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We consider the possible existence of gravitationally bound stringlike objects, and approximation of
local Uð1Þ Abelian-Higgs strings, in the framework of the generalized hybrid metric-Palatini gravity
theory, in which the gravitational action is represented by an arbitrary function of the Ricci and of the
Palatini scalars, respectively. The theory admits an equivalent scalar-tensor representation in terms of two
independent scalar fields. Assuming cylindrical symmetry, and the boost invariance of the metric, we
obtain the gravitational field equations that describe cosmic stringlike structures in the theory. The physical
and geometrical properties of the cosmic strings are determined by the two scalar fields, as well by an
effective field potential, functionally dependent on both scalar fields. The field equations can be exactly
solved for a vanishing, and a constant potential, respectively, with the corresponding string tension taking
both negative and positive values. Furthermore, for more general classes of potentials, having an additive
and a multiplicative algebraic structure in the two scalar fields, the gravitational field equations are solved
numerically. For each potential we investigate the effects of the variations of the potential parameters and
of the boundary conditions on the structure of the cosmic string. In this way, we obtain a large class of
stable stringlike astrophysical configurations, whose basic parameters (string tension and radius) depend
essentially on the effective field potential, and on the boundary conditions.

DOI: 10.1103/PhysRevD.104.124056

I. INTRODUCTION

The concept of symmetry is a very powerful one in
physics. The idea that a physical law remains invariant
under groups of transformations has taken us very far [1],
as the theories of relativity can attest. Hand in hand with

the concept of symmetry comes the concept of spontaneous
symmetry breaking, in which a system, undergoing a phase
transition, no longer retains the symmetry it showed in a
higher energy state.
Spontaneous symmetry breaking is central to the idea of

a grand unified theory (GUT), in which the strong and
electroweak interactions are unified and was inspired by
the success of electroweak theory [2–4], which unifies
weak and electromagnetic interactions by the gauge group
SUð2Þ × Uð1Þ at a scale of 102 GeV. One or more phase
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transitions may have occurred as the Universe expanded,
originating the different groups of symmetries exhibited
by the Standard Model today. A GUT for particle physics
is supported by the fact that the coupling “constants” of
the Standard Model seems to vary slowly with energy and
converge to a common value at higher energies, somewhere
in the region of 1016 GeV [5], the grand unification scale.
In several of the grand unified scenarios that have been
proposed, a “universal covering group” G would be effec-
tive above the GUT scale but its symmetry would sponta-
neously break into the Standard Model SUð3Þ × SUð2Þ×
Uð1Þ, where SUð3Þ is the symmetry group of quantum
chromodynamics, describing the strong interaction, and
SUð2Þ × Uð1Þ is the already mentioned electroweak group.
These phase transitions in the early Universe may give rise
to a network of topological defects through the so-called
Kibble mechanism [6].
To illustrate the Kibble mechanism that leads to the

formation of topological defects, in particular, cosmic
strings, let us consider a simple Goldstone model, with a
single complex scalar field, ϕ, with a classical Lagrangian
density:

L ¼ −∂μϕ̄∂μϕ − VðϕÞ; ð1Þ

where the potential is given by

VðϕÞ ¼ 1

4
λðϕ̄ϕ − η2Þ2; ð2Þ

with η and λ being positive constants. This type of potential
is known as “Mexican hat potential” for the complex
scalar field ϕ. The Lagrangian (1) is invariant under global
Uð1Þ transformations. It was shown [7–9] that this type
of Lagrangian leads to an effective high temperature-
dependent potential that can be described as

Veffðϕ; TÞ ¼ −
λ

12
ðT2 − 6η2Þjϕj2 þ λ

4
jϕj4; ð3Þ

As T approaches Tc ¼
ffiffiffi
6

p
η from above we have a VEV

for the field hjϕji ¼ 0, and the symmetry is restored,
while for T < Tc, the VEV for the scalar field is no longer
zero and so the symmetry is spontaneously broken. With
decreasing temperature, the field “rolls” to the new VEV,
thermal and quantum fluctuations will dictate the new
vacuum state and, as the minima are now degenerate,
different patches of the Universe, separated by a distance
larger than the particle horizon, RH ¼ aðtÞ R t

0 1=aðt0Þdt0,
where aðtÞ is a scale factor, in the time period of the
symmetry breaking, may roll to different, but equivalent,
vacua states.
As different patches start to grow through expansion,

they eventually become causally connected, and in the
limits of these patches the field transition is not smooth and
a region of false vacuum becomes “trapped”: a topological

defect is formed. And so the Universe may contain several
patches of true vacuum domains, in a sea of false-vacuum
domains, a network of topological defects. For a more
detailed description, we refer the reader to [10].
The array of possible types of topological defects, the so-

called topological defects zoo, is vast and will essentially
depend on the topology of the minima manifold. Let us
consider a field obeying a symmetry defined by a group G
(universal covering group) that is broken to a subgroup K,
i.e., G → K. In this case, we can classify the topological
defects formed by looking at the nth homotopy group πn of
the quotient space G=K. For nontrivial πnðG=KÞ, we can
have domain walls for n ¼ 0, cosmic strings for n ¼ 1,
monopoles for n ¼ 2, or textures for n ¼ 3. While some of
these defects tend to be inherently unstable [10], domain
walls and monopoles are cosmologically catastrophic or
severely constrained by observations [11]. The case of
monopoles is interesting since all GUTs based on simple
gauge groups lead to the formation of topologically stable
monopoles whose density is approximately 1018 times
greater than the experimental limit [12], rendering the
models unsustainable, except if the transition occurs before,
or at the beginning of, inflation.
Hence, the cosmic inflationary scenario, being a crucial

ingredient in modern cosmology, solving some important
issues such as the flatness problem or the horizon problem,
will also play an important role in the survival of a
topological defect network, since the relation between
the energy scale at which the SSB takes place and the
one where inflation occurs will determine if either the
network of topological defects becomes diluted, which is
important in the case of domain walls or monopoles, or
become energetically dominant, changing drastically the
evolution of the Universe. However, a network of cosmic
strings produced at the end of inflation, expected for a
variety of GUT scenarios [12], should be stable and good
candidates for further analysis.
That being said, cosmic strings arise naturally as stable

topological defects in many field theory models and,
depending on the model considered, we can have global
Uð1Þ strings [13], the simplest case, Abelian-Higgs strings
[14], where the Uð1Þ symmetry is local, non-Abelian
strings [15,16], if the K subgroup is non-Abelian, super-
conducting strings [17] and Nambu-Goto strings, in which
the Langrangian is simplified to ignore string-core field
excitation contributions to the string dynamics. In this work
we will focus on an approximation of local Uð1Þ cosmic
strings, also known as Abelian Higgs strings, following the
prescription by Vilenkin [18].
Furthermore, cosmic string configurations can be

obtained through the general relativistic field equations.
In this case, we can assume a cylindrically symmetric
metric of the type [19]:

ds2 ¼ −N2ðrÞdt2 þ dr2 þ L2ðrÞdθ2 þ K2ðrÞdz2; ð4Þ
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where N, L, and K are arbitrary functions of the radial
coordinate r. If one considers N ¼ K, and the regularity
conditions Lð0Þ ¼ N0ð0Þ ¼ 0 and Nð0Þ ¼ L0ð0Þ ¼ 1, a
complete classification of the string-like solutions of the
gravitating Abelian-Higgs model can be achieved [19].
The metric for a straight cosmic string oriented along the

z-axis can be written in a quite general form as [20]

ds2 ¼ −dt2 þ dr2 þ
�
1 −

μðrÞ
2π

�
2

r2dθ2 þ dz2; ð5Þ

where the Riemann curvature is zero except for the tz-
hyperplane. An interesting solution that arises from the
linear approximation of general relativity (GR) is the case
where in Eq. (5) the nontrivial element of the metric takes
the form ð1 − 8πGμÞr2 [18], with μ being the linear density
of the string. In this case the geometry of a massive string
can be described as a conical singularity with a deficit angle
proportional to the linear energy density, 2π − 8πGμ. In
fact, an interesting property of this solution is that, in terms
of the modified azimuthal coordinate θ0 ¼ ð1 − 4GμÞθ,
ranging from 0 to 2π − 8πGμ, the geometry is Minkowski,
which implies that the gravitational acceleration of massive
objects toward the string is zero [18]. Generalizations of
Eq. (1) including self-coupling scalar fields can also be
found in the literature [21].
Despite being a fundamental feature on several grand

unified scenarios [12] and ubiquitous in many areas of
condensed-matter physics, namely, in metal crystallization
[22], liquid crystals [23,24], superfluid helium-3 [25] and
helium-4 [26], and superconductivity [27], topological
defects still elude detection on cosmological levels.
However, they remain an active and important field of
study in cosmology not only for the possibility of con-
straining the different GUT scenarios, but also for their
possible impact on the cosmic microwave background
(CMB) anisotropies [28], small structure formation [29],
reionization history [30], gravitational lensing observations
[31], super-massive black-hole formation [32] and gravi-
tational wave (GW) spectra [33].
String-type solutions have also been studied in the

framework of modified theories of gravity, such as in
Brans-Dicke theory [34], general scalar-tensor theories
[34–44], fðR;LmÞ gravity [45,46], and hybrid metric-
Palatini gravity (HMPG) [47]. In this work, we generalize
the previous analysis and consider cosmic string-like
objects in the generalized HMPG theory [48], which is
described by an action depending on a general function of
both the metric Ricci scalar R and the Palatini Ricci scalar
R written in terms of an independent connection Γ̂ c

ab, thus
adding an extra degree of freedom to the nongeneralized
hybrid metric-Palatini gravity on which the action is
constructed from the Einstein-Hilbert action via the addi-
tion of an arbitrary function of R only.

The main motivation to investigate hybrid metric-
Palatini theories resides on the fact that these theories
are able to overcome flaws of both the metric and the
Palatini approaches to fðRÞ gravity. For example, in both
the metric and the Palatini formalisms of fðRÞ gravity,
one is able to model the late-time cosmic acceleration
period without invoking dark energy sources [49], but both
approaches present unavoidable disadvantages: the metric
fðRÞ was shown to be inconsistent with solar-system
constraints unless chameleon mechanisms are considered
[50,51], whereas the Palatini fðRÞ gravity induces micro-
scopic instabilities, surface singularities in polytropic star
models, and is unable to describe the evolution of cosmo-
logical perturbations [52,53]. The HMPG successfully
unifies the late-time cosmic acceleration period with the
weak-field solar system dynamics without the need for
chameleon mechanisms [54], thus being a viable and
relevant modification to GR.
The applicability range of HMPG is immense and the

theory was analyzed in a wide variety of areas of gravi-
tational physics. In particular, the effects of a light long-
range scalar field predicted by the theory were analyzed
both in cosmological [55,56] and galactic [57,58] dynam-
ics, always with the advantage of being consistent with
solar system constraints [59–61]. Various scenarios were
explored in a cosmological context [62–70], observational
constraints were discussed [71–74], and stability issues
were addressed [75–77]. Solutions describing compact
objects were also explored, such as black-holes [78–80],
for which the Kerr black-hole was shown to be stable
against scalar perturbations [81], stars [82], and worm-
holes geometries [83,84], some of which satisfying the null
energy condition throughout the whole spacetime [85,86].
The weak-field regime [87] of the theory was also inves-
tigated with implications for gravitational wave physics
[88,89] and higher-dimensional braneworld scenarios
[90,91] were also explored. We refer the reader to
Refs. [92–94] for recent reviews on the topic.

A. Outline of the paper

This work is organized in the following manner: In
Sec. II, we explicitly present the scalar-tensor representa-
tion of generalized HMPG, by writing the action and the
gravitational field equations in a straight infinite cosmic
string background, taking into account Vilenkins prescrip-
tion and noting that local gauge strings preserve boost
invariance. In Sec. III, we consider exact cosmic string
solutions, by considering two simple choices for the
potential, the null potential and the constant potential.
By considering more complicated functional forms of the
potential one must resort to numerical methods in order to
construct cosmic string models. In Sec. IV, we consider
potentials with different structures: independent of ψ and of
second and forth order in ξ, independent of ξ and second
order on ϕ, second order on both scalar fields and finally
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with an additive and a multiplicative structure, respectively,
for the potential and, by varying the potential parameters
and initial conditions, show that the numerical solutions
strongly depend on the boundary values of the geometrical
and physical parameters used to integrate the system of the
field equations. Finally, in Sec. V, we conclude and discuss
our results.

II. COSMIC STRINGS IN THE SCALAR-TENSOR
REPRESENTATION OF GENERALIZED HMPG

In the present section, we introduce the action and the
field equations of the generalized HMPG theory, and write
down the system of equations describing cosmic strings in
static cylindrical symmetry.

A. Action and field equations

The generalized HMPG theory is described by an action
S of the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR;RÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð6Þ

where κ2 ≡ 8πG=c4, G is the gravitational constant and c
the speed of light,Ω is the spacetime manifold described by
a system of coordinates xa, g is the determinant of the
spacetime metric gab, where Latin indices run from 0 to 3,
R ¼ gabRab is the Ricci scalar of the metric gab and where
Rab is the Ricci tensor, R≡Rabgab is the Palatini Ricci
scalar, where the Palatini Ricci tensor Rab is defined in
terms of an independent connection Γ̂ c

ab in the usual form
as Rab ¼ ∂cΓ̂ c

ab − ∂bΓ̂ c
ac þ Γ̂ c

cdΓ̂ d
ab − Γ̂ c

adΓ̂ d
cb, where ∂a

denotes partial derivatives with respect to the coordinates
xa, fðR;RÞ is a well-behaved function of R andR, and Lm
is the matter Lagrangian density considered to be mini-
mally coupled to the metric gab. Equation (6) depends on
two independent variables, namely the metric gab and the
independent connection Γ̂ c

ab, and thus two equations of
motion can be obtained.
Taking a variation of Eq. (6) with respect to the metric

gab leads to the modified field equations

∂f
∂RRab þ

∂f
∂RRab −

1

2
gabfðR;RÞ

− ð∇a∇b − gab□Þ ∂f∂R ¼ κ2Tab; ð7Þ

where ∇a denotes covariant derivatives and□ ¼ ∇a∇a the
d’Alembert operator, both with respect to gab, and Tab is
the energy-momentum tensor defined as usual:

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δðgabÞ : ð8Þ

On the other hand, taking a variation of Eq. (6) with respect
to the independent connection Γ̂ c

ab yields

∇̂c

� ffiffiffiffiffiffi
−g

p ∂f
∂R gab

�
¼ 0; ð9Þ

where ∇̂a is the covariant derivative written in terms of the
independent connection Γ̂ c

ab. Since
ffiffiffiffiffiffi−gp

is a scalar density

of weight 1, then ∇̂c
ffiffiffiffiffiffi−gp ¼ 0 and Eq. (9) can be rewritten

in the form ∇̂cð∂f∂R gabÞ ¼ 0. This result implies the exist-
ence of a new metric, hab, conformally related to the metric
gab via

hab ¼ gab
∂f
∂R ; ð10Þ

in such a way that the independent connection is the
Levi-Civita connection of the metric hab, i.e., Γ̂ c

ab can be
written as

Γ̂ a
bc ¼

1

2
hadð∂bhdc þ ∂chbd − ∂dhbcÞ: ð11Þ

B. Scalar-tensor representation of generalized
HMPG with matter

It is sometimes useful to represent the generalized
HMPG theory in a dynamically equivalent scalar-tensor
representation in which the two extra scalar degrees of
freedom of the theory are explicitly carried by two scalar
fields. To obtain this representation, we introduce two
auxiliary fields α and β into Eq. (6) and rewrite it in the
form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
fðα; βÞ þ ∂f

∂α ðR− αÞ þ ∂f
∂β ðR− βÞ

�
d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð12Þ

At this point one verifies that if α ¼ R and β ¼ R
one recovers Eq. (6). This equivalence between the two
representations is only guaranteed if the determinant of
the Hessian matrix of the function fðα; βÞ is nonzero,
i.e., if fααfββ − f2αβ ≠ 0, where the subscripts α and
β denote partial derivatives with respect to these variables.
Defining two scalar fields as φ ¼ ∂fðα; βÞ=∂α and ψ ¼
−∂fðα; βÞ=∂β, where the negative sign in ψ is imposed to
avoid the presence of ghosts, Eq. (12) takes the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φR − ψR − Vðφ;ψÞ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð13Þ

where the function Vðφ;ψÞ plays the role of an interaction
potential between the two scalar fields and it is defined as
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Vðφ;ψÞ ¼ −fðα; βÞ þ φα − ψβ: ð14Þ

Recalling the conformal relation between hab and gab in
Eq. (10), which can now bewritten in the form hab ¼ −ψgab
by taking into consideration the definition of ψ , one can
derive a relationship between R and R as

R ¼ Rþ 3

ψ2
∂aψ∂aψ −

3

ψ
□ψ ; ð15Þ

which can be used to eliminateR fromEq. (13) and gives the
final form of the action

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
ðφ − ψÞR −

3

2ψ
∂aψ∂aψ − Vðφ;ψÞ

�
d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð16Þ

Equation (16) is now a function of three independent
variables, namely, the metric gab and the two scalar fields φ
and ψ . Taking a variation of Eq. (16) with respect to the
metric gab yields the modified field equations in the scalar-
tensor representation. Varying the action (16) with respect
to the metric gab provides the following gravitational
equation

ðφ − ψÞGab ¼ κ2Tab þ∇a∇bφ −∇a∇bψ þ 3

2ψ
∂aψ∂bψ

−
�
□φ −□ψ þ 1

2
V þ 3

4ψ
∂cψ∂cψ

�
gab:

ð17Þ

Note that Eq. (17) could be obtained directly from Eq. (7)
via the introduction of the definitions of φ, ψ , and Vðφ;ψÞ,
which further emphasizes the equivalence between the two
representations.
Finally, the equations of motion for the scalar fields φ

and ψ can be obtained via a variation of Eq. (16) with
respect to these fields, respectively, which after algebraic
manipulations can be written in the forms

□φþ 1

3
ð2V − ψVψ − φVφÞ ¼

κ2T
3

; ð18Þ

□ψ −
1

2ψ
∂aψ∂aψ −

ψ

3
ðVφ þ VψÞ ¼ 0; ð19Þ

respectively.
Notice from Eq. (16) that the coupling between the scalar

fields and the Ricci scalar is the combination φ − ψ . Since
φ and ψ are arbitrary functions, it is not guaranteed that
this combination preserves the positivity of the coupling.
We thus introduce a redefinition of the scalar field φ as
ξ2 ¼ φ − ψ . With this redefinition, any solution obtained

for which ξ is a real function preserves the positivity of the
coupling ðφ − ψÞR. Equations (17) to (19) thus become

ξ2Gab ¼ κ2Tab þ∇a∇bξ
2 þ 3

2ψ
∂aψ∂bψ

−
�
□ξ2 þ 1

2
V̄ þ 3

4ψ
∂cψ∂cψ

�
gab; ð20Þ

□ξ2 þ 1

2ψ
∂aψ∂aψ þ 1

6
ð4V̄ − ξV̄ξÞ ¼

κ2T
3

; ð21Þ

□ψ −
1

2ψ
∂aψ∂aψ −

ψ

3

�
1

2ξ
V̄ξ þ V̄ψ

�
¼ 0; ð22Þ

where V̄ðξ;ψÞ is the potential written in terms of the scalar
fields ξ and ψ and the subscript ξ denotes a partial
derivative with respect to this scalar field. In the next
section, we will use the equations of motion (20)–(22) to
find cosmic string solutions. Finally, one can also obtain a
relationship between the potential V̄ and the function
fðR;RÞ from Eq. (14) as

V̄ðξ;ψÞ ¼ −fðR;RÞ þ ξ2Rþ ψðR −RÞ; ð23Þ

where we have used the fact that the scalar-tensor repre-
sentation is only defined if α ¼ R and β ¼ R. This
equation becomes a PDE for fðR;RÞ by replacing ψ ¼
fR and ξ2 ¼ fR þ fR.
Hence Eq. (23) becomes

V

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂fðR;RÞ
∂R þ ∂fðR;RÞ

∂R
r

;
∂fðR;RÞ

∂R
�

¼ −fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R : ð24Þ

C. Metric of a cosmic stringlike object

Due to the existence of a magnetic flux inside the string
[14], cosmological strings can either be infinite or form
closed loops, that will oscillate and decay emitting energy
through GWs, originating a GW stochastic background
[95]. The crucial parameter in the analysis of this type of
string is, as seen before, the energy density of the string,
usually represented as Gμ. This density, related to the
energy scale of the symmetry breaking originating the
network of strings, is constrained by different types of
observations, ranging from the CMB spectra [96], to
gravitational lensing [97] and 21-cm observation [98],
and more recently from the GW observations [95]. In
the future, we expect a more tight constraint coming from
the GW spectra with LISA [99].
In this work, we consider a straight infinite Abelian-

Higgs cosmic string, using Vilenkin’s approximation [18]

COSMIC STRINGS IN GENERALIZED HYBRID METRIC- … PHYS. REV. D 104, 124056 (2021)

124056-5



Tt
t ¼ Tz

z ¼ −σðrÞ; ð25Þ

where σ is the string tension. We further assume cylindrical
symmetry with a general metric of the form:

ds2 ¼ −e2ðK−UÞdt2 þ e2ðK−UÞdr2 þ e−2UW2dθ2 þ e2Udz2;

ð26Þ

where t, r, θ, and z denote the time, radial, angular,
and axial cylindrical coordinates, respectively, and K, U
and W are functions of r alone. This metric is invariant
under a set of transformations of the type: x0 → x0 þ c1,
x3 → x3 þ c2, x0 → −x0, and x3 → −x3, where c1 and c2
are constants, which renders this metric static and cylin-
drically symmetric. Thus, taking into account Eqs. (25) and
(26), we are assuming that the geometry of the string is
symmetric with respect to rotations about the cylinder axis
and also to translations along the axis direction.

D. Field equations with boost invariance

Since in this model the matter field couples minimally
with curvature, it is possible to show that the energy
conservation equation still holds, i.e.,

∇aTa
b ¼ 0 ð27Þ

which provides K0σ ¼ 0 and, apart from the trivial vacuum
solution σ ¼ 0, this implies that K0 ¼ 0, where the prime
represents a differentiation w.r.t. r. Thus, we consider from
now on that eK ¼ 1.
Note that local gauge strings preserve boost invariance

along t and z [18], so that this requires U ¼ 0. Hence
the only surviving non-trivial metric tensor component is
gθθ ¼ W2ðrÞ. From a geometric point of view WðrÞ is the
radius of the coordinate circles r ¼ constant, z ¼ constant,
parameterized by the angle θ. Since in this geometry the
perimeter of a circle equals 2πW, in the following we will
call the only remaining metric tensor component W2ðrÞ a
circular radius. On the other hand W2ðrÞ also has the
geometric meaning of a length that may be counted from
any zero point, with its value at r ¼ 0 not distinguished
geometrically. Hence the metric of the cosmic string
reduces to the form

ds2 ¼ −dt2 þ dr2 þW2ðrÞdθ2 þ dz2: ð28Þ

Applying this symmetry, the gravitational field equations
simplify considerably. Equation (20) provides three inde-
pendent field equations, which are

ξ2
W00

W
þ 2ξξ0

W0

W
þ 3ψ 02

4ψ
þ 2ðξ02þ ξξ00Þþ V̄

2
¼−κ2σ; ð29Þ

2ξξ0
W0

W
−
3ψ 02

4ψ
þ V̄

2
¼ 0; ð30Þ

2ðξ02 þ ξξ00Þ þ 3ψ 02

4ψ
þ V̄

2
¼ d2

dr2
ξ2 þ 3ψ 02

4ψ
þ V̄

2
¼ 0; ð31Þ

whereas the scalar field equations for ξ and ψ , provided by
Eqs. (21) and (22), give

2ðξ02 þ ξξ00Þ þ 2ξξ0
W0

W
þ ψ 02

2ψ
þ 1

6
ðV̄ − ξV̄ξÞ ¼ −

2κ2

3
σ;

ð32Þ

ψ 00 þW0

W
ψ 0 −

ψ 02

2ψ
−
ψ

3

�
V̄ψ þ 1

2ξ
V̄ξ

�
¼ 0: ð33Þ

The system of Eqs. (29)–(33) is a system of five
equations from which only four are linearly independent.
This statement can be proven by taking a radial derivative
of Eq. (30), using Eq. (29) to cancel the factors W00, using
Eq. (32) to cancel σ, and finally using Eqs. (31) and (33) to
cancel the second-order derivatives of the scalar fields ξ00
and ψ 00, respectively. As a result, one recovers Eq. (30),
thus proving that the system of equations is linearly
dependent. Thus, one only needs to consider four of these
equations to completely determine the solution in the
sections that follow. Given its complexity, we chose to
discard Eq. (29) from the analysis.
Furthermore, an equation for the potential V̄ can be

obtained by summing the field equations in Eqs. (30) and
(31), yielding

V̄ ¼ −2ðξ02 þ ξξ00Þ − 2ξξ0
W0

W
: ð34Þ

This equation is particularly useful to obtain an equation for
W0 in terms of the scalar fields ξ and ψ and their derivatives
after setting an explicit form of the potential V̄, which we
explore below in Sec. III.
The system of basic equations describing the structure of

a cosmic string can thus be reformulated in the form of a
first-order dynamical system. By defining α ¼ ξ2, and by
introducing two extra dynamical variables as u ¼ α0 and
v ¼ ψ 0, the dynamical system takes the form

dα
dr

¼ u;
dψ
dr

¼ v; ð35Þ

dW
dr

¼ 1

u

�
3v2

4ψ
−
V̄
2

�
W; ð36Þ

du
dr

¼ −
3v2

4ψ
−
V̄
2
; ð37Þ
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dv
dr

¼−
v
u

�
3v2

4ψ
−
V̄
2

�
þ v2

2ψ
þψ

3

�
V̄ψ þ

1

2
ffiffiffi
α

p V̄ ffiffi
α

p
�
; ð38Þ

where Eq. (35) is the explicit definition of u and v, and
Eqs. (36)–(38) are reformulations of Eqs. (30), (32), and
(33), respectively. Once the functional form of the potential
V̄ðξ;ψÞ is specified, the system of Eqs. (35)–(38) repre-
sents a system of ordinary, strongly nonlinear, differential
equations for the variables ðα ¼ ξ2;ψ ;W; u; vÞ. To solve
this system, one has to impose a set of boundary conditions
at some radius r ¼ r0, i.e., αðr0Þ ¼ α0, ψðr0Þ ¼ ψ0,
Wðr0Þ ¼ W0, uðr0Þ ¼ u0, and vðr0Þ ¼ v0, respectively,
which specify the boundary values of the variables on,
or nearby the string axis. Moreover, we will also impose
the condition uðr0Þ ≠ vðr0Þ. Once the system is solved,
the string tension can be obtained from Eq. (32), and it is
given by

2

3
κ2σ ¼ V̄ −

v2

2ψ
−
1

6
ðV̄ −

ffiffiffi
α

p
V̄ ffiffi

α
p Þ: ð39Þ

An important physical characteristic of the stringlike
objects is their mass per unit length ms, defined as

msðRsÞ ¼
Z

2π

0

dθ
Z

Rs

0

σðrÞWðrÞdr¼ 2π

Z
Rs

0

σðrÞWðrÞdr;

ð40Þ

where Rs is the radius of the string, defined as the distance
from the center where the string tension vanishes,
σðRsÞ ¼ 0, and σðrÞ≡ 0; ∀r ≥ Rs. Note that, in general,
the solutions obtained for σ do not satisfy the property
σðrÞ≡ 0; ∀r ≥ Rs, and this condition must be imposed
manually by performing a matching between the string
spacetime and an exterior cosmological spacetime. This
matching must be performed via the use of the junction
conditions of the theory, previously used in [85]. However,
we do not pursue this analysis here as it is out of the scope
of this paper. Using Eqs. (31) and Eq. (29) the mass per unit
length of the string can be expressed as

κ2msðRsÞ ¼ 3π

Z
Rs

0

�
V̄ −

v2

2ψ
−
1

6
ðV̄ −

ffiffiffi
α

p
V̄ ffiffi

α
p Þ

�
Wdr:

ð41Þ

III. EXACT COSMIC STRING SOLUTIONS

The solutions of the gravitational field equations for a
cosmic stringlike configuration in generalized HMPG
essentially depend on the functional form of the potential
V̄ ¼ V̄ðξ;ψÞ. Once the potential and the boundary con-
ditions are given, solutions of the gravitational field
equations can be obtained that uniquely fix the metric
tensor component W, as well as the two scalar fields ξ

and ψ . In the following, we will consider first several exact
solutions of the field equations, corresponding to two
simple choices of the potential V.

A. V̄ðξ; ψÞ= 0
We begin our investigations of the stringlike structures

in generalized HMPG by considering the simple case in
which the potential V̄ vanishes, V̄ ¼ 0. In this case Eq. (24)
takes the form

−fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R ¼ 0; ð42Þ

and it has the general solution

fðR;RÞ ¼ Rg

�
R
R

�
þRh

�
R
R

�
; ð43Þ

where g and h are arbitrary functions.
From Eq. (34) we obtain

W0

W
¼ −

ðξ2Þ00
ðξ2Þ0 ; ð44Þ

giving immediately

W ¼ W0

ðξ2Þ0 ¼
W0

2ξξ0
; ð45Þ

where W0 is an integration constant. On the other hand,
from Eq. (33) we obtain

ψ 00

ψ 0 þ
W0

W
−
1

2

ψ 0

ψ
¼ 0; ð46Þ

and

W ¼ C
ffiffiffiffi
ψ

p
ψ 0 ; ð47Þ

respectively, where C is an arbitrary integration constant.
Equations (52) and (47) can be combined to obtain

d
dr

ξ2 ¼ w0ψ
0ffiffiffiffi

ψ
p ¼ 2w0

d
dr

ffiffiffiffi
ψ

p
; ð48Þ

where we have defined w0 ¼ W0=C. Taking the radial
derivative of Eq. (48) and inserting the result into Eq. (31)
yields an ODE for ψ in the form

ψ 00 −
1

2

ψ 02

ψ
þ 3

4w0

ψ 02ffiffiffiffi
ψ

p ¼ 0: ð49Þ

Dividing through by ψ 0 allows one to integrate Eq. (49)
directly twice and obtain the solution for ψðrÞ in the form
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ψðrÞ ¼ 4

9
w2
0ln

2

�
3c1ðrþ c2Þ

4w0

�
; ð50Þ

where c1 and c2 are arbitrary integration constants. From
Eq. (48) we obtain

ξ2 ¼ ξ20 þ
4

3
w2
0 ln

3c1ðrþ c2Þ
4w0

: ð51Þ

Thus we find for the metric tensor component W the
expression

WðrÞ ¼ 3C2ðrþ c2Þ
4W0

: ð52Þ

Finally, the string tension can be computed directly from
Eq. (32) and it is given by

−κ2σ ¼ 4W2
0

3C2ðc2 þ rÞ2 : ð53Þ

Note that the above solutions have been obtained under
the assumption ln ½3c1ðc2 þ rÞ=4w0� > 0. By assuming
that the integration constant c2 ≠ 0, it follows that W takes
on the string axis the boundary value Wð0Þ ¼ 3c1c2=4w0.
However, for the choice c2 ¼ 0, W vanishes on the string
axis. But, on the other hand, this choice would imply
a divergent string tension and scalar fields at r ¼ 0.
The circular radius WðrÞ monotonically increases with
the radial distance from the center, and for r → ∞,
limr→∞W2ðrÞ ¼ ∞. In the same limit the string tension
tends to zero, indicating a vanishing string tension at
infinity.
An interesting property of the present zero potential

solution for cosmic strings in generalized HMPG theory is
that the string tension is negative. In [100] wormhole
configurations representing an alternative of the cosmic
string solutions of standard GR have been obtained under
the assumption of a negative string tension and mass. The
properties of such configurations have been further inves-
tigated in [101], where it was pointed out that a wormhole
mouth embedded in high background matter density, and
which accretes mass, can give the other mouth a net
negative mass. The lensing of such gravitationally negative
anomalous objects will have observable lensing properties.
However, for the present vanishing potential generalized
HMPG theory cosmic string solution, the mass of the string
is given by

msðRsÞ ¼
2πW0

κ2
ln

c2
c2 þ Rs

: ð54Þ

For Rs → ∞, the mass of the cosmic string diverges
logarithmically to minus infinity.

For σ ¼ 0, that is, in the vacuum, the field equa-
tions (29)–(33) do admit the simple solution

ψ ¼ ψ0 ¼ constant; W ¼ W0 ¼ constant;

ξ2 ¼ c3rþ c4; ð55Þ

where c1 and c2 are integration constants. The correspond-
ing vacuum metric is given by

ds2 ¼ −dt2 þ dr2 þW2
0dθ

2 þ dz2: ð56Þ

A matching of this vacuum metric with the string metric
tensor componentWðrÞ at a finite radius Rs determines the
string radius as

Rs ¼
4W0W0

3C2
− c2: ð57Þ

The string tension takes then the surface value

κ2σ ¼ 3

4

C2

W2
0

: ð58Þ

Hence there is a sudden transition from a finite (negative)
value of the string tension to its zero vacuum value.

B. Vðξ; ψÞ=Λ= constant

Next we consider the case when the potential V is a
constant, so that V ¼ Λ ¼ constant. In this case Eq. (24)
takes the form

−fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R ¼ Λ; ð59Þ

and it has the general solution

fðR;RÞ ¼ Rg

�
R
R

�
þRh

�
R
R

�
− Λ; ð60Þ

where g and h are arbitrary functions.
For a constant potential Eq. (33) simplifies to

W0

W
¼ −

ψ 00

ψ 0 þ
1

2

ψ 0

ψ
; ð61Þ

which allows us to write Eq. (30) in the form

d
dr

ξ2 ¼ 3ψ 02=4ψ − Λ=2
W0=W

¼ 3ψ 02=4ψ − Λ=2
−ψ 0=ψ 0 þ ð1=2Þψ 0=ψ

: ð62Þ

To facilitate the analysis, we introduce now a new function
h ¼ ψ 02=ψ . The radial derivative of this function can be
written in terms of ψ and its derivatives as
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h0 ¼ 2h

�
ψ 0

ψ 0 −
1

2

ψ 0

ψ

�
: ð63Þ

This definition allows us to rewrite Eq. (62) in terms
of h as

d
dr

ξ2 ¼ −
ð3=4Þh − Λ=2

h0=2h
; ð64Þ

which can then be differentiated with respect to r and
inserted into Eq. (31) to cancel the dependency in d2ξ2=dr2

and ψ 00. As a result, we obtain an equation depending solely
in h of the form

ð2Λ − 3hÞð3h02 − 2hh00Þ
4h02

¼ 0: ð65Þ

This equation is undefined for h0 ¼ 0, as the denominator
vanishes in this case. Thus, in the following we ignore
the solution corresponding to h ¼ 2Λ=3 ¼ constant, giving
h0 ¼ 0, andW ¼ constant. The general solution of Eq. (65)
is given by

hðrÞ ¼ c2
ðrþ 2c1Þ2

; ð66Þ

where c1 and c2 are arbitrary integration constants.
Recalling that h0 ¼ ψ 02=ψ , Eq. (66) becomes a separable
ODE for ψ which can be directly integrated and provides
the general solution

ψðrÞ ¼
�
c3 �

ffiffiffiffiffi
c2

p
2

ln ðrþ 2c1Þ
�
2

; ð67Þ

where c3 is an arbitrary integration constant. For c3 ¼ 0, we
recover the expression (50) of ψðrÞ, corresponding to the
case V ¼ 0. Inserting Eq. (67) into Eq. (64) and integrating
gives for ξ2 the expression

ξ2ðrÞ ¼ ξ20 þ
1

4
½3c2 ln ðrþ 2c1Þ − Λrðrþ 4c1Þ�; ð68Þ

where ξ20 is an integration constant. Inserting Eq. (67) into
Eq. (61) we obtain the solution for W

WðrÞ ¼ W0ðrþ 2c1Þ; ð69Þ
where W0 is a constant of integration. Hence the cosmic
string metric tensor component WðrÞ is the same in both
V ¼ 0 and V ¼ Λ cases. Finally, the string tension can be
computed via Eq. (32), leading to

κ2σ ¼ Λ
2
−

3c2
4ð2c1 þ rÞ2 : ð70Þ

On the string axis r ¼ 0 we obtain for the string tension
the value

κ2σ0 ¼ κ2σð0Þ ¼ Λ
2
−

3c2
16c21

: ð71Þ

The condition of the positivity of the string tension imposes
the condition c2=c21 < 8Λ=3 on the integration constants.
For Λ ¼ 0 we reobtain the expression corresponding to

the case V ¼ 0. However, by an appropriate choice of the
integration constants, and by assuming Λ > 0, the string
tension can be made positive in this model for all r > 0.
Moreover, limr→∞ σðrÞ ¼ Λ=2κ2, and hence at infinity the
string tension becomes equal to the cosmological con-
stant. However, in this case one can obtain a finite radius
string configuration, with the radius Rs determined by the
condition σðRsÞ ¼ 0, and given by

Rs ¼
ffiffiffiffiffiffiffiffi
3

2

c2
Λ

r
− 2c1: ð72Þ

For a positive string tension at the origin r ¼ 0, the string
radius is also positive.
As for the mass of the string we obtain

msðRsÞ ¼
2πW0

κ2

�
1

2
Λ
�
Rs þ c1ðΛW0 þ 2Þ − 3c2W0

8c1

�

−
6c1c2

8c1½Rs þ c1ðΛW0 þ 2Þ� − 3c2W0

�
: ð73Þ

By an appropriate choice of the integration constants, giving
the boundary conditions of the fields φ and ψ for r ¼ 0, one
can always satisfy the condition msðRsÞ > 0; ∀Rs. In the
limit Rs → ∞, we obtain msðRsÞ ≈ ðπW0Λ=κ2Þ Rs, that is,
for large distances the mass of the string linearly increases
with its radius.

IV. NUMERICAL COSMIC STRING SOLUTIONS

Except for the simple cases considered in the previous
section, for potentials having more complicated functional
forms one must resort to numerical methods in order to
construct cosmic string models in the generalized HMPG
theory. In the present section, we obtain a number of
such numerical solutions describing cosmic string confi-
gurations, by fixing first the form of the potential. We will
adopt several forms for Vðξ;ψÞ, by assuming that it has
an additive, and a multiplicative structure, respectively.
Moreover, we will also consider the cases where V depends
on only one variable, ξ and psi, respectively, so that V ¼
VðξÞ and V ¼ VðψÞ, respectively. The numerical solutions
strongly depend on the boundary values of the geometrical
and physical parameters used to integrate the system of
equations (35)–(38), which, at least in the present approach,
can be chosen arbitrarily. Moreover, the potential also
depends on some numerical parameters. Hence, in the
following, we will study two types of different effects on
the numerical cosmic string configurations, related to the
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variation of the potential parameters, and of the boundary
conditions, respectively.

A. V̄ðξ; ψÞ= V̄ðξÞ
We begin our numerical investigations by first consid-

ering the case in which the potential V̄ðξ;ψÞ is independent
on the variable ψ , V̄ ¼ V̄ðξÞ. We will study only potentials
VðξÞ that have a simple polynomial dependence on ξ,
V̄ ¼ V̄0ξ

n, and for the sake of concreteness we will restrict
our analysis to the cases n ¼ 2 and n ¼ 4, respectively.
These forms of the potential are chosen because the
associated forms of the function fðR;RÞ have been proven
to provide interesting cosmological behaviors in other
works [68], e.g., for n ¼ 2 one can obtain the de-Sitter
solution as well as cosmological bounces, and for n ¼ 4
one can reproduce the matter-dominated era.
Given the dependence of the scalar field ξ in both the

derivatives of fðR;RÞ with respect to R and R, the
symmetric structure of Eq. (24) when the potential V
depends solely on ξ allows for the analytic derivation of
families of solutions for the function fðR;RÞ. In the
following sections, when one considers potentials that
depend also on ψ , this symmetry is broken and one can
only obtain particular solutions of Eq. (24).

1. V̄ðξ; ψÞ= V̄0ξ2

We assume now that V̄ is a simple quadratic power law
function, so that V̄ ¼ V̄0ξ

2. In this case, Eq. (24) becomes

− fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R
¼ V̄0

�∂fðR;RÞ
∂R þ ∂fðR;RÞ

∂R
�
; ð74Þ

which can be solved with respect to fðR;RÞ to obtain

fðR;RÞ ¼ ðR − V̄0Þg
�
R − V̄0

R − V̄0

�
þ ðR − V̄0Þh

�
R − V̄0

R − V̄0

�
;

ð75Þ

where g and h are arbitrary functions.
The system of field equations to be solved takes the form

dα
dr

¼ u;
dψ
dr

¼ v; ð76Þ

dW
dr

¼ 1

2u

�
3v2

2ψ
− V̄0α

�
W; ð77Þ

du
dr

¼ −
3v2

4ψ
−
V̄0α

2
; ð78Þ

dv
dr

¼ −
v
u

�
3v2

4ψ
−
V̄0α

2

�
þ v2

2ψ
þ V0

3
ψ : ð79Þ

The string tension is given by

2κ2

3
¼ 7

6
V̄0α −

v2

2ψ
: ð80Þ

The system of Eqs. (76)–(79) must be integrated with the
initial conditions αð0Þ ¼ α0, ψð0Þ ¼ ψ0, Wð0Þ ¼ W0,
uð0Þ ¼ u0, and vð0Þ ¼ v0, respectively. The variations of
the metric tensor component W2ðrÞ and of the string
tension σðrÞ are represented, for different values of α0,
and for fixed initial conditions of the other parameters, in
Fig. 1, respectively.
The metric tensor component W2 inside the string takes

a finite value for r ¼ 0, and initially it increases with
increasing r, reaching a maximum value at r ¼ rmax.
For r > rmax, W2ðrÞ becomes a monotonically decreasing

FIG. 1. Variations of the metric function W2ðrÞ (left panel), and of the string tension σ (right panel) as a function of r (with all
quantities in arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ξ

2 potential, for α0 ¼ 0.010 (solid curve), α0 ¼ 0.012 (dotted curve), α0 ¼ 0.014 (short
dashed curve), α0 ¼ 0.016 (dashed curve), and α0 ¼ 0.018 (long dashed curve), respectively. For V̄0 we have adopted the value V̄0 ¼ 1,
while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, v0 ¼ 0.01, Wð0Þ ¼ 0.10, and
ψ0 ¼ 0.03, respectively.
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function. The behavior of W2 is strongly influenced by the
initial conditions, as one can see from its dependence on α0.
The string tension σ is a monotonically decreasing function
of distance, and it identically vanishes at r ¼ Rs, with
σðRsÞ ¼ 0. This condition allows to uniquely define Rs as
the string radius. The behavior of the string tension is
depends strongly on the initial conditions, and this depend-
ence also induces a significant variation of the string radius
on the initial values of the string parameters. Thevariations of
the potential V̄ and of the functionψ are represented in Fig. 2.
The potential V̄ðξÞ ¼ V̄0ξ

2 is a decreasing function of r,
having an approximate parabolic dependence on r. Inside
the string ξ2 > 0 for 0 ≤ r ≤ Rs, which guaranties that the
gravitational coupling has the correct sign. The function ψ
monotonically increases inside the string, and takes only
positive values. The behavior of both functions V and ψ
depends strongly on the initial conditions. The string
geometric and physical characteristics also depend on
the potential parameter V0, but its variation does not
change the qualitative behavior of the numerical solution.

2. V̄ðξ;ψÞ= V̄0ξ4

For the V̄ðξ;ψÞ ¼ V̄0ξ
4 potential, Eq. (24) takes the form

− fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R
¼ V̄0

�∂fðR;RÞ
∂R þ ∂fðR;RÞ

∂R
�

2

; ð81Þ

which yields the following solution to fðR;RÞ

fðR;RÞ ¼ ðRþRÞ2
16V̄0

þ gðR −RÞ; ð82Þ

where g is an arbitrary function.

The structure equations describing the cosmic string
configuration in generalized hybrid metric-Palatini gravity
take the form

dα
dr

¼ u;
dψ
dr

¼ v; ð83Þ

dW
dr

¼ 1

2u

�
3v2

2ψ
− V̄0α

2

�
W; ð84Þ

du
dr

¼ −
3v2

4ψ
−
V̄0α

2

2
; ð85Þ

dv
dr

¼ −
v
u

�
3v2

4ψ
−
V̄0α

2

2

�
þ v2

2ψ
þ 2V0

3
ψα: ð86Þ

For the string tension we obtain

2κ2

3
¼ 3

2
V̄0α

2 −
v2

2ψ
: ð87Þ

The solutions of the system of Eqs. (83)–(86) can be
obtained only numerically, and for its integration the initial
conditions αð0Þ ¼ α0, ψð0Þ ¼ ψ0,Wð0Þ ¼ W0, uð0Þ ¼ u0,
and vð0Þ ¼ v0 must be specified. The metric tensor
component W2ðrÞ and the string tension σðrÞ are repre-
sented, for different values of v0, and for fixed initial
conditions of the other parameters, in Fig. 3, respectively.
The qualitative behavior of the metric tensor component

W2 inside the string shows some differences as compared to
the V̄ðξÞ ¼ V̄0ξ

2 case. While in the quadratic case W2

reaches a maximum inside the string, for the quartic
potential the maximal value of the metric tensor is attained
on the string surface. The behavior of W2 is strongly
dependent on the initial conditions, and significant

FIG. 2. Variations of the potential V̄ðξ;ψÞ ¼ V̄0ξ
2 (left panel), and of the function ψ (right panel) as a function of r (with all quantities

in arbitrary units) for the V̄ðξÞ ¼ V̄0ξ
2 potential, for α0 ¼ 0.010 (solid curve), α0 ¼ 0.012 (dotted curve), α0 ¼ 0.014 (short dashed

curve), α0 ¼ 0.016 (dashed curve), and α0 ¼ 0.018 (long dashed curve), respectively. For V̄0 we have adopted the value V̄0 ¼ 1, while
the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, v0 ¼ 0.01, Wð0Þ ¼ 0.10, and ψ0 ¼ 0.03,
respectively.
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variations may occur once v0 is modified. The string
tension σ monotonically decreases with increasing r, and
it becomes zero at r ¼ Rs, with σðRsÞ ¼ 0. Hence, we can
uniquely define Rs as the string radius. The string tension,
as well as the string radius depend significantly on the
initial condition. The variations of the potential V̄ and of the
function ψ are represented in Fig. 4.
The potential V̄ðξÞ ¼ V̄0ξ

4 monotonically decreases
inside the string, and it becomes zero on the string surface.
Similarly to the previous case, ξ2 > 0 for 0 ≤ r ≤ Rs,
and thus the gravitational coupling has the correct sign.
The function ψ monotonically increases, and takes only
positive values. The behavior of both functions V and ψ is
significantly dependent on the initial conditions, and on
the potential parameter V0. However, major changes in the
numerical value of V0 do not affect significantly the

qualitative behavior of the numerical string solution for
the quartic potential of the generalized hybrid metric-
Palatini gravity theory.

B. V̄ðξ; ψÞ= V̄0ψ2

Next we assume that the potential V̄ is independent on
the field ξ, and has the form V̄ ¼ V̄0ψ

2, with V̄0 a constant.
For this choice of the potential, Eq. (24) becomes

−fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R ¼ V̄0

∂fðR;RÞ
∂R

ð88Þ

and a particular solution for the function fðR;RÞ is

FIG. 4. Variation of the potential V̄ðξ;ψÞ ¼ V̄0ξ
4 (left panel), and of the function ψ (right panel) as a function of r (with all quantities

in arbitrary units) for the V̄ðξÞ ¼ V̄0ξ
4 potential, for v0 ¼ 0.00009 (solid curve), v0 ¼ 0.0001 (dotted curve), v0 ¼ 0.00011 (short

dashed curve), v0 ¼ 0.00012 (dashed curve), and v0 ¼ 0.00013 (long dashed curve), respectively. For V̄0 we have adopted the value
V̄0 ¼ 105, while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, α0 ¼ 0.001,Wð0Þ ¼ 0.20,
and ψ0 ¼ 0.0000003, respectively.

FIG. 3. Variation of the metric functionW2ðrÞ (left panel), and of the string tension σ (right panel) as a function of r (with all quantities
in arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ξ

4 potential, for v0 ¼ 0.00009 (solid curve), v0 ¼ 0.0001 (dotted curve), v0 ¼ 0.00011 (short
dashed curve), v0 ¼ 0.00012 (dashed curve), and v0 ¼ 0.00013 (long dashed curve), respectively. For V̄0 we have adopted the value
V̄0 ¼ 105, while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, α0 ¼ 0.001,Wð0Þ ¼ 0.20,
and ψ0 ¼ 0.0000003, respectively.
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fðR;RÞ ¼ ðRþ c1RÞ2
4V̄0ð1þ c2RÞ þ c3R; ð89Þ

where the ci are constants.
The system of field equations describing the cosmic

string behavior in the generalized hybrid metric Palatini
gravity take the form

dα
dr

¼ u;
dψ
dr

¼ v; ð90Þ

dW
dr

¼ 1

2u

�
3v2

2ψ
− V̄0ψ

2

�
W; ð91Þ

du
dr

¼ −
3v2

4ψ
−
V̄0ψ

2

2
; ð92Þ

dv
dr

¼ −
v
u

�
3v2

4ψ
−
V̄0α

2

�
þ v2

2ψ
þ 2V0

3
ψ2: ð93Þ

The string tension can be obtained as

2κ2

3
σ ¼ 5

6
V̄0ψ

2 −
v2

2ψ
: ð94Þ

The variations of the metric function W2 and of the
string tension are represented in Fig. 5. Both W2 and σ are
monotonically decreasing functions, with σðrÞ vanishing
for a finite value of r ¼ Rs, which represents the radius of
the string. To obtain the plots we have varied the initial
condition for ψ 0ð0Þ ¼ v0. There is a significant impact on
the numerical value of v0 on the string properties. However,
even that for small r the effect on the string tension is rather

FIG. 5. Variations of the metric function W2ðrÞ (left panel), and of the string tension σðrÞ (right panel) as a function of r (with all
quantities in arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ψ

2 potential, for v0 ¼ −0.01 (solid curve), v0 ¼ −0.011 (dotted curve), v0 ¼ −0.012
(short dashed curve), v0 ¼ −0.013 (dashed curve), and v0 ¼ −0.0133 (long dashed curve), respectively. For V̄0 we have adopted the
value V̄0 ¼ 11, while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, α0 ¼ 0.10,
Wð0Þ ¼ 0.10, and ψ0 ¼ 0.03, respectively.

FIG. 6. Variations of the potential V̄ðrÞ (left panel), and of the function ψðrÞ (right panel) as a function of r (with all quantities in
arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ψ

2 potential, for v0 ¼ −0.01 (solid curve), v0 ¼ −0.011 (dotted curve), v0 ¼ −0.012 (short dashed
curve), v0 ¼ −0.013 (dashed curve), and v0 ¼ −0.0133 (long dashed curve), respectively. For V̄0 we have adopted the value V̄0 ¼ 11,
while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.001, α0 ¼ 0.10, Wð0Þ ¼ 0.10, and
ψ0 ¼ 0.03, respectively.
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large, the string radius is less affected by the variation of
this initial condition.
The variations of the potential V̄ and of the function ψ

are represented in Fig. 6. Both quantities monotonically
decrease radially, and their behavior depends on the
adopted initial conditions.
The variation of ξ2ðrÞ is represented in Fig. 7. ξ2 is

positive in the range 0 ≤ r ≤ Rs, thus ensuring the physical
nature of the gravitational coupling. ξ2 is a monotonically
increasing function of r, and at large values of the radial
coordinate, near the string boundary, its variation depends
on the initial condition for ψ 0ð0Þ.

The variation of the potential parameter V̄0 does not
change the qualitative behavior of the solution, even that it
has an important effect on the numerical characteristics of
the string.

C. V̄ðξ; ψÞ= V̄0ξ2ψ2

Next we will consider string type solutions in the gener-
alized hybrid metric Palatini gravity under the assumption
that the potential V̄ is given by V̄ ¼ V̄0ξ

2ψ2 ¼ V0αψ
2, with

V̄0 constant. Equation (24) then becomes

− fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R
¼ V̄0

∂fðR;RÞ
∂R

�∂fðR;RÞ
∂R þ ∂fðR;RÞ

∂R
�

ð95Þ

and a particular solution for the function fðR;RÞ is

fðR;RÞ ¼
ffiffiffiffiffiffi
R
V̄0

s
ðR −RÞ: ð96Þ

For this potential the field equations describing the
stringlike structure take the form

dα
dr

¼ u;
dψ
dr

¼ v; ð97Þ

dW
dr

¼ 1

2u

�
3v2

2ψ
− V̄0αψ

2

�
W; ð98Þ

du
dr

¼ −
3v2

4ψ
−
V̄0αψ

2

2
; ð99Þ

FIG. 7. Variation of ξ2 as a function of r (with all quantities in
arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ψ

2 potential, for v0 ¼ −0.01
(solid curve), v0 ¼ −0.011 (dotted curve), v0 ¼ −0.012 (short
dashed curve), v0 ¼ −0.013 (dashed curve), and v0 ¼ −0.0133
(long dashed curve), respectively. For V̄0 we have adopted the
value V̄0 ¼ 11, while the boundary conditions used to numeri-
cally integrate the field equations are u0 ¼ −0.001, α0 ¼ 0.10,
Wð0Þ ¼ 0.10, and ψ0 ¼ 0.03, respectively.

FIG. 8. Variations of the metric function W2ðrÞ (left panel), and of the string tension σðrÞ (right panel) as a function of r (with all
quantities in arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ξ

2ψ2 potential, for ψ0 ¼ −0.025 (solid curve), ψ0 ¼ −0.020 (dotted curve), ψ0 ¼
−0.015 (short dashed curve), ψ0 ¼ −0.01 (dashed curve), and ψ0 ¼ −0.005 (long dashed curve), respectively. For V̄0 we have adopted
the value V̄0 ¼ 10, while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.01, α0 ¼ 0.025,
Wð0Þ ¼ 0.10, and v0 ¼ 0.10, respectively.
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dv
dr

¼ −
v
u

�
3v2

4ψ
−
V̄0α

2

�
þ v2

2ψ
þ 2V0

3
ψ2

�
αþ ψ

2

�
: ð100Þ

For this model the string tension is given by

2κ2

3
σ ¼ 7

6
V̄0αψ

2 −
v2

2ψ
: ð101Þ

The metric function W2 and the string tension σ are
depicted in Fig. 8, for a varying initial condition
ψ 0ð0Þ ¼ ψ0, while all the other initial conditions are fixed.
In this case the radial metric function is an increasing
function of the radial coordinate r, and its rate of increase is
strongly dependent on the variations in the numerical
values of ψ0. Similarly to the previous cases, the string
tension is a monotonically decreasing function of r, and it
vanishes at a finite value of r, r ¼ Rs, which uniquely
defines the string radius. The string radius is weakly
dependent on the variation of ψ0, however, significant
variations in σ do appear for small values of r.
The variations of the potential and of the function ψ are

represented in Fig. 9. V̄ is a slowly decreasing positive
function of r, strongly dependent on the initial condition for
ψ 0. The function ψ takes negative values, and shows a
strong dependence on ψ0.
The behavior of the function ξ2ðrÞ is depicted in Fig. 10.

ξ2 is positive for r ∈ ½0; Rs�, and thus the physical nature of
the gravitational coupling in the present model is guaran-
teed. ξ2 is a monotonically decreasing function of r, and its
variation depends significantly on the numerical values of
the initial conditions for ψ 0ð0Þ.

D. V̄ðξ;ψÞ= aξ2 + bψ2

Finally, consider string type solutions in the genera-
lized hybrid metric Palatini gravity by assuming that the

potential V̄ is given by the quadratic expression V̄ ¼
aξ2 þ bψ2 ¼ aαþ bψ2, with a, b constants. In this case,
Eq. (24) takes the form

− fðR;RÞ þ R
∂fðR;RÞ

∂R þR
∂fðR;RÞ

∂R
¼ a

∂fðR;RÞ
∂R þ b

�∂fðR;RÞ
∂R þ ∂fðR;RÞ

∂R
�

ð102Þ

and a particular solution for the function fðR;RÞ is

fðR;RÞ ¼ 1

4b
½aða − RÞ þ ðR −RÞ2� þ cðR − aÞ; ð103Þ

where c is a constant.

FIG. 9. Variations of the potential V̄ðξ;ψÞ ¼ V̄0ξ
2ψ2 (left panel), and of the function ψ (right panel) as a function of r (with all

quantities in arbitrary units) for the V̄ðξÞ ¼ V̄0ξ
2ψ2 potential, for ψ0 ¼ −0.025 (solid curve), ψ0 ¼ −0.020 (dotted curve), ψ0 ¼ −0.015

(short dashed curve), ψ0 ¼ −0.01 (dashed curve), and ψ0 ¼ −0.005 (long dashed curve), respectively. For V̄0 we have adopted the value
V̄0 ¼ 10, while the boundary conditions used to numerically integrate the field equations are u0 ¼ −0.01, α0 ¼ 0.025, Wð0Þ ¼ 0.10,
and v0 ¼ 0.10, respectively.

FIG. 10. Variation of ξ2 as a function of r (with all quantities in
arbitrary units) for the V̄ðξ;ψÞ ¼ V̄0ξ

2ψ2 potential, for ψ0 ¼
−0.025 (solid curve), ψ0 ¼ −0.020 (dotted curve), ψ0 ¼ −0.015
(short dashed curve), ψ0 ¼ −0.01 (dashed curve), and ψ0 ¼
−0.005 (long dashed curve), respectively. For V̄0 we have
adopted the value V̄0 ¼ 10, while the boundary conditions used
to numerically integrate the field equations are u0 ¼ −0.01,
α0 ¼ 0.025, Wð0Þ ¼ 0.10, and v0 ¼ 0.10, respectively.
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The field equations describing the stringlike structure
take the form

dα
dr

¼ u;
dψ
dr

¼ v; ð104Þ

dW
dr

¼ 1

2u

�
3v2

2ψ
− aα − bψ2

�
W; ð105Þ

du
dr

¼ −
3v2

4ψ
−
1

2
ðaαþ bψ2Þ; ð106Þ

dv
dr

¼ −
v
u

�
3v2

4ψ
−
V̄0α

2

�
þ v2

2ψ
þ ψ

3
ðaþ 2bψÞ: ð107Þ

For this model the string tension is given by

2κ2

3
σ ¼ 7

6
aαþ 5

6
bψ2 −

v2

2ψ
: ð108Þ

In the following we will consider two class of models
described by this potential, obtained by varying the
potential parameters ða; bÞ for fixed initial conditions,
and models in which the potential parameters are fixed,
while the initial conditions for r ¼ 0 are slightly modified.

1. Varying the potential parameters

As a first example of string solutions with the quadratic
potential in ξ and ψ we consider a configuration with fixed
initial conditions but for different values of a and b. For the
sake of concreteness we fix a and we vary b. The variation
of the metric function W2 and of the string tension are
represented in Fig. 11 for different values of b. W2ðrÞ is a
monotonically increasing function of r, reaching its maxi-
mum value on the string vacuum boundary. The string
tension monotonically decreases from its value at r ¼ 0 to
zero, with the corresponding value of r uniquely determin-
ing the string boundary. Both the variations ofW2 and σ are

FIG. 11. Variations of the metric function W2ðrÞ (left panel), and of the string tension σðrÞ (right panel) as a function of r (with all
quantities in arbitrary units) for the V̄ðξ;ψÞ ¼ aξ2 þ bψ2 potential, for a ¼ 0.5 and b ¼ −2 (solid curve), b ¼ −2.2 (dotted curve),
b ¼ −2.4 (short dashed curve), b ¼ −2.6 (dashed curve), and b ¼ −2.8 (long dashed curve), respectively. The boundary conditions
used to numerically integrate the field equations are u0 ¼ −0.01, α0 ¼ 0.10, Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.

FIG. 12. Variations of the potential V̄ðξ;ψÞ ¼ aξ2 þ bψ2 (left panel), and of the function ψ (right panel) as a function of r (with all
quantities in arbitrary units) for a ¼ 0.5 and b ¼ −2 (solid curve), b ¼ −2.2 (dotted curve), b ¼ −2.4 (short dashed curve), b ¼ −2.6
(dashed curve), and b ¼ −2.8 (long dashed curve), respectively. The boundary conditions used to numerically integrate the field
equations are u0 ¼ −0.01, α0 ¼ 0.10, Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.
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basically independent of the variations of the potential
parameters.
The variations of the potential V̄ and of the function ψ

are depicted in Fig. 12. V̄ is a decreasing function of r,
which near the vacuum boundary of the string takes
negative values. The function ψ is negative inside the
string. Both V̄ and ψ are basically independent on the
variation of the potential parameter b.
The behavior of the function ξ2ðrÞ is shown in Fig. 13. ξ2

is a monotonically decreasing positive function of r for
r ∈ ½0; Rs�, which vanishes on the vacuum boundary of
the string V̄ðRsÞ ¼ 0. Inside the string the gravitational
coupling is positive, but in the vacuum outside the string

it changes sign. The variation of ξ2 is also basically
independent on the numerical values of the potential
parameter b.

2. Varying the initial conditions

We consider now the effects of the variation of the initial
conditions on the stringlike structures in the presence of
the quadratic potential V̄ðξ;ψÞ ¼ aξ2 þ bψ2. The variation
of the metric function W2 and of the string tension are
represented in Fig. 14, for fixed a and b, and varying
ψ 0ð0Þ. The metric function is an increasing function
of r, and its variation is strongly influenced by the
variation of the initial conditions. The string tension is a
monotonically decreasing function of r that monotoni-
cally decreases, and identically vanishes on the vacuum
boundary r ¼ Rs of the string. Thus the string radius is
uniquely determined, but its numerical value depends on
the adopted initial conditions.
The behaviors of the potential V̄ and of the function ψ

are shown in Fig. 15. V̄ is a decreasing function of r, which
becomes negative near the string boundary. The function ψ
is negative inside the string. Both V̄ and ψ are strongly
dependent on the numerical value of ψ0.
The variation of the function ξ2ðrÞ with respect to r is

represented in Fig. 16. For all r in the range r ∈ ½0; Rs�, ξ2
is a monotonically decreasing positive function, which
vanishes on the vacuum boundary of the string ξ2ðRsÞ ¼ 0.
Similarly to the previously considered case, inside the
string the gravitational coupling is positive. However, for
r > Rs, ξ2 changes sign, indicating the presence of the
unphysical coupling between the scalar field and the Ricci
scalar. The variation of ξ2 is also strongly dependent on the
initial conditions.

FIG. 13. Variation of ξ2 as a function of r (with all quantities in
arbitrary units) for the V̄ðξ;ψÞ ¼ aξ2 þ bψ2 potential, for a ¼
0.5 and b ¼ −2 (solid curve), b ¼ −2.2 (dotted curve), b ¼ −2.4
(short dashed curve), b ¼ −2.6 (dashed curve), and b ¼ −2.8
(long dashed curve), respectively. The boundary conditions used
to numerically integrate the field equations are u0 ¼ −0.01,
α0 ¼ 0.10, Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.

FIG. 14. Variations of the metric function W2ðrÞ (left panel), and of the string tension σðrÞ (right panel) as a function of r (with all
quantities in arbitrary units) for the V̄ðξ;ψÞ ¼ aξ2 þ bψ2 potential, for a ¼ 0.5 and b ¼ −2, and for different values of ψ0: ψ0 ¼
−0.025 (solid curve), ψ0 ¼ −0.035 (dotted curve), ψ0 ¼ −0.045 (short dashed curve), ψ0 ¼ −0.055 (dashed curve), and ψ0 ¼ −0.065
(long dashed curve), respectively. The initial conditions used to numerically integrate the field equations are u0 ¼ −0.01, α0 ¼ 0.10,
Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.
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V. DISCUSSIONS AND FINAL REMARKS

Cosmic strings may have been produced in large
numbers after the symmetry breaking phase transitions
in the postinflationary era. However, the physical and
geometrical properties of cosmic strings may be notably
reshaped in modified gravity theories, which have been
proposed as alternatives to the ΛCDM cosmological
paradigm. It has already been pointed out that any
modifications of canonical GR may strongly affect the
gravitational properties of cosmic strings, cylindrically
symmetric structures obtained as solutions of the gravita-
tional field equations [102–106]. In the present paper we
have considered the properties of cosmic strings in the
generalized HMPG theory, a modified gravity theory with

the action given by an arbitrary function of the Ricci and
Palatini scalars. The equivalent scalar-tensor formulation
of the theory is obtained in terms of two scalar fields, as
well as of a two-field dependent scalar potential. By
assuming a cosmic string metric of the form (28),
obtained by imposing the boost invariance on the general
cylindrically symmetric metric, the gravitational field
equations can be obtained in terms of the metric tensor
component W2ðrÞ, and of the two scalar fields φ and ψ .
However, in the Lagrangian of the scalar-tensor formu-
lation of the theory, the coupling between the scalar fields
and the Ricci tensor is of the form ðϕ − ψÞR. In order to
obtain realistic gravitational theories the coupling term
ϕ − ψ must be positive. This important physical aspect
can be implemented by performing a transformation of
the fields so that ϕ;ψÞ → ðξ2;ψÞ, where ξ2 ¼ ϕ − ψ . The
positivity of the gravitational coupling, giving the physi-
cal consistency of the solutions, can then be formulated
as ξ2ðrÞ > 0; ∀r. Regions of the space-time where
ξ2 < 0 can be excluded as unphysical.
The field equations also determine the string tension σ.

These equations must be solved by choosing a functional
form for the potential, and by imposing some appropriate
boundary conditions at r ¼ 0 on the two scalar fields
ðξ2;ψÞ, on their derivatives, and for W2ð0Þ. Since in the
present approach these boundary conditions are arbitrary,
and since the second order, strongly nonlinear system of
the gravitational field equations is extremely sensitive to
the variation of the boundary conditions, many types of
cosmic string structures can be obtained by adopting
some specific forms of V, and different sets of initial
conditions.
The gravitational field equations describing cosmic

string structures in generalized HMPG can be solved
exactly in the simple cases of the vanishing and constant
potentials, respectively. For the case of zero potential, the
metric of the string can be written as

FIG. 16. Variation of ξ2 as a function of r (with all quantities in
arbitrary units) for the V̄ðξ;ψÞ ¼ aξ2 þ bψ2 potential, for a ¼
0.5 and b ¼ −2, and for different values of ψ0: ψ0 ¼ −0.025
(solid curve), ψ0 ¼ −0.035 (dotted curve), ψ0 ¼ −0.045 (short
dashed curve), ψ0 ¼ −0.055 (dashed curve), and ψ0 ¼ −0.065
(long dashed curve), respectively. The initial conditions used to
numerically integrate the field equations are u0 ¼ −0.01,
α0 ¼ 0.10, Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.

FIG. 15. Variations of the potential V̄ðξ;ψÞ ¼ aξ2 þ bψ2 (left panel), and of the function ψ (right panel) as a function of r (with all
quantities in arbitrary units) for a ¼ 0.5 and b ¼ −2, and for different values of ψ0: ψ0 ¼ −0.025 (solid curve), ψ0 ¼ −0.035 (dotted
curve), ψ0 ¼ −0.045 (short dashed curve), ψ0 ¼ −0.055 (dashed curve), and ψ0 ¼ −0.065 (long dashed curve), respectively. The initial
conditions used to numerically integrate the field equations are u0 ¼ −0.01, α0 ¼ 0.10, Wð0Þ ¼ 0.15, and v0 ¼ −0.01, respectively.
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ds2 ¼ −dt2 þ dr2 þ C2

�
1þ c2

r

�
2

r2dθ2 þ dz2; ð109Þ

where c2 and C are constants. For c2 ¼ 0 the metric of the
string reduces to the standard general relativistic form, with
C2 ¼ 1 − πGμ. However, there is an important difference
between the cosmic string solutions in generalized HMPG
theory, and standard GR, namely, that the string tension is
negative for the solution with V ¼ 0, and, for c2 ¼ 0,
−κ2σðrÞ ∝ 1=r2. In this case the tension diverges for r ¼ 0.
On the other hand, for c2 ≠ 0, the string tension σð0Þ is
finite (negative), but one needs to impose a boundary value
for W2ð0Þ. It has been shown in [100] that the energy-
momentum tensor of a cubic polyhedral wormhole at the
edges of the cube is identical to the energy-momentum
tensor of a negative tension classical string. On the other
hand, standard field theoretical models of strings predict
positive string tensions. However, generalized HMPG the-
ories provide a natural mechanism for generating negative
string tension, and hence these models may open some new
avenues of research in the field of traversable wormholes.
In the case of the constant, nonzero potential, the field

equations can again be solved exactly, and some simple
expressions for the geometrical and physical parameters
can be obtained. The metric has a similar functional form
as for the V ¼ 0 case, but the string tension can be made
positive by an appropriate choice of the potential. A
solution with a constant string tension κ2σ ¼ Λ=2 can also
be constructed, as well as a solution having WðrÞ ¼ W0r,
which can describe the standard general relativistic string
if W2

0 ¼ 1�8πGμ. The string radius Rs can be uniquely
defined, and it is given in terms of the constant potential, as
well as two integration constants. Under the assumption
that the string tension is positive in r ¼ 0, the string radius
is also positive.
For other, more complicated forms of the potential it

seems very difficult, if not impossible, to obtain exact
analytical solutions of the field equations, and hence they
must be solved numerically. In this way it is possible
to construct large classes of numerical cosmic string
models in generalized HMPG theory. In our study we
have considered two distinct types of potentials, having
specific algebraic structures in the two scalar fields, and
obtained either in an additive, or a multiplicative way. We
have considered four such forms of the potential. In the first
two cases we have considered that the potential depends on
only one of the two scalar fields, so that V̄ðξ;ψÞ ¼ V̄0ξ

2,
V̄ðξ;ψÞ ¼ V̄0ξ

4, and V̄ðξ;ψÞ ¼ V̄0ψ
2, respectively. For the

other two potentials, for one we have adopted a multipli-
cative algebraic structure, V̄ðξ;ψÞ ¼ V̄0ξ

2ψ2, and an addi-
tive structure, V̄ðξ;ψÞ ¼ aξ2 þ bψ2, respectively. Since the
potentials depend on at least one extra constant parameter,
together with the five boundary conditions we obtain a very
large boundary parameter space, containing from six to
nine arbitrary parameters. The large number of parameters

allows the construction of a large number of different
numerical cosmic string models. However, we have
restricted the set of parameters, as well as the physical
nature of the solutions, by imposing three physical con-
straints, namely, that the string tension is positive inside the
string, and it vanishes at the vacuum boundary, that the
string must have a well-defined and unique radius Rs,
obtained from the condition σðRsÞ ¼ 0, and that ξ2 > 0,
∀r ∈ ½0; Rs�. Even after imposing this set of restrictions, a
large variety of string models in generalized HMPG theory
can be obtained.
For the four considered potentials we have obtained two

types of behavior of themetric tensor componentW2ðrÞ. It is
a monotonically increasing function of r for the potential
Vðξ;ψÞ − V̄0ψ

2, and a monotonically decreasing function
for the other three potentials. For the numerical integration of
the field equations we have chosen a nonzero value forWð0Þ,
Wð0Þ ≠ 0, since, at least for the considered cases, no
numerical solution satisfying the conditionWð0Þ ¼ 0 exists
(for a more detailed discussion on the existence of an axis or
its regularity, refer to [47]). From the point of view of the sign
of σðrÞ, we have considered only solutions, with σðrÞ taking
positive values, monotonically decreasing inside the string,
and vanishing at the vacuum boundary, respectively. The
string radius is obtained from the condition σðRsÞ ¼ 0,
which uniquely determines its numerical value.
We have also investigated in detail the effects of the

variation of the boundary conditions on the cosmic string
configuration. Generally, the string models in generalized
HMPG theory are very sensitive to any variations of the
boundary conditions for all potentials. The functions
W2ðrÞ, ξ2ðrÞ and ψðrÞ are strongly affected by any small
modification of the five boundary values that describe the
string configuration. Since the parameter space of the
boundary conditions is very large, the results presented
in this investigation did not cover all the possible cosmic
string structures that could be generated from the variations
of the values in the set ðα0;ψ0;Wð0Þ; u0; v0Þ. Detailed
numerical investigations, also involving powerful methods
from the mathematical theory of dynamical systems are
necessary to give a complete answer to this question.
In conclusion, in the present work we have considered

specific cosmic string models that are solutions of the field
equations of the generalized HMPG theory. Modified
gravity theories may have profound implications on the
formation, properties and structure of cosmic strings,
interesting and important topological objects that may have
been generated in the early Universe. Hence, the theoretical
investigations of strings in modified gravity models may
therefore be a worthwhile pathway for future research.
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