the
adiabatic limit that the f-mode frequency ω0l is much
higher than the tidal forcing frequency, which varies on the
orbital timescale, the internal Lagrangian reduces to

Ladiab
int ¼ −

1

2l!λl
QLQL: ð2:10Þ

The induced multipole moments QL are then related to the
tidal moments EL by the equations of motion

Qadiab
L ¼ −λlEL: ð2:11Þ

It is important to note that (2.11) is also valid for compact
objects in general relativity, when using relativistic defi-
nitions of the multipole and tidal moments determined from
the exterior spacetime.

3. Reduced effective action

Using (2.11) to integrate out the multipole degrees of
freedom from the action leads to a reduced action involving
only the orbital quantities as dynamical variables

Sadiab ¼ SNewtpm þ
Z

dt
X∞
l¼2

λl
2l!

ELEL ð2:12Þ

¼ SNewtpm þ
Z

dt
X∞
l¼2

1

2l!
λlΠl

G2
NM

2
B

r2lþ2d̂
: ð2:13Þ

To obtain (2.13) we used the identity (see Appendix A 1)

nLnL ¼ ðlþ d̂ − 1Þ!
ð2lþ d̂ − 2Þ!!ðd̂ − 1Þ!! ; ð2:14Þ

and defined

1This is analogous to a simple harmonic oscillator with L ¼
T − V ¼ 1

2
m_x2 − 1

2
kx2 ¼ 1

2λω2 ð_x2 − ω2x2Þ with k=m ¼ ω2 and
k ¼ 1=ðl!λlÞ, where the factor l! comes from the definition
of the tidal deformability. Intuitively, the mass density perturba-
tions due to a companion induce the multipole moments of a
initially spherical star. If these perturbations oscillate due to
normal modes, the only way they can enter the system is by
making the multipoles oscillate. This is the reason why, in this
example, x2 →

P
l QLQL.

CRECI, HINDERER, and STEINHOFF PHYS. REV. D 104, 124061 (2021)

124061-4



Πl ¼ ð2lþ d̂ − 2Þ!!ðlþ d̂ − 1Þ!
d̂!!d̂!

: ð2:15Þ

The information about the internal structure of the compact
object is encoded in the action (2.13) through the coef-
ficients λl.

C. Tidal effects in the binding energy for circular orbits

1. Computation of the Newtonian binding energy

As the orbital separation is a coordinate-dependent
notion, it is advantageous to express results in terms of
an observable frequency instead. We achieve this by
expressing the velocity as v2 ¼ _ϕ2r2 þ _r2 defining the
orbital frequency Ω, and considering the equations of
motion obtained from (2.13) for stable circular orbits
̈r ¼ _r ¼ ϕ̈ ¼ 0. We solve these perturbatively for the radius
as a function of the orbital frequency in the form

rðΩÞ ¼
ffiffiffi
x

p
Ω

ð1þ δrÞ; ð2:16Þ

with δr denoting the tidal corrections, where

x ¼ ðGNMΩd̂Þ 2

ðd̂þ2Þ: ð2:17Þ

We find that the tidal correction in (2.16) is given by

δr ¼
X∞
l¼2

λl
M2

BΠlðlþ d̂Þ
ðd̂þ 2Þl!μ

G
2

d̂þ2
ðd̂þ1−2l

d̂
Þ

N x1þ
2l
d̂

M2ðd̂þlÞ=d̂ : ð2:18Þ

We compute the binding energy as a function of the
frequency by reversing the sign of the potential in the
Lagrangian (2.13), specializing to circular orbits, and using
(2.16) to eliminate r in favor of Ω, or rather xðΩÞ. This
leads us to

EðΩÞ
μ

¼ −
1

2
x

�
2 − d̂

d̂

−
X∞
l¼2

d̂ð4l̂þ 3Þ − 2

ðd̂þ 2Þðl̂ d̂Þ! Πlλl
M2

B

μM2ðl̂þ1Þ x
2l̂þ1G−2l̂

N

�
;

ð2:19Þ

with

l̂ ¼ l=d̂: ð2:20Þ

2. Discriminating tidal from post-Newtonian (PN) effects

Having calculated the leading-order tidal effects in the
binding energy (2.19), we now consider how PN correc-
tions will enter into this expression. In four spacetime

dimensions, low PN order fractional corrections to the
binding energy scale with integer powers of x ¼
ðGNMΩÞ2=3 in units with the speed of light c ¼ 1.
Terms of OðxnÞ correspond to the n-PN order. This
continues to hold in arbitrary dimensions, as inferred
from the explicit calculations of the 1PN Lagrangian in
[88] when using the generalized frequency-variable x that
depends on d̂ from (2.17). In four dimensions, starting
at the fourth PN order, additional terms in the binding
energy of the form x4 lnðxÞ first appear. These are due to tail
effects associated with the scattering of gravitational waves
off the spacetime curvature produced by the total mass of
the binary and interacting with the system at a later time.
Such tail effects are related to the difference in the light-
cones between Schwarzschild and Minkowski spacetime,
as we will discuss in a different context in Sec. III B.
Because wave propagation is very different depending on
the number of spacetime dimensions, we expect that
the appearance of the xn lnðxÞ corrections is not a generic
feature of PN terms. The effect of such high-order tail terms
has not yet been calculated in arbitrary dimensions, thus the
more general dependencies remain unknown. Irrespective
of the exact scalings of higher PN order effects, it is clear
that they are independent of l̂, in contrast to tidal terms.
Based on the above considerations, the binding energy

with tidal and instantaneous PN corrections has the
schematic form

EðΩÞ
E0

∼ 1þ
X∞
l¼2

x1þ2l̂λlctidalld̂
þ
X∞
n¼2;
n∈Zþ

xncPN
nd̂

þ…; ð2:21Þ

where E0 is the Newtonian point-mass result from the
first term in (2.19), and ctidal and cPN are coefficients
that depend on the masses, whose explicit form is not
needed here.
In the standard calculations, where (2.21) is specialized

to four spacetime dimension d̂ ¼ 1 and positive integer l,
the tidal terms contribute at orders x5; x7;…, while the PN
terms scale as x;…x5;…. Consequently, at Oðx5Þ and
higher, there are contributions from both tidal and post-
Newtonian terms, where the PN coefficients cPN5 and higher
are currently not yet known and are challenging to compute
(see, e.g., [89–91]). However, when using analytic con-
tinuation keeping l̂ arbitrary, we see from (2.21) that tidal
terms scale as xð1þ2l=d̂Þ, which is manifestly distinct from
the instantaneous PN terms that scale as xn with positive
integers n, irrespective of the dimension or multipolar
number.
We note that instead of using analytic continuation in l̂,

only one of the analytic continuations in d̂ or in l is
needed to make the distinction between finite-size and
relativistic point-mass effects. For instance, fixing d̂ ¼ 1
and using analytic continuation in l is already sufficient
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to distinguish tidal terms scaling as x2lþ1 from post-5-
Newtonian terms that are expected to scale as x5 and
x5 lnðxÞ. Likewise, specializing to quadrupole tides l ¼ 2

and keeping d̂ arbitrary leads to tidal terms that scale as
x1þ4=d̂, which is distinct from PN scalings that involve xn

with integer n.
The discussion of the tidal signatures in the binding

energy also carries over to the tidal imprints on gravita-
tional wave signals. The imprints in the gravitational waves
can be estimated by using energy balance as reviewed in
[92]. The energy flux in gravitational waves is computed in

a first approximation from the quadrupole formula _EGW ∼
Q
…T

ijQ
…T

ij (see [92] for higher order results), which depends on
the total quadrupole QT

ij of the binary system given by the
sum of the orbital quadrupole and the tidally induced
quadrupoles. Thus, the energy flux also depends onQL and
hence the tidal response, except with different mass-
dependent coefficients than in the binding energy. The
combination of these two dependencies on the response
ultimately leads to the tidal signatures in the gravita-
tional waves.

D. Matching the tidal deformability

The above results allow us to explore different avenues
for extracting the tidal deformabilities from the binding
energy of a binary. First, since the circular-orbit binding
energy is a gauge- or coordinate-independent observable,
one can match our EFT result (2.21) to any other result for
this quantity obtained in approaches that comprise the full
linear tidal response, and solve for the λl (see [35] for a
similar discussion in terms of the gravitational waveform).
A particularly suitable scenario is the binding energy of a
large body tidally deformed by a small perturber [93–95]
computed within the self-force approach [96,97]. However,
as mentioned above, at a fixed multipole order l ∈ N,
l > 1 in four spacetime dimensions d̂ ¼ 1, knowledge of
the (generally unknown) nontidal terms at 1þ 2lPN order
is required to discriminate the tidal contribution.
While recent progress in the PN expansion [90] on cPN5

makes such a matching in four spacetime dimensions
feasible for the leading order tidal interaction (l ¼ 2) in
the near future, the higher multipole orders would still
require a different approach. Alternatively, analytically
continuing self-force results in the dimension or multipole
will manifestly separate tidal terms from nontidal PN terms,
which need not be known explicitly in this case. The utility
of analytic continuation, usually in dimension, to facilitate
the matching of effective theories by avoiding high-order
computations in the effective theory has long been estab-
lished [52], and was discussed in the context of tidal
coefficients in [37].
This advantageous feature of analytic continuation,

combined with the use of (gauge-invariant) observables

to extract the tidal information, continues as a main theme
in the remainder of this paper. However, instead of working
with the binding energy or waveform of a binary system,
we consider instead the scattering of dynamical tidal fields
off a single compact object [23,73,76] and the correspond-
ing observables below.
We also note that a small caveat in the distinction

between tidal and PN terms could arise when tidal terms
in the effective theory play the role of counterterms which
cancel divergences in the nontidal PN terms, as discussed in
[37]. This would inevitably entangle the tidal and nontidal
contributions to (finite) observables, and in particular lead
to scale-dependent tidal coefficients. However, such a mild
form of ambiguity is a well- understood issue in similar
contexts in particle physics. That is, in a given regulari-
zation and renormalization scheme, the (finite part of the)
Love number can still be uniquely matched using analytic
continuation arguments [37], including its scale depend-
ence. These subtleties are absent for adiabatic tides in four
spacetime dimensions [37] but play a role for dynamical
tides, as seen e.g., in the scale-dependence of dynamical
quadrupoles obtained in [98].
Finally, we comment on slightly different definitions (or

understanding) of the tidal coefficients (or Love numbers)
used in the literature in relation to the convention adopted
here. As explained in the introduction, the Love number
can be understood as the ratio of coefficients in the metric
with distinct static asymptotic behavior [26,27], hinging on
a choice of coordinates. Alternatively, the Love number or
more generally the dynamical tidal response can be seen as
a property of an effective theory for a compact object such
as a coupling constant in an effective action [25,37,57],
which is the convention adopted here. Finally, one
may define the Love number based on observables, in
particular relative to possible (conservative) tidal effects
of black holes as a baseline [35], which ultimately seems
most advantageous as unlike the other approaches, it
does not suffer from either a coordinate dependence or a
possible scale (and renormalization-scheme) dependence.
Fortunately, all approaches are equivalent in four spacetime
dimensions for the adiabatic tidal Love numbers: the
connection of coefficients in the asymptotic expansion of
the metric to the effective action was derived in [37], which
also provided a proof that the Love numbers of nonspinning
black holes vanish, and we recapitulated above the straight-
forward connection between tidal contributions to observ-
ables and the effective theory.

III. LOVE NUMBERS FROM SCATTERING

Having established a gauge-invariant definition of the
adiabatic tidal response in Sec. II and its connection with
quantities appearing in an effective action, let us now work
out the case of a fully dynamical tidal response. We focus
here on the link between the tidal response in the effective
theory and the microphysics of the compact object, which
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is also advantageous for recovering the adiabatic case. We
make this connection by considering wave scattering. For
simplicity of developing the general methodology for this
scenario, we consider scalar waves. As before, we work
with arbitrary multipole order and dimensions, however, we
do not specialize to the adiabatic limit of the response.
We first consider the effective action for scalar tidal

effects [37] and delineate the relation between the body’s
tidal response and the complex amplitudes of the asymp-
totic in- and outgoing scalar waves. To compute these
amplitudes in terms of the detailed properties of the
compact object requires going beyond an effective action
and considering the full problem of relativistic scalar
perturbations to the compact object. As an explicit exam-
ple, we perform this calculation for a Schwarzschild black
hole based on analytical approximations. Finally, we match
the information from the full calculation to the effective
action description based on light cone coordinates at null
infinity and discuss the new insights gained from this
approach. Figure 1 illustrates the information flow we will
trace in this section.
Specifically, the action describing the dynamics of the

scalar field ϕ is given by [37]

Sϕ ¼ −
Kϕ

2

Z
ddx

ffiffiffiffiffiffi
−g

p
gαβ∇αϕ∇βϕ; ð3:1Þ

where, Kϕ is a coupling constant and d denotes the number
of spacetime dimensions, together with the usual Einstein-
Hilbert action for the gravitational field

SG ¼ 1

16πGN

Z
ddx

ffiffiffiffiffiffi
−g

p
R; ð3:2Þ

with R the Ricci scalar. We are interested in considering
wavelike solutions to the equations of motion derived
from this action in two different contexts. In the full
problem, we consider the behavior of ϕ in the spacetime
of a Schwarzschild black hole. This describes linear scalar
tidal perturbations of a black hole, since the modification
of the spacetime due to the scalar field (i.e., its energy-
momentum tensor) is quadratic in ϕ. In an effective
description, the black hole reduces to a point-mass world-
line in flat spacetime with additional nonminimal couplings
describing the scalar tidal effects. We show how to extract
from these descriptions the tidal response of the black hole
based on scattering states defined at null infinity.

A. Effective action for scalar tidal effects and response
function in terms of scattering states

In this subsection, we consider a body of mass m
perturbed by an external massless scalar field ϕ. The body
responds to the disturbance by developing scalar multipole
moments QL. A similar scenario is also studied in [37] and
[38], which specialized to the static response but also
included gravitational and vectorial perturbations. Here,
we are interested in computing the frequency-dependent
response by considering a scattering process, where ϕ
describes in- and outgoing scalar waves. As the in- and
outgoing states are defined asymptotically at null infinity,
it is appropriate to formulate the effective action descri-
bing the process in flat spacetime. We first calculate the
identification between the induced moments QL and the
amplitudes of the in- and outgoing wave states. We then
compute the response function FlðωÞ characterizing
the ratio between the induced tidal moments QL and the
strength of the tidal perturbation EL. Specifically, the
response function FlðωÞ is defined by

QLðωÞ ¼ −FlðωÞELðωÞ: ð3:3Þ

Intuitively, and in analogy with the Newtonian gravitational
definitions of the tidal field in (2.4), the externally sourced
tidal field EL corresponds to moments of ϕ that are non-
singular at the worldline of the compact object r ¼ 0.
Mathematically, this leads to the scalar tidal tensor in (3.3)
given by

EL ¼ FP
r→0

∂LϕðωÞ: ð3:4Þ

Here, FP
r→0

denotes the finite part as r → 0, which we

understand here simply as its value in dimensional

FIG. 1. Schematic calculational process to determine the
response function FlðωÞ. The response is defined in an effective
description (EFT) where the compact object is viewed from large
distances and appears as a point mass with multipole moments.
Grey arrows indicate the information flow from the micro-
physical properties of the object to the response via the ratio
of in- and outgoing wave amplitudes at infinity. In the full theory
calculations based on relativistic perturbations, we specialize to a
black hole, thus need only the solutions in the exterior of the
horizon rH , and base the matching of the near-horizon and
asymptotic solutions on analytical approximations for Mω ≪ 1.
The matching to the effective theory is achieved by identifying in-
and outgoing wave states at infinity.

TIDAL RESPONSE FROM SCATTERING AND THE ROLE OF … PHYS. REV. D 104, 124061 (2021)

124061-7



regularization, see Appendix A 3.2 The function ϕðωÞ is the
Fourier transform of the scalar wave

ϕðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

dte−iωtϕðtÞ: ð3:5Þ

In general, the response function FlðωÞ in (3.3) is complex.
In the limit ω → 0, the Oðω0Þ term is real and FlðωÞ
reduces to the static tidal deformability parameter as the
scalar analog of (2.11). By contrast, the next-order Oðω1Þ
term is imaginary and describes dissipation.
The aim of this subsection is to arrive at an expression

for the response function in terms of the in- and outgoing
wave amplitudes. These amplitudes encode information on
the microphysics of the body m, which we will discuss in
detail in subsequent sections.

1. Effective action and equations of motion

An effective action provides a useful description at large
distances from a stellar object. In this regime, the object
can be described as a point-particle reference worldline
with additional couplings related to tidal effects, similar to
the considerations in Sec. II. The effective action can be
written as

S ¼ Spm þ Stidal þ Sint þ Sϕ þ SG; ð3:6Þ

where Sϕ and SG are given in (3.1) and (3.2) above.
The point-mass (pm) action is given by

Spm ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
; ð3:7Þ

where τ is an affine parameter and uμ ¼ dzμ=dτ is the
tangent to the worldline zμðτÞ.
The Lagrangian for the scalar tidal couplings between

tidal moments of the external field ∇Lϕ and the body’s
multipole moments is given by

Stidal ¼ −Kϕ

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p X∞
l¼0

1

l!
QL∇Lϕ: ð3:8Þ

Here, QL are the multipole moments of the body. Finally,
the action Sint describes the internal dynamics, that is the
dynamics of the multipoles, see (2.9) for a simple example.
We are not specifying it here explicitly, but rather write the
solution to the equations of motion for the multipoles in
terms of the response function (3.3). This equivalently
captures the internal dynamics and more naturally covers
the case of tidal dissipation, as opposed to Sint. For a
detailed derivation we refer to [58].

The equation of motion for the scalar field derived from
the action (3.6) is a sourced wave equation

∇μ∇μϕ ¼ Tϕ; ð3:9Þ

with Tϕ ¼ −ðδStidal=δϕÞ=ðKϕ
ffiffiffiffiffiffi−gp Þ given by

Tϕ ¼
Z

dτ
X∞
l¼0

ð−1Þl
l!

∇L

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
−uμuμ

p
ffiffiffiffiffiffi−gp QLδðdÞðxμ − zμðτÞÞ

�
:

ð3:10Þ
Next, we make several specializations. Analogous to the
calculation of tidal effects in the binding energy, which
only had to be performed to the leading Newtonian order
when analytic continuation is employed, it is sufficient here
to work at linear order in a weak field expansion and
disregard the gravitational interaction between the point-
mass and the scalar field. That is, we work in flat spacetime,
where

ffiffiffiffiffiffi−gp ¼ 1 and the covariant derivatives reduce to
partial derivatives. We also specialize to the rest frame
where uμ ¼ ð1; 0; 0; 0Þ, and we can set zμ ¼ ðτ; 0; 0; 0Þ by
re-parameterization invariance. With these choices, (3.9)
becomes

∂μ∂μϕ ¼
Z

dτ
X∞
l¼0

ð−1Þl
l!

∂L

�
QLðτÞδðdÞðxμ − zμðτÞÞ

�

¼
X∞
l¼0

ð−1Þl
l!

∂L

�
QLðtÞδðDÞðxiÞ

�
: ð3:11Þ

where we used that3

δðdÞðxμ − zμðτÞÞ ¼ δðt − z0ÞδðDÞðxi − ziÞ: ð3:12Þ

Taking the Fourier transform of the right-hand side of
(3.11) with the conventions as in (3.5) and looking at a
fixed frequency leads to

∂μ∂μϕ ¼
X∞
l¼0

ð−1Þl
l!

ffiffiffiffiffiffi
2π

p QLðωÞeiωt∂LδðxiÞ: ð3:13Þ

Next, we solve for the multipole moments QL in terms
of properties of the in- and outgoing waves of the
scattering process. The idea is to explicitly construct
the scattering states, then substitute these solutions into
the left-hand side of (3.13). Upon applying the wave
operator to the solution, only the components of the
scattered waves that depend on the induced multipole
moments will contribute a source term, since the scalar
tidal field is an external, sourcefree field. This enables us
to identify the resulting source terms with the right-hand
side of (3.13) and read off the moments QL.2This essentially corresponds to making use of the vanishing of

scaleless momentum-space integrals in dimensional regulariza-
tion. This is not to be confused with Hadamard’s partie finie. 3From now on we omit the superindex D of the Dirac delta.
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2. In- and outgoing wave solutions

For simplicity, we start by considering the solutions with
l ¼ 0 and subsequently generate the solution for arbitrary
multipoles by applying lSTF derivatives. For l ¼ 0,
the source term in (3.13) vanishes. In addition, the
d’Alembertian operator becomes independent of the angu-
lar variables. The equation of motion of the scalar field
(3.13) then reduces to

−∂2
tϕ

ð0Þ þ 1

rd̂þ1
∂rðrd̂þ1∂rϕ

ð0ÞÞ ¼ 0; ð3:14Þ

where ϕð0Þ is the field with l ¼ 0. Upon decomposing the
field as ϕð0Þ ¼ r−d̂=2fωðrÞeiωt, this turns into a Bessel-type
differential equation,

4r2∂2
rfωðrÞ þ 4r∂rfωðrÞ þ rd̂=2−1

�
ω2r2 −

d̂2

4

�
fωðrÞ ¼ 0:

ð3:15Þ
The solution can be constructed using Hankel functions:

ϕð0Þ

eiωt
¼ C1r−d̂=2H

ð1Þ
d̂=2

ðωrÞ þ C2r−d̂=2H
ð2Þ
d̂=2

ðωrÞ; ð3:16Þ

with C1 and C2 constants that are determined by boundary
conditions. This solution can be understood as an outgoing
and incoming wave, i.e.,

ϕð0Þ
in ¼ C1r−d̂=2H

ð1Þ
d̂=2

ðωrÞeiωt; ð3:17aÞ

ϕð0Þ
out ¼ C2r−d̂=2H

ð2Þ
d̂=2

ðωrÞeiωt: ð3:17bÞ

To determine the constants C1 and C2 we consider the
asymptotic behavior r → ∞ and fix it such that

lim
r→∞

ϕð0Þ
i;out ≡ Cin;out

eiωðt�rÞ

r
1
2
ðd̂þ1Þ : ð3:18Þ

Using the properties of the Bessel functions in (3.17) we
obtain

lim
r→∞

ϕð0Þ
in;out ¼

C1;2

rðd̂þ1Þ=2 e
iωt

ffiffiffiffiffiffi
2

πω

r
e�iðωr−1

2
πd̂
2
−1
4
πÞ: ð3:19Þ

Requiring that this matches (3.18) we see that

C1;2 ¼ Cin;out

ffiffiffiffiffiffi
πω

2

r
e�iπ

4
ðd̂þ1Þ: ð3:20Þ

As mentioned above, our aim is to relate the source term
of (3.13) to the source term obtained from the scattering
waves solution (3.17), from which we can then determine
QL in terms of Cin;out. The in- and outgoing basis adapted to

the physical states is, however, inconvenient for achieving
such an identification directly. It is simpler to use a basis
adapted to the different analytical behaviors of the solution,
and relate the results to the in- and outgoing states at the
end of the calculation. The external field corresponds to a
source-free solution that is everywhere regular and in
particular finite near the origin corresponding to the body’s
worldline. The contribution from the body’s response
captures the source of the full solution and diverges near
the worldline, corresponding to an irregular solution that is
singular at the origin. Hence, working in the basis of regular
and irregular solutions disentangles the contributions and
corresponding source terms, similar to the methods for
identifying the Coulomb field of a body [99].

3. Change of basis

The basis of regular and irregular solutions is obtained
from the in- and outgoing solutions by going from the
Hankel functions to the Bessel functions of the first and
second kind defined by

Hð1Þ
d̂=2

ðωrÞ ¼ Jd̂=2ðωrÞ þ iYd̂=2ðωrÞ; ð3:21aÞ

Hð2Þ
d̂=2

ðωrÞ ¼ Jd̂=2ðωrÞ − iYd̂=2ðωrÞ: ð3:21bÞ

Inserting this into (3.16) we obtain

ϕð0Þ ¼ ϕð0Þ
reg þ ϕð0Þ

irreg; ð3:22Þ
where the regular and irregular solutions are given by

ϕð0Þ
reg ¼ Cregeiωt

ffiffiffiffiffiffiffiffiffi
2πω

p
r−d̂=2Jd̂=2ðωrÞ; ð3:23aÞ

ϕð0Þ
irreg ¼ Cirregeiωt

ffiffiffiffiffiffiffiffiffi
2πω

p
r−d̂=2Yd̂=2ðωrÞ; ð3:23bÞ

and the coefficients Creg=irreg are related to the constants
Cin=out by

Creg ¼
ðC1 þ C2Þffiffiffiffiffiffiffiffiffi

2πω
p

¼ 1

2
ðCoutei

π
4
ðd̂þ1Þ þ Cine−i

π
4
ðd̂þ1ÞÞ; ð3:24aÞ

Cirreg ¼
iðC1 − C2Þffiffiffiffiffiffiffiffiffi

2πω
p

¼ i
1

2
ðCoutei

π
4
ðd̂þ1Þ − Cine−i

π
4
ðd̂þ1ÞÞ: ð3:24bÞ

4. Angular dependence

Having obtained the solutions for the scalar field for
l ¼ 0 we will next apply partial STF derivatives, corre-
sponding to a spherical-harmonic decomposition. The goal
is to recover the angular dependence from the l ¼ 0
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solution and relate the physical amplitudes CL
in=out to the

regular/irregular basis CL
reg=irreg for generic multipolar order

l. Therefore, the full solutions for arbitrary multipolar
order l are given by

ϕ ¼
X∞
l¼0

ðCL
reg∂Lϕ

ð0Þ
reg þ CL

irreg∂Lϕ
ð0Þ
irregÞ; ð3:25Þ

where ϕð0Þ
reg=irreg are given in (3.23) and we absorb the

constantsCreg=irreg in the coefficientsCL
reg=irreg. To obtain the

coefficients CL
in=out in terms of the l ¼ 0 amplitudes (3.24)

we compute the STF derivatives explicitly. We use the
relation [100]

∂LfðrÞ ¼ nLrl
�
1

r
∂
∂r

�
l
fðrÞ; ð3:26Þ

and the property for a generic Bessel function BνðzÞ of
degree ν [101]�

1

z
d
dz

�
k
ðzνBνðzÞÞ ¼ zν−kBν−kðzÞ; ð3:27Þ

�
1

z
d
dz

�
k
ðz−νBνðzÞÞ ¼ ð−1Þkz−ν−kBνþkðzÞ: ð3:28Þ

Thus,

∂Lðr−d̂=2Bd̂=2ðωrÞÞ ¼ ð−1ÞlnLr−d̂=2ωlBd̂=2þlðωrÞ:
ð3:29Þ

Putting all together we have

ϕ ¼
X∞
l¼0

eiωt
ffiffiffiffiffiffiffiffiffi
2πω

p
r−d̂=2ωlnLð−1Þl

× ðCL
regJd̂=2þlðωrÞ þ CL

irregYd̂=2þlðωrÞÞ: ð3:30Þ
Recall that this is the solution for a fixed frequency ω for
which ϕðt; rÞ ¼ ϕðω; rÞeiωt= ffiffiffiffiffiffi

2π
p

, where ϕðω; rÞ coincides
with the Fourier transform at a fixed frequency.
We now express the field in the incoming and outgoing

basis. In order to do that we obtain the proper asymptotic
expression of incoming and outgoing waves for l ≠ 0 by
proceeding in the same way as above. That is, we apply
STF derivatives to the l ¼ 0 expression,4

lim
r→∞

ϕin=out ¼ CL
in=out

∂Lðeiωðt�rÞÞ
r
1
2
ðd̂þ1Þ

¼ CL
in=outnLð�iωÞl e

iωðt�rÞ

r
1
2
ðd̂þ1Þ : ð3:31Þ

To obtain the incoming and outgoing solutions we invert
Eqs. (3.21), which leads to

Jd̂=2þlðωrÞ ¼
1

2
ðHð1Þ

d̂=2þl
ðωrÞ þHð2Þ

d̂=2þl
ðωrÞÞ; ð3:32aÞ

Yd̂=2þlðωrÞ ¼
1

2i
ðHð1Þ

d̂=2þl
ðωrÞ −Hð2Þ

d̂=2þl
ðωrÞÞ; ð3:32bÞ

and identify the incoming and outgoing solutions with the
first- and second-order Hankel functions, respectively,

ϕin ¼
X∞
l¼0

eiωt
ffiffiffiffiffiffiffiffiffi
2πω

p
r−d̂=2ωlnL

ð−1Þl
2

Hð1Þ
d̂=2þl

ðωrÞ

× ðCL
reg − iCL

irregÞ; ð3:33Þ

ϕout ¼
X∞
l¼0

eiωt
ffiffiffiffiffiffiffiffiffi
2πω

p
r−d̂=2ωlnL

ð−1Þl
2

Hð2Þ
d̂=2þl

ðωrÞ

× ðCL
reg þ iCL

irregÞ: ð3:34Þ

We use the asymptotic behavior of the Hankel functions
[101]

HνðzÞ ∼
ffiffiffiffiffi
2

πz

r
e�ize∓iπ

4
ð2νþ1Þ; ð3:35Þ

where the upper sign applies forHð1Þ and the lower sign for
Hð2Þ. With this, we obtain the generalization of (3.24) for
any multipole order l,

CL
reg ¼

ð−1Þl
2

il
�
CL
ine

iπ
4
ðd̂þ2lþ1Þ

þ ð−1ÞlCL
oute−i

π
4
ðd̂þ2lþ1Þ

�
; ð3:36aÞ

CL
irreg ¼

ð−1Þl
2

ilþ1

�
CL
ine

iπ
4
ðd̂þ2lþ1Þ

þ ð−1Þlþ1CL
oute−i

π
4
ðd̂þ2lþ1Þ

�
: ð3:36bÞ

5. Tidally induced multipoles

We next compute QLðωÞ and its relation to the coef-
ficients Cin=out by noting that QL can be identified from the
source terms in the wave equation, c.f. (3.13). We can
compute this source in terms of Cin=out by applying the

4Note that we are not taking the derivatives on the denom-
inator. This is because asymptotically we do not expect any
dependence on the multipole order on the radial denominator.
This can also be seen by checking how an angular dependence
affects the differential equation for the radial part of the field: the
angular eigenvalue lðlþ 1Þ changes the order of the Bessel
function but not the factor rd̂=2, which is the responsible term for
the numerator. The best example is the wave equation in three
spatial dimensions.

CRECI, HINDERER, and STEINHOFF PHYS. REV. D 104, 124061 (2021)

124061-10



d’Alembertian to the solutions constructed in the previous
subsections. This allows us to read off QL in terms of the
constants. As above, for convenience, we first work in the
regular/irregular basis and transform to the in/out basis at
the end, and also first consider l ¼ 0, then generate the
angular dependence through STF derivatives.
When applying operators to the solution (3.23), they

must be understood in a distributional sense. The reason is
that as the equation of motion (3.11) indicates, the source is
only defined in a distributional manner. We will denote
the distributional operators with a tilde, e.g., ∇̃2 is the
distributional Laplace operator.
We first consider the distributional Laplacian of the

regular solution in (3.23) using the series representation of
the Bessel functions around r ¼ 0 given by [102]

JνðωrÞ ¼
X∞
k¼0

ð−1Þk
k!Γðkþ νþ 1Þ

�
ωr
2

�
2kþν

; ð3:37Þ

where the sum is over positive integers k ∈ Zþ. Inserting
(3.37) with ν ¼ d̂=2 in (3.23) we obtain

∇̃2ϕð0Þ
reg

Cregeiωt
ffiffiffiffiffiffiffiffiffi
2πω

p ¼
X∞
k¼0

hþk ∇̃2ðr2kÞ

¼ −r−d=2ω2Jd̂=2ðωrÞ; ð3:38Þ

where

h�k ðωÞ ¼
ð−1Þk

k!Γðk� d̂
2
þ 1Þ

�
ω

2

�
2k�d̂=2

: ð3:39Þ

Here, we used the results from Appendix A 2 for the
distributional Laplacian acting on r−β for any β ∈ R

∇̃2

�
1

rβ

�
¼

(∇2r−β − 2d̂π1þd̂=2

Γð1þd̂
2
Þ δðx

iÞ; β ¼ d̂ ∈ Z

∇2r−β β < d̂
;

ð3:40Þ

with β ¼ −2k < d̂. We then used the identity for the
standard Laplacian

∇2rβ ¼ βðβ þ d̂Þrβ−2; ð3:41Þ

with β ¼ 2k and resummed the series into the Bessel
function as per (3.37).
For the Laplacian of the irregular solution (3.23) we first

work with odd values of d̂ and take the limit for even values
at the end using L’Hôpital’s rule [103]. The Bessel function
of the second kind for odd d̂ reads [102]

Yd̂=2ðωrÞ ¼
1

sinðπd̂
2
Þ

�
cos

�
πd̂
2

�
Jd̂=2ðωrÞ − J−d̂=2ðωrÞ

�
:

ð3:42Þ

Applying the Laplacian to the irregular solution (3.23) and
using (3.42) yields

sinðπd̂
2
Þ∇̃2ϕð0Þ

irreg

Cirregeiωt
ffiffiffiffiffiffiffiffiffi
2πω

p ¼ sin

�
πd̂
2

�
∇̃2

�
r−d̂=2Yd̂=2ðωrÞ

�

¼ − cos

�
πd̂
2

�
r−d=2ω2Jd̂=2ðωrÞ − S;

ð3:43Þ

where we used (3.38) for the first term, and used the series
expansion (3.37) to define

S ¼
X∞
k¼0

h−k ðωÞ∇̃2ðr2k−d̂Þ; ð3:44Þ

where h−k is given in (3.39). We now compute explicit
results for S. Since the dimension is an arbitrary parameter
d̂ ≥ 1, we split the series into a contribution from positive
and negative powers of r corresponding to k > bd̂=2c and
k < bd̂=2c respectively in (3.44). Here, b…c denotes the
floor function. For the positive powers of r, the action of the
distributional Laplacian is the same as the usual Laplacian.
This follows from the second case in (3.40) with
β ¼ d̂ − 2k, which for k > d̂=2 is always β < d̂. For the
series involving negative powers of r we use (3.40)
with β ¼ 2k − d̂ and the index k running from k ¼ 0 to
k < bd̂=2c. We see that singular contributions involving the
Dirac-δ only arise when k ¼ 0. The remaining terms from
(3.40) involving the standard Laplacian in the series
recombine with that from the positive powers of r into a
single series over all k. Altogether, this leads to

S ¼
X∞
k¼0

h−k ðωÞ∇2ðr2k−d̂Þ

−
Xbd̂=2c
k¼0

h−k ðωÞ
2d̂π1þd̂=2

Γð1þ d̂
2
Þ
δk;0δðxiÞ

¼ −r−d=2ω2J−d̂=2ðωrÞ −
�
ω

2

�
−d̂=2

4πd̂=2 sin
�
π
d̂
2

�
δðxiÞ;

ð3:45Þ

where in the first equality the Kronecker delta δk;0 accounts
for the fact that the only nonzero contribution involving
δðxiÞ arises from k ¼ 0. In the last line of (3.45) we used
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Γ
�
1þ d̂

2

�
Γ
�
1 −

d̂
2

�
¼ 1

sin ðπ d̂
2
Þ
πd̂
2
: ð3:46Þ

Inserting the result (3.45) into the Laplacian of the irregular
solution (3.43) leads to

∇̃2ϕð0Þ
irreg

Cirregeiωt
ffiffiffiffiffiffiffiffiffi
2πω

p ¼
�
ω

2

�
−d̂=2

4πd̂=2δðxiÞ − ω2r−d̂=2Yd̂=2ðωrÞ:

ð3:47Þ
From these results for the Laplacian of the solutions,
we finally compute the action of the d’Alembertian
□̃ ¼ ∂̃μ∂̃μ ¼ −∂2

t þ ∇̃2. The time dependencies of the
fields only enter through eiωt, and thus, the term involving

second time derivatives in □̃ will lead to ω2ϕð0Þ
reg=irreg. This

cancels with those terms coming from the action of the
Laplacian that are directly proportional to the Bessel
functions in Eqs. (3.38) and (3.47). Consequently, upon
applying the d’Alembertian to the solution all terms
proportional to a Bessel function will vanish, and we obtain

□̃ϕð0Þ
reg ¼ 0; ð3:48aÞ

□̃ϕð0Þ
irreg ¼ Cirregeiωt8π

�
2π

ω

�d̂−1
2

δðxiÞ: ð3:48bÞ

We see that the source term corresponding to the
irregular solution is non-singular for both odd and even
values of d̂.
Having worked out the results (3.48) for l ¼ 0, the final

step is to obtain the angular dependencies for arbitrary
multipole moments. In order to compute the d’Alembertian
of the solution for generic multipolar order we will apply
the same strategy as above. This is, we will apply STF
derivatives to the l ¼ 0 d’Alembertian and use the com-
mutativity of both operators,5

□̃ϕ ¼ □̃ðCL
irreg∂Lϕ

ð0Þ
irreg þ CL

reg∂Lϕ
ð0Þ
regÞ

¼ CL
irrege

iωt8π

�
2π

ω

�d̂−1
2 ∂LδðxiÞ: ð3:49Þ

Next, we use this result to identify how the scalar
multipole moments QL are encoded in the coefficients
CL
reg=irreg. Comparing (3.49) with the wave equation (3.13),

we infer

QLðωÞ ¼ l!ð−1Þl8π
ffiffiffiffiffiffi
2π

p �
2π

ω

�d̂−1
2

CL
irreg: ð3:50Þ

6. The response function and its relation to in- and
outgoing wave amplitudes

Let us come back to the calculation of the response
function defined in (3.3). With an expression for the tidally
induced multipoles at hand (3.50), we are missing an
expression for the finite part of the STF derivatives of ϕ.
Hence we first compute

∂Lϕ ¼
X∞
k¼0

ðCK
reg∂L∂Kϕ

ð0Þ
reg þ CK

irreg∂L∂Kϕ
ð0Þ
irregÞ: ð3:51Þ

Here we can proceed in two equivalent ways: the first one
consists of directly substituting the series representation
and applying the STF derivatives to the regular/irregular
part; the second one, which we will follow here, consists of
computing the second derivatives of the Bessel function
and later on analyzing their behavior in order to extract the
finite part. We refer to Appendix A 3 for the details of
the computation. We obtain that the finite part of the field
determining the tidal tensor defined in (3.4) is

EL ¼ eiωtl!
ffiffiffi
π

p �
ω

2

�
d̂=2þ1=2þ2l ð−1Þl2lþ1

Γðd̂
2
þ lþ 1Þ

CL
reg: ð3:52Þ

With the results of (3.50) and (3.52) we can compute the
response defined by (3.3). Both the tidal field and the
multipoles depend on the tensorial STF coefficients CL.
They can be converted to scalar quantities by expressing
them in a spherical harmonic basis as discussed in [46].
This decomposition extends to higher dimensions, as can
be verified using the hyperspherical harmonics discussed in
Sec. III B and the identities in Appendix, and is given by

CL ¼
X
m

ClmYL
lm: ð3:53Þ

Here, YL
lm are STF tensors with complex coefficients

defined by the relation between spherical harmonics Ylm
and unit vectors through

Ylm ¼ YL
lmnL: ð3:54Þ

Taking into account that spherical symmetry implies that
the in/out coefficientsClm are independent of the azimuthal
number m leads to

CL
in=out ¼ Cin=out

l

X
m

YL
lm. ð3:55Þ

The ratio needed in the response can thus be expressed as

CL
in

CL
out

¼ Cin
l

P
mY

L
lm

Cout
l

P
m0YL

lm0
¼ Cin

l

Cout
l

: ð3:56Þ

Analogously, by virtue of (3.36),

5The commutativity of distributional derivatives can readily be
seen in the Fourier domain, where they correspond to a
multiplication by the wave vector.
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CL
irreg

CL
reg

¼ Cirreg
l

Creg
l

: ð3:57Þ

From (3.3), with (3.50) and (3.52), and using (3.57), we
obtain the response function

FlðωÞ ¼ −
QL

EL
¼ Ξl

Cirreg
l

Creg
l

; ð3:58Þ

where we use that ϕðωÞ ¼ ffiffiffiffiffiffi
2π

p
e−iωtϕðtÞ for a fixed

frequency ω and define

Ξl ¼ −
4πd̂=2

2l

�
2

ω

�
d̂þ2l

Γ
�
d̂
2
þ lþ 1

�
: ð3:59Þ

Using (3.36) we obtain the response function in the in-/
outgoing basis

FlðωÞ ¼ iΞl

"
1 −

2

1þ Cin
l

Cout
l
ei

π
2
ðd̂þ1Þ

#
; ð3:60Þ

where Ξl is given in (3.59). Writing the in-/outgoing
complex amplitudes in terms of a complex scattering phase
δl, defined by Cin

l =C
out
l ¼ e2iδl, we can rewrite (3.60) as

FlðωÞ ¼ −Ξl tan

�
δl þ

π

4
ðd̂þ 1Þ

�
. ð3:61Þ

Note that in deriving the above results for the response
function (3.60), there was no need to assume any analytic
continuation in l or d̂, except for the fact that the finite part
must be obtained using some regulator.
The values of the coefficients Cin=out

l depend on the
detailed internal structure properties of the body m and
cannot be determined within the effective description.
Instead, they must be computed from the full description
of relativistic perturbations to the compact object under
consideration. In the next subsection, we specialize to the
body being a nonrotating black hole and perform this
perturbation-theory calculation.

B. Amplitudes of the scattering states for a
Schwarzschild black hole

In general, to determine the detailed information about
the compact object contained in the response (3.60)
requires solving for relativistic perturbations in the interior
and exterior of the object, matching these solutions, and
extracting the asymptotic scattering states. In the special
case of black holes, due to the presence of the horizon, the
interior calculations are replaced by considering the near-
horizon solutions, as we discuss below. The case of a
nonspinning black hole is a well-studied example and
enables us to check our results from scattering against

known results in the literature, namely the static response
function [37] and the absorption cross section [72]. As we
study scalar perturbations, the spacetime remains unaf-
fected and our analysis focuses on the scalar field
equations.
We first calculate the behavior of the field near the

horizon. In this regime, there is no closed-form solution to
the perturbation equations, though in four spacetime
dimensions a highly useful series expansion known as
the MST solution [104] is available. Here, we also make
use of analytical approximations valid for Mω ≪ 1, where
M is the mass of the black hole but work only to the leading
order. Next, we consider the perturbation equations in the
asymptotic limit of distances much larger than the size of
the black hole, rH=r ≪ 1, where rH corresponds to the
horizon. These solutions describe waves propagating along
the Schwarzschild light cones. The last step in this sub-
section is to connect the detailed information about the tidal
response from the near-horizon regime to the amplitudes of
the asymptotic waves, both computed within the relativistic
perturbation framework. This is accomplished through
matched asymptotic expansions, specifically by consider-
ing the near-horizon solutions in the limit rH=r ≪ 1 and the
asymptotic wave solution for ωr ≪ 1. We show that these
two asymptotic expansions overlap and perform the match-
ing of the coefficients.

1. Scalar wave perturbations to a Schwarzschild
black hole

We start by obtaining the equation of motion of the scalar
field on the d̂-dimensional Schwarzschild background
using the action for the scalar-field dynamics given in
(3.1). In Schwarzschild coordinates, the spacetime is
described by the metric

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩd̂þ1; ð3:62Þ

where r2Ωd̂þ1 denotes the surface element on a ðd̂þ 1Þ-
dimensional hypersphere and

fðrÞ ¼ 1 −
�
rH
r

�
d̂
: ð3:63Þ

Here, rH is the Schwarzschild radius corresponding to the
black hole’s horizon. Because the spacetime is static and
spherically symmetric, we make the following ansatz for
the decomposition of the field

ϕ ¼
X
lm

Z
dω

eiωtffiffiffiffiffiffi
2π

p ψωlðrÞ
αðrÞ YlmðΩÞ; ð3:64Þ

where due to spherical symmetry ψωlmðrÞ ¼ ψωlðrÞ and
we have introduced
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αðrÞ ¼ rðd̂þ1Þ=2; ð3:65Þ

which absorbs the radial dependence of the volume elementffiffiffiffiffiffi−gp ∝ rd̂þ1 into the field. Substituting the ansatz (3.64)
into the action (3.1) and using the metric (3.62) we obtain

Sϕ ¼ −
Kϕ

2

X
lm

X
l0m0

Z
dωdω0α2dtdrdΩd̂þ1

×

�
f

�
∂r

ψ�
ω0l0

α

��
∂r

ψωl

α

�
eiðω−ω0Þt

2π
YlmY�

l0m0

−
ωω0

f
ϕϕ� þ eiðω−ω0Þt

2πα2
ψ�
ω0l0ψωlgΩ

0Ω∇Ω0Y�
l0m0∇ΩYlm

�
;

ð3:66Þ

where we used that ϕ is a real field such that ϕðtÞ ¼ ϕ�ðtÞ.
Here, gΩΩ

0 ¼ r−2δΩΩ
0
and the functions YlmðΩÞ are the

hyperspherical harmonics having the properties [105]

Z
dΩd̂þ1g

Ω0Ω∇Ω0Y�
l0m0∇ΩYlm

¼ −
1

r2

Z
dΩd̂þ1Y

�
l0m0∇2Ylm

¼ d̂2l̂ðl̂þ 1Þ
r2

Z
dΩd̂þ1Y

�
l0m0Ylm; ð3:67Þ

where l̂ was defined in (2.20). Using (3.67) leads to the
action

Sϕ ¼ −
Kϕ

2

X
lm

X
l0m0

Z
dω

Z
dω0

�Z
dt

eiðω−ω0Þt

2π

�

×

�Z
dr

��
−
ωω0

f
þ d̂2l̂ðl̂þ 1Þ

r2

�
ψ�
ω0l0ψωl

þ fα2
�
∂r

ψ�
ω0l0

α

��
∂r

ψωl

α

����Z
dΩd̂þ1Y

�
l0m0Ylm

�
:

ð3:68Þ

This simplifies upon using the normalizations

Z
dt

eiðω−ω0Þt

2π
¼ δðω − ω0Þ; ð3:69Þ

Z
dΩd̂þ1Y

�
l0m0Ylm ¼ δll0δmm0 : ð3:70Þ

Further, the last term inside the curly brackets in (3.68)
simplifies when writing out the derivatives, using integra-
tion by parts and omitting the total derivative, and can be
written as

Z
drfα2

�
∂r

ψ�
ω0l0

α

��
∂r

ψωl

α

�

¼
Z

dr

�
f∂rψ

�
ωl∂rψωl þ

∂rðf∂rαÞ
α

ψ�
ωlψωl

�
: ð3:71Þ

With these simplifications, the action (3.68) reduces to

Sϕ ¼ −
Kϕ

2

X
lm

Z
dω

Z
dr

�
f∂rψ

�
ωl∂rψωl

þ
�
d̂2l̂ðl̂þ 1Þ

r2
−
ω2

f
þ ∂rðf∂rαÞ

α

�
ψ�
ωlψωl

�
: ð3:72Þ

The equations of motion derived from this action read

∂rðf∂rψωlÞ −
�
d̂2l̂ðl̂þ 1Þ

r2
−
ω2

f
þ ∂rðf∂rαÞ

α

�
ψωl ¼ 0:

ð3:73Þ

It is convenient to transform the radial Schwarzschild
coordinate r to the tortoise coordinate r�, which is known
to lead to the simplest representation of the equations
of motion in this problem. The tortoise coordinate is
defined by

dr� ¼ 1

fðrÞ dr; ∂r ¼
1

fðrÞ ∂
�
r : ð3:74Þ

In terms of this coordinate, the action (3.72) takes the form

Sϕ ¼ −
Kϕ

2

X
lm

Z
dω

Z
dr�½∂r�ψ

�
ωl∂r�ψωl

þ ðVl − ω2Þψ�
ωlψωl�; ð3:75Þ

with the potential Vl given by

Vl ¼ f

�
d̂2l̂ðl̂þ 1Þ

r2
þ ∂rðf∂rαÞ

α

�
: ð3:76Þ

The equation of motion of the scalar field derived from the
action (3.75) reads

∂2
r�ψωl − ðVl − ω2Þψωl ¼ 0: ð3:77Þ

This equation has no closed-form analytic solution for
generic dimensions and generic frequency. Solutions are
only available in the special cases of four spacetime
dimensions [104] and in the zero-frequency limit [37].
For our purposes, it will be sufficient to consider the
asymptotic solutions close to the horizon and at large
distances from the black hole, as we discuss next. The near-
horizon solutions provide the information on the detailed
properties of the perturbed black hole in the strong-field
regime, while the asymptotic behavior at large distances
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determines the matching to the effective description of
Sec. III A. This information flow will be traced in detail
through the calculations in the next subsections.

2. Boundary conditions

An important preliminary to the analysis of wave
solutions is to identify the appropriate boundary conditions.
As stressed in [36], the proper treatment of the boundary
conditions is crucial in order to unambiguously identify the
tidal and multipolar contributions. We start by considering
the solutions to (3.77) in the limit r → ∞, which is
equivalent to r� → ∞. It this regime, the potential (3.76)
gives a negligible contribution, and the solutions are of the
form

lim
r→∞

ψωlðr�Þ ¼ A∞
l ine

iωr� þ A∞
l oute

−iωr� : ð3:78aÞ

Here, the terms with A∞
l in=out represent an incoming/

outgoing wave at infinity, as can be seen by using the radial
part (3.78a) in the full solution (3.64). Recall that, although
we have not included a subindex ω for simplicity, A∞

l in=out

still has a dependence on the frequency.
Near the horizon, r → rH or equivalently r� → −∞

implies from (3.63) that f → 0. Since the potential
(3.76) is proportional to f it also vanishes. Thus, the
general solutions in the near-horizon limit are also waves,
however, due to the nature of the horizon, there can be no
outgoing solutions. The boundary condition at the horizon
is that the outgoing components vanish and only purely
incoming waves remain

lim
r→rH

ψωlðr�Þ ¼ AH
l ine

iωr� : ð3:78bÞ

We will use these boundary conditions in determining
explicit solutions in these two asymptotic regimes, starting
with the near-horizon limit, and working in the approxi-
mation Mω ≪ 1. In this section, M denotes the mass of
the black hole. The near-horizon region is then charac-
terized by r − rH ≪ 1=ω, while far from the black hole
r − rH ≫ M. Once we compute our solutions in these
regimes we will be able to perform a matched asymptotic
expansion where these two regimes overlap.

3. Near-horizon solution

As we will be interested in matching the near-horizon
information with the asymptotics at large distances from
the black hole, it is convenient to work with the equation of
motion in the usual Schwarzschild coordinates from (3.72).
It is also useful to perform a rescaling of the field

ψωlðrÞ ¼ αRωlðrÞ: ð3:79Þ

We substitute (3.79) into (3.72) and specialize to the limit
r − rH ≪ 1=ω. This leads to the equation of motion

frd̂þ1∂rðfrd̂þ1R0
ωlðrÞÞ

− ðr2d̂fd̂2l̂ðl̂þ 1Þ − ω2r2d̂þ2
H ÞRωlðrÞ ¼ 0; ð3:80Þ

where we have used that close to the horizon ωr ∼ ωrH.
To cast the differential equation in a solvable form we

change coordinates to using f defined in (3.63) as the
dependent variable. Applying this change of variable to
(3.80) leads to

fð1 − fÞR00
ωlðfÞ þ ð1 − fÞR0

ωlðfÞ

−
�
l̂ðl̂þ 1Þ
ð1 − fÞ −

r2Hω
2

d̂2

�
1 − f
f

��
RωlðfÞ ¼ 0: ð3:81Þ

This differential equation can be transformed into a hyper-
geometric differential equation by expressing the field as

RωlðfÞ ¼ fi
ωrH
d̂ ð1 − fÞl̂þ1GωlðfÞ; ð3:82Þ

which leads to

0 ¼ fðf − 1ÞG00
ωlðfÞ − ½cþ − fð2bl þ cþÞ�G0

ωlðfÞ
þ bla

þ
lGωlðfÞ; ð3:83Þ

with

a�l ¼ l̂þ 1� 2irHω

d̂
; bl ¼ l̂þ 1

c� ¼ 1� 2irHω

d̂
: ð3:84Þ

The solution GωlðfÞ to (3.83) is a combination of hyper-
geometric functions 2F1ðaþl ; bl; cþ; fÞ, where we follow
the conventions of [102]. In general the second-order
differential equation (3.83) has two linearly independent
solutions, and the general solution is a linear combination
of them. However, special cases of the coefficients (3.84)
lead to degeneracies between the two solutions. Speci-
fically, the degeneracy occurs when any of the coefficients
aþl ; bl or the differences ðcþ − aþl Þ; ðcþ − blÞ are integers.
As the frequency ω is generic, we see from (3.84) that
degeneracies arise from integer values for bl when l̂ is a
half-integer, and also from ðcþ − aþl Þ when l̂ is an integer.
We will start with the case l̂ integer and then distinguish
two different analytic continuations of the same solution for
l̂ half- and non-integer.
For l̂ ∈ Z the degenerate solution is given by [106]

[102]

GωlðfÞ ¼ ð1 − fÞ2l̂þ1
2F1ð−l̂; 1 − a−l ; c

þ; fÞ

¼ ð1 − fÞ2l̂þ1
Xl̂
n¼0

ðl̂Þnð1 − a−l Þn
ðcþÞn

fn

n!
; ð3:85Þ
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where cþ was defined in (3.84) and

ðyÞn ¼
Γðyþ nÞ
ΓðyÞ : ð3:86Þ

denotes the Pochhammer symbol [103].
When l̂ is not an integer, the solution is given by [102]

GωlðfÞ ¼ e2π
ωrH
d̂ f−i

ωrH
d̂ AH

l out 2F1ða−l ; bl; c−ω; fÞ
þ AH

l in 2F1ðaþl ; bl; cþ; fÞ; l̂ ∉ Z; ð3:87Þ

where a�l ; bl; c
� were defined in (3.84).

Using the horizon boundary condition of no outgoing
waves, which implies AH

l out ¼ 0, we obtain for the full
radial function (3.82)

RωlðrÞ ¼ AH
l in f

irHω

d̂ ð1− fÞl̂þ1
2F1ðaþl ; bl;cþ;fÞ; l̂ ∉ Z:

ð3:88Þ

4. Asymptotic wave solutions at distances much larger
than the black hole’s size

Having obtained the results for the behavior of the near-
horizon solutions for scalar perturbations of a black hole,
we proceed by establishing its link to the asymptotic wave
solutions obtained in the regime rH=r ≪ 1. We introduce
the parameter

ϵ≡ rH
r
; ð3:89Þ

and analyze the equation of motion (3.77) to first order in ϵ.
We choose to work with r� since the equation of motion
reduces to a Schrödinger-like equation (3.77), which
in the limit r� → ∞ reduces to a wave equation with
solution (3.78a).
To connect with the near-horizon solution requires

solving for the relation between r and r�. We choose to
work perturbatively in ϵd̂ instead of ϵ since it is otherwise
not possible to expand 1=f in the definition (3.74).
Working perturbatively to linear order in ϵd̂ we obtain

r ¼ r�
�
1þ ϵ�d̂

d̂ − 1
þO½ðϵ�d̂Þ2�

�
; ð3:90Þ

where we have defined

ϵ� ¼ ϵjr¼r� ; ð3:91Þ

with ϵ given by (3.89).
It is interesting to note the simplicity of the result in

(3.90) for arbitrary dimensions. This is in contrast with the
result for d̂ ¼ 1, where a logarithm appears in the relation
between r and r� in Schwarzschild spacetime:

r ¼ r�ð1 − ϵ� logðr�Þ þOðϵ�2ÞÞ; ð3:92Þ

where one has to apply L’Hôpital’s rule to (3.90) and take
the limit d̂ → 1 together with the small-size limit rH → 0,

lim
rH→0

lim
d̂→1

d
dd̂
ϵ�d̂

d
dd̂
ðd̂ − 1Þ ¼ lim

rH→0
ðϵ� logðrHÞ − ϵ� logðr�ÞÞ

¼ −ϵ� logðr�Þ: ð3:93Þ

Here ϵ is defined in (3.89) and we have kept only the
leading order term.
Altogether, we find that the limit of the radial solution for

generic d̂ and l̂ vanishes. This means that the ϵ� corrections
do not introduce any divergence and therefore we can
safely use the flat space solution with ϵ� ¼ 0. This also
confirms the flat-space approximation used in the effective
theory side when d̂ and l̂ are generic complex numbers.
Using that in this limit ϵ� ¼ 0, the asymptotic wave
solution for distances much larger than the size of the
black hole will be given by (3.77) with f ¼ 1 and r� ¼ r,

RωlðrÞ ¼ r−d̂=2ðA∞
l regJd̂=2þlðωrÞ þ A∞

l irregYd̂=2þlðωrÞÞ;
ð3:94Þ

where we have chosen the regular/irregular basis rather
than the in/out states. If we now look at the boundary
condition at infinity (3.78a), we see that, given r ¼ r�, is
the same as in (3.18).

5. Determining the imprint of the black hole’s properties
in the scattering amplitudes

To complete the calculation of the response function we
next compute the ratio A∞

l in=A
∞
l out in terms of properties of

the perturbed black hole using matched asymptotic expan-
sions. Specifically, we will consider the asymptotic expan-
sion of the near-horizon solution (3.88) for large 1=ϵ and of
the asymptotic solution (3.94) for ωr ≪ 1. The near-
horizon region is r − rH ≪ 1=ω, while the far-zone region
is r − rH ≫ M. The matching is performed where the two
asymptotic expansions overlap, and with the use of analytic
continuation in l̂; see Fig. 1 for an illustration of the
process.
We note that only the in- and outgoing solutions are well-

defined physical states. However, as in Sec. III A, it is
easier to compute the ratio of the wave amplitudes in the
regular/irregular basis, with A∞

ωl irreg=A
∞
ωl reg understood as

constants defined by (3.36).
We first consider the asymptotic expansion of the

solution (3.94) for ωðr − rHÞ ¼ ωrð1 − ϵÞ ∼ ωr ≪ 1.
The limiting behavior of the Bessel functions is given
by [101]
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lim
z≪1

JνðzÞ →
�
z
2

�
ν 1

Γ½νþ 1� ; ð3:95Þ

lim
z≪1

YνðzÞ → −
�
z
2

�
−ν Γ½ν�

π
: ð3:96Þ

The radial solution (3.94) thus becomes

lim
ωr≪1

RωlðrÞ ¼ −A∞
ωl irreg

�
ω

2

�
−d̂
2
ð2l̂þ1Þ ΓðpÞ

π
r−d̂ðl̂þ1Þ

þ A∞
ωl reg

�
ω

2

�d̂
2
ð2l̂þ1Þ 1

Γðpþ 1Þ r
d̂ l̂; ð3:97Þ

with

p ¼ d̂
2
ð2l̂þ 1Þ: ð3:98Þ

Next, we consider the asymptotic expansion of the near-
horizon solutions in the limit ϵ → 0, with f ¼ 1 − ϵd̂.
The degenerate solution (3.85) for integer arguments
behaves as [102]

lim
ϵ→0

RωlðrÞ ∝
�
1

ϵ

�
d̂ l̂
; l̂ ∈ Z. ð3:99Þ

This contains only positive powers of r corresponding to
growing, regular solutions; a decaying, irregular compo-
nent is absent. Thus, we conclude that AH

l irreg ¼ 0 in the
limit ϵ → 0.
The solution for non-integer l̂ is given by (3.88). Since

we have to take the limit ϵ → 0, or equivalently f → 1, it is
useful to use hypergeometric linear transformations in
order to change the argument of the hypergeometric
function from f to 1 − f. This is useful given that

2F1ða; b; c; 0Þ ¼ 1. Since none of the parameters a, b, c
are integers, the linear transformation reads [106]

2F1ða; b; c; xÞ

¼ ð1 − xÞ−a−bþc ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ

× 2F1ðc − a; c − b;−a − bþ cþ 1; 1 − xÞ

þ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ 2F1ða; b; aþ b − cþ 1; 1 − xÞ:

ð3:100Þ

Substituting the linear transformation into (3.88) and taking
the limit f → 1 with ð1 − fÞ ¼ ϵ fixed yields

lim
ϵ→0

RωlðrÞ ¼ AH
l in

Γð−2l̂− 1ÞΓðcþÞ
Γð−l̂ÞΓð1− a−l Þ

ϵd̂ðl̂þ1Þ

þAH
l in

Γð2l̂þ 1ÞΓðcþÞ
ΓðblÞΓðaþl Þ

�
1

ϵ

�
d̂ l̂
; l̂ ∉ Z;Z=2.

ð3:101Þ

We next consider the case where l̂ is half-integer. The
solution for this case is also given by (3.88). For the case
l̂ ∈ Z=2, c − a − b ¼ −m ¼ −2l̂ − 1 is a negative integer
and the linear transformation (3.100) develops a pole. The
linear transformation is then computed by analytic con-
tinuation and is given by [102] [106]

2F1ða; b; aþ b −m; xÞ

¼ ð1 − xÞ−m ΓðmÞΓðaþ b −mÞ
ΓðaÞΓðbÞ

×
Xm−1

n¼0

ðb −mÞnða −mÞn
ð1 −mÞnn!

ð1 − xÞn

þ ð−1Þm Γðaþ b −mÞ
Γða −mÞΓðb −mÞ

X∞
n¼0

ðaÞnðbÞn
ðnþmÞ!n!

× ½κ00n − logð1 − xÞ�ð1 − xÞn: ð3:102Þ

where

κ00n ¼ ψð1þmþ nÞ þ ψð1þ nÞ − ψðaþ nÞ − ψðbþ nÞ
ð3:103Þ

and

ψðxÞ ¼ Γ0ðxÞ
ΓðxÞ ð3:104Þ

is the digamma function. Substituting into (3.88) yields

RωlðrÞ
AH
l inf

iωrH=d̂
¼ Γð2l̂þ 1ÞΓðcþÞ

Γðaþl ÞΓðblÞ

×
X2l̂
n¼0

ð−l̂Þnð1− a−l Þn
ð−2l̂Þnn!

ð1− fÞn−l̂

þ ð−1Þ2l̂þ1ΓðcþÞ
Γð1− a−l ÞΓð−l̂Þ

X∞
n¼0

ðaþl ÞnðblÞn
ðnþ 2l̂þ 1Þ!n!

× ½κ00n − logð1− fÞ�ð1− fÞnþl̂þ1; l̂ ∈ Z=2:

ð3:105Þ

Extracting the dominant powers of ϵ and 1=ϵ in the two
series in (3.105) we obtain
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lim
ϵ→0

RωlðrÞ ¼ AH
l inf

irHω

d̂
Γð2l̂þ 1ÞΓðcþÞ
Γðaþl ÞΓðblÞ

�
1

ϵ

�
d̂ l̂

þ…

þ AH
l inf

irHω

d̂
ð−1Þ2l̂þ1ΓðcþÞ

Γð1 − a−l ÞΓð−l̂Þð2l̂þ 1Þ!
× ½κ000 − d̂ logðϵÞ�ϵd̂ðl̂þ1Þ þ…; l̂ ∈ Z=2;

ð3:106Þ

where the dots denote higher positive or negative powers of
ϵ. The appearance of the logarithm is in agreement with
[37] and [38], where they argue that it is a consequence of a
classical renormalization group flow of general relativity.
However, as discussed below, we will work with generic,
real values of l̂ and only in the end take the limit l̂ → Z=2.
When taking this limit we obtain a logarithm of rH, and no
r-dependent coefficients.
As wewill be interested only in a matching to the leading

order, where the two asymptotics we are considering
manifestly exhibit an overlap, it will not be necessary to
introduce scaled matching coordinates. Hence, we can
substitute back our definition of ϵ given in (3.89) into
the near-horizon solutions (3.101) and (3.106). Next, we
can directly perform the matching of the near-horizon
solution and the asymptotic solution by considering the
coefficients in front of each radial dependence, i.e., r−d̂ðl̂þ1Þ

and rd̂ l̂. For generic l̂ ∈ R, not an integer or half-integer,
this matching yields

A∞
l irreg

A∞
l reg

¼ −
πðωrH=2Þd̂ð2l̂þ1ÞΓð−2l̂ − 1ÞΓðblÞΓðaþl Þ
Γð−l̂ÞΓð2l̂þ 1ÞΓðpÞΓðpþ 1ÞΓð1 − a−l Þ

;

ð3:107Þ

with p given in (3.98), a�l and bl defined in (3.84), and ϵ

given in (3.89). Note that when specializing to integer l̂ at
the level of the matching, one obtains that (3.107) is zero.
Half-integer l̂ leads to a different functional form of this
ratio, similar to the static case discussed in [37,38]. This
arises because for integer l̂, the hypergeometric function
characterizing the near-horizon solution becomes the
degenerate solution (3.85), while for half-integers it devel-
ops poles (3.106). The problems with considering these
singular cases directly are avoided by using analytic
continuation in l̂. Keeping l̂ generic enables us to work
with the finite, well-behaved result (3.107), and the singular
cases are obtained by carefully taking the limits l̂ → Z and
l̂ → Z=2 of the final, generic results.
Note that in the case of static tides, one essentially only

has the near-horizon part of the solution, making it more
difficult to extract gauge-invariant information asymptoti-
cally. Here instead we can make the connection to gauge-
invariant scattering data based on in- and out-going wave
solutions. This is also a more physical setup, since even for

adiabatic tides the frequency of the tidal field is never
exactly zero in an astrophysical environment.

C. Matching to the skeletonized effective
action description

In this section, we address the final step in obtaining the
tidal response function of a black hole by connecting the
information about the perturbed black hole contained in
the scalar-wave amplitudes as computed in Sec. III B with
the definition of the response function from Sec. III A. This
requires an identification between the asymptotic waves in
Schwarzschild and Minkowski spacetimes. To facilitate
this link in a coordinate-invariant manner, we will base
the identification on the geometry of lightcones, as dis-
cussed below.

1. Identification of the null infinities of
Schwarzschild and Minkowski spacetimes

To connect with the effective action from Sec. III A
requires the limit of the perturbative calculations from
Sec. III B when the black hole is viewed from distances
much larger than its size and shrinks to nearly a point,
rH → 0. When taking this limit we recover an asymptoti-
cally nearly flat spacetime. In the effective action discussed
in Sec. III A, we assumed a Minkowksi spacetime for
simplicity. In general there would be corrections to the
metric potentials in powers of 1=r. In principle, these
should be included and must match to the Schwarzschild
asymptotics near null infinity. Here, we only capture the
leading-order behavior in this regime, which will be
sufficient for our purposes.
To make the asymptotic identification between the

Schwarzschild and Minkowski spacetimes we use dou-
ble-null coordinates u, v. For Schwarzschild spacetime,
they are defined by

du ¼ dt −
1

f
dr ¼ dt − dr�; ð3:108aÞ

dv ¼ dtþ 1

f
dr ¼ dtþ dr�: ð3:108bÞ

In Minkowski spacetime, these coordinates reduce to
u ¼ t − r and v ¼ tþ r. Such coordinates are adapted to
radial null geodesics and therefore along the light cones.
Since light cones have an intrinsic geometric meaning and
are invariant objects asymptotically, this set of coordinates
enables a robust identification between the incoming and
outgoing solutions both in the effective theory and the
black hole perturbation calculations.
We first discuss the solutions in the effective theory

expressed in null coordinates. The asymptotic solutions for
in- and outgoing waves were obtained in (3.31). The char-
acteristic are exactly along u, v, and thus, the dependence
on (t� r) can immediately be transformed to the null
coordinates using their flat-space definition. This yields
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lim
r→∞

ϕðu; vÞ ¼ CL
innLðiωÞleiωv
rðu; vÞd̂þ1

2

þ CL
outnLð−iωÞleiωu

rðu; vÞd̂þ1
2

;

ð3:109Þ

with rðu; vÞ ¼ ðv − uÞ=2 in flat space.
For the Schwarzschild case, it is easiest to consider the

asymptotic form of the equations of motion instead of
transforming the solutions. Instead of the previous ansatz
(3.64), we now decompose the scalar field as

ϕ ¼
X
lm

χlmðu; vÞYlmðΩÞ: ð3:110Þ

Substituting this ansatz into the action (3.1) and using the
metric (3.62) transformed to null coordinates through
(3.108) leads to the following equation of motion for
χðu; vÞ

2rd̂þ1∂u∂vχ þ ∂vðrd̂þ1Þ∂uχ þ ∂uðrd̂þ1Þ∂vχ

þ 2frd̂−1d̂2l̂ðl̂þ 1Þχ ¼ 0; ð3:111Þ

where r ¼ rðu; vÞ is defined through (3.108) and
u ¼ t − r�, v ¼ tþ r�. In the limit ϵ → 0 where the black
hole shrinks to a point or equivalently r → ∞, the factor f
in the second line of (3.111) becomes unity (f → 1). For
large r, the most dominant term in the differential equa-
tion (3.111) is the first one, and has a form identical to the
flat-space wave equation in null coordinates. Thus, we
can write down the solution to (3.111) in terms of in-
and outgoing spherical waves in the asymptotic regime
ϵ → 0 as

lim
ϵ→0

ϕ ∼
X
lm

�
A∞
l in

eiωv

rðu; vÞd̂þ1
2

þ A∞
l out

eiωu

rðu; vÞd̂þ1
2

�
YlmðΩÞ:

ð3:112Þ

As discussed in Sec. III B, for ϵ → 0 we also have that
r� → r. This implies that the lightcones and correspond-
ingly the u, v coordinates of the Schwarzschild and
Minkowski spacetime coincide asymptotically for ϵ ¼ 0.
To this first approximation we are considering, we can
identify both the future and past null infinities between the
effective and Schwarzschild descriptions, and use this to
relate the results of the two different calculations. Figure 2
illustrates this reasoning. As mentioned above, in general,
higher-order corrections would be included in this identi-
fication. Thus, using the conversion of the coefficients from
the STF to the spherical harmonic basis from (3.55) in
(3.109), applying the identity (3.54), and comparing with
(3.112) leads to the trivial identification

Cl in=out ¼ A∞
l in=out; ð3:113Þ

where Cl in=out are the coefficients of the effective
field theory solution and A∞

l in=out are the coefficients
of the asymptotic solution in the Schwarzschild
spacetime.
With this identification, we can compute the coeffi-

cients in the full theory via analytical methods such as
matched asymptotic expansion (facilitated by analytic
continuation), or via numerical methods. We note that
the amplitudes A∞

l in=out need not be obtained in generic
dimension, which may indeed be computationally unfea-
sible for rotating compact objects and/or numerical
approaches. However, when matching the asymptotic
waves in four spacetime dimensions, the background
spacetime curvature must be taken into account, as
indicated by the logarithm in (3.92) which introduces
an infrared-singular contribution to the phase. The
double-null coordinates streamline the matching by
absorbing such contributions, making the agreement of
the infrared/asymptotic physics between full and effective
theory manifest.

2. Explicit results for the response function

With the above results, we can compute the explicit
expression for the frequency-dependent response function
of the black hole to scalar tidal perturbations. We first
obtain the response for generic l̂, and verify that in the
static limit ω → 0 this agrees with previous results [37,38].
We then discuss the special singular cases when l̂ is
integer, which is relevant for four spacetime dimensions,
and half-integer by carefully taking the limits of the general
result.
The response is obtained by substituting (3.107) into

(3.60), which yields

FIG. 2. Penrose diagrams illustrating the asymptotic identifi-
cation of null infinities ðI�Þ of the Schwarzschild spacetime in
the limit that the size of the black hole rH shrinks to zero and the
Minkowski spacetime we use in the effective description. The
matching is performed using double null coordinates adapted to
the light cones.
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FlðωÞ ¼
22−lπd̂=2þ1rd̂ð2l̂þ1Þ

H ΓðblÞΓð−2l̂ − 1ÞΓðaþl Þ
Γð−l̂ÞΓð2l̂þ 1ÞΓðpÞΓð1 − a−l Þ

;

ð3:114Þ

where we use l ¼ l̂ d̂, and the parameters a�l and p are
defined in (3.84) and (3.98). This expression can be
simplified by using the Legendre multiplication formula
for the gamma functions [101],

Γð2zÞ ¼ π−1=222z−1ΓðzÞΓ
�
zþ 1

2

�
; ð3:115Þ

which leads to

Fl̂ðωÞ ¼
π

d̂
2
þ1Γð−l̂ − 1

2
ÞΓðaþl Þrd̂ð2l̂þ1Þ

H

2ð4þd̂Þl̂Γðl̂þ 1
2
ÞΓðpÞΓð1 − a−l Þ

: ð3:116Þ

We now consider the limit ω → 0 of (3.116), which yields
the static Love numbers. Using the reflection formula [101]

ΓðzÞΓð1 − zÞ ¼ π

sinðπzÞ ; ð3:117Þ

it holds

Γð−l̂ − 1
2
Þ

Γð−l̂Þ ¼ Γðl̂þ 1Þ
Γðl̂þ 3

2
Þ tanðπl̂Þ: ð3:118Þ

Substituting (3.118) into (3.116) and using (3.98) yields

Fl̂ðωÞ ¼
π

d̂
2
þ1Γ2ðlþ 1Þrd̂ð2l̂þ1Þ

H tanðπl̂Þ
2ð4þd̂Þl̂Γðd̂

2
ð2l̂þ 1ÞÞΓðl̂þ 1

2
ÞΓðl̂þ 3

2
Þ
; ð3:119Þ

in agreement with [37]. As discussed in [37], this expres-
sion has poles for specific values of l̂, which play the role
of counter-terms in the effective action. That is, though we
based the matching on a calculation in the effective theory
in a flat background, we can extract information about
poles appearing at higher orders (curved background) in the
effective theory through analytic continuation, which is an
impressive display of its power.
Having confirmed that the static limit of the response

(3.116) reproduces previous results, we next examine the
full frequency-dependence in the limit l̂ → Z relevant for
four dimensions. Using the definitions of a�l from (3.84)
and the identities

Γðaþl Þ ¼ Γ
�
1þ 2irHω

d̂

�Yl̂
k¼1

�
kþ 2irHω

d̂

�
; ð3:120Þ

Γð1 − a−l Þ ¼
Γð1þ 2irHω

d̂
Þ

2irHω
d̂

ð−1Þl̂ Ql̂
k¼1 ðk − 2irHω

d̂
Þ

ð3:121Þ

in (3.116) leads to

Fl̂∈ZðωÞ ¼ iω
ð−1Þl̂2πd̂

2
þ1Γð−l̂ − 1

2
Þr2d̂ðl̂þ1Þþ1

H

2ðd̂þ4Þl̂d̂Γðl̂þ 1
2
ÞΓðpÞ

×
Yl̂
k¼1

�
k2 þ 4r2Hω

2

d̂2

�
: ð3:122Þ

Finally, we consider the special case that l̂ → Z=2. In
this case the response function (3.114) diverges due to the
presence of simple poles in Γð−2l̂ − 1Þ. We can solve this
issue, as done similarly in [37], by expanding in 2l̂ ¼ n − ε
with n an integer and ε → 0 a small parameter, which
isolates the finite contribution. We use the property of the Γ
function [103]

Γð−kþ εÞ ¼ ð−1Þk
k!ε

þOðε0Þ ð3:123Þ

for any integer k. In the response (3.116), the factor

Γð−2l̂ − 1Þ appears together with rd̂ð2l̂þ1Þ
H ¼ r2l̂ d̂H rd̂H.

The first of these can be written as r2l̂ d̂H ¼ rðn−εÞd̂H ¼
rnd̂H r−εd̂H . The last factor here must be included when
considering the limit ε → 0 of the divergences in the
response. Introducing the cutoff scale Λ, and defining
r̂H ¼ rH=Λ, the expansion of the relevant pieces of the
response in this limit truncated at Oðε0Þ is then given by

Γð−n − 1þ εÞr̂−d̂εH ¼ ð−1Þ2l̂þ1

ð2l̂þ 1Þ!
1

ε
½1 − εd̂ logðr̂HÞ�

¼ −d̂ logðr̂HÞ
ð−1Þ2l̂þ1

ð2l̂þ 1Þ!þ
ð−1Þ2l̂þ1

ð2l̂þ 1Þ!
1

ε
:

ð3:124Þ
Hence, only the first term is finite in the limit ε → 0 and
should be considered to describe the response function,
while the divergent part should be interpreted as a counter-
term in the action [37].6 With this convention, the response
function for half-integer l̂ reads

Fl̂∈Z=2ðωÞ
Λ2d̂ðl̂þ1Þ

¼ ð−1Þ2l̂22−ld̂πd̂=2þ1r̂2d̂ðl̂þ1Þ
H ΓðblÞΓðaþl Þ logðr̂HÞ

Γð2l̂þ 2ÞΓð−l̂ÞΓð2l̂þ 1ÞΓðpÞΓð1 − a−l Þ

þ ð−1Þ2l̂þ122−lπd̂=2þ1r̂2d̂ðl̂þ1Þ
H ΓðblÞΓðaþl Þ

Γð2l̂þ 2ÞΓð−l̂ÞΓð2l̂þ 1ÞΓðpÞΓð1 − a−l Þ
1

ε
:

ð3:125Þ

6An explicit systematic construction of the internal action
Sint in terms of modes degrees of freedom as in [107] might
provide a cleaner split between the dynamical mode response and
counterterms.
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3. Love numbers and absorption encoded
in the response

From (3.122) one can see that when l̂ and d̂ are integer
numbers, the real part of the response function vanishes at
all orders in ω within the approximation Mω ≪ 1. Hence,
for a four-dimensional nonrotating black hole, not only the
static Love number vanishes, but the entire real part of the
response function,

ℜfFl̂∈ZðωÞg ¼ 0: ð3:126Þ

Furthermore, we can also compute the absorption cross
section and compare with the result from [72] for d̂ ¼ 1 and
l̂ ¼ l ¼ 0. The definition of the partial absorption cross
section is given by

σlabs ¼
π

ω2
ð2lþ 1Þ

�
1 −

				Aout

Ain

				2
l

�
: ð3:127Þ

Using (3.36) for l ¼ 0 we obtain

σl¼0
abs ¼ 16M2π; ð3:128Þ

in agreement with the literature. On the other hand, the
response function for d̂ ¼ 1 and l̂ ¼ 0 reads

Fl̂¼0ðωÞ ¼ −4r2Hiπω ¼ −16M2iπω: ð3:129Þ

This result suggests that, in the spirit of [57] and the
optical theorem, the absorption cross section and the
imaginary part of the response function are proportional,

jℑfFl̂∈ZðωÞgj ¼ ωσabs: ð3:130Þ

One has to take the absolute value of the imaginary part
because the terms with odd powers of the frequency will
have a different sign depending on the chosen convention
of the Fourier transform.
For generic spacetime dimensions and multipolar order,

it holds

ℜfFl̂ðωÞg ¼ 0 ⇔ ℑ

�
Cin
l

Cout
l

ei
π
2
ðd̂þ1Þ

�
¼ 0; ð3:131Þ

ℑfFl̂ðωÞg ¼ 0 ⇔

				 Cin
l

Cout
l

				2 ¼ 1: ð3:132Þ

We discuss an analogy with optics in Sec. IV.

IV. SUMMARY AND DISCUSSION

An important quantity for gravitational wave signatures
of the nature and internal structure of compact objects is its
response to tidal perturbations. The response is operation-
ally defined by the imprints on gauge-invariant observ-
ables, such as the binding energy as a function of frequency

or the ratio of in- and outgoing wave amplitudes at null
infinity. These observables are directly computed from an
effective action describing the physics at large distances
from the object, where it is modeled as a center-of-mass
worldline augmented with multipole moments. At that
level, the response is defined mathematically as the ratio
between the induced multipole moments QL to the tidal
field EL, specifically

QLðωÞ ¼ −FlðωÞELðωÞ: ð4:1Þ

Here, the function FlðωÞ is the complex frequency-
dependent response function and all quantities are defined
in frequency domain. In the case of scalar perturbations,
the tidal field is given by EL ¼ FP

r→0
∂LϕðωÞ, where ϕ is the

scalar field.
Extracting the response function from gauge-invariant

observables of a binary system and in particular discrimi-
nating its effects from (unknown) higher PN point-mass
corrections is subtle yet important to avoid biases in the
interpretation. The required distinction can be accom-
plished in a rigorous way through analytic continuation
in the number of spacetime dimensions and/or multipole
orders. Consequently, tidal effects can be unambiguously
determined without having to carry out high-order PN
calculations.
A highly useful framework for computing gauge invari-

ant quantities in a binary system is an effective action
description, where the compact objects are reduced to
center-of-mass worldlines with multipole moments. The
tidal response imprinted in observables such as the binding
energy or gravitational waves is thus directly related to
quantities appearing in the effective action, for instance
coupling coefficients. Relating the effective action to
detailed properties of the compact object requires matching
calculations. In particular, one must compute the induced
multipoles QL defined in the spacetime outside the object
for a given microphysical model of its internal structure,
and relate the result to the quantities appearing in the
effective action. To avoid ambiguities in the matching, it is
highly advantageous to establish the link between the
perturbative description and the effective action by con-
sidering wave scattering states defined at null infinity
instead of a stationary setup as in standard approaches.
In scalar wave scattering, the scalar tidal response

function is related to the ratio of amplitudes of in- and
outgoing waves Cin=Cout defined at null infinity of
Minkowski spacetime by

FlðωÞ ¼ iΞl

"
1 −

2

1þ Cin
l

Cout
l
ei

π
2
ðd̂þ1Þ

#
ð4:2Þ

or, introducing the complex phase shift δl defined via
Cin
l =C

out
l ¼ e2iδl ,
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FlðωÞ ¼ −Ξl tan

�
δl þ

π

4
ðd̂þ 1Þ

�
; ð4:3Þ

with

Ξl ¼ −
4πd̂=2

2l

�
2

ω

�
d̂þ2l

Γ
�
d̂
2
þ lþ 1

�
: ð4:4Þ

This result is similar to the frequency-dependent response
in optics, with the analog of response being the refractive
index of a material. An imaginary refractive index corre-
sponds to absorption of light and a change in amplitude. By
contrast, in the absence of absorption, the refractive index
encodes a phase shift of the light and leads to refraction of
incident light beams.
The identification of the in- and out scattering states at

null infinity of the Minkowski and Schwarzschild space-
times is made rigorous by basing it on the geometry of the
light cones. This reveals that there is a one-to-one corre-
spondence between the in- and outgoing wave amplitudes

Cin

Cout
jMinkowski ¼

A∞
in

A∞
out

jSchwarzschild: ð4:5Þ

The above results are valid in general for scalar perturba-
tions to any compact object in GR. The connection to the
microphysical properties, however, requires specializing to
a particular kind of compact object.
For a Schwarzschild black hole, it is possible to perform

analytical calculations that trace the information flow from
the perturbed black hole to regions far from it in the limit
Mω ≪ 1. Matched asymptotic expansions reveal that the
response function is given by

FlðωÞ ¼ Wld̂

8<
:

Γðl̂þ1þ2iωrH=d̂Þ
Γð−l̂þ2iωrH=d̂Þ ; l̂ ∉ Z;Z=2

2irHωð−1Þl̂
d̂

Q
l̂
k¼1



k2 þ 4r2Hω

2

d̂2

�
; l̂ ∈ Z

ð4:6Þ

with

Wld̂ ¼
π

d̂
2
þ1rd̂ð2l̂þ1Þ

H Γð−l̂ − 1
2
Þ

2ð4þd̂Þl̂Γðl̂þ 1
2
ÞΓðd̂

2
ð2l̂þ 1ÞÞ

. ð4:7Þ

More generally, to go beyond the case of black holes
such as (rotating) neutron stars the calculations requires full
numerical studies of the perturbative problem, which can
readily be incorporated into the formalism.
Further insights into the information contained in the

black hole’s response function (4.6) are revealed by
considering limiting cases of particular interest. First, for
integer l̂, which applies for four spacetime dimensions, and
any frequency within our approximations, the real part of

the response (4.6) vanishes, hence, the Love numbers are
zero, and the purely imaginary terms for l ¼ 0 reduce to
the known absorption properties of a black hole [72].
Second, in the static limitω → 0, the response (4.6) reduces
to the Love numbers for arbitrary dimensions and multi-
poles considered in [37,38].
Considering wave scattering to calculate Love numbers

as done here rather than following the standard approach
of working within a stationary setting has two major
advantages. (i) Scattering involves imposing boundary
conditions both at the horizon and at infinity. The
importance of including both of these boundary con-
ditions was shown in [36]. Specifically, this bypasses the
gauge ambiguities discussed in other studies (e.g., dis-
cussed in [35]), which solely consider the near-horizon
solution and identify the Love number in terms of the
ratio between the growing and decaying solutions for the
metric. (ii) By contrast, the waves extracted at null
infinity are described by gauge-invariant complex ampli-
tudes, which provide the most convenient identification
between the wave solutions of the compact-object per-
turbation calculations and the skeletonized effective
description. In particular, formulating the results in terms
of double null coordinates, which have an intrinsic
geometric meaning, leads to a clear identification
between the two descriptions. One important point to
note is that the scalar case we worked out in detail avoids
some additional subtleties that we expect to arise in the
gravitational case. For instance, we expect the identifi-
cation of null infinities to only be fixed up to the
remaining freedom of supertranslations characterized by
the BMS symmetry group [62].
The scattering calculations also lead to deeper insights

into the necessity and utility of analytic continuations in the
multipolar order l and the dimension d̂ for different stages
of the calculations. Notably, analytic continuations
(1) immediately distinguish finite size effects from

post-Newtonian point-mass terms in quantities
characterizing a binary system. Thus, tidal contri-
butions can be unambiguously identified without
requiring simultaneous knowledge of the high-order
PN point-mass terms having the same scaling with
frequency.

(2) have no impact on determining the response function
in terms of the wave amplitudes. This is an advan-
tage of considering scattering rather than stationary
perturbations.

(3) in generic dimension d̂ greatly simplify the calcu-
lations. For instance, in the definition of the tortoise
coordinate r�ðrÞ, a logarithm is present for d̂ ¼ 1,
i.e., 3þ 1-dimensional spacetime, which intro-
duces computational subtleties. As discussed in
Sec. III B, in generic dimensions this relationship
is simple, e.g., asymptotically for rH → 0 it becomes
ðr − r�Þ ∼ ðrH=r�Þd̂r� þ � � �. For four spacetime
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dimensions, the limit is ðr−r�Þ∼−rH logðr�Þþ���.
Thus, it is convenient to work with the simpler
general case and obtain the special cases at the end,
similar to the utility of analytic continuations in
dimensions in other contexts.

(4) in generic multipolar order l are ubiquitous in
analytical black hole perturbation calculations for
linking the near-horizon behavior to the asymptotic
quantities, e.g., [104]. The reason is that for integer
values of l the two independent near-horizon
solutions are degenerate and the single solution is
regular, thereby preventing the identification of the
imprints due to the black hole’s response from the
irregular solution. Analytic continuation to complex
angular momentum numbers l has also been of great
use in related contexts [82–85].

V. CONCLUSIONS AND OUTLOOK

In this paper, we addressed several subtleties and
concerns about tidal Love numbers of compact objects.
We first considered the problem of identifying the Love
numbers in a binary system. We showed that using the
gauge-invariant binding energy as a function of frequency
for circular orbits, and working in arbitrary dimensions
and/or multipolar order, it is straightforward to disentangle
high PN order point-particle contributions from finite size
effects. We also made explicit the connection between this
gauge-invariant energy and tidal coupling coefficients in an
effective action.
Next, we calculated the tidal coupling coefficients and

the information about the detailed properties of perturbed
compact objects they contain using scattering. This has
several advantages over considering stationary perturba-
tions, such as working with quantities defined at null
infinity, taking into account all boundary conditions, and
gaining insights into the need for and convenience of
analytic continuations for different stages of the calcula-
tions. We demonstrated the methodology in detail by
performing the calculations for scalar perturbations to a
Schwarzschild black hole, without specializing to the low-
frequency limit as done in most previous works. We
showed that our method recovers known results for the
tidal Love numbers and absorption of a black hole in
limiting cases.
Our results represent the basis for a number of future

directions. For instance, an important next step is to
consider gravitational perturbations. A major simplifica-
tion arising in the scalar case was that the spacetime
remained the background black hole spacetime throughout,
which will no longer be true in the gravitational case.
Another avenue for future work is to compute the res-
ponse numerically. This would enable going beyond the
cases where analytical asymptotic expansion are available,
for instance generic rotating compact objects. Our work
will be important for future high-precision studies of

neutron stars and black holes with gravitational waves,
and interpreting the information on fundamental physics
encoded in the signals. Further, the methodology estab-
lished in this paper will also be useful for computing
response functions for exotic compact objects and compact
objects in alternative theories of gravity, which will yield
important information for tests of gravity and beyond-
standard-model physics.
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APPENDIX

1. Contraction of STF unit vectors in d̂ dimensions

In this appendix we derive the relation (2.14), i.e., the
contraction of two STF unit vectors in any number of
dimensions d̂ ≥ 1. From [108] we derive the following
result for d̂ dimensions

nL ¼
X½l=2�
k¼0

ð2l − 2kþ d̂ − 2Þ!!
ð2lþ d̂ − 2Þ!! ½δ2kñL−2k þ sym�; ðA1Þ

where “sym” stands for the remaining symmetric terms
and we denote non-STF unit vectors by a tilde ñL. Upon
contracting with a different STF unit vector and using that
n0Ln

L ¼ ñ0Ln
L,

n0Ln
L ¼ ñ0Ln

L

¼
X½l=2�
k¼0

ð2l − 2kþ d̂ − 2Þ!!
ð2lþ d̂ − 2Þ!! ½δ2kñL−2k þ sym�ñ0L

¼
X½l=2�
k¼0

l!
ðl − 2kÞ!ð2kÞ!!

ð2l − 2kþ d̂ − 2Þ!!
ð2lþ d̂ − 2Þ!! μL−2knn0 ;

ðA2Þ

where we define μnn0 ≡ ñ · ñ0 and in the last equality
we contracted all the Kronecker deltas. Next, using the
series representation of the D-dimensional Legendre
Polynomial,

PðDÞ
l ðμnn0 Þ ¼

X∞
k¼0

ð−1Þk ð2l − 2kþ d̂ − 2Þ!!
ðl − 2kÞ!ð2kÞ!!ðd̂ − 2Þ!! μ

L−2k
nn0

ðA3Þ

we obtain
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n0Ln
L ¼ l!

ð2lþ d̂ − 2Þ!!

×
X½l=2�
k¼0

ð2l − 2kþ d̂ − 2Þ!!
ðl − 2kÞ!ð2kÞ!!

�ðd̂ − 2Þ!!
ðd̂ − 2Þ!!

�
μL−2knn0

¼ l!ðd̂ − 2Þ!!
ð2lþ d̂ − 2Þ!!P

ðd̂Þ
l ðμnn0 Þ: ðA4Þ

If ñ0 ¼ ñ, we have μnn0 ¼ 1 and therefore

nLnL ¼ l!ðd̂ − 2Þ!!
ð2lþ d̂ − 2Þ!!P

ðd̂Þ
l ð1Þ

¼ ðlþ d̂ − 1Þ!ðd̂ − 2Þ!!
ð2lþ d̂ − 2Þ!!ðd̂ − 1Þ!

¼ ðlþ d̂ − 1Þ!
ð2lþ d̂ − 2Þ!!ðd̂ − 1Þ!! : ðA5Þ

where we have used that ðd̂ − 1Þ! ¼ ðd̂ − 1Þ!!ðd̂ − 2Þ!!
and [109]

Pðd̂Þ
l ð1Þ ¼ ðlþ d̂ − 1Þ!

l!ðd̂ − 1Þ! : ðA6Þ

Remarkably, this result is valid for d̂ ≥ 1 and reduces to the
known four-dimensional values for d̂ ¼ 1.

2. Distributional Laplacian

From [110], the (spatial) D-dimensional distributional
partial derivative of any homogenous function fðxÞ of
degree λ, i.e., a function such that fðaxÞ ¼ aλfðxÞ for
a > 0, is given by

∂̃ifðxÞ ¼ ∂ifðxÞ þ
ð−1Þk
k!

∂̃k

∂̃xl1 ∂̃xl2…∂̃xlk δðxÞ

×
I
SD−1

dSnifðx0Þx0l1…xlk ; ðA7Þ

where the derivative with a tilde means a distribu-
tional derivative and k ¼ −λ −Dþ 1 > 0. Since we
will use this formula to compute derivatives of inverse
powers, we will make the definition α≡ −λ such that
k ¼ α −Dþ 1. In particular we want to compute the
distributional Laplacian of r−α, so we begin by computing
the first derivative,

∂̃i

�
1

rα

�
¼ ∂i

�
1

rα

�
þ ð−1Þα−Dþ1

ðα −Dþ 1Þ! ∂̃α−Dþ1δðxÞ

×
I
SD−1

dSn0i
�

1

r0α

�
x0l1…x0lα−Dþ1 : ðA8Þ

The closed surface integral is given by

I
SD−1

dS0n0i

�
1

r0α

�
x0i1…x0α−Dþ1

¼
I
SD−1

dΩD−1r0D−1n0in0l1…n0lα−Dþ1

�
1

r0D−1

�

¼
I
SD−1

dΩD−1n0in0l1…n0lα−Dþ1

¼ ðD − 2Þ!!
α!!

ΩD−1δfil1…δlα−Dlα−Dþ1gδα−D;2n; ðA9Þ

where we introduced the Kronecker delta δα−D;2n with n an
integer to account for the fact that α −D has to be even and
we used the well-known property

I
SD−1

dS0n0i1…x0i2m ¼ ðD−2Þ!!
ðDþ 2m− 2Þ!!ΩD−1δfil1…δl2m−1l2mg;

ðA10Þ

with ΩD−1 ¼ 2πD=2=ΓðD=2Þ. The first distributional
derivative is, taking into account that k > 0,

∂̃i

�
1

rα

�
¼ ∂i

�
1

rα

�

þ ð−1Þα−Dþ1

ðα−Dþ 1Þ!
ðD− 2Þ!!

α!!
ΩD−1δfil1…δlα−Dlα−Dþ1g

× δα−D;2nΘðα−Dþ 1Þ∂̃α−Dþ1δðxÞ: ðA11Þ

Now we can compute the second derivative,

∂̃j∂̃i

�
1

rα

�
¼ ∂̃j∂i

�
1

rα

�

þ ð−1Þα−Dþ1

ðα−Dþ1Þ!
ðD−2Þ!!

α!!
ΩD−1δfil1…δlα−Dlα−Dþ1g

×δα−D;2nΘðα−Dþ1Þ∂̃j∂̃α−Dþ1δðxÞ; ðA12Þ

with

∂̃j∂i

�
1

rα

�
¼ ∂j∂i

�
1

rα

�
− α

ð−1Þα−Dþ2

ðα −Dþ 2Þ! ∂̃α−Dþ2δðxÞ

×
I
SD−1

dSn0j
�

ni

r0αþ1

�
x0l1…x0lα−Dþ2 ; ðA13Þ

where we used that k ¼ αþ 1 −Dþ 1 ¼ α −Dþ 2 since

∂i

�
1

rα

�
¼ −α

1

rαþ1
ni: ðA14Þ

The angular integral is given by
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I
SD−1

dSn0j
�

ni

r0αþ1

�
x0l1…x0lα−Dþ2 ¼

I
SD−1

dΩD−1n0jn0in0l1…n0lα−Dþ2

¼ ðD − 2Þ!!
ðαþ 2Þ!! ΩD−1δfij…δlα−Dþ1lα−Dþ2gδα−D;2n; ðA15Þ

such that

∂̃j∂̃i

�
1

rα

�
¼ ∂j∂i

�
1

rα

�
þ ð−1Þα−Dþ1

ðα −Dþ 1Þ!
ðD − 2Þ!!

α!!
ΩD−1δfil1…δlα−Dlα−Dþ1gδα−D;2nΘðα −Dþ 1Þ∂̃j∂̃α−Dþ1δðxÞ

− α
ð−1Þα−Dþ2

ðα −Dþ 2Þ!
ðD − 2Þ!!
ðαþ 2Þ!! ΩD−1δfij…δlα−Dþ1lα−Dþ2gΘðα −Dþ 2Þδα−D;2n∂̃α−Dþ2δðxÞ: ðA16Þ

Now, in order to obtain the Laplacian we just have to contract the indices, or equivalently introduce a Kronecker delta.
When doing that, we will have to contract the Kronecker delta with other symmetrized Kronecker deltas that will give the
same contribution. Specifically,

δijδfij…δlα−Dþ1lα−Dþ2g ¼ δijδijδfl1l2…δlα−Dþ1lα−Dþ2g þ δijδfil1δjl2
…δlα−Dþ1lα−Dþ2g=ij

¼ Dðα −Dþ 1Þδl1l2…δlα−Dþ1lα−Dþ2
þ δij2ðα −Dþ 1Þ!δil1δjl2…δlα−Dþ1lα−Dþ2; ðA17Þ

where =ij means all combinations but the one with ij. The factors in front of the unsymmetrized deltas come from taking
as many combinations of 2 of free indices and dividing by the number of Kronecker deltas one can form with those indices
(for instance the first term of (A17), is ðα −Dþ 2Þ!=ð2!ðα −DÞ!Þ × 2=ðα −Dþ 2Þ). So far we have treated the case
α −Dþ 2 > 0. In order to compute the limiting case one should go back to (A12) and just keep the first term with
α ¼ D − 2. Finally, the distributional Laplacian of r−α for generic dimensions is given by

∇̃2

�
1

rα

�
¼

8>>>>><
>>>>>:

∇2ð 1rαÞ þ ð−1ÞαþD−3

ðα−Dþ2Þ!
ðD−2Þ!!
ðαþ2Þ!! δα−D;2nΩD−1∇̃2δðxÞ

×½2ðα −Dþ 1Þ!ðαΘðα −Dþ 2Þ þ ðαþ 2ÞΘðα −Dþ 1ÞÞ þ αDðα −Dþ 1ÞΘðα −Dþ 2Þ�; α > D − 2

∇2ð 1rαÞ − ðD − 2ÞΩD−1δðxÞ; α ¼ D − 2

∇2ð 1rαÞ; α < D − 2.

ðA18Þ

Recall that in the main text we use d̂ ¼ D − 2 instead of D.

3. Extracting the finite part of the tidal term

In order to compute the response function we have to
extract the finite part of the tidal term, ∂Lϕ. We can proceed
in two equivalent ways: the first one consists of directly
substituting the series representation and apply the STF
derivatives to the regular/irregular part; the second one,
which we will follow here, consists of computing the
second derivatives of the Bessel function and later on
analyze their behavior in order to extract the finite part.
Hence, we can start by computing the second derivatives on
a generic Bessel function Bd̂=2ðωrÞ, where B ¼ fJ; Yg,

∂L∂Kðr−d̂=2Bd̂=2ðωrÞÞ

¼ ð−1Þl l!
ðl − kÞ! nL−KδL;Kr

−d̂=2−kωlBd̂=2þlðωrÞ

þ ð−1ÞlþknLnKr−d̂=2ωlþkBd̂=2þlþkðωrÞ; ðA19Þ

where we use (A12) of [111]. We define δL;K ¼ δK1;Ll
×

δK2;Ll−1…δKk;L1
. Now we can use the series representation of

the Bessel functions and look at the radial behavior
when r → 0.
We next consider the regular solution. Using (A19) with

Bd̂=2ðωrÞ ¼ Jd̂=2ðωrÞ, we see that the terms we have to

analyse are r−d̂=2−kJd̂=2þlðωrÞ and r−d̂=2Jd̂=2þlþkðωrÞ. We
start with the first term,

r−d̂=2−kJd̂=2þlðωrÞ

¼
X∞
m¼0

ð−1Þm
m!Γðmþ d̂

2
þ lþ 1Þ

�
ω

2

�
2mþd̂=2þl

r2mþl−k.

ðA20Þ

The only finite, nondivergent and nonzero term will be that
with a radial power 2mþ l − k ¼ 0. Since m ≥ 0, l ≥ 0,
and k ≥ 0, this implies that the only the l ¼ k and m ¼ 0
term will contribute,
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FP
r→0

ðr−d̂=2−kJd̂=2þlðωrÞÞ ¼ δk;l
1

Γðd̂
2
þ lþ 1Þ

�
ω

2

�
d̂=2þl

.

ðA21Þ

Looking at the pre-factors of this term in (A19) we see that
for l ¼ 0 this term will vanish. We now look at the other
piece,

r−d̂=2Jd̂=2þlþkðωrÞ

¼
X∞
m¼0

ð−1Þm
m!Γðmþ d̂

2
þ lþ kþ 1Þ

�
ω

2

�
2mþd̂=2þlþk

r2mþlþk:

ðA22Þ

Setting l ¼ k we see that the only nonzero, finite term will
be the l ¼ 0 term. For this case the finite part is identical to
the finite part (A21) setting l ¼ 0,

FP
r→0

ðr−d̂=2Jd̂=2þlþkðωrÞÞ ¼ δl;0δk;l
1

Γðd̂
2
þ 1Þ

�
ω

2

�
d̂=2

:

ðA23Þ

Hence, substituting (A21) and (A23) in (3.51) yields

FP
r→0

∂Lϕreg ¼ eiωtl!
ffiffiffi
π

p �
ω

2

�
d̂=2þ1=2þ2l ð−1Þl2lþ1

Γðd̂
2
þ lþ 1Þ

CL
reg:

ðA24Þ

For the irregular solution, we proceed in an analogous
way, i.e., we use (A19) with Bd̂=2ðωrÞ ¼ Yd̂=2ðωrÞ.
The functions we have to compute the finite part are
r−d̂=2−kYd̂=2þl and r−d̂=2Yd̂=2þlþk. Again, we start with the
first function,

r−d̂=2−kYd̂=2þlðωrÞ ¼
cos ½πðd̂

2
þ lÞ�

sin ½πðd̂
2
þ lÞ�

r−d̂=2−kJd̂=2þlðωrÞ

−
1

sin ½πðd̂
2
þ lÞ�

r−d̂=2−kJ−d̂=2−lðωrÞ:

ðA25Þ

The first term is already computed in (A21) and therefore
we only have to analyze the second term,

r−d̂=2−kJ−d̂=2−lðωrÞ

¼
X∞
m¼0

ð−1Þm
m!Γðm − d̂

2
− lþ 1Þ

�
ω

2

�
2m−d̂=2−l

r2m−d̂−l−k:

ðA26Þ

From (A21) we got the requirement l ¼ k. Therefore,
the condition to have a nonzero, finite term is
2m − d̂ − l − k ¼ 2m − d̂ − 2l ¼ 0, i.e., m ¼ d̂=2þ l.
However, for odd values of d̂ this condition cannot
be satisfied since m is an integer. For this case the power
of r will always be positive and it will yield a zero
contribution. In order to take into account this fact, we
will express the finite part of this term as

FP
r→0

ðr−d̂=2−kJ−d̂=2−lðωrÞÞ ¼ δk;l
ℜ½ð−1Þd̂=2þl�
Γðd̂

2
þ lþ 1Þ

�
ω

2

�
d̂=2þl

¼ δk;l
cos ½πðd̂

2
þ lÞ�

Γðd̂
2
þ lþ 1Þ

�
ω

2

�
d̂=2þl

;

ðA27Þ

where ℜ½ � denotes the real part and we used that
ℜ½ð−1Þd̂=2þl� ¼ cos ½πðd̂

2
þ lÞ�. Substituting (A21) and

(A27) in (A25) yields

FP
r→0

ðr−d̂=2−kYd̂=2þlðωrÞÞ ¼ 0: ðA28Þ

The remaining function is

r−d̂=2Yd̂=2þlþkðωrÞ ¼
cos ½πðd̂

2
þ lÞ�

sin ½πðd̂
2
þ lÞ�

r−d̂=2Jd̂=2þlþkðωrÞ

−
1

sin ½πðd̂
2
þ lÞ�

r−d̂=2J−d̂=2−l−kðωrÞ:

ðA29Þ

The first term was computed in (A23) and the second term
reads

r−d̂=2J−d̂=2−l−kðωrÞ

¼
X∞
m¼0

ð−1Þm
m!Γðm − d̂

2
− l − kþ 1Þ

�
ω

2

�
2m−d̂=2−l−k

r2m−d̂−l−k:

ðA30Þ

Setting l ¼ k the condition for a finite term now reads
2m − d̂ − l − k ¼ 2m − d̂ − 2l ¼ 0 and hence m ¼ d̂=
2þ l. Since m is an integer, we find the same subtlety
as in (A26), i.e., this term vanishes for odd values of d̂.
Taking this into account the finite part reads

FP
r→0

ðr−d̂=2J−d̂=2−l−kðωrÞÞ

¼ δk;l
cos ½πðd̂

2
þ lÞ�

Γðd̂
2
þ lþ 1ÞΓð−lþ 1Þ

�
ω

2

�
d̂=2

: ðA31Þ
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The denominator in (A31) contains a factor Γð−lþ 1Þ
which diverges for integer l ≥ 1. Therefore, only l ¼ 0
will contribute and the finite part reads

FP
r→0

ðr−d̂=2J−d̂=2−l−kðωrÞÞ ¼ δl;0δk;l
cos ðπ d̂

2
Þ

Γðd̂
2
þ 1Þ

�
ω

2

�
d̂=2

:

ðA32Þ

Substituting (A23) and (A32) into (A29) yields

FP
r→0

ðr−d̂=2Yd̂=2þlþkðωrÞÞ ¼ 0; ðA33Þ

and therefore

FP
r→0

∂Lϕirreg ¼ 0: ðA34Þ
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