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A small fraction of the gravitational-wave signals that will be detected by second and third generation
detectors are expected to be strongly lensed by galaxies and clusters, producing multiple observable copies.
While optimal Bayesian model selection methods are developed to identify lensed signals, processing tens
of thousands (billions) of possible pairs of events detected with second (third) generation detectors is both
computationally intensive and time consuming. To mitigate this problem, we propose to use machine
learning to rapidly rule out a vast majority of candidate lensed pairs. As a proof of principle, we simulate
nonspinning binary black hole events added to Gaussian noise, and train the machine on their time-
frequency maps (Q transforms) and localization skymaps (using Bayestar), both of which can be generated
in seconds. We show that the trained machine is able to accurately identify lensed pairs with efficiencies
comparable to existing Bayesian methods.
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I. INTRODUCTION

With the tens of gravitational-wave (GW) signals
detected by the LIGO-Virgo network of detectors [1,2]
during its first three observing runs [3–8], there is no doubt
that GW astronomy has well and truly arrived. While these
detections have enabled stringent tests of Einstein’s general
relativity [9,10], future observing runs are likely to provide
a number of additional tests. Among them is the highly
anticipated observation of gravitationally lensed GWs [11–
15], akin to the gravitational lensing of electromagnetic
waves where the deflection of light from a source due to
large agglomerations of matter (such as galaxies and galaxy
clusters) residing along the line of sight of the observer
produces multiple magnified (or demagnified) copies
of the source. Apart from being a unique probe of general
relativity’s prediction of gravitational lensing with a differ-
ent messenger [16], lensing of GWs could afford unique
constraints on various aspects of astrophysics and cosmol-
ogy, including models of the populations of galaxies [17],
as well as models that probe the distribution and compo-
sition of dark matter [18].
Gravitational lensing observations are typically divided

into three categories: strong lensing, weak lensing and
microlensing (see, e.g., [19]). This classification is based on
the properties of the lens, in particular the density of the
lens projected along the plane perpendicular to the line of
sight of the observer. In this work, we concern ourselves
exclusively with strong lensing, where the projected

density exceeds a critical density, resulting in the produc-
tion of multiple resolvable images.
Note that this classification is done in the geometric

optics limit, where the wavelength (of light or GWs) is
much smaller than the characteristic gravitational radius of
the lens. While this is almost always true in the lensing of
light, this is not always the case for the lensing of GWs. In
this work, we assume that the wavelength of the GWs is
much smaller than the Schwarzchild radius of the lenses, as
is the case when GWs from coalescing stellar-mass binary
black holes are lensed by galaxies or galaxy clusters. In this
limit, strongly lensed GWs will result in the production of
potentially resolvable images.
The n of images in the sky is ultimately dependent on the

resolution of the telescopes that observe these images. GW
detectors typically have very poor angular resolution
[20,21] (at least in comparison to optical telescopes); the
localization skyarea for GW events detected by the LIGO-
Virgo network in the second and third observing runs
spanned tens of square degrees at best [3]. As a result, even
strongly lensed GW events typically have images whose
skyareas almost completely overlap each other. Indeed, one
of the signatures that two GW events are lensed copies is
that their skymaps overlap (see, e.g., [22,23]).
While strongly lensed GW events are completely unre-

solvable in the sky with current GW detectors, they are
typically very well resolved in time. Indeed, the temporal
resolution of GW events (miliseconds) is in general orders
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of magnitude smaller than the expected time delay (minutes
to weeks) between strongly lensed GW images. In the
geometric optics limit, these GW images would have
different amplitudes, but their phase evolution would be
identical [14,15,24–27]. Thus, in principle, determining
whether two nonoverlapping GW events are lensed copies
comes down to comparing the shapes of these signals with
respect to each other.
In practice, however, such a comparison is nontrivial.

Firstly, the observed GW signals are projections of the true
GW signals onto the detectors; this projection depends on
the location and orientation of the detector relative to the
source, and would therefore be different for each of
the temporally separated GW images. Furthermore, these
images would be buried in detector noise. Even if the noise
is assumed to be Gaussian and the corresponding power
spectral density (PSD) is assumed to be time invariant, each
of the images would be buried in different realizations of
this noise.
A robust alternative to such a direct comparison of the

GW signals is to work in the space of the inferred source
parameters. Using optimal matched-filter based parameter
inference techniques [28], Bayesian posterior distribu-
tions on the intrinsic parameters of the source (the masses
and spins of the binary) and its extrinsic parameters (the
skylocation of the binary) can be constructed. As men-
tioned earlier, the phase evolution of the GW images are
expected to be identical, and therefore comparing the
inferred posteriors on the intrinsic parameters (which
completely govern the phase evolution) of pairs of GW
events should enable us to discriminate between lensed
and unlensed pairs. This discriminatibility can be further
enhanced by comparing the localization skymaps which
are expected to overlap almost entirely for lensed GW
pairs [22].
Quantitatively, such a comparison can be achieved using

Bayesian model selection [22,29]. A Bayes factor derived
from the overlap between the posteriors of pairs of events
can be constructed and used to segregate these pairs as
either lensed or unlensed. However, evaluating this dis-
criminator is computationally expensive and time consum-
ing. Bayesian parameter inference of binary black-hole
(BBH) events can take hours to days. Additionally, con-
structing the Bayes factor can take up to a few minutes per
event, and the number of such evaluations will grow as the
square of the number GW events. This makes the estima-
tion of the Bayes factor computationally challenging when
large numbers of BBH events are expected to be detected in
future observing runs.
Current estimates of the rate of stellar-mass BBH

mergers [30] suggest that hundreds of BBH events are
expected to be detected in LIGO-Virgo-Kagra’s next
observing run (O4). Among these GW detections, up to
a percent could be lensed copies of each other [31,32],
suggesting that there is a non-trivial chance that the first

confirmed detection of a lensed GW pair could occur in
O4. However, identifying such lensed pairs would require
constructing Oð102Þ posteriors on the GW events’ source-
parameters and Oð104Þ Bayes factors.
These numbers will get significantly larger with observ-

ing runs beyond O4, and astronomically large by the time
the third generation (3G) network of ground-based detec-
tors [33–35] completes its observations. The 3G network is
expected to observe Oð105–106Þ events, of which ∼0.3%
could be strongly lensed [32]. Therefore,Oð105–106Þ event
posteriors, and Oð1010–1012Þ Bayes factors, would need to
be evaluated.
This motivates the need to come up with a method to

conduct a preliminary segregation of pairs of GWevents to
rapidly “weed out” the vast majority of unlensed pairs. In
this work, we propose to use machine learning algorithms,
trained on time-frequency maps of the detector strain time
series [36] and the (rapidly estimated) localization skymaps
[37], from both lensed and unlensed pairs of GW events,
to construct a statistic to discriminate between lensed
and unlensed pairs. Using synthetic, nonspinning BBH
signals—both lensed and unlensed—injected in Gaussian
noise, we show that our machine-learning-based statistic,
performs almost as well as the optimal Bayes factor statistic
described above, while reducing the computation time
by orders of magnitude. The significant reduction in
evaluation time is a direct consequence of the fact that
time-frequency maps and localization skymaps can be
constructed in seconds, in contrast to GW inference
posteriors which take hours to days to sample.
The rest of this paper is organized as follows. Section II

summarizes the evaluation of the optimal Bayes factor
statistic, introduces the machine learning algorithms we
use, and delineates their training and validation. Section III
describes our results in distinguishing between lensed and
unlensed GW event pairs and compares them with the
performance of the posterior overlap statistic. Section IV
summarizes this work and discusses its potential benefits.

II. METHOD

A. The posterior overlap statistic

Let dðtÞ be the detector strain time series which is known
to contain a gravitational wave signal hðt; θ⃗Þ with shape
(intrinsic and extrinsic) parameters θ⃗, as well as one
realization of stochastic Gaussian noise as characterized
by its power spectral density SnðfÞ. A Bayesian inference
of θ⃗ from dðtÞ can be achieved by sampling the posterior
distribution on θ⃗:

pðθ⃗jdÞ ¼ pðθ⃗Þpðdjθ⃗Þ
pðdÞ ; ð2:1Þ

where [38]
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pðdjθ⃗Þ ∝ exp ½−ðd − hjd − hÞ=2� ð2:2Þ

is the Gaussian likelihood, pðθ⃗Þ is the prior distribution on
the source parameters, pðdÞ is the evidence and ð·j·Þ
symbolizes the noise-weighted inner product:

ðajbÞ≡ 2

Z
fmax

fmin

ãðfÞb̃�ðfÞ
SnðfÞ

df: ð2:3Þ

Here, ã; b̃ represent the Fourier transform of the time series
aðtÞ, bðtÞ; ½fmin; fmax� is the frequency range over which
the inner product is evaluated, and � represents complex
conjugation.
Now consider two segments of data, d1ðtÞ and d2ðtÞ,

both of which are known to contain one GW signal each,
h1ðtÞ and h2ðtÞ, respectively. We now wish to determine
which of the two hypotheses, HL and HU, is preferred by
the data at hand.
HL is the hypothesis that h1ðtÞ and h2ðtÞ are lensed

copies of a GW signal originating from a single source. On
the other hand,HU is the hypothesis that h1ðtÞ and h2ðtÞ are
signals originating from two distinct, unrelated, sources.
As shown in [22] (in the absence of any prior knowledge

of which of the hypotheses is preferred), the optimal
Bayesian statistic to quantitatively determine the preferred
hypothesis is the Bayes factor BL

U, defined as the ratio of the
evidences of the joint dataset fd1; d2g given each of the
hypotheses.

BL
U ≡ pðfd1; d2gjHLÞ

pðfd1; d2gjHUÞ
¼

Z
pðθ⃗jd1Þpðθ⃗jd2Þ

pðθ⃗Þ
dθ⃗: ð2:4Þ

This Bayes factor can be evaluated making use of the
posteriors pðθ⃗jd1Þ and pðθ⃗jd2Þ estimated from the two
datasets d1 and d2, as well as the prior pðθ⃗Þ employed in the
parameter estimation.

B. Classification with machine learning

In the language of machine learning (ML), determining
whether a pair of GW events are lensed copies of a single
GWevent, or unrelated (unlensed) to each other, is a binary
classification problem. Using features derived from the data
surrounding pairs of GW signals, we can in principle train
an ML algorithm to classify them as either lensed or
unlensed. In this subsection we first describe the con-
struction of the features we use, the ML algorithms we
employ, along with their training, testing and optimization.

1. Data representation

The posterior overlap statistic crucially relies on a time-
consuming way of representing the detector data, viz., the
posterior distributions of source parameters inferred from
the data surrounding the confirmed GW detections.

To bypass this issue, we construct and train a machine
learning model which takes as inputs time-frequency maps
(Q transforms of the GW event), as well as localization
skymaps (Bayestar Skymaps). Both of these can be pro-
duced within seconds, in contrast to sampling the full
posterior on the source parameters which can take any-
where from several hours to several days.

Q transforms.—Q transforms [36] are a means by which
time-frequency maps of generic transient signals can be
produced. This is achieved by first representing the time-
frequency plane as a collection of tiles (bins), and then
reconstructing these generic signals as a combination of
sine Gaussians defined by their quality factor “Q.” The
choice of “Q” in each tile is determined from a matched-
filter search across multiple “Q” templates, and the tem-
plate that produces the largest SNR is selected. Using the
corresponding optimal sine Gaussian, a spectrogram is
generated. The time-frequency map is then plotted as
colored tiles, where the color represents the so-called
normalized signal energy, which is proportional to the
Q-transform magnitude (and related to the SNR).
As shown in Fig. 1, lensed events will have time-

frequency maps whose shapes are similar, but whose signal
energies across time-frequency tiles will differ in magni-
tude. This is a direct consequence of the fact that the phase
evolution of strongly lensed pairs are expected to be
identical, but the amplitudes will differ by a constant
factor. On the other hand, unlensed signals will have
distinct time-frequency maps with dissimilar shapes in
general.1

Bayestar Skymaps.—“Bayestar” [37] is the flagship low-
latency skylocalization software of the LIGO-Virgo-Kagra
collaboration, used during the LIGO-Virgo-Kagra’s third
observing run (O3) to disseminate skymaps in real time for
the electromagnetic follow-up of GW events [40]. These
skymaps are produced in seconds, and are found to be
comparable to those estimated from a full sampling of the
joint posterior distribution of the source parameters.
Bayestar exploits the fact that errors in sky localization
and the errors in the inference of the source masses are
semi-independent. Given that this software is exclusively
focused on providing localization skyareas, it exploits this
semi-independence to drastically reduce the dimensionality
of the parameter estimation problem by fixing the intrinsic
parameter values to those of the maximum likelihood
template in the matched filter search that identified the
event. It is thus able to evaluate the (dimensionally reduced)

1A constant (additive) phase factor called the Morse phase,
which is an integral multiple of π=2 depending on image type,
will in general change the coalescence phase of the dominant GW
mode [26,39]. Note that Q transforms are independent of
coalescence phase, and are therefore unaffected by the Morse
phase.
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posterior on the extrinsic parameters rapidly, without
significant loss in precision.
As shown in Fig. 2, lensed events are expected to have

overlapping localization skyareas, by virtue of the poor
[Oð10Þ sq. deg.] angular resolution of ground based GW
detectors with respect to the typical angular separation of
the images [Oð100Þ]. On the other hand, unlensed signals
will generally have nonoverlapping skymaps.

2. Data preparation

In order to train, optimize and test our machine learning
models, we simulate the lensed and unlensed GW signals
and inject them in Gaussian noise. Our events consist of
nonspinning binary black hole mergers detectable by the
LIGO-Virgo network at design sensitivity, where detect-
ability is defined by setting a threshold of 8 on the network
SNR.

We follow [22] to generate a set of strongly lensed pairs
of GW events, where the source BBH mergers follow a
well-motivated distribution of masses and redshifts, and the
lenses are assumed to be galaxies that can be modeled as
singular isothermal ellipsoids whose parameters are drawn
from the SDSS galaxy population catalog [41]. We gen-
erated ≈2800 detectable lensed event pairs and ≈1000
unrelated events, which corresponds to half a million
unlensed pairs. We subdivide this set into two sets; we
use one for training, and the other for validation. For
testing, we use another, distinct, set, although the general
prescription still follows [22].2 This set consists of ≈300

0.2 0.4 0.6 0.8 1.0
Scaled Energy

FIG. 1. Top panels: a pair of lensed GW events detected by the H1 (Hanford) inteferometer at design sensitvity. These events have
time-frequency tracks with similar shapes. However, the signal energy in different time frequency bins along their tracks differ with
respect to each other. Bottom panels: a pair of unlensed GW events projected detected by the H1 inteferometer at design sensitivity.
These events have time-frequency tracks whose shapes are significantly different.

2This dataset is chosen for testing because the posterior overlap
statistic was already evaluated for the candidate pairs in this set
(and reported in [22]), which allows for a ready comparison with
the ML statistic.
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lensed pairs and ≈1000 unrelated events (half a million
unlensed pairs). From here on out, we refer to the training
and validation dataset as “DSTV” and the testing set as
“DST.”
The waveforms are generated using the approximant

IMRPhenomPv2 [42–44], as implemented in the LALSimulation

module of the LALSuite software package [45]. The wave-
forms are then projected onto the LIGO and Virgo detectors
using their antenna pattern functions, as implemented in the
PYCBC [46] software package.
The detector noise is assumed to be Gaussian, and is

generated using the zero-detuned high-power PSDs of
Advanced LIGO and Advanced Virgo at their design
sensitivities [47,48], as implemented in PYCBC. The pro-
jected waveforms are then added to the detector noise strain
to produce the total detector strain time series.
From the time series surrounding each GW event, we

generate Q-transform images for each detector. For events
whose primary mass m1 > 60 M⊙, we set the range of
quality factors to (3, 7); otherwise, we set the range to (4,
10). Further, using the same time series, we use Bayestar to
generate the localization skymaps for all the events.

3. Feature construction

Comparing the shapes of two time-frequency maps can
be interpreted as a problem of image recognition, and

therefore lends itself nicely to a ML analysis designed for
such problems. Motivated by the fact that the Q-transform-
based time-frequency maps of lensed pairs will have similar
shapes (though different signal energies across time-
frequency tiles), while unlensed pairs have dissimilar
shapes in general, we superimpose the time-frequency
maps of candidate pairs by aligning them along the time
axis, which we pass to our ML algorithm.
On the other hand, while lensed pairs will have over-

lapping skymaps and unlensed pairs will not, the shapes of
these maps are not in general expected to be the same, since
the relative position of the two images with respect to the
detectors are, in general, different (due to the rotation of
the earth). However, GW events’ localization skymaps are
probability density functions in the space of right ascension
(α) and declination (δ). Thus, a skymap can be thought of
as a two-dimensional matrix where each element gives the
probability density evaluated at a given pixel in the sky-
map’s image grid spanning the space of ðα; δÞ. The
products of simple operations involving the matrices of
candidate pairs can then be used as features that ML
algorithms can employ to identify lensed events.
The Bayestar localization skymaps are usually generated

in FITS format, which contains the skylocalization pos-
terior information sampled over an adaptive HEALPix grid
[49]. We project them to Cartesian coordinates using the
HEALPY PYTHON library [50,51], which gives us the

FIG. 2. Top panels: Bayestar skymaps of a pair of lensed events detected by the H1 (Hanford), L1 (Livingston), V1 (Virgo) network at
design sensitivity. The skymaps of these events overlap. Bottom panels: Bayestar skymaps of a pair of unlensed events detected by the
H1, L1, V1 network at design sensitivity. The skymaps of these events do not overlap.
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localization posterior evaluated over a 400 × 800 rectan-
gular grid of pixels corresponding to ðα; δÞ pairs. Denoting
the skylocalization posteriors of each of the events pertain-
ing to a candidate lensed pair as P1

ij ¼ Pðαi; δjjd1Þ and
P2
ij ¼ Pðαi; δjjd2Þ, we can construct the following metrics

which can serve as features using which we can train an ML
algorithm:

k1 ¼
X
i

X
j

P1
ijP

2
ij; k2 ¼

X
i

X
j

jP1
ij − P2

ijj;

k3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðP1

ijP
2
ijÞÞ2i − hk1i2

q
; ð2:5Þ

where k1 is motivated by the posterior overlap statistic [22],
k2 is the absolute difference between the elements of the
matrices and k3 is a metric of the overlap between the
skymaps, similar to the standard deviation. Note that
angular brackets signify averaging over the total number
of elements in each matrix.

4. Overall flow

For simplicity, we build two sets of ML models—one
that learns from Q-transforms and another that is fed
with skymaps—to classify the event pairs as either
lensed and unlensed. The models employ two different
ML algorithms—DenseNet201 [52] and XGBoost [53] (see
Sec. II B 5).
The first set consists of threeDenseNet201MLmodels trained

on superimposed QT (Q-transform) images of the event pairs
for each of the three detectors: H1 (Hanford), L1 (Livingston)
and V1 (Virgo), operating at their design sensitivities.
We further construct an XGBoost model trained on the output
of the DenseNet201 models. The output of this XGBoost

model gives us the probability of the lensing hypothesis,
given the Q-transform images: PðHLjQT1; QT2Þ.3
We construct another XGBoost model trained on the

metrics derived from pairs of lensed and unlensed
Bayestar skymaps. The output of this XGBoost model gives
us the probability of the lensing hypothesis, given the
Bayestar skymaps: PðHLjSM1; SM2Þ.
The final output of our ML classifier is then given by

PðHLjfQT1; QT2g; fSM1; SM2gÞ
¼ PðHLjQT1; QT2Þ · PðHLjSM1; SM2Þ: ð2:6Þ

We summarize the overall flow of our classification
scheme in Fig. 3.

5. Machine-learning models

In this subsection, we briefly summarize the ML
algorithms we useDenseNet201 and XGBoost.

DenseNet201.—A number of supervised machine learning
algorithms exist for binary classification problems.
However, only a relatively small subset of these are
particularly suited for image recognition. Among them
is the DenseNet ML [52] algorithm, which is a kind of
convolutional neural network (CNN) with important
improvements to mitigate problems that typically plague
CNNs. A CNN, in turn, is a category of artificial neural
networks (see, e.g., [54]) often used for classification
problems that involve images, image recognition and
computer vision (see, for example, [55]).
The basic architecture of a neural network consists of

input/output layers of neurons, and a set of hidden layers in
between [56]. Each neuron holds a number between in the
range [0, 1]. An image passed to a neural network would fill
the neurons of the input layer with values corresponding to
the pixels of the image grid. The classification prediction of
the neural network is recorded in the neurons of the output
layer; specifically, in a binary classification problem such
as ours, the output layer has one neuron representing the
probability that the pair of superimposed Q transforms
corresponds to the “lensed” case.
The neurons in each hidden layer are derived using a two

step process. The first step involves a linear operation

FIG. 3. A visual representation of the overall flow of our ML
classification scheme. Note that, in principle, one could have
avoided the step that trains a second XGBoost algorithm on
features derived exclusively from the skymaps, and instead just
used one XGBoost that jointly trains on features from the skymaps
and the outputs of the DenseNet algorithms. We found that both
methods give similar results. We therefore choose to include
the additional XGBoost because it facilitates a stepwise analysis of
the outputs of the individual components of the overall flow,
trained separately on intrinsic and extrinsic parameters of the
candidate pairs.

3A more complete notation for this probability would
be as follows: PðHLjfQT1-H1; QT2-H1g; fQT1-L1; QT2-L1g;fQT1-V1; QT2-V1gÞ. However, for notational simplicity, we
omit the reference to the interferometers.
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between the vector of neurons a⃗ in the previous layer, and a

matrix of weights W
↔
, and the second a nonlinear operation

that maps the output of the linear operation to numbers in
the range [0, 1]:

a⃗nþ1 ¼ fðW↔n · a⃗n þ b⃗nÞ: ð2:7Þ

Here, the nonlinear function f is referred to as the
“activation function”; common choices include the “sig-
moid function” and “the rectified linear unit” function (see,
e.g., [57]). Further, the vector b⃗ is called the “bias.” This
process is applied iteratively until the output layer is filled.
Training the neural network ultimately comes down to

determining an optimal choice of weights matrices and bias
vectors. This can be achieved by feeding the neural network
with labeled data, and penalizing the network’s incorrect
predictions using an appropriately defined cost function.
The popular choice of cost function for binary classification
is the binary cross entropy:

LCE ¼ −½y logðpÞ þ ð1 − yÞ logð1 − pÞ�; ð2:8Þ

where y is the ground-truth (“lensed” ¼ 1 or “unlensed”
¼ 0) of the labeled data, and p is the neural network’s
predicted value for a given choice of weights and biases.
Minimizing the loss function averaged over multiple train-
ing instances with distinct labeled data, using gradient
descent, provides the required weights and biases.
In CNNs, some of the hidden layers perform convolution

operations between the previous layer, and appropriately
chosen filters, in place of the operation described in
Eq. (2.7). The filter can be thought of as a matrix whose
size is usually smaller than the matrix of pixels input to the
CNN. The convolution operation then involves “sliding”
the filter across the pixel grid matrix, which mathematically
amounts to taking the product of the filter with each of the
submatrices of the pixel grid matrix. The resulting output is
sometimes referred to as a “feature map.”
A DenseNet is a type of deep CNN. In addition, its

architecture has a few modifications to alleviate some of
the problems commonly faced when using CNNs.
DenseNet’s are based on the observation that CNNs can
be substantially deeper, more accurate, and computation-
ally efficient to train if there are shorter connections
between the layers close to the input and those close to
the output. Thus, in a typical DenseNet model, for each layer,
the feature maps of all preceding layers are used as inputs.
Furthermore, the current layer’s own feature map is used as
input to all the subsequent layers. Because of this type of
architecture, DenseNet models have several advantages
compared to other CNN models. They greatly reduce the
number of parameters that define the architecture of the
neural network, mitigate the vanishing-gradient problem,

encourage feature reuse and strengthen the feature propa-
gation through the network.

XGBoost.—Extreme gradient boosting (XGBoost) [53] is a type
of ensemble classifier that uses the combined output of a
collection of trained decision trees to provide a probabi-
listic prediction of class membership to data that needs to
be segregated into discrete categories. A decision tree, in
turn, learns from training data by iteratively placing linear
cuts in feature space which minimizes an appropriately
chosen loss function. The repeated splits result in the
segregated data being pushed down two separate branches
at each leaf node in the tree, starting from the root node
where the first split in the training data takes place, and
ending at leaf nodes where a terminating criterion (e.g.,
minimum number of samples in a leaf) has been satisfied.
“Bagging” (see, e.g., [58]) and “boosting” (see, e.g.,

[59]) are two ways in which the outputs of decision trees
can be combined. In bagging, bootstrapped copies of the
training data are passed to a collection of decision trees.
The trees are then fitted, in parallel, to the training data they
receive, and the final prediction of the classifier is an
average over all the outputs across the ensemble of trees
[60]. In contrast, boosting algorithms such as XGBoost, fit
decision trees to training data sequentially, where each
subsequent tree improves on the errors in the predictions of
class probability of the preceding tree.
In extreme gradient boosting, the iterative process of

incrementally improving the prediction of the classifier
with every fitted decision tree, reduces to minimizing the
following objective function [53]:

Lobj
tþ1 ¼

X
i

Lðyi; pi
tþ1 ¼ pi

t þOtÞ þ γT þ 1

2
λO2

t ; ð2:9Þ

where, as before, yi is the ground truth of training data point
i, pi

tðpi
tþ1Þ is the classifier’s predicted probability of class

membership after the sequential fitting of t (tþ 1) trees.
For binary classification problems such as the one we are
trying to tackle, the loss function L is simply the binary
cross entropy defined in Eq. (2.8) (summed over the entire
training set), and Ot is the output of the decision tree t with
respect to which the objective function is to be minimized.
The piece γT þ 1

2
λO2

t in the objective function is a
regularization term that controls the classifier’s tendency
towards overfitting by reducing its sensitivity to individual
training data points. Here, T is the total number of leaves in
a tree, and λ, γ are hyperparameters that can be appropri-
ately set depending on the data at hand.
Minimizing Lobj for each decision tree (which can have a

vast variety of structures) is in general highly complicated.
XGBoost thus simplifies the minimization process in two
ways. The first is that the loss function is approximated by
a second-degree Taylor polynomial in Ot. The second is
that within each tree, the objective function is repeatedly
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minimized at each leaf node. As a result, the process of
fitting a decision tree reduces to maximizing the gain when
splitting the training data at each leaf node. The gain is
defined as the difference between the sum of the similarity
scores of the two daughter nodes post the split and the
similarity score of the parent leaf. The similiarity score at a
leaf node l (containing Nl training samples) in tree tþ 1 is
defined as [53]

Sltþ1 ¼
ðPNl

i Ri
tÞ2P

ip
i
tð1 − pi

tÞ þ λ
; ð2:10Þ

where the sum is taken over all the samples in the leaf node,
and Ri

t ≡ pi
t − yi is the residual of the ith training data point

in the leaf node. The output of each tree, defined as
Stermtþ1 =

P
i R

i
t for the terminal leaf node, is then rescaled

by a user defined learning rate η and then added to the log
of the odds ratio corresponding to pi

t, from which the
probability estimate of tree tþ 1 can be trivially computed.
As mentioned earlier, λ, γ are user defined regularization

parameters that control overfitting. Specifically, γ sets a
threshold on the gain; leaves along branches whose gains
do not exceed γ are pruned. Thus, since positive values of λ
tend to reduce the gain, λ effectively encourages pruning,
which in turn reduces the sensitivity of the decision tree to
individual training data points.4

6. Training and optimization

DenseNet201.—We use a DenseNet pretrained on the “imagenet
dataset” [61], which allows it to pick up features common
to most images. We then add fully connected layers to it,
along with the final layer of just one neuron, for our binary
classification, and then retrain it with data specific to our
problem (to wit, the superimposed Q transforms). This
method of pretraining with a generic dataset and then
retraining with a more specific one, is called “transfer
learning.” The most significant benefit of this method is
that it reduces the size of the dataset required for training
and solving the problem at hand.
For each of the three detectors H1, L1 and V1, we train

three individual DenseNet201 models using superimposed
Q-transform pairs, where each image corresponds to a
three-dimensional array (128 × 128 × 3) of pixels.5 The
DenseNet model is loaded with the imagenet weights using
the neural network package [62]. To make it suitable for our
binary classification task, its top layer is removed and a
dense layer of 256 neurons with the rectified linear unit
activation function is added along with the final output
layer of a single neuron with a sigmoid activation function.

Each of the three models is trained on an equal number
(1400) of lensed and unlensed Q-transform image pairs
subselected from the DSTV dataset using tensor processing
unit hardware, which is available in a KAGGLE notebook
[63]. In the top fully connected layer of the network, we use
the sigmoid activation function (see. e.g., [64]) and we
employ the Adam optimizer [65] for efficient gradient
calculations. The model prediction is validated using a
validation set subselected from the total training set.

XGBoost.—As described in the previous section, XGBoost has
a number of tunable hyperparameters that need to be set
based on the problem at hand.
The hyperparameter “n_estimators” sets the number

of decision trees in the ensemble classifier that are to be
fit to the training data sequentially. It can equivalently be
thought of as the number of fitting iterations the model
goes through as it sequentially improves the prediction of
the ensemble classifier. We set n_estimators to 110. The
learning rate, regularization parameter and tree complexity
parameter are set to their default values of 0.3,1,0,
respectively. The maximum depth of each decision tree
is set using max depth ¼ 6.
In addition, we also set the “scale_pos_weight” param-

eter to 0.01. This hyperparameter serves as a weight to
account for training data being biased towards one class—
in our case, the unlensed class, for which we had about 100
times more data points than for the lensed class.
The first XGBoost model is trained on the features

derived from lensed and unlensed pairs of skymaps,
described in Sec. II B 3, using the “DSTV” dataset.
Additionally, a second XGBoost model is trained on
the outputs of each of the three DenseNet models. The
outputs of the two XGBoost models are then combined
[cf. Eq. (2.6)] to provide a ranking statistic for candidate
lensed pairs.

III. RESULTS

A. Testing and cross validation

We assess the performance of the trained ML models
on the “DST” dataset. This allows us to compare their
performance with the posterior overlap statistic, which is
already computed for this dataset [22]. We summarize the
performance of the ML models and the posterior overlap
statistic with ROC (receiver operating characteristic) plots
of efficiency vs false positive probability (FPP), where
efficiency is the ratio of accurately classified lensed events
to the total number of lensed events, and FPP is the ratio of
wrongly classified unlensed events to the total number of
unlensed events.
To check the robustness of the outputs of the machine

learning models to changing training sets, we use stratified
k-fold cross validation. We implement cross validation by
doing a round robin of dividing our dataset into k ¼ 3

4In ML literature, λ is often referred to as a “regularization
parameter” and γ is referred to as a “tree complexity parameter.”

5Each pixel contains RGB values that correspond to the
normalized signal energy at discrete time-frequency coordinates
in the Q-transform image.
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(k ¼ 10) parts for the DenseNet (XGBoost) models, using one
part for validation and the rest for training. We test the k
trained machines with the DST dataset.

B. ROC plots

We evaluate the performance of the overall classifier and
its different components using ROCs. For comparison, we
also plot the ROCs for the posterior overlap statistic. We
first test the performance of the individual DenseNet models
trained on Q transforms pertaining to each of the three
detectors: H1, L1 and V1. We then test the XGBoost model
trained on the outputs of the DenseNet models. Since we used
cross validation to assess the robustness of the models, we
trained and validated each of the models on the different
cross validation subsets of the DSTV dataset, and tested the
differently trained models on the DST data set. This gives
us an estimate of the variation of the ROCs due to
differences in the training set.
Figure 4 plots ROCs for the outputs of these models

trained on Q transforms. The ROC for the posterior overlap

statistic constructed using parameter estimation posteriors
on the component masses (m1, m2), is also plotted for
comparison. The ROCs pertaining to the individual DenseNet

H1, L1, V1 models perform similarly to the ROC for
the posterior overlap statistic, both at low and high false
positive probabilities. The mean ROC corresponding to the
XGBoost model trained on the outputs of the individual
DenseNet models performs comparably to the posterior
overlap statistic. At very low FPPs, ML seems to perform
about 1.5–2 times better than the posterior overlap statistic.
However, there is some variation in the XGBoost model’s
ROC due to the changing training set. These improvements
must therefore be interpreted with some caution. As the
variation in the ROCs at these FPPs suggests, low-number
statistics are likely causing the ROC to be sensitive to
changes in the training set.
Figure 5 plots ROCs for the XGBoost model trained on the

features (metrics) derived from pairs of Bayestar skymaps.
Each ROC pertains to a different cross-validation subset
of the DSTV dataset. The ROC for the posterior overlap
statistic evaluated using only the right ascension (α) and
declination (δ) is plotted for comparison. The XGBoost

performs as well as the posterior overlap statistic at low
false positive probabilities, although at higher false positive
probabilities the latter performs marginally better. As with
the DenseNet models, there is some variation in the ROCs
when the training set is varied.
Figure 6 plots ROCs for the overall classifier, which is an

XGBoost model trained on the outputs of the DenseNet models

FIG. 4. ROCs for DenseNet models trained on lensed and
unlensed pairs of superimposed Q transforms, for different
cross-validation subsets of the DSTV training set. ROCs for
models trained on Q transforms corresponding to individual
detectors are evaluated, in addition to ROCs pertaining to the
XGBoost model trained on the outputs of the individual DenseNet
models. For comparison, the ROC for the posterior overlap
statistic that uses parameter estimation posteriors on the compo-
nent masses, m1, m2, is also plotted. At low false positive
probabilities, the individual DenseNet models perform comparably
to the posterior-overlap statistic. On the other hand, the XGBoost
model produces efficiencies that are 1.5–2 times better than the
posterior overlap statistic at low FPPs, although there is some
variation in the ROCs when the training set is changed, caused by
small-number statistics. These improvements at low FPPs must
therefore be interpreted with some caution.

FIG. 5. ROCs for the XGBoost model trained on metrics derived
from pairs of Bayestar localization skymaps, for different cross-
validation subsets of the DSTV training set. For comparison, the
ROC for the posterior overlap statistic that uses parameter
estimation posteriors on the skylocation coordinates, α, δ, is
also plotted. The XGBoost performs almost as well as the posterior
overlap statistic at low false positive probabilities.
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and the first XGBoost model. For comparison, the ROC for
the posterior overlap statistic evaluated using the parameter
estimation posterior on m1; m2; α; δ is also plotted. The
mean ROC for the overall classifier performs almost
identically to the posterior overlap statistic at low false
positive probabilities, although at higher false positive
probabilities the posterior overlap statistic performs mar-
ginally better.

IV. SUMMARY AND OUTLOOK

GW observations of BBH events is expected to
increase significantly in future observing runs, with
Oð102Þ events during O4 and Oð105–106Þ during the
3G era. The number of candidate lensed pairs to classifiy
could therefore be as high as Oð104Þ and Oð1010–1012Þ,
respectively. Current optimal Bayesian methods, such as
the posterior overlap statistic, rely on the parameter
estimation posterior on the source parameters, which
could take anywhere from several hours to several days
to sample.
This therefore motivates the need to come up with a

preliminary classification scheme, that can rapidly rule out
the vast majority of unlensed candidates. To that end, as a
proof of principle, we construct a machine learning based
classifier that can classify pairs of nonspinning BBH events
in seconds. We use two ML algorithms, DenseNet201 and

XGBoost, to build models trained on time frequency maps
and Bayestar skymaps of pairs of events. We construct three
DenseNet models trained on GW events projected onto each
of the three detectors in the LIGO-Virgo network at design
sensitivity. The outputs of these models are fed to an
XGBoost classifier to construct a corresponding model.
The output of this model is then combined with the
output of another XGBoost model trained on pairs of lensed
and unlensed Bayestar skymaps, to produce the final
ranking statistic of our overall ML classifier [cf. Fig. 3
and Eq. (2.6)].
We train and validate the classifier on cross-validation

subsets of the DSTV dataset, and test the performance of
the ML classifier (including its different components) on
the DST dataset. We find that the overall ML classifier
performs comparably to the posterior overlap statistic
evaluated from the parameter estimation posterior on
m1; m2; α; δ. More specifically, the performance of the
ML classifier, as captured by ROC plots, shows that at
low false positive probabilities, the classifier performs
almost identically to the posterior overlap statistic, although
at high false positive probabilities, the performance of the
latter is marginally better.
Simple benchmarking tests suggest that our trained ML

classifier is able to classify each event within 2–3 seconds.6
Including the time to produce the Q-transform images and
Bayestar skymaps, the total classification time is still less
than a minute. This is significantly faster than the posterior
overlap statistic, which takes several minutes to classify
once the parameter estimation posteriors are available.
Since, in addition, these posteriors themselves can take
hours to days to produce, per event, the benefit of using ML
to perform a preliminary sweep of lensed candidate pairs to
rule out the vast majority of them as unlensed becomes
manifestly evident.
Additionally, rapid ranking of candidate pairs makes

estimating a background distribution computationally fea-
sible. Such a distribution enables assigning statistics such
as p values/false positive probabilities, which are often the
preferred statistics since they can be interpreted independ-
ently of the models used to analyze the pairs. Another
potentially useful application of the rapid identification
(and dissemination) of lensed GW events is in multi-
messenger astronomy, since the joint GW-electromagnetic
detection of lensed events could enable important tests of
general relativity.
It might be worth mentioning that in addition to the

posterior overlap statistic, there are more comprehensive
Bayesian classification methods that take even longer to
run. A fully Bayesian, joint parameter estimation scheme to
identify lensed pairs by evaluating a coherence ratio that

FIG. 6. ROCs for the overall classifier, for different cross-
validation subsets of the DSTV training set. Note that the output
of the overall classifier is the output of the XGBoost model trained
on the ouputs of the three DenseNet models pertaining to H1, L1
and V1, as well as the ouput of the first XGBoost model trained on
Bayestar skymaps. At low false positive probabilities, the
classifier performs almost identically to the posterior overlap
statistic, with mild variation in the ROCs when the training
dataset is varied.

6Note that this time is largely taken up in loading the necessary
files for classification. The classification step itself takes less than
a second.
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accounts for correlations between parameters of lensed
events, and selection effects, currently takes of the order
of weeks to complete, per candidate pair [66,67]. A more
approximate joint parameter estimation method that
neglects selection effects, is found to identify lensed pairs
with similar efficiencies as the full joint parameter estima-
tion method, but within hours instead of weeks [68]. Thus,
identifying lensed pairs from the enormous number of
candidate pairs in future observing runs, can follow a step-
wise procedure, where an ML classification method such as
ours can rapidly rule out most of the candidate pairs as
unlensed. The surviving pairs can then be followed up by
the posterior overlap statistic and then by joint parameter
estimation methods.
Note that our work assumed stationary Gaussian noise,

and that the candidate pairs consist of confirmed,
high-significance nonspinning BBH events. We plan to
systematically relax these assumptions in future work.
Specifically, we are currently looking at the possibility
of classifying confident GWevents in real noise. We plan to
train the machine on events injected in real noise, whiten
the data so that the Q transforms are less sensitive to
varying PSDs, and investigate the possibility of using
additional features. We are also working towards the
classification of marginal BBH events, with an ML scheme
similar to what was presented in this work. We hope to
report the results of these investigations in the near future.
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